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1 Introduction

Let F be a totally real field and M/F be a totally imaginary quadratic exten-
sion (a CM field). We fix a prime p > 2 unramified in M/Q and suppose that
all prime factors of p in F split in M (M is p–ordinary). Fixing two embed-
dings i∞ : Q ↪→ C and ip : Q ↪→ Qp, we take a p–ordinary CM type Σ
of M . Thus Σp = {ip ◦ σ} is exactly a half of the p–adic places of M . Fix
a Hecke character λ of infinity type kΣ + κ(1 − c) with 0 < k ∈ Z and
κ =

∑
σ∈Σ κσσ with κσ ≥ 0. If the conductor C of λ is a product of primes

split in M/F , we call λ has split conductor. Throughout this paper, we assume
that λ has split conductor. We fix a prime l � Cp of F . As is well known
([K] and [Sh1]), for a finite order Hecke character χ and for a power Ω of the
Néron period of an abelian scheme (over a p–adic valuation ring) of CM type

Σ, the L–value L(p)(0,λχ)
Ω is (p–adically) integral (where the superscript: “(p)”

indicates removal of Euler factors at p). The purpose of this paper is three fold:

(1) To prove non-vanishing modulo p of Hecke L–values L(p)(0,λχ)
Ω for

“almost all” anticyclotomic characters χ of finite order with l–power
conductor (under some mild assumptions; Theorem 4.3);

(2) To prove the divisibility: L−
p (ψ)|F−(ψ) in the anticyclotomic Iwasawa

algebra Λ− of M for an anticyclotomic character ψ of split conduc-
tor, where L−

p (ψ) is the anticyclotomic Katz p–adic L–function of the
branch character ψ and F−(ψ) is the corresponding Iwasawa power
series (see Theorem 5.1).

(3) To prove the equality L−
p (ψ) = F−(ψ) up to units under some assump-

tions if F/Q is an abelian extension (Theorem 5.8) and M = F [
√

D]
for 0 > D ∈ Z.

Roughly speaking, F−(ψ) is the characteristic power series of the ψ-branch
of the Galois group of the only Σp–ramified p–abelian extension of the
anticyclotomic tower over the class field of ψ.

The first topic is a generalization of the result of Washington [Wa] (see also
[Si]) to Hecke L–values, and the case where λ has conductor 1 has been dealt
with in [H04c] basically by the same technique. The phrase “almost all” is in
the sense of [H04c] and means “Zariski densely populated characters”. If l has
degree 1 over Q, we can prove a stronger non-vanishing modulo p outside a
(non-specified) finite set. In [HT1] and [HT2], we have shown the divisibility
in item (2) in Λ− ⊗Z Q and indicated that the full divisibility holds except for
p outside an explicit finite set S of primes if one obtains the result claimed in
(1). We will show that S is limited to ramified primes and even primes.
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Though the result in (2) is a direct consequence of the vanishing of the
μ–invariant of L−

p (ψ) proven in [H04c] by the divisibility in Λ−⊗ZQ, we shall
give another proof of this fact using the non-vanishing (1). We will actually
show a stronger result (Corollary 5.6) asserting that the relative class number
h(M/F ) times L−

p (ψ) divides the congruence power series of the CM com-
ponent of the nearly ordinary Hecke algebra (which does not directly follow
from the vanishing of μ). Our method to achieve (2) is a refinement of the work
[HT1] and [HT2], and this subtle process explains the length of the paper.

Once the divisibility (2) is established, under the assumption of (3), if ψ

descends to a character of Gal(Q/Q[
√

D]), we can restrict L−
p (ψ) and F−(ψ)

to a Zp-extension of an abelian extension of Q[
√

D], and applying Rubin’s
identity of the restricted power series ([R] and [R1]), we conclude the identity
L−

p (ψ) = F−(ψ).
We should mention that the stronger divisibility of the congruence power

series by h(M/F )L−
p (ψ) in this paper will be used to prove the equality

of L−(ψ) and F−(ψ) under some mild conditions on ψ for general base
fields F in our forthcoming paper [H04d]. We shall keep the notation and the
assumptions introduced in this introduction throughout the paper.

2 Hilbert Modular Forms

We shall recall algebro-geometric theory of Hilbert modular forms limiting
ourselves to what we need later.

2.1 Abelian variety with real multiplication

Let O be the integer ring of F , and put O∗ = {x ∈ F |Tr(xO) ⊂ Z} (which is
the inverse different d−1). We fix an integral ideal N and a fractional ideal c of
F prime to N. We write A for a fixed base algebra, in which N(N) and N(c)
is invertible. The Hilbert modular variety M(c;N) of level N classifies triples
(X,Λ, i)/S formed by

• An abelian scheme π : X → S for an A–scheme S with an embed-
ding: O ↪→ End(X/S) making π∗(ΩX/S) a locally free O ⊗ OS–module
of rank 1;

• An O–linear polarization Λ : Xt = Pic0
X/S

∼= X ⊗ c;
• A closed O–linear immersion i = iN : (Gm ⊗O∗)[N] ↪→ X .

By Λ, we identify the O–module of symmetric O–linear homomorphisms with
c. Then we require that the (multiplicative) monoid of symmetric O–linear iso-
genies induced locally by ample invertible sheaves be identified with the set of
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totally positive elements c+ ⊂ c. Thus M(c;N)/A is the coarse moduli scheme
of the following functor from the category of A–schemes into the category
SETS:

P(S) =
[
(X,Λ, i)/S

]
,

where [ ] = { }/ ∼= is the set of isomorphism classes of the objects inside the
brackets, and we call (X,Λ, i) ∼= (X ′,Λ′, i′) if we have an O–linear isomor-
phism φ : X/S → X ′

/S such that Λ′ = φ ◦ Λ ◦ φt and φ ◦ i = i′. The scheme
M is a fine moduli if N is sufficiently deep. In [K] and [HT1], the moduli M

is described as an algebraic space, but it is actually a quasi-projective scheme
(e.g. [C], [H04a] Lectures 5 and 6 and [PAF] Chapter 4).

2.2 Abelian varieties with complex multiplication

We write | · |p for the p–adic absolute value of Qp and Q̂p for the p–adic
completion of Qp under | · |p. Recall the p–ordinary CM type (M,Σ), and let
R be the integer ring of M . Thus Σ%Σc for the generator c of Gal(M/F ) gives
the set of all embeddings of M into Q. For each σ ∈ (Σ ∪ Σc), ipσ induces a
p–adic place pσ giving rise to the p–adic absolute value |x|pσ

= |ip(σ(x))|p.
We write Σp = {pσ|σ ∈ Σ} and Σpc = {pσc|σ ∈ Σ}. By ordinarity, we have
Σp ∩ Σpc = ∅.

For each O–lattice a ⊂ M whose p–adic completion ap is identical to Rp =
R⊗Z Zp, we consider the complex torus X(a)(C) = CΣ/Σ(a), where Σ(a) =
{(i∞(σ(a)))σ∈Σ|a ∈ a}. By a theorem in [ACM] 12.4, this complex torus is
algebraizable to an abelian variety X(a) of CM type (M,Σ) over a number
field.

Let F be an algebraic closure of the finite field Fp of p–elements. We write
Ŵ for the p–adically closed discrete valuation ring inside Q̂p unramified over
Zp with residue field F. Thus Ŵ is isomorphic to the ring of Witt vectors
with coefficients in F. Let W = i−1

p (Ŵ ), which is a strict henselization of

Z(p) = Q∩Zp. In general, we write W for a finite extension of Ŵ in Q̂p, which
is a complete discrete valuation ring. We suppose that p is unramified in M/Q.
Then the main theorem of complex multiplication ([ACM] 18.6) combined
with the criterion of good reduction over Ŵ [ST] tells us that X(a) is actually
defined over the field of fractions K of W and extends to an abelian scheme
over W (still written as X(a)/W ). All endomorphisms of X(a)/W are defined
over W . We write θ : M ↪→ End(X(a))⊗Z Q for the embedding of M taking
α ∈ M to the complex multiplication by Σ(α) on X(a)(C) = CΣ/Σ(a).

Let R(a) = {α ∈ R|αa ⊂ a}. Then R(a) is an order of M over O. Recall
the prime l � p of F in the introduction. The order R(a) is determined by its

https://doi.org/10.1017/CBO9780511721267.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511721267.007


Hecke L–values 211

conductor ideal which we assume to be an l–power le. In other words, R(a) =
Re := O + leR. The following three conditions for a fractional Re–ideal a are
equivalent (cf. [IAT] Proposition 4.11 and (5.4.2) and [CRT] Theorem 11.3):

(I1) a is Re–projective;
(I2) a is locally principal;
(I3) a is a proper Re–ideal (that is, Re = R(a)).

Thus Cle := Pic(Re) is the group of Re–projective fractional ideals mod-
ulo principal ideals. The group Cle is finite and called the ring class group
modulo le.

We choose and fix a differential ω = ω(R) on X(R)/W so that

H0(X(R),ΩX(R)/W) = (W ⊗Z O)ω.

If ap = Rp, X(R ∩ a) is an étale covering of both X(a) and X(R); so, ω(R)
induces a differential ω(a) first by pull-back to X(R∩a) and then by pull-back
inverse from X(R ∩ a) to X(a). As long as the projection π : X(R ∩ a) �
X(a) is étale, the pull-back inverse (π∗)−1 : ΩX(R∩a)/W → ΩX(a)/W is a
surjective isomorphism. We thus have

H0(X(a),ΩX(R)/W) = (W ⊗Z O)ω(a).

We choose a totally imaginary δ ∈ M with Im(i∞(σ(δ))) > 0 for all
σ ∈ Σ such that (a, b) �→ (c(a)b− ac(b))/2δ gives the identification R∧R ∼=
d−1c−1. We assume that c is prime to p
 ((
) = l ∩ Z). This Riemann form:
R ∧ R ∼= c∗ = d−1c−1 gives rise to a c–polarization Λ = Λ(R) : X(R)t ∼=
X(R)⊗ c, which is again defined over W . Here d is the different of F/Q, and
c∗ = {x ∈ F |TrF/Q(xc) ⊂ Z}. Since we have Re ∧ Re = le(O ∧ R) +
l2e(R ∧R), the pairing induces Re ∧Re

∼= (cl−e)∗, and this pairing induces a
cl−eNM/F (a)−1–polarization Λ(a) on X(a) for a proper Re–ideal a.

We choose a local generator a of al. Multiplication by a induces an isomor-
phism Re,l

∼= al. Since X(Re)/W has a subgroup C(Re) = R/(O + leR) ⊂
X(Re) isomorphic étale-locally to O/le. This subgroup C(Re) is sent by mul-
tiplication by a to C(a) ⊂ X(a)/W , giving rise to a Γ0(le)–level structure
C(a) on X(a).

For our later use, we choose ideals F and Fc of R prime to c so that F ⊂ Fc
c

and F + Fc = R. The product C = FFc shall be later the conductor of the
Hecke character we study. We put f = F ∩ O and f′ = Fc ∩ O; so, f ⊂ f′.
We shall define a level f2–structure on X(a): supposing that a is prime to f, we
have af

∼= Rf = RF ×RFc , which induces a canonical identification

i(a) : f∗/O∗ = f−1/O ∼= F−1/R ∼= F−1aF/aF ⊂ X(a)[f]. (2.1)
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This level structure induces i′(a) : X(a)[f] � f−1/O by the duality under Λ.
In this way, we get many sextuples:

(X(a),Λ(a), i(a), i′(a), C(a)[l], ω(a)) ∈ M(cl−e(aac)−1; f2,Γ0(l))(W)
(2.2)

as long as le is prime to p, where C(a)[l] = {x ∈ C(a)|lx = 0}. A pre-
cise definition of the moduli scheme of Γ0–type: M(cl−e(aac)−1; f2,Γ0(l))
classifying such sextuples will be given in 2.7. The point x(a) =
(X(a),Λ(a), i(a), i′(a)) of the moduli scheme M(c(aac)−1; f2) is called a CM
point associated to X(a).

2.3 Geometric Hilbert modular forms

We return to the functor P in 2.1. We could insist on freeness of the differen-
tials π∗(ΩX/S), and for ω with π∗(ΩX/S) = (OS ⊗Z O)ω, we consider the
functor classifying quadruples (X,Λ, i, ω):

Q(S) =
[
(X,Λ, i, ω)/S

]
.

Let T = ResO/ZGm. We let a ∈ T (S) = H0(S, (OS ⊗Z O)×) act on Q(S)
by (X,Λ, i, ω) �→ (X,Λ, i, aω). By this action, Q is a T–torsor over P; so, Q
is representable by an A–scheme M = M(c;N) affine over M = M(c;N)/A.
For each character k ∈ X∗(T ) = Homgp−sch(T, Gm), if F �= Q, the k−1–
eigenspace of H0(M/A,OM/A) is by definition the space of modular forms
of weight k integral over A. We write Gk(c,N;A) for this space of A–integral
modular forms, which is an A–module of finite type. When F = Q, as is
well known, we need to take the subsheaf of sections with logarithmic growth
towards cusps (the condition (G0) below). Thus f ∈ Gk(c,N;A) is a functo-
rial rule assigning a value in B to each isomorphism class of (X,Λ, i, ω)/B

(defined over an A–algebra B) satisfying the following three conditions:

(G1) f(X,Λ, i, ω) ∈ B if (X,Λ, i, ω) is defined over B;
(G2) f((X,Λ, i, ω) ⊗B B′) = ρ(f(X,Λ, i, ω)) for each morphism ρ :

B/A → B′
/A;

(G3) f(X,Λ, i, aω) = k(a)−1f(X,Λ, i, ω) for a ∈ T (B).

By abusing the language, we pretend f to be a function of isomorphism
classes of test objects (X,Λ, i, ω)/B hereafter. The sheaf of k−1–eigenspace
OM[k−1] under the action of T is an invertible sheaf on M/A. We write this
sheaf as ωk (imposing (G0) when F = Q). Then we have

Gk(c,N;A) = H0(M(c;N)/A, ωk
/A)
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as long as M(c;N) is a fine moduli space. Writing X = (X,λ, i,ω) for the
universal abelian scheme over M, s = f(X)ωk gives rise to the section of ωk.
Conversely, for any section s ∈ H0(M(c;N), ωk), taking a unique morphism
φ : Spec(B) → M such that φ∗X = X for X = (X,Λ, i, ω)/B , we can define
f ∈ Gk by φ∗s = f(X)ωk.

We suppose that the fractional ideal c is prime to Np, and take two ideals a

and b prime to Np such that ab−1 = c. To this pair (a, b), we can attach the
Tate AVRM Tatea,b(q) defined over the completed group ring Z((ab)) made
of formal series f(q) =

∑
ξ�−∞ a(ξ)qξ (a(ξ) ∈ Z). Here ξ runs over all

elements in ab, and there exists a positive integer n (dependent on f ) such
that a(ξ) = 0 if σ(ξ) < −n for some σ ∈ I . We write A[[(ab)≥0]] for
the subring of A[[ab]] made of formal series f with a(ξ) = 0 for all ξ with
σ(ξ) < 0 for at least one embedding σ : F ↪→ R. Actually, we skipped
a step of introducing the toroidal compactification of M whose (completed)
stalk at the cusp corresponding to (a, b) actually carries Tatea,b(q). However
to make exposition short, we ignore this technically important point, referring
the reader to the treatment in [K] Chapter I, [C], [DiT], [Di], [HT1] Section
1 and [PAF] 4.1.4. The scheme Tate(q) can be extended to a semi-abelian
scheme over Z[[(ab)≥0]] adding the fiber Gm ⊗ a∗. Since a is prime to p,
ap = Op. Thus if A is a Zp–algebra, we have a canonical isomorphism:

Lie(Tatea,b(q) mod A) = Lie(Gm ⊗ a∗) ∼= A ⊗Z a∗ ∼= A⊗Z O∗.

By Grothendieck-Serre duality, we have ΩTatea,b(q)/A[[(ab)≥0]]
∼= A[[(ab)≥0]].

Indeed we have a canonical generator ωcan of ΩTate(q) induced by dt
t ⊗ 1 on

Gm ⊗a∗. We have a canonical inclusion (Gm ⊗O∗)[N] = (Gm ⊗a∗)[N] into
Gm⊗a∗, which induces a canonical closed immersion ican : (Gm⊗O∗)[N] ↪→
Tate(q). As described in [K] (1.1.14) and [HT1] page 204, Tatea,b(q) has
a canonical c–polarization Λcan. Thus we can evaluate f ∈ Gk(c,N;A) at
(Tatea,b(q),Λcan, ican, ωcan). The value f(q) = fa,b(q) actually falls in
A[[(ab)≥0]] (if F �= Q : Koecher principle) and is called the q–expansion
at the cusp (a, b). When F = Q, we impose f to have values in the power
series ring A[[(ab)≥0]] when we define modular forms:

(G0) fa,b(q) ∈ A[[(ab)≥0]] for all (a, b).

2.4 p–Adic Hilbert modular forms

Suppose that A = lim←−n
A/pnA and that N is prime to p. We can think of a

functor

P̂(A) =
[
(X,Λ, ip, iN)/S

]
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similar to P that is defined over the category of p–adic A–algebras B =
lim←−n

B/pnB. An important point is that we consider an isomorphism of ind-
group schemes ip : μp∞ ⊗Z O∗ ↪→ X[p∞] (in place of a differential ω), which
induces Ĝm ⊗ O∗ ∼= X̂ for the formal completion V̂ at the characteristic
p–fiber of a scheme V over A.

It is a theorem (due to Deligne-Ribet and Katz) that this functor is repre-
sentable by the formal Igusa tower over the formal completion M̂(c;N) of
M(c;N) along the ordinary locus of the modulo p fiber (e.g., [PAF] 4.1.9).
A p–adic modular form f/A for a p–adic ring A is a function (strictly speak-
ing, a functorial rule) of isomorphism classes of (X,Λ, ip, iN)/B satisfying the
following three conditions:

(P1) f(X,Λ, ip, iN) ∈ B if (X,Λ, ip, iN) is defined over B;
(P2) f((X,Λ, ip, iN) ⊗B B′) = ρ(f(X,Λ, ip, iN)) for each continuous

A–algebra homomorphism ρ : B → B′;
(P3) fa,b(q) ∈ A[[(ab)≥0]] for all (a, b) prime to Np.

We write V (c,N;A) for the space of p–adic modular forms satisfying (P1-3).
This V (c,N;A) is a p–adically complete A–algebra.

We have the q–expansion principle valid both for classical modular forms
and p–adic modular forms f ,

(q-exp) f is uniquely determined by the q–expansion: f �→ fa,b(q) ∈
A[[(ab)≥0]].

This follows from the irreducibility of (the Hilbert modular version of) the
Igusa tower proven in [DeR] (see also [PAF] 4.2.4).

Since Ĝm ⊗ O∗ has a canonical invariant differential dt
t , we have ωp =

ip,∗(dt
t ) on X . This allows us to regard f ∈ Gk(c,N;A) a p–adic modular

form by

f(X,Λ, ip, iN) := f(X,Λ, iN, ωp).

By (q-exp), this gives an injection of Gk(c,N;A) into the space of p–adic
modular forms V (c,N;A) (for a p–adic ring A) preserving q–expansions.

2.5 Complex analytic Hilbert modular forms

Over C, the category of test objects (X,Λ, i, ω) is equivalent to the category of
triples (L,Λ, i) made of the following data (by the theory of theta functions):
L is an O–lattice in O⊗Z C = CI , an alternating pairing Λ : L∧O L ∼= c∗ and
i : N∗/O∗ ↪→ FL/L. The alternating form Λ is supposed to be positive in the
sense that Λ(u, v)/ Im(uvc) is totally positive definite. The differential ω can
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be recovered by ι : X(C) = CI/L so that ω = ι∗du where u = (uσ)σ∈I is
the variable on CI . Conversely

LX =
{∫

γ

ω ∈ O ⊗Z C
∣∣∣γ ∈ H1(X(C), Z)

}
is a lattice in CI , and the polarization Λ : Xt ∼= X ⊗ c induces L ∧ L ∼= c∗.

Using this equivalence, we can relate our geometric definition of Hilbert
modular forms with the classical analytic definition. Define Z by the product
of I copies of the upper half complex plane H. We regard Z ⊂ F ⊗Q C = CI

made up of z = (zσ)σ∈I with totally positive imaginary part. For each z ∈ Z,
we define

Lz = 2π
√
−1(bz + a∗),

Λz(2π
√
−1(az + b), 2π

√
−1(cz + d)) = −(ad − bc) ∈ c∗

with iz : N∗/O∗ → CI/Lz given by iz(a mod O∗) = (2π
√
−1a mod Lz).

Consider the following congruence subgroup Γ1
1(N; a, b) given by{(

a b
c d

)
∈ SL2(F )

∣∣∣a, d ∈ O, b ∈ (ab)∗, c ∈ Nabd and d − 1 ∈ N

}
.

We let g = (gσ) ∈ SL2(F ⊗Q R) = SL2(R)I act on Z by linear fractional
transformation of gσ on each component zσ . It is easy to verify

(Lz,Λz, iz) ∼= (Lw,Λw, iw) ⇐⇒ w = γ(z) for γ ∈ Γ1
1(N; a, b).

The set of pairs (a, b) with ab−1 = c is in bijection with the set of cusps
(unramified over ∞) of Γ1

1(N; a, b). Two cusps are equivalent if they trans-
form each other by an element in Γ1

1(N; a, b). The standard choice of the cusp
is (O, c−1), which we call the infinity cusp of M(c;N). Write Γ1

1(c;N) =
Γ1

1(N;O, c−1). For each ideal t, (t, tc−1) gives another cusp. The two cusps
(t, tc−1) and (s, sc−1) are equivalent under Γ1

1(c;N) if t = αs for an element
α ∈ F× with α ≡ 1 mod N in F×

N
. We have

M(c;N)(C) ∼= Γ1
1(c;N)\Z, canonically.

Let G = ResO/ZGL(2). Take the following open compact subgroup of
G(A(∞)):

U1
1 (N) =

{(
a b
c d

)
∈ G(Ẑ)

∣∣c ∈ NÔ and a ≡ d ≡ 1 mod NÔ
}

,

and put K = K1
1 (N) = ( d 0

0 1 )−1
U1

1 (N) ( d 0
0 1 ) for an idele d with dO = d and

d(d) = 1. Then taking an idele c with cÔ = ĉ and c(c) = 1, we see that

Γ1
1(c;N) ⊂

(
( c 0

0 1 ) K ( c 0
0 1 )−1 ∩G(Q)+

)
⊂ O×Γ1

1(c;N)
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for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a complete representative set {c} ⊂ F×

A for the strict ray class group
Cl+F (N) modulo N, we find by the approximation theorem that

G(A) =
⊔

c∈Cl+F (N)

G(Q) ( c 0
0 1 ) K · G(R)+

for the identity connected component G(R)+ of the Lie group G(R). This
shows

G(Q)\G(A)/KCi
∼= G(Q)+\G(A)+/KCi

∼=
⊔

c∈Cl+F (N)

M(c;N)(C), (2.3)

where G(A)+ = G(A(∞))G(R)+ and Ci is the stabilizer in G(R)+ of i =
(
√
−1 . . . ,

√
−1) ∈ Z. By (2.3), a Cl+F (N)–tuple (fc)c with fc ∈ Gk(c,N; C)

can be viewed as a single automorphic form defined on G(A).
Recall the identification of X∗(T ) with Z[I] so that k(x) =

∏
σ σ(x)kσ .

Regarding f ∈ Gk(c,N; C) as a holomorphic function of z ∈ Z by f(z) =
f(Lz,Λz, iz), it satisfies the following automorphic property:

f(γ(z)) = f(z)
∏
σ

(cσzσ + dσ)kσ for all γ =
(

a b
c d

)
∈ Γ1

1(c;N). (2.4)

The holomorphy of f is a consequence of the functoriality (G2). The function
f has the Fourier expansion

f(z) =
∑

ξ∈(ab)≥0

a(ξ)eF (ξz)

at the cusp corresponding to (a, b). Here eF (ξz) = exp(2π
√
−1
∑

σ ξσzσ).
This Fourier expansion gives the q–expansion fa,b(q) substituting qξ for
eF (ξz).

2.6 Differential operators

Shimura studied the effect on modular forms of the following differential
operators on Z indexed by k ∈ Z[I]:

δσ
k =

1
2π
√
−1

(
∂

∂zσ
+

kσ

2yσ

√
−1

)
and δr

k =
∏
σ

(
δσ
kσ+2rσ−2 · · · δσ

kσ

)
,

(2.5)
where r ∈ Z[I] with rσ ≥ 0. An important point is that the differential opera-
tor preserves rationality property at CM points of (arithmetic) modular forms,
although it does not preserve holomorphy (see [AAF] III and [Sh1]). We shall
describe the rationality. The complex uniformization ι : X(a)(C) ∼= CΣ/Σ(a)
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induces a canonical base ω∞ = ι∗du of ΩX(a)/C over R ⊗Z R, where u =
(uσ)σ∈Σ is the standard variable on CΣ. Define a period Ω∞ ∈ CΣ = O⊗Z C
by ω(R) = ω(a) = Ω∞ω∞. Here the first identity follows from the fact that
ω(a) is induced by ω(R) on X(R). We suppose that a is prime to p. Here is
the rationality result of Shimura for f ∈ Gk(c, f2;W):

(δr
kf)(x(a), ω∞)

Ωk+2r
∞

= (δr
kf)(x(a), ω(a)) ∈ Q. (S)

Katz interpreted the differential operator in terms of the Gauss-Manin con-
nection of the universal AVRM over M and gave a purely algebro-geometric
definition of the operator (see [K] Chapter II and [HT1] Section 1). Using
this algebraization of δr

k, he extended the operator to geometric modular forms
and p–adic modular forms. We write his operator corresponding to δk

∗ as dk :
V (c,N;A) → V (c,N;A). The level p–structure ip(a) : (Gm ⊗ O∗)[p∞] ∼=
MΣ/aΣ ↪→ X(a)[p∞] (aΣ =

∏
P∈Σp

aP = RΣ) induces an isomorphism

ιp : Ĝm ⊗ O∗ ∼= X̂(a) for the p–adic formal group X̂(a)/W at the origin.
Then ω(R) = ω(a) = Ωpωp (Ωp ∈ O ⊗Z W = WΣ) for ωp = ιp,∗

dt
t . An

important formula given in [K] (2.6.7) is: for f ∈ Gk(c, f2;W),

(drf)(x(a), ωp)
Ωk+2r

p

= (drf)(x(a), ω(a)) = (δr
kf)(x(a), ω(a)) ∈ W. (K)

The effect of dr on q–expansion of a modular form is given by

dr
∑

ξ

a(ξ)qξ =
∑

ξ

a(ξ)ξrqξ. (2.6)

See [K] (2.6.27) for this formula.

2.7 Γ0–level structure and Hecke operators

We now assume that the base algebra A is a W–algebra. Choose a prime q

of F . We are going to define Hecke operators U(qn) and T (1, qn) assuming
for simplicity that q � pN, though we may extend the definition for arbitrary
q (see [PAF] 4.1.10). Then X[qr] is an étale group over B if X is an abelian
scheme over an A–algebra B. We call a subgroup C ⊂ X cyclic of order qr if
C ∼= O/qr over an étale faithfully flat extension of B.

We can think of quintuples (X,Λ, i, C, ω)/S adding an additional informa-
tion C of a cyclic subgroup scheme C ⊂ X cyclic of order qr. We define
the space of classical modular forms Gk(c,N,Γ0(qr);A) (resp. the space
V (c,N,Γ0(qr);A) of p–adic modular forms) of level (N,Γ0(qr)) by (G1-
4) (resp. (P1-3)) replacing test objects (X,Λ, i, ω) (resp. (X,Λ, iN, ip)) by
(X,Λ, i, C, ω) (resp. (X,Λ, iN, C, ip)).
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Our Hecke operators are defined on the space of level (N,Γ0(qr)). The
operator U(qn) is defined only when r > 0 and T (1, qn) is defined only when
r = 0. For a cyclic subgroup C ′ of X/B of order qn, we can define the quotient
abelian scheme X/C ′ with projection π : X → X/C ′. The polarization Λ
and the differential ω induce a polarization π∗Λ and a differential (π∗)−1ω

on X/C ′. If C ′ ∩ C = {0} (in this case, we say that C ′ and C are disjoint),
π(C) gives rise to the level Γ0(qr)–structure on X/C ′. Then we define for
f ∈ Gk(cqn;N,Γ0(qr);A),

f |U(qn)(X,Λ, C, i, ω) =
1

N(qn)

∑
C′

f(X/C ′, π∗Λ, π ◦ i, π(C), (π∗)−1ω),

(2.7)
where C ′ runs over all étale cyclic subgroups of order qn disjoint from C.
Since π∗Λ = π ◦ Λ ◦ πt is a cqn–polarization, the modular form f has to be
defined for abelian varieties with cqn–polarization. Since q � N, forgetting the
Γ0(qn)–structure, we define for f ∈ Gk(cqn;N;A)

f |T (1, qn)(X,Λ, i, ω) =
1

N(qn)

∑
C′

f(X/C ′, π∗Λ, π ◦ i, (π∗)−1ω), (2.8)

where C ′ runs over all étale cyclic subgroups of order qn. We can check
that f |U(qn) and f |T (1, qn) belong to V (c,N,Γ0(qr);A) and also stay in
Gk(c,N,Γ0(qr);A) if f ∈ Gk(cq,N,Γ0(qr);A). We have

U(qn) = U(q)n.

2.8 Hilbert modular Shimura varieties

We extend the level structure i limited to N–torsion points to far bigger struc-
ture η(p) including all prime-to–p torsion points. Since the prime-to–p torsion
on an abelian scheme X/S is unramified at p (see [ACM] 11.1 and [ST]), the
extended level structure η(p) is still defined over S if S is a W–scheme. Triples
(X,Λ, η(p))/S for W–schemes S are classified by an integral model Sh

(p)
/W

(cf. [Ko]) of the Shimura variety Sh/Q associated to the algebraic Q–group
G = ResF/QGL(2) (in the sense of Deligne [De] 4.22 interpreting Shimura’s
original definition in [Sh] as a moduli of abelian schemes up to isogenies).
Here the classification is up to prime-to–p isogenies, and Λ is an equivalence
class of polarizations up to prime-to–p O–linear isogenies.

To give a description of the functor represented by Sh(p), we introduce some
more notations. We consider the fiber category A(p)

F over schemes defined by

(Object) abelian schemes X with real multiplication by O;
(Morphism) HomA(p)

F

(X,Y ) = Hom(X,Y )⊗Z Z(p),
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where Z(p) is the localization of Z at the prime ideal (p), that is,

Z(p) =
{a

b

∣∣bZ + pZ = Z, a, b ∈ Z
}

.

Isomorphisms in this category are isogenies with degree prime to p (called
“prime-to–p isogenies”), and hence the degree of polarization Λ is supposed
to be also prime to p. Two polarizations are equivalent if Λ = cΛ′ = Λ′ ◦ i(c)
for a totally positive c prime to p. We fix an O–lattice L ⊂ V = F 2 with O–
hermitian alternating pairing 〈·, ·〉 inducing a self duality on Lp = L⊗ZZp. We
consider the following condition on an AVRM X/S with θ : O ↪→ End(X/S):

(det) the characteristic polynomial of θ(a) (a ∈ O) on Lie(X) over OS

is given by
∏

σ∈I(T − σ(a)), where I is the set of embeddings of F

into Q.

This condition is equivalent to the local freeness of π∗ΩX/S over OS ⊗Z O for
π : X → S.

For an open-compact subgroup K of G(A(∞)) maximal at p (i.e. K

= GL2(Op) × K(p)), we consider the following functor from Z(p)–schemes
into SETS:

P(p)
K (S) =

[
(X,Λ, η(p))/S with (det)

]
. (2.9)

Here η(p) : L⊗Z A(p∞) ∼= V (p)(X) = T (X)⊗Z A(p∞) is an equivalence class
of η(p) modulo multiplication η(p) �→ η(p) ◦ k by k ∈ K(p) for the Tate mod-
ule T (X) = lim←−N

X[N] (in the sheafified sense that η(p) ≡ (η′)(p) mod K

étale-locally), and a Λ ∈ Λ induces the self-duality on Lp. As long as K(p) is

sufficiently small (for K maximal at p), P(p)
K is representable over any Z(p)–

algebra A (e.g. [H04a], [H04b] Section 3.1 and [PAF] 4.2.1) by a scheme
ShK/A = Sh/K, which is smooth by the unramifiedness of p in F/Q. We

let g ∈ G(A(p∞)) act on Sh
(p)
/Z(p)

by

x = (X,Λ, η) �→ g(x) = (X,Λ, η ◦ g),

which gives a right action of G(A) on Sh(p) through the projection G(A) �
G(A(p∞)).

By the universality, we have a morphism M(c;N) → Sh(p)/Γ̂1
1(c;N) for

the open compact subgroup:

Γ̂1
1(c;N) = ( c 0

0 1 ) K1
1 (N) ( c 0

0 1 )−1 =
(

cd−1 0
0 1

)
U1

1 (N)
(

cd−1 0
0 1

)−1

maximal at p. The image of M(c;N) gives a geometrically irreducible com-
ponent of Sh(p)/Γ̂1

1(c;N). If N is sufficiently deep, by the universality of
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M(c;N), we can identify M(c;N) with its image in Sh(p)/Γ̂1
1(c;N). By the

action on the polarization Λ �→ αΛ for a suitable totally positive α ∈ F , we
can bring M(c;N) into M(αc;N); so, the image of lim←−N

M(c;N) in Sh(p)

only depends on the strict ideal class of c.
For each x = (X,Λ, i) ∈ M(c;N)(S) for a W–scheme S, choosing η(p)

so that η(p) mod Γ̂1
1(c;N) = i, we get a point x = (X,Λ, η(p)) ∈ Sh(p)(S)

projecting down to x = (X,Λ, i). Each element g ∈ G(A) with totally pos-
itive determinant in F× acts on x = (X,Λ, η(p)) ∈ Sh(p) by x �→ g(x) =
(X,det(g)Λ, η(p) ◦ g). This action is geometric preserving the base scheme
Spec(W) and is compatible with the action of G(A(p∞)) given as above (see
[PAF] 4.2.2), because Λ = det(g)Λ. Then we can think of the projection of
g(x) in M(c;N). By abusing the notation slightly, if the lift η(p) of i is clear
in the context, we write g(x) ∈ M(c;N) for the image of g(x) ∈ Sh(p). If
the action of g is induced by a prime-to–p isogeny α : X → g(X), we write
g(x, ω) = (g(x), α∗ω) for (x, ω) ∈ M(c;N) if there is no ambiguity of α.
When det(g) is not rational, the action of g is often non-trivial on Spec(W);
see [Sh] II, [Sh1] and [PAF] 4.2.2.

2.9 Level structure with “Neben” character

In order to make a good link between classical modular forms and adelic auto-
morphic forms (which we will describe in the following subsection), we would
like to introduce “Neben” characters. We fix two integral ideals N ⊂ n ⊂ O.
We think of the following level structure on an AVRM X:

i : (Gm ⊗O∗)[N] ↪→ X[N] and i′ : X[n] � O/n (2.10)

with Im(i) ×X[N] X[n] = Ker(i′), where the sequence (Gm ⊗ O∗)[N] i−→
X[N] i′−→ O/n is required to induce an isomorphism

(Gm ⊗O∗)[N] ⊗O O/n ∼= (Gm ⊗O∗)[n]

under the polarization Λ. When N = n, this is exactly a Γ1
1(N)–level structure.

We fix two characters ε1 : (O/n)× → A× and ε2 : (O/N)× → A×, and we
insist for f ∈ Gk(c,N;A) on the version of (G0-3) for quintuples (X,Λ, i ·
d, a · i′, ω) and the equivariancy:

f(X,Λ, i · d, a · i′, ω) = ε1(a)ε2(d)f(X,Λ, i, i′, ω) for a, d ∈ (O/N)×.
(Neben)

Here Λ is the polarization class modulo multiple of totally positive numbers in
F prime to n. We write Gk(c,Γ0(N), ε;A) (ε = (ε1, ε2)) for the A–module of
geometric modular forms satisfying these conditions.
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2.10 Adelic Hilbert modular forms and Hecke algebras

Let us interpret what we have said so far in automorphic language and give a
definition of the adelic Hilbert modular forms and their Hecke algebra of level
N (cf. [H96] Sections 2.2-4 and [PAF] Sections 4.2.8–4.2.12). We first recall
formal Hecke rings of double cosets. For that, we fix a prime element �q of
Oq for every prime ideal q of O.

We consider the following open compact subgroup of G(A(∞)):

U0(N) =
{(

a b
c d

)
∈ GL2(Ô)

∣∣c ≡ 0 mod NÔ
}

,

U1
1 (N) =

{(
a b
c d

)
∈ U0(N)

∣∣a ≡ d ≡ 1 mod NÔ
}

,
(2.11)

where Ô = O ⊗Z Ẑ and Ẑ =
∏

� Z�. Then we introduce the following semi-
group

Δ0(N) =
{(

a b
c d

)
∈ G(A(∞)) ∩M2(Ô)

∣∣c ≡ 0 mod NÔ, dN ∈ O×
N

}
,

(2.12)
where dN is the projection of d ∈ Ô to

∏
q|N Oq for prime ideals q. Writing

T0 for the maximal diagonal torus of GL(2)/O and putting

D0 =
{

diag[a, d] = ( a 0
0 d ) ∈ T0(FA(∞)) ∩M2(Ô)

∣∣dN = 1
}

, (2.13)

we have (e.g. [MFG] 3.1.6 and [PAF] Section 5.1)

Δ0(N) = U0(N)D0U0(N). (2.14)

In this section, writing pα =
∏

p|p pα(p) with α = (α(p)), the group U is
assumed to be a subgroup of U0(Npα) with U ⊃ U1

1 (Npα) for some multi-
exponent α (though we do not assume that N is prime to p). Formal finite
linear combinations

∑
δ cδUδU of double cosets of U in Δ0(Npα) form a ring

R(U,Δ0(Npα)) under convolution product (see [IAT] Chapter 3 or [MFG]
3.1.6). The algebra is commutative and is isomorphic to the polynomial ring
over the group algebra Z[U0(Npα)/U ] with variables {T (q), T (q, q)}q for
primes q, T (q) corresponding to the double coset U

(
�q 0
0 1

)
U and T (q, q)

(for primes q � Npα) corresponding to U0�qU . Here we have chosen a prime
element �q in Oq. The group element u ∈ U0(Npα)/U in Z[U0(Npα)/U ]
corresponds to the double coset UuU (cf. [H95] Section 2).

The double coset ring R(U,Δ0(Npα)) naturally acts on the space of mod-
ular forms on U whose definition we now recall. Recall that T0 is the diagonal
torus of GL(2)/O; so, T0 = G2

m/O. Since T0(O/N′) is canonically a quotient
of U0(N′) for an ideal N′, a character ε : T0(O/N′) → C× can be consid-
ered as a character of U0(N′). Writing ε (( a 0

0 d )) = ε1(a)ε2(d), if ε− = ε−1
1 ε2
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factors through O/N for N|N′, then we can extend the character ε of U0(N′)
to U0(N) by putting ε(u) = ε1(det(u))ε−(d) for u =

(
a b
c d

)
∈ U0(N). In

this sense, we hereafter assume that ε is defined modulo N and regard ε as a
character of U0(N). We choose a Hecke character ε+ : F×

A /F× → C× with
infinity type (1 − [κ])I (for an integer [κ]) such that ε+(z) = ε1(z)ε2(z) for
z ∈ Ô×. We also write εt

+ for the restriction of ε+ to the maximal torsion
subgroup ΔF (N) of Cl+F (Np∞) (the strict ray class group modulo Np∞ :
lim←−n

Cl+F (Npn)).

Writing I for the set of all embeddings of F into Q and T 2 for ResO/ZT0

(the diagonal torus of G), the group of geometric characters X∗(T 2) is iso-
morphic to Z[I]2 so that (m,n) ∈ Z[I]2 send diag[x, y] ∈ T 2 to xmyn =∏

σ∈I(σ(x)mσσ(y)nσ ). Taking κ = (κ1, κ2) ∈ Z[I]2, we assume [κ]I =
κ1 + κ2, and we associate with κ a factor of automorphy:

Jκ(g, τ) = det(g∞)κ2−Ij(g∞, τ)κ1−κ2+I for g ∈ G(A) and τ ∈ Z. (2.15)

We define Sκ(U, ε; C) by the space of functions f : G(A) → C satisfying the
following three conditions (e.g. [H96] Section 2.2 and [PAF] Section 4.3.1):

(S1) f(αxuδ) = ε(u)εt
+(z)f(x)Jκ(u, i)−1 for all α ∈ G(Q) and all u ∈

U · Ci and z ∈ ΔF (N) (ΔF (N) is the maximal torsion subgroup of
Cl+F (Np∞));

(S2) Choose u ∈ G(R) with u(i) = τ for τ ∈ Z, and put fx(τ) =
f(xu)Jκ(u, i) for each x ∈ G(A(∞)) (which only depends on τ ). Then
fx is a holomorphic function on Z for all x;

(S3) fx(τ) for each x is rapidly decreasing as ησ → ∞ (τ = ξ + iη) for all
σ ∈ I uniformly.

If we replace the word “rapidly decreasing” in (S3) by “slowly increasing”,
we get the definition of the space Gκ(U, ε; C). It is easy to check (e.g. [MFG]
3.1.5) that the function fx in (S2) satisfies the classical automorphy condition:

f(γ(τ)) = ε(x−1γx)f(τ)Jκ(γ, τ) for all γ ∈ Γx(U), (2.16)

where Γx(U) = xUx−1G(R)+∩G(Q). Also by (S3), fx is rapidly decreasing
towards all cusps of Γx (e.g. [MFG] (3.22)); so, it is a cusp form. Impos-
ing that f have the central character ε+ in place of the action of ΔF (N) in
(S1), we define the subspace Sκ(N, ε+; C) of Sκ(U0(N), ε; C). The symbols
κ = (κ1, κ2) and (ε1, ε2) here correspond to (κ2, κ1) and (ε2, ε1) in [PAF]
Section 4.2.6 (page 171) because of a different notational convention in [PAF].

If we restrict f as above to SL2(FA), the determinant factor det(g)κ2 in
the factor of automorphy disappears, and the automorphy factor becomes only
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dependent on k = κ1 − κ2 + I ∈ Z[I]; so, the classical modular form in
Gk has single digit weight k ∈ Z[I]. Via (2.3), we have an embedding of
Sκ(U0(N′), ε; C) into Gk(Γ0(N′), ε; C) =

⊕
[c]∈Cl+F

Gk(c,Γ0(N′), ε; C) (c

running over a complete representative set for the strict ideal class group Cl+F )
bringing f into (fc)[c] for fc = fx (as in (S3)) with x =

(
cd−1 0

0 1

)
(for

d ∈ F×
A with dÔ = d̂). The cusp form fc is determined by the restriction

of f to x · SL2(FA). If we vary the weight κ keeping k = κ1 − κ2 + I , the
image of Sκ in Gk(Γ0(N′), ε; C) transforms accordingly. By this identifica-
tion, the Hecke operator T (q) for non-principal q makes sense as an operator
acting on a single space Gκ(U, ε; C), and its action depends on the choice of
κ. In other words, we have the double digit weight κ = (κ1, κ2) for adelic
modular forms in order to specify the central action of G(A). For a given
f ∈ Sκ(U, ε; C) and a Hecke character λ : F×

A /F× → C×, the tensor prod-
uct (f ⊗ λ)(x) = f(x)λ(det(x)) gives rise to a different modular form in
Sκλ

(U, ελ; C) for weight κλ and character ελ dependent on λ, although the
two modular forms have the same restriction to SL2(FA).

We identify I with
∑

σ σ in Z[I]. It is known that Gκ = 0 unless κ1 +κ2 =
[κ1 + κ2]I for [κ1 + κ2] ∈ Z, because I − (κ1 + κ2) is the infinity type of the
central character of automorphic representations generated by Gκ. We write
simply [κ] for [κ1 + κ2] ∈ Z assuming Gκ �= 0. The SL(2)–weight of the
central character of an irreducible automorphic representation π generated by
f ∈ Gκ(U, ε; C) is given by k (which specifies the infinity type of π∞ as a
discrete series representation of SL2(FR)). There is a geometric meaning of
the weight κ: the Hodge weight of the motive attached to π (cf. [BR]) is given
by {(κ1,σ, κ2,σ), (κ2,σ, κ1,σ)}σ , and thus, the requirement κ1 − κ2 ≥ I is the
regularity assumption for the motive (and is equivalent to the classical weight
k ≥ 2I condition).

Choose a prime element �q of Oq for each prime q of F . We extend
ε− : Ô× → C× to F×

A(∞) → C× just by putting ε−(�m
q ) = 1 for m ∈ Z.

This is possible because F×
q = O×

q × �Z
q for �Z

q = {�m
q |m ∈ Z}. Simi-

larly, we extend ε1 to F×
A(∞) . Then we define ε(u) = ε1(det(u))ε−(aN) for

u =
(

a b
c d

)
∈ Δ0(N). Let U be the unipotent algebraic subgroup of GL(2)/O

defined by U(A) =
{
( 1 a

0 1 )
∣∣a ∈ A

}
. For each UyU ∈ R(U,Δ0(Npα)), we

decompose UyU =
⊔

t∈D0,u∈U(Ô) utU for finitely many u and t (see [IAT]
Chapter 3 or [MFG] 3.1.6) and define

f |[UyU ](x) =
∑
t,u

ε(t)−1f(xut). (2.17)

We check that this operator preserves the spaces of automorphic forms:
Gκ(N, ε; C) and Sκ(N, ε; C). This action for y with yN = 1 is independent
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of the choice of the extension of ε to T0(FA). When yN �= 1, we may assume
that yN ∈ D0 ⊂ T0(FA), and in this case, t can be chosen so that tN = yN

(so tN is independent of single right cosets in the double coset). If we extend
ε to T0(F

(∞)
A ) by choosing another prime element �′

q and write the extension
as ε′, then we have

ε(tN)[UyU ] = ε′(tN)[UyU ]′,

where the operator on the right-hand-side is defined with respect to ε′. Thus
the sole difference is the root of unity ε(tN)/ε′(tN) ∈ Im(ε|T0(O/N)). Since it
depends on the choice of �q, we make the choice once and for all, and write
T (q) for

[
U
(

�q 0
0 1

)
U
]

(if q|N). By linearity, these action of double cosets
extends to the ring action of the double coset ring R(U,Δ0(Npα)).

To introduce rationality of modular forms, we recall Fourier expansion of
adelic modular forms (cf. [H96] Sections 2.3-4). Recall the embedding i∞ :
Q ↪→ C, and identify Q with the image of i∞. Recall also the differental idele
d ∈ F×

A with d(d) = 1 and dÔ = dÔ. Each member f of Sκ(U, ε; C) has its
Fourier expansion:

f ( y x
0 1 ) = |y|A

∑
0�ξ∈F

a(ξyd, f)(ξy∞)−κ2eF (iξy∞)eF (ξx), (2.18)

where eF : FA/F → C× is the additive character which has eF (x∞) =
exp(2πi

∑
σ∈I xσ) for x∞ = (xσ)σ ∈ RI = F ⊗Q R. Here y �→ a(y, f)

is a function defined on y ∈ F×
A only depending on its finite part y(∞). The

function a(y, f) is supported by the set (Ô × F∞) ∩ F×
A of integral ideles.

Let F [κ] be the field fixed by {σ ∈ Gal(Q/F )|κσ = κ}, over which the
character κ ∈ X∗(T 2) is rational. Write O[κ] for the integer ring of F [κ].
We also define O[κ, ε] for the integer ring of the field F [κ, ε] generated by the
values of ε over F [κ]. For any F [κ, ε]–algebra A inside C, we define

Sκ(U, ε;A) =
{
f ∈ Sκ(U, ε; C)

∣∣a(y, f) ∈ A as long as y is integral
}

.

(2.19)
As we have seen, we can interpret Sκ(U, ε;A) as the space of A–rational global
sections of a line bundle of a variety defined over A; so, we have, by the flat
base-change theorem (e.g. [GME] Lemma 1.10.2),

Sκ(N, ε;A) ⊗A C = Sκ(N, ε; C). (2.20)

The Hecke operators preserve A–rational modular forms (e.g., [PAF] 4.2.9).
We define the Hecke algebra hκ(U, ε;A) ⊂ EndA(Sκ(U, ε;A)) by the
A–subalgebra generated by the Hecke operators of R(U,Δ0(Npα)).
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For any Qp–algebras A, we define

Sκ(U, ε;A) = Sκ(U, ε; Q) ⊗Q,ip
A. (2.21)

By linearity, y �→ a(y, f) extends to a function on F×
A × Sκ(U, ε;A) with

values in A. We define the q–expansion coefficients (at p) of f ∈ Sκ(U, ε;A)
by

ap(y, f) = y−κ2
p a(y, f) and a0,p(y, f) = N (yd−1)[κ2]a0(y, f), (2.22)

where N : F×
A /F× → Q

×
p is the character given by N (y) = y−I

p |y(∞)|−1
A .

Here we note that a0(y, f) = 0 if κ2 �∈ ZI . Thus, if a0(y, f) �= 0, [κ2] ∈
Z is well defined. The formal q–expansion of an A–rational f has values in
the space of functions on F×

A(∞) with values in the formal monoid algebra
A[[qξ]]ξ∈F+ of the multiplicative semi-group F+ made up of totally positive
elements, which is given by

f(y) = N (y)−1

⎧⎨⎩a0,p(yd, f) +
∑
ξ�0

ap(ξyd, f)qξ

⎫⎬⎭ . (2.23)

We now define for any p–adically complete O[κ, ε]–algebra A in Q̂p

Sκ(U, ε;A) =
{

f ∈ Sκ(U, ε; Q̂p)
∣∣ap(y, f) ∈ A for integral y

}
. (2.24)

As we have already seen, these spaces have geometric meaning as the space
of A–integral global sections of a line bundle defined over A of the Hilbert
modular variety of level U (see [PAF] Section 4.2.6), and the q–expansion
above for a fixed y = y(∞) gives rise to the geometric q–expansion at the
infinity cusp of the classical modular form fx for x =

(
y 0
0 1

)
(see [H91] (1.5)

and [PAF] (4.63)).
We have chosen a complete representative set {ci}i=1,...,h in finite ideles

for the strict idele class group F×\F×
A /Ô×F×

∞+, where h is the strict class

number of F . Let ci = ciO. Write ti =
(

cid
−1 0

0 1

)
and consider fi = fti

as defined in (S2). The collection (fi)i=1,...,h determines f , because of the
approximation theorem. Then f(cid

−1) gives the q–expansion of fi at the Tate
abelian variety with ci–polarization Tate

c
−1
i ,O(q) (ci = ciO). By (q–exp), the

q–expansion f(y) determines f uniquely.
We write T (y) for the Hecke operator acting on Sκ(U, ε;A) corresponding

to the double coset U
(

y 0
0 1

)
U for an integral idele y. We renormalize T (y)

to have a p–integral operator T(y): T(y) = y−κ2
p T (y). Since this only affects

T (y) with yp �= 1, T(q) = T (�q) = T (q) if q � p. However T(p) �= T (p)
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for primes p|p. The renormalization is optimal to have the stability of the A–
integral spaces under Hecke operators. We define 〈q〉 = N(q)T (q, q) for q �
Npα, which is equal to the central action of a prime element �q of Oq times
N(q) = |�q|−1

A . We have the following formula of the action of T (q) and
T (q, q) (e.g., [PAF] Section 4.2.10):

ap(y, f |T(q)) =

{
ap(y�q, f) + ap(y�−1

q , f |〈q〉) if q is outside n

ap(y�q, f) otherwise,
(2.25)

where the level n of U is the ideal maximal under the condition: U1
1 (n) ⊂ U ⊂

U0(N). Thus T(�q) = U(q) (up to p–adic units) when q is a factor of the level
of U (even when q|p; see [PAF] (4.65–66)). Writing the level of U as Npα, we
assume

either p|Npα or [κ] ≥ 0, (2.26)

since T(q) and 〈q〉 preserve the space Sκ(U, ε;A) under this condition (see
[PAF] Theorem 4.28). We then define the Hecke algebra hκ(U, ε;A) (resp.
hκ(N, ε+;A)) with coefficients in A by the A–subalgebra of the A–linear
endomorphism algebra EndA(Sκ(U, ε;A)) (resp. EndA(Sκ(N, ε+;A))) gen-
erated by the action of the finite group U0(Npα)/U , T(q) and 〈q〉 for all q.

We have canonical projections:

R(U1
1 (Npα),Δ0(Npα)) � R(U,Δ0(Npα)) � R(U0(Npβ),Δ0(Npβ))

for all α ≥ β (⇔ α(p) ≥ β(p) for all p|p) taking canonical generators to the
corresponding ones, which are compatible with inclusions

Sκ(U0(Npβ), ε;A) ↪→ Sκ(U, ε;A) ↪→ Sκ(U1
1 (Npα), ε;A).

We get a projective system of Hecke algebras {hκ(U, ε;A)}U (U running
through open subgroups of U0(Np) containing U1

1 (Np∞)), whose projective
limit (when κ1 − κ2 ≥ I) gives rise to the universal Hecke algebra h(N, ε;A)
for a complete p–adic algebra A. This algebra is known to be independent of
κ (as long as κ1 − κ2 ≥ I) and has canonical generators T(y) over A[[G]]
(for G = (Op × (O/N(p)))× × Cl+F (Np∞)), where N(p) is the prime-to–p

part of N. Here note that the operator 〈q〉 is included in the action of G,
because q ∈ Cl+F (Np∞). We write hn.ord

κ (U, ε;A), hn.ord
κ (Npα, ε+;A) and

hn.ord = hn.ord(N, ε;A) for the image of the (nearly) ordinary projector
e = limn T(p)n!. The algebra hn.ord is by definition the universal nearly
ordinary Hecke algebra over A[[G]] of level N with “Neben character” ε. We
also note here that this algebra hn.ord(N, ε;A) is exactly the one h(ψ+, ψ′)
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employed in [HT1] page 240 (when specialized to the CM component there)
if A is a complete p–adic valuation ring.

Let ΛA = A[[Γ]] for the maximal torsion-free quotient Γ of G. We fix a
splitting G = Γ × Gtor for a finite group Gtor. If A is a complete p–adic
valuation ring, then hn.ord(N, ε;A) is a torsion-free ΛA–algebra of finite rank
and is ΛA–free under some mild conditions on N and ε ([PAF] 4.2.12). Take
a point P ∈ Spf(Λ)(A) = Homcont(Γ, A×). Regarding P as a character of
G, we call P arithmetic if it is given locally by an algebraic character κ(P ) ∈
X∗(T 2) with κ1(P ) − κ2(P ) ≥ I . Thus if P is arithmetic, εP = Pκ(P )−1

is a character of T 2(O/pαN) for some multi-exponent α ≥ 0. Similarly, the
restriction of P to Cl+F (Np∞) is a p–adic Hecke character εP+ induced by
an arithmetic Hecke character of infinity type (1 − [κ(P )])I . As long as P is
arithmetic, we have a canonical specialization morphism:

hn.ord(N, ε;A) ⊗ΛA,P A � hn.ord
κ(P ) (Npα, εP+;A),

which is an isogeny (surjective and of finite kernel) and is an isomorphism if
hn.ord is ΛA–free. The specialization morphism takes the generators T(y) to
T(y).

3 Eisenstein series

We shall study the q–expansion, Hecke eigenvalues and special values at CM
points of an Eisenstein series defined on M(c;N).

3.1 Arithmetic Hecke characters

Recall the CM type Σ ordinary at p and the prime ideal l of O introduced in
the introduction. We sometimes regard Σ as a character of TM = ResM/QGm

sending x ∈ M× to xΣ =
∏

σ∈Σ σ(x). More generally, each integral linear
combination κ =

∑
σ∈Σ�Σc κσσ is regarded as a character of TM by x �→∏

σ σ(x)κσ . We fix an arithmetic Hecke character λ of infinity type kΣ +
κ(1− c) for κ =

∑
σ∈Σ κσσ ∈ Z[Σ] and an integer k. This implies, regarding

λ as an idele character of TM (A), λ(x∞) = x
kΣ+κ(1−c)
∞ for x∞ ∈ TM (R).

We assume the following three conditions:

(crt) k > 0 and κ ≥ 0, where we write κ ≥ 0 if κσ ≥ 0 for all σ.

(opl) The conductor C of λ is prime to p and (
) = l ∩ Z.

(spt) The ideal C is a product of primes split over F .
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3.2 Hilbert modular Eisenstein series

We shall define an Eisenstein series whose special values at CM points
interpolate the values L(0, λχ) for anticyclotomic characters χ of finite order.

We split the conductor C in the following way: C = FFc with F + Fc = R

and F ⊂ Fc
c. This is possible by (spt). We then define f = F ∩ O and f′ =

Fc ∩ O. Then f ⊂ f′. Here X = O/f ∼= R/F and Y = O/f′ ∼= R/Fc. Let
φ : X × Y → C be a function such that φ(ε−1x, εy) = N(ε)kφ(x, y) for all
ε ∈ O× with the integer k as above. We put X∗ = f∗/O∗; so, X∗ is naturally
the Pontryagin dual module of X under the pairing (x∗, x) = eF (x∗x) =
ε(Tr(x∗x)), where ε(x) = exp(2πix) for x ∈ C. We define the partial Fourier
transform Pφ : X∗ × Y → C of φ by

Pφ(x, y) = N(f)−1
∑
a∈X

φ(a, y)eF (ax), (3.1)

where eF is the restriction of the standard additive character of the adele ring
FA to the local component Ff at f.

A function φ as above can be interpreted as a function of (L,Λ, i, i′) in 2.5.
Here i : X∗ ↪→ f−1L/L is the level f–structure. We define an Of–submodule
PV (L) ⊂ L⊗O Ff specified by the following conditions:

PV (L) ⊃ L⊗O Of, PV (L)/Lf = Im(i) (Lf = L ⊗O Of). (PV)

By definition, we may regard

i−1 : PV (L) � PV (L)/ (L ⊗O Of) ∼= f∗/O∗.

By Pontryagin duality under Tr ◦ λ, the dual map of i gives rise to i′ :
PV (L) � O/f. Taking a lift ĩ : (f2)∗/O∗ ↪→ PV (L)/fLf with ĩ mod Lf = i,
we have an exact sequence:

0 → (f2)∗/O∗ ĩ−→ PV (L)/fLf
i′−→ O/f → 0.

This sequence is kept under α ∈ Aut(L) with unipotent reduction modulo f2,
and hence, the pair (i, i′) gives a level Γ1

1(f
2)–structure: Once we have chosen

a generator f of f in Of, by the commutativity of the following diagram:

(f2)∗/O∗ ĩ−−−−→ PV (L)/fLf
i′−−−−→ O/f⏐⏐:� f

⏐⏐:∩ f

⏐⏐:∩
(f2)∗/O∗ −−−−→ X[f2] −−−−→ O/f2,

(3.2)

giving (i, i′) is equivalent to having the bottom sequence of maps in the above
diagram. This explains why the pair (i, i′) gives rise to a level Γ1

1(f
2)–structure;
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strictly speaking, the exact level group is given by:

Γ1
1,0(f

2) =
{(

a b
c d

)
∈ SL2(Of)

∣∣∣a ≡ d ≡ 1 mod f, c ≡ 0 mod f2
}

. (3.3)

We regard Pφ as a function of L ⊗O F supported on (f−2L) ∩ PV (L) by

Pφ(w) =

{
Pφ(i−1(w), i′(w)) if (w mod L) ∈ Im(i),

0 otherwise.
(3.4)

For each w = (wσ) ∈ F ⊗Q C = CI , the norm map N(w) =
∏

σ∈I wσ is
well defined.

For any positive integer k > 0, we can now define the Eisenstein series Ek.
Writing L = (L, λ, i) for simplicity, we define the value Ek(L;φ, c) by

Ek(L;φ, c) =
{(−1)kΓ(k + s)}[F :Q]√

|DF |
∑′

w∈f−1L/O×

Pφ(w)
N(w)k|N(w)|2s

∣∣∣
s=0

.

(3.5)
Here “

∑′” indicates that we are excluding w = 0 from the summation. As
shown by Hecke, this type of series is convergent when the real part of s is
sufficiently large and can be continued to a meromorphic function well defined
at s = 0 (as long as either k ≥ 2 or φ(a, 0) = 0 for all a). The weight of
the Eisenstein series is the parallel weight kI =

∑
σ kσ. If either k ≥ 2 or

φ(a, 0) = 0 for all a, the function Ek(c, φ) gives an element in GkI(c, f2; C),
whose q–expansion at the cusp (a, b) computed in [HT1] Section 2 is given by

N(a)−1Ek(φ, c)a,b(q) = 2−[F :Q]L(1 − k;φ, a)

+
∑

0�ξ∈ab

∑
(a,b)∈(a×b)/O×

ab=ξ

φ(a, b)
N(a)
|N(a)|N(a)k−1qξ, (3.6)

where L(s;φ, a) is the partial L–function given by the Dirichlet series:

∑
ξ∈(a−{0})/O×

φ(ξ, 0)
(

N(ξ)
|N(ξ)|

)k

|N(ξ)|−s.

If φ(x, y) = φX(x)φY (y) for two functions φX : X → C and φY : Y →
C with φY factoring through O/f′, then we can check easily that Ek(φ) ∈
GkI(c, ff′; C).
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3.3 Hecke eigenvalues

We take a Hecke character λ as in 3.1. Then the restriction λ−1
C

: R×
F
×R×

Fc
→

W× induces a locally constant function ψ : (O/f) × (O/f′) → W supported
on (O/f)××(O/f′)×, because λC factor through (R/C)× which is canonically
isomorphic to (O/f)× × (O/f′)×. Since λ is trivial on M×, ψ satisfies

ψ(εx, εy) = εkΣ+κ(1−c)ψ(x, y) = N(ε)kψ(x, y)

for any unit ε ∈ O×.
We regard the local uniformizer �q ∈ Oq as an idele. For each ideal A of F ,

decomposing A =
∏

q
qe(q) for primes q, we define �e(A) =

∏
q
�

e(q)
q ∈ F×

A .
We then define a partial Fourier transform ψ◦ : X × Y → W by

ψ◦(a, b) =
∑

u∈O/f

ψ(u, b)eF (−ua�−e(f)). (3.7)

By the Fourier inversion formula, we have

Pψ◦(x, y) = ψ(�e(f)x, y). (3.8)

From this and the definition of Ek(L) = Ek(L;ψ◦, c), we find

Ek(X,Λ, i ◦ x, i′ ◦ y, aω) = N(a)−kλF(x)λ−1
Fc

(y)Ek(X,Λ, i, i′, ω) (3.9)

for x ∈ (O/f)× = (R/F)× and y ∈ (O/f′)× = (R/Fc)×. Because
of this, Ek(ψ◦, c) actually belongs to GkI(c,Γ0(ff′), ελ; C) for ελ,1 =
λFc

and ελ,2 = λF identifying OF = RF and OFc
= RFc

. Recall
GkI(Γ0(N), ε; C) =

⊕
c∈Cl+F

GkI(c,Γ0(N), ε; C). Via this decomposition we

extend each Cl+F –tuple (fc)c in GkI(Γ0(ff′), ελ; C) to an automorphic form
f ∈ GkI(ff′, ελ+; C) as follows:

(i) f(zx) = λ(z)|z|Af(x) for z in the center F×
A ⊂ G(A) (so ελ+(z) =

λ(z)|z|A);

(ii) f(xu) = ελ(u)f(x) for u ∈ U0(ff′);
(iii) fx = fc if x = ( c 0

0 1 ) for an idele c with cO = c and c(c) = 1.

We now compute the effect of the operator 〈q〉 (defined above (2.25)) on Ek

for a fractional ideal q prime to the level f. A geometric interpretation of the
operator 〈q〉 is discussed, for example, in [H04b] (5.3) (or [PAF] 4.1.9), and
has the following effect on an AVRM X: X �→ X ⊗O q. The level structure i

is intact under this process. The c–polarization Λ induces a cq−2–polarization
on X ⊗O q. On the lattice side, 〈q〉 brings L to qL.
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To simplify our notation, we write

t(w; s) =
λ−1

F
(�e(f)i−1(w))λ−1

Fc
(i′(w))

N(w)k|N(w)|2s

for each term of the Eisenstein series and c(s) for the Gamma factor in front of
the summation, where D = N(d) is the discriminant of F . First we compute
the effect of the operator 〈q〉 when q = (ξ) for ξ ∈ F naively as follows:

Ek((qL,Λ, i);ψ◦, cq−2) = c(s)
∑′

w∈f−1qL/O×

t(w; s)|s=0

q=(ξ)
= c(s)

∑′

w∈f−1L/O×

t(ξw; s)|s=0 = λF(ξ)−1λ−1
Fc

(ξ)N(ξ)−kEk(L;ψ◦, c).

(3.10)

Here we agree to put λ−1
F

(x) = 0 if xRF �= RF and λ−1
Fc

(y) = 0 if yRFc
�=

RFc
.

The result of the above naive calculation of the eigenvalue of 〈q〉 shows
that our way of extending the Eisenstein series (Ek(ψ◦; c))c to an adelic
automorphic form G(A) is correct (and canonical): This claim follows from

λF(ξ)−1λ−1
Fc

(ξ)N(ξ)−k = λ(q) = λ(�q)|�q|AN(q),

because the operator 〈q〉 on GkI(U, ε; C) is defined (above (2.25)) to be the
central action of �q ∈ F×

A (that is, multiplication by λ(�q)|�q|A) times
N(q). We obtain

λFc
(ξ2)Ek|〈q−1〉(L;ψ◦, c)

= Ek((q−1L,Λ, i);ψ◦, cq2) = λF(ξ)λFc
(ξ)N(ξ)kEk(L;ψ◦, c). (3.11)

The factor λFc
(ξ2) in the left-hand-side comes from the fact that i′ with respect

to the c–polarization ξ2Λ of q−1L is the multiple by ξ2 of i′ with respect to
cq2–polarization Λ of q−1L.

We now compute the effect of the Hecke operator T (1, q) = T (q) for a
prime q � f. Here we write L′ for an O-lattice with L′/L ∼= O/q. Then L′ ∧
L′ = (qc)∗; so, Λ induces a qc–polarization on L′, and similarly it induces
q2c–polarization on q−1L. By (2.8), Ek|T (q) is the sum of the terms t(
; s)
with multiplicity extended over q−1f−1L. The multiplicity for each 
 ∈ f−1L
is N(q) + 1 and only once for 
 ∈ q−1f−1L − f−1L (thus, N(q) times for
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 ∈ f−1L and once for 
 ∈ q−1f−1L). This shows

c(0)−1N(q)Ek|T (q)(L;ψ◦, qc)

=
∑
L′

⎧⎨⎩ ∑′

w∈f−1L′/O×

t(w; s) +
∑′

w∈f−1q−1L′/O×

t(w; s)

⎫⎬⎭∣∣∣s=0

= c(0)−1
{
N(q)Ek(L;ψ◦, c) + Ek|〈q〉−1(L;ψ◦, cq2)

}
.

In short, we have

Ek(ψ◦, qc)|T (q) = Ek(ψ◦, c) + N(q)−1Ek(ψ◦, cq2)|〈q〉−1. (3.12)

Suppose that q is principal generated by a totally positive ξ ∈ F . Substituting
ξ−1Λ for Λ, i′ will be transformed into ξ−1i′, and we have

λFc
(ξ)Ek(ψ◦, c)|T (q) = Ek(ψ◦, qc)|T (q)

We combine this with (3.11) assuming q = (ξ) with 0 ' ξ ∈ F :

Ek(ψ◦, c)|T (q)(L) = (λ−1
Fc

(ξ) + λF(ξ)N(q)k−1)Ek(ψ◦, c), (3.13)

which also follows from (3.6) noting that ψ◦(a, b) = G(λ−1
F

)λF(a)λ−1
Fc

(b) for
the Gauss sum G(λ−1

F
).

We now look into the operator [q] for a prime q outside the level f. This oper-
ator brings a level Γ0(q)–test object (X,C, i) with level f structure i outside
q to (X/C, i), where the level f–structure i is intact under the quotient map:
X → X/C. On the lattice side, taking the lattice LC with LC/L = C, it is
defined as follows:

f |[q](L, C,Λ, i) = N(q)−1f(LC ,Λ, i). (3.14)

The above operator is useful to relate U(q) and T (q). By definition,

f |U(q)(L,Λ, C, i) = N(q)−1
∑

L′,L′ �=LC

f(L′,Λ, C ′, i)

for C ′ = LC + L′/L′ = q−1L/L′. Thus we have

U(q) = T (q) − [q]. (3.15)

A similar computation yields:

[q] ◦ U(q) = N(q)−1〈q〉−1. (3.16)

Lemma 3.1 Let q be a prime outside f. Suppose that qh = (ξ) for a totally
positive ξ ∈ F . Let E′

k(ψ, c) = Ek(ψ◦, c) − Ek(ψ◦, cq)|[q] and Ek(ψ, c) =
Ek(ψ◦, c) −N(q)Ek(ψ◦, cq−1)|〈q〉|[q]. Then we have
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(1) E′
k(ψ, c)|U(q) = Ek(ψ◦, q−1c) − Ek(ψ◦, c)|[q],

(2) E′
k(ψ, c)|U(qh) = λ−1

Fc
(ξ)E′

k(ψ, c),
(3) Ek(ψ, c)|U(q)=(Ek(ψ◦, qc)−N(q)Ek(ψ◦, c)|〈q〉|[q])|(N(q)−1〈q〉−1)
(4) Ek(ψ, c)|U(qh) = λF(ξ)N(q)h(k−1)Ek(ψ, c).

Proof We prove (1) and (3), because (2) and (4) follow by iteration of these
formulas combined with the fact: λFc

(ξ)Ek(ψ◦, c) = Ek(ψ◦, ξc) for a totally
positive ξ ∈ F . Since (3) can be proven similarly, we describe computation to
get (1), writing Ek(c) = Ek(ψ◦, c):

E′
k(ψ; c)|U(q) = Ek(c)|U(q) − Ek(cq)|[q]|U(q)

(3.16)= Ek(c)|U(q) −N(q)−1Ek(cq)|〈q〉−1

(3.15)= Ek(c)|T (q) − Ek(cq)|[q] −N(q)−1Ek(cq)|〈q〉−1

(3.12)= Ek(cq−1) + N(q)−1Ek(cq)|〈q〉−1 − Ek(c)|[q] −N(q)−1Ek(cq)|〈q〉−1

= Ek(cq−1) − Ek(c)|[q].

Remark 3.2 As follows from the formulas in [H96] 2.4 (T1) and [H91] Section
7.G, the Hecke operator T (q) and U(q) commutes with the Katz differential
operator as long as q � p. Thus for E(λ, c) = dκEk(ψ, c) and E′(λ, c) =
dκE′

k(ψ, c), we have under the notation of Lemma 3.1

E′(λ, c)|U(qh) =λ−1
Fc

(ξ)E′(λ, c),

E(λ, c)|U(qh) =λF(ξ)N(q)h(k−1)E(λ, c). (3.17)

3.4 Values at CM points

We take a proper Rn+1–ideal a for n > 0, and regard it as a lattice in CΣ by
a �→ (aσ)σ∈Σ. Then Λ(a) induces a polarization of a ⊂ CΣ. We suppose that
a is prime to C (the conductor of λ). For a p–adic modular form f of the form
dκg for classical g ∈ GkI(c,Γ1,0(f2);W), we have by (K) in 2.6

f(x(a), ωp)
ΩkΣ+2κ

p

= f(x(a), ω(a)) =
f(x(a), ω∞)

ΩkΣ+2κ
∞

.

Here x(a) is the test object: x(a) = (X(a),Λ(a), i(a), i′(a))/W .

We write c0 = (−1)k[F :Q] πκΓΣ(kΣ+κ)

Im(δ)κ
√

DΩkΣ+2κ
∞

. Here ΓΣ(s) =
∏

σ∈Σ Γ(sσ),
Ωs

∞ =
∏

σ Ωsσ
σ , Im(δ)s =

∏
σ Im(δs)sσ , and so on, for s =

∑
σ sσσ. By
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definition (see [H04c] 4.2), we find, for e = [R× : O×],

(c0e)−1δκ
kIEk(c)(x(a), ω(a))

= λ−1
C

(�e(F))
∑′

w∈F−1a/R×

λ−1
C

(w)λ(w(∞))
NM/Q(w)s

∣∣∣
s=0

= λ−1
C

(�e(F))λ(a)NM/Q(Fa−1)s
∑′

wFa−1⊂Rn+1

λ(wFa−1)
NM/Q(wFa−1)s

∣∣∣
s=0

= λ−1
C

(�e(F))λ(a)Ln+1
[Fa−1](0, λ),

(3.18)

where for an ideal class [A] ∈ Cln+1 represented by a proper Rn+1–ideal A,

Ln+1
[A] (s, λ) =

∑
b∈[A]

λ(b)NM/Q(b)−s

is the partial L–function of the class [A] for b running over all Rn+1–proper
integral ideals prime to C in the class [A]. In the second line of (3.18), we
regard λ as an idele character and in the other lines as an ideal character. For
an idele a with aR̂ = aR̂ and aC = 1, we have λ(a(∞)) = λ(a).

We put E(λ, c) = dκEk(ψ, c) and E′(λ, c) = dκE′
k(ψ, c) as in Remark 3.2.

We want to evaluate E(λ, c) and E′(λ, c) at x = (x(a), ω(a)). Here c is the
polarization ideal of Λ(a); so, if confusion is unlikely, we often omit the ref-
erence to c (which is determined by a). Thus we write, for example, E(λ) and
E′(λ) for E(λ, c) and E′(λ, c). Then by definition and (K) in 2.6, we have for
x = (x(a), ω(a))

E′(λ)(x) = δκ
kIEk(ψ◦, c)(x) −N(q)−1δκ

kIEk(ψ◦, cq)(x(aRn), ω(aRn))

E(λ)(x) = δκ
kIEk(ψ◦, c)(x) − δκ

kIEk(ψ◦, cq−1)(x(qaRn), ω(aRn))
(3.19)

because C(a) = aRn/a and hence [q](x(a)) = x(aRn).
To simplify notation, write φ([a]) = λ(a)−1φ(x(a), ω(a)). By (3.9), for

φ = E(λ) and E′(λ), the value φ([a]) only depends on the ideal class [a] but
not the individual a. The formula (3.19) combined with (3.18) shows, for a
proper Rn+1–ideal a,

e−1λC(�e(F))E′(λ)([a]) = c0

(
Ln+1

[Fa−1](0, λ) −N(q)−1Ln
[Fa−1Rn](0, λ)

)
e−1λC(�e(F))E(λ)([a]) = c0

(
Ln+1

[Fa−1](0, λ) − λ(q)Ln
[Fq−1a−1Rn](0, λ)

)
(3.20)
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where e = [R× : O×]. Now we define

Ln(s, λ) =
∑

a

λ(a)NM/Q(a)−s, (3.21)

where a runs over all proper ideals in Rn prime to C and NM/Q(a) = [Rn : a].

For each primitive character χ : Clf → Q
×

, we pick n + 1 = mh so that
(m− 1)h ≤ f ≤ n + 1, where qh = (ξ) for a totally positive ξ ∈ F . Then we
have

e−1λC(�e(F))
∑

[a]∈Cln+1

χ(a)E′(λ)([a])

= c0χ(F)
(
Ln+1(0, λχ−1)− Ln(0, λχ−1)

)
e−1λC(�e(F))

∑
[a]∈Cln+1

χ(a)E(λ)([a])

= c0χ(F)
(
Ln+1(0, λχ−1)− λχ−1(q)N(q)Ln(0, λχ−1)

)
.

(3.22)

As computed in [H04c] 4.1 and [LAP] V.3.2, if k ≥ f then the Euler q–factor
of Lk(s, χ−1λ) is given by

k−f∑
j=0

(χ−1λ(q))jN(q)j−2sj if f > 0,

k−1∑
j=0

(χ−1λ(q))jN(q)j−2sj

+
(

N(q) −
(

M/F

q

))
(χ−1λ(q))kN(q)k−1−2ksL0

q(s, χ
−1λ) if f = 0,

(3.23)

where
(

M/F
q

)
is 1, −1 or 0 according as q splits, remains prime or ramifies

in M/F , and L0
q(s, χ

−1λ) is the q–Euler factor of the primitive L–function
L(s, χ−1λ). We define a possibly imprimitive L–function

L(q)(s, χ−1λ) = Lq(s, χ−1λ)L0(s, χ−1λ)

removing the q–Euler factor.
Combining all these formulas, we find

e−1λχ−1(�e(F))
∑

[a]∈Cln+1

χ(a)E(λ)([a]) = c0L
(q)(0, χ−1λ), (3.24)
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e−1λχ−1(�e(F))
∑

[a]∈Cln+1

χ(a)E′(λ)([a])

=

⎧⎪⎪⎨⎪⎪⎩
c0L

(q)(0, χ−1λ) if f > 0,

c0

(
M/F

q

)
Lq(1, χ−1λ)L(0, χ−1λ) if f = 0 and

(
M/F

q

)
�= 0,

−c0χ
−1λ(Q)Lq(1, χ−1λ)L(0, χ−1λ) if q = Q2 in R and f = 0.

(3.25)

All these values are algebraic in Q and integral over W .

4 Non-vanishing modulo p of L–values

We construct an F–valued measure (F = Fp as in 2.2) over the anti-cyclotomic
class group Cl∞ = lim←−n

Cln modulo l∞ whose integral against a character χ

is the Hecke L–value L(0, χ−1λ) (up to a period). The idea is to translate the
Hecke relation of the Eisenstein series into a distribution relation on the profi-
nite group Cl∞. At the end, we relate the non-triviality of the measure to the
q–expansion of the Eisenstein series by the density of {x(a)}a (see [H04c]).

4.1 Construction of a modular measure

We choose a complete representative set {c}[c]∈Cl+F
of the strict ideal class

group Cl+F made up of ideals c prime to pfl. For each proper Rn–ideal a,
the polarization ideal c(a) of x(a) is equivalent to one of the representatives
c (so [c] = [c(a)]). Writing c0 for c(R), we have c(a) = c0l

−n(aac)−1.
Take a modular form g in GkI(Γ0(ff′l), ελ;W ). Thus g = (g[c]) is an h–
tuple of modular forms for h = |Cl+F |. Put f = (f[c])c for f[c] = dκg[c]

for the differential operator dκ =
∏

σ dκσ
σ in 2.6. We write f(x(a)) for the

value of f[c(a)](x(a)). Similarly, we write f(X,Λ, i, ω) for f[c](X,Λ, i, ω) for
the ideal class c determined by Λ. The Hecke operator U(l) takes the space
V (c,Γ0(ff′l), ελ;W ) into V (cl−1,Γ0(ff′l), ελ;W ). Choosing cl in the repre-
sentative set equivalent to the ideal cl−1, we have a canonical isomorphism
V (cl,Γ0(ff′l), ελ;W ) ∼= V (cl,Γ0(ff′l), ελ;W ) sending f to f ′ given by

f ′(X, ξΛ, i, i′, ω) = f(X,Λ, i, i′, ω)

for totally positive ξ ∈ F with ξcl = l−1c. This map is independent of the
choice of ξ. Since the image of M(c;N) in Sh(p) depends only on N and the
strict ideal class of c as explained in 2.8, the Hecke operator U(l) is induced
from the algebraic correspondence on the Shimura variety associated to the
double coset U

(
�l 0
0 1

)
U . So we regard U(l) as an operator acting on h–tuple
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of p–adic modular forms in V (Γ0(ff′l), ελ;W ) =
⊕

c
V (c,Γ0(ff′l), ελ;W )

inducing permutation c �→ cl on the polarization ideals. Suppose that g|U(l) =
ag with a ∈ W×; so, f |U(l) = af (see Remark 3.2). The Eisenstein series
(E(λ, c))c satisfies this condition by Lemma 3.1. The operator U(lh) (h =
|Cl+F |) takes V (c,Γ0(ff′l), ελ;W ) into itself. Thus fc|U(lh) = ahfc.

Choosing a base w = (w1, w2) of R̂ = R ⊗Z Ẑ, identify T (X(R)/Q) = R̂

with Ô2 by Ô ! (a, b) �→ aw1 + bw2 ∈ T (X(R)). This gives a level structure
η(p)(R) : F 2 ⊗Q A(p∞) ∼= V (p)(X(R)) defined over W . Choose the base w

satisfying the following two conditions:

(B1) w2,l = 1 and Rl = Ol[w1,l];
(B2) By using the splitting: Rf = RF×RFc , w1,f = (1, 0) and w2,f = (0, 1).

Let a be a proper Rn–ideal (for Rn = O+lnR) prime to f. Recall the generator
� = �l of lOl. Regarding � ∈ F×

A , wn = (�nw1, w2) is a base of R̂n

and gives a level structure η(p)(Rn) : F 2 ⊗Q A(p∞) ∼= V (p)(X(Rn)). We
choose a complete representative set A = {a1, . . . , aH} ⊂ M×

A so that M×
A =⊔H

j=1 M×ajR̂
×
n M×

∞. Then aR̂n = αajR̂n for α ∈ M× for some index j. We

then define η(p)(a) = αajη
(p)(Rn). The small ambiguity of the choice of α

does not cause any trouble.
Write x0(a) = (X(a),Λ(a), i(a), i′(a), C(a), ω(a)). This is a test object

of level Γ1
1,0(f

2) ∩ Γ0(l) (see (3.3) for Γ1
1,0(f

2)). We pick a subgroup C ⊂
X(Rn) such that C ∼= O/lm (m > 0) but C ∩ C(Rn) = {0}. Then we define
x0(Rn)/C by(
X(Rn)

C
, π∗Λ(Rn), π ◦ i(Rn), π−1 ◦ i′(Rn),

C + C(Rn)[l]
C

, (π∗)−1ω(Rn)
)

for the projection map π : X(Rn) � X(Rn)/C. We can write

x0(Rn)/C = x0(a) ∈ M(cl−n−m, f2,Γ0(l))(W)

for a proper Rn+m–ideal a ⊃ Rn with (aac) = l−2m, and for u ∈ O×
l

we
have

x0(a) = x0(Rn)/C =
(

1 u
�m

l

0 1

)
(x0(Rm+n)). (4.1)

See Section 2.8 in the text for the action of g =
(

1 u
�m

l

0 1

)
on the point

x0(Rm+n), and see [H04c] Section 3.1 for details of the computation leading
to (4.1).

Let TM = ResM/QGm. For each proper Rn–ideal a, we have an embedding
ρa : TM (A(p∞)) → G(A(p∞)) given by αη(p)(a) = η(p)(a) ◦ ρa(α). Since

https://doi.org/10.1017/CBO9780511721267.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511721267.007


238 Haruzo Hida

det(ρa(α)) = ααc � 0, α ∈ TM (Z(p)) acts on Sh(p) through ρa(α) ∈ G(A).
We have

ρa(α)(x(a)) = (X(a), (ααc)Λ(a), η(p)(a)ρa(α))

= (X(αa),Λ(αa), η(p)(αa))

for the prime-to–p isogeny α ∈ EndO(X(a)) = R(p). Thus TM (Z(p)) acts
on Sh(p) fixing the point x(a). We find ρ(α)∗ω(a) = αω(a), and by (B2), we
have

g(x(αa), αω(a)) = g(ρ(α)(x(a), ω(a))) = α−kΣλF(α)λFc
(α)g(x(a), ω(a)).

From this, we conclude

f(x(αa), αω(a)) = f(ρ(α)(x(a), ω(a)))

= α−kΣ−κ(1−c)λF(α)λFc
(α)f(x(a), ω(a)),

because the effect of the differential operator d is identical with that of δ at the
CM point x(a) by (K). By our choice of the Hecke character λ, we find

λ(αa) = α−kΣ−κ(1−c)λF(α)λFc
(α)λ(a).

If a and α is prime to Cp, then the value α−kΣ−κ(1−c)λC(α) is deter-
mined independently of the choice of α for a given ideal αa, and the value
λ(a)−1f(x(a), ω(a)) is independent of the representative set A = {aj} for
Cln. Defining

f([a]) = λ(a)−1f(x(a), ω(a)) for a proper Rn–ideal a prime to Cp, (4.2)

we find that f([a]) only depends on the proper ideal class [a] ∈ Cln.

We write x(au) =
(

1 u
�l

0 1

)
(x(a)), where lh = (�) for an element � ∈ F .

Then au depends only on u mod lh, and {au}u mod lh gives a complete repre-
sentative set for proper Rn+h–ideal classes which project down to the ideal
class [a] ∈ Cln. Since auRn = �−1a, we find λ(au) = λ(l)−hλ(a). Then we
have

ahf([a]) = λ(a)−1f |U(lh)(x(a)) =
1

λ(l)hN(l)h

∑
u mod lh

f([au]),

and we may define a measure ϕf on Cl∞ with values in F by∫
Cl∞

φdϕf = b−m
∑

a∈Clmh

φ(a−1)f([a]) (for b = ahλ(l)hN(l)h). (4.3)

https://doi.org/10.1017/CBO9780511721267.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511721267.007


Hecke L–values 239

4.2 Non-triviality of the modular measure

The non-triviality of the measure ϕf can be proven in exactly the same manner
as in [H04c] Theorems 3.2 and 3.3. To recall the result in [H04c], we need to
describe some functorial action on p–adic modular forms, commuting with
U(lh). Let q be a prime ideal of F . For a test object (X,Λ, η) of level Γ0(Nq),
η induces a subgroup C ∼= O/q in X . Then we can construct canonically
[q](X,Λ, η) = (X ′,Λ, η′) with X ′ = X/C (see [H04b] Subsection 5.3). If
q splits into QQ in M/F , choosing ηq induced by X(a)[q∞] ∼= MQ/RQ ×
M

Q
/R

Q
∼= Fq/Oq × Fq/Oq, we always have a canonical level q–structure

on X(a) induced by the choice of the factor Q. Then [q](X(a)) = X(aQ−1
n )

for Qn = Q ∩ Rn for a proper Rn–ideal a. When q ramifies in M/F as
q = Q2, X(a) has a subgroup C = X(a)[Qn] isomorphic to O/q; so, we
can still define [q](X(a)) = X(aQ−1

n ). The effect of [q] on the q–expansion
at the infinity cusp (O, c−1) is computed in [H04b] (5.12) and is given by
the q–expansion of f at the cusp (q, c−1). The operator [q] corresponds to the

action of g =
(

1 0
0 �−1

q

)
∈ GL2(Fq). Although the action of [q] changes the

polarization ideal by c �→ cq, as in the case of Hecke operator, we regard it
as a linear map well defined on V (Γ0(ff′l), ελ;W ) into V (Γ0(ff′lq), ελ;W )
(inducing the permutation c �→ cq)

For ideals A in F , we can think of the association X �→ X ⊗O A for each
AVRM X . There are a natural polarization and a level structure on X ⊗ A

induced by those of X . Writing (X,Λ, η) ⊗ A for the triple made out of
(X,Λ, η) after tensoring A, we define f |〈A〉(X,Λ, η) = f((X,Λ, η) ⊗ A).
For X(a), we have 〈A〉(X(a)) = X(Aa). The effect of the operator 〈A〉
on the Fourier expansion at (O, c−1) is given by that at (A−1,Ac) (see
[H04b] (5.11) or [PAF] (4.53)). The operator 〈A〉 induces an automorphism
of V (Γ0(ff′l), ελ;W ). By q–expansion principle, f �→ f |[q] and f �→ f |〈A〉
are injective on the space of (p–adic) modular forms, since the effect on the
q-expansion at one cusp of the operation is described by the q-expansion of the
same form at another cusp.

We fix a decomposition Cl∞ = Γf × Δ for a finite group Δ and a torsion-
free subgroup Γf . Since each fractional R–ideal A prime to l defines a class [A]
in Cl∞, we can embed the ideal group of fractional ideals prime to l into Cl∞.
We write Clalg

∞ for its image. Then Δalg = Δ∩Clalg
∞ is represented by prime

ideals of M non-split over F . We choose a complete representative set for Δalg

as {sR−1|s ∈ S, r ∈ R}, where S contains O and ideals s of F outside p
C,
R is made of square-free product of primes in F ramifying in M/F , and R is
a unique ideal in M with R2 = r. The set S is a complete representative set for
the image Cl0F of ClF in Cl0 and {R|r ∈ R} is a complete representative set
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for 2–torsion elements in the quotient Cl0/Cl0F . We fix a character ν : Δ →
F×, and define

fν =
∑
r∈R

λν−1(R)

(∑
s∈S

νλ−1(s)f |〈s〉
)∣∣[r]. (4.4)

Choose a complete representative set Q for Cl∞/ΓfΔalg made of primes

of M split over F outside plC. We choose η
(p)
n out of the base (w1, w2)

of R̂n so that at q = Q ∩ F , w1 = (1, 0) ∈ RQ × RQc = Rq and
w2 = (0, 1) ∈ RQ×RQc = Rq. Since all operators 〈s〉, [q] and [r] involved in
this definition commutes with U(l), fν |[q] is still an eigenform of U(l) with the
same eigenvalue as f . Thus in particular, we have a measure ϕfν

. We define
another measure ϕν

f on Γf by∫
Γf

φdϕν
f =

∑
Q∈Q

λν−1(Q)
∫

Γf

φ|Qdϕfν |[q],

where φ|Q(y) = φ(y[Q]−1
f ) for the projection [Q]f in Γf of the class [Q] ∈

Cl∞.

Lemma 4.1 If χ : Cl∞ → F× is a character inducing ν on Δ, we have∫
Γf

χdϕν
f =
∫

Cl∞

χdϕf .

Proof Write Γf,n for the image of Γf in Cln. For a proper Rn–ideal a, by the
above definition of these operators,

f |〈s〉|[r]|[q]([a]) = λ(a)−1f(x(Q−1R−1a), ω(Q−1R−1a)).

For sufficiently large n, χ factors through Cln. Since χ = ν on Δ, we have∫
Γf

χdϕν
f =

∑
Q∈Q

∑
s∈S

∑
r∈R

∑
a∈Γf,n

λχ−1(QRs−1a)f |〈s〉|[r]|[q]([a])

=
∑

a,Q,s,r

χ(QRs−1a)f([Q−1R−1sa]) =
∫

Cl∞

χdϕf ,

because Cl∞ =
⊔

Q,s,R[Q−1R−1s]Γf .

We identify Hom(Γf , F×) ∼= Hom(Γf , μ�∞) with Hom(Γf , Ĝm/Z�
) ∼=

Ĝd
m for the formal multiplicative group Ĝm over Z�. Choosing a basis β =

{γ1, . . . , γd} of Γf over Z� (so, Zβ =
∑

j Zγj ⊂ Γf ) is to choose a multi-
plicative group Gβ

m = Hom(Zβ , Gm) over Z� whose formal completion along
the identity of Gβ

m(F�) giving rise to Hom(Γf , Ĝm/Z�
). Thus we may regard
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Hom(Γf , μ�∞) as a subset of Hom(Zβ , Gm) ∼= Gβ
m. We call a subset X of

characters of Γf Zariski-dense if it is Zariski-dense as a subset of the alge-
braic group Gβ

m/Q�

(for any choice of β). Then we quote the following result

([H04c] Theorems 3.2 and 3.3):

Theorem 4.2 Suppose that p is unramified in M/Q and Σ is ordinary for p.
Let f �= 0 be an eigenform defined over F of U(l) of level (Γ0(ff′l), ελ) with
non-zero eigenvalue. Fix a character ν : Δ → F×, and define fν as in (4.4). If
f satisfies the following two conditions:

(H1) There exists a strict ideal class c ∈ ClF with the following two
properties:

(a) the polarization ideal c(Q−1R−1s) is in c for some (Q,R, s) ∈
Q× S ×R;

(b) for any given integer r > 0, the N(l)r modular forms fψ,c| ( 1 u
0 1 )

for u ∈ l−r/O are linearly independent over F,

(H2) λ and f are rational over a finite field,

then the set of characters χ : Γf → F× with non-vanishing
∫

Cl∞
νχdϕf �= 0

is Zariski dense. If rankZ�
Γf = 1, under the same assumptions, the non-

vanishing holds except for finitely many characters of Γf . Here νχ is the
character of Cl∞ = Γf × Δ given by νχ(γ, δ) = ν(δ)χ(γ) for γ ∈ Γf

and δ ∈ Δ.

4.3 l–Adic Eisenstein measure modulo p

We apply Theorem 4.2 to the Eisenstein series E(λ) in (3.17) for the
Hecke character λ fixed in 3.1. Choosing a generator π of mW , the exact
sequence ωkI

/W

�−→ ωkI
/W � ωkI

/F induces a reduction map: H0(M, ωkI
/W ) →

H0(M, ωkI
/F). We write Ek(ψ◦, c)mod Λ-modmW for the image of the Eisen-

stein series Ek(ψ◦, c). Then we put

f = (dκ(Ek(ψ◦, c))mod mW )c ∈ V (Γ0(ff′l), ελ; F).

By definition, the q–expansion of f[c] is the reduction modulo mW of the
q–expansion of E(λ, c) of characteristic 0.

We fix a character ν : Δ → F× as in the previous section and write ϕ = ϕf

and ϕν = ϕν
f . By (3.24) combined with Lemma 4.1, we have, for a character

χ : CL∞ → F× with χ|Δ = ν,∫
Γf

χdϕν =
∫

Cl∞

χdϕ = Cχ(F)
πκΓΣ(kΣ + κ)L(l)(0, χ−1λ)

ΩkΣ+2κ
∞

mod mW ,

(4.5)
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where C is a non-zero constant given by the class modulo mW of

(−1)k[F :Q](R× : O×)λ−1(�e(F))
Im(δ)κ

√
D

.

The non-vanishing of C follows from the unramifiedness of p in M/Q and that
F is prime to p.

Theorem 4.3 Let p be an odd prime unramified in M/Q. Let λ be a Hecke
character of M of conductor C and of infinity type kΣ + κ(1 − c) with
0 < k ∈ Z and 0 ≤ κ ∈ Z[Σ] for a CM type Σ that is ordinary with respect

to p. Suppose (spt) and (opl) in 3.1. Fix a character ν : Δ → Q
×

. Then
πκΓΣ(kΣ+κ)L(l)(0,ν−1χ−1λ)

ΩkΣ+2κ
∞

∈ W for all characters χ : Cl∞ → μ�∞(Q) fac-
toring through Γf . Moreover, for Zariski densely populated character χ in
Hom(Γf , μ�∞), we have

πκΓΣ(kΣ + κ)L(l)(0, ν−1χ−1λ)
ΩkΣ+2κ

∞
�≡ 0mod mW ,

unless the following three conditions are satisfied by ν and λ simultaneously:

(M1) M/F is unramified everywhere;

(M2) The strict ideal class (in F ) of the polarization ideal c0 of X(R) is not

a norm class of an ideal class of M (⇔
(

M/F
c0

)
= −1);

(M3) The ideal character a �→ (λν−1N(a)mod mW ) ∈ F× of F is equal to

the character
(

M/F
·

)
of M/F .

If l is a split prime of degree 1 over Q, under the same assumptions, the
non-vanishing holds except for finitely many characters of Γf . If (M1-3) are
satisfied, the L–value as above vanishes modulo m for all anticyclotomic
characters χ.

See [H04b] 5.4 for an example of (M, c0,Σ) satisfying (M1-3).

Proof By Theorem 4.2, we need to verify the condition (H1-2) for E(λ). The
rationality (H2) follows from the rationality of Ek(ψ◦, c) and the differential
operator d described in 2.6. For a given q–expansion h(q) =

∑
ξ a(ξ, h)qξ ∈

F[[c−1
≥0]] at the infinity cusp (O, c−1), we know that, for u ∈ Ol ⊂ FA,

a(ξ, h|αu) = eF (uξ)a(ξ, h) for αu = ( 1 u
0 1 ).

The condition (H1) for h concerns the linear independence of h|αu for
u∈ l−rOl/Ol. For any function φ : c−1/lrc−1 = O/lr → F, we write
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h|φ =
∑

ξ φ(ξ)a(ξ, h)qξ . By definition, we have

h|Rφ =
∑

u∈O/lr

φ(u)h|αu = h|φ∗

for the Fourier transform φ∗(v) =
∑

u φ(u)eF (uv). For the characteristic
function χv of v ∈ c−1/lrc, we compute its Fourier transform

χ∗
v(u) =

∑
a∈O/lr

eF (au)χv(a) = eF (vu).

Since the Fourier transform of the finite group O/lr is an automorphism (by the
inversion formula), the linear independence of {h|αu = h|χ∗

u}u is equivalent
to the linear independence of {h|χu}u.

We recall that fν is a tuple (fν,[c])c ∈ V (Γ01(f2),Γ0(l);W ). Thus we need
to prove: there exists c such that for a given congruence class u ∈ c−1/lrc−1

a(ξ, fν,[c]) �≡ 0mod mW for at least one ξ ∈ u. (4.6)

Since a(ξ, dκh) = ξκa(ξ, h) ((2.6)), (4.6) is achieved if

a(ξ, f ′
ν,[c]) �≡ 0mod mW for at least one ξ ∈ u prime to p (4.7)

holds for

f ′ = (Ek(ψ◦, c) −N(l)Ek(ψ◦, cl−1)|〈l〉|[l])c,

because l � p. Up to a non-zero constant, ψ◦(a, b) in (3.7) is equal to φ(a, b) =
λF(a)λ−1

Fc
(b) for (a, b) ∈ (O/f)×. Thus we are going to prove, for a well

chosen c,

a(ξ, f ′′
ν,[c]) �≡ 0mod mW for at least one ξ ∈ u prime to p, (4.8)

where f ′′
[c] = Ek(φ, c) −N(l)Ek(φ, cl−1)|〈l〉|[l]. Recall (4.4):

f ′′
ν =

∑
r∈R

λν−1(R)

(∑
s∈S

νλ−1(s)f ′′|〈s〉
)∣∣[r]. (4.9)

As computed in [H04b] (5.11) and (5.12), we have

N(s−1r)−1Ek(φ, c)|〈s〉|[r]O,c−1(q) = 2−[F :Q]L(1 − k;φ, s−1r)

+
∑

0�ξ∈c−1r

qξ
∑

(a,b)∈(s−1
r×c

−1
s)/O×

ab=ξ

φ(a, b)
N(a)
|N(a)|N(a)k−1. (4.10)
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Thus we have, writing t(a, b) = φ(a, b)N(a)k

|N(a)| , N(a)−1a(ξ, f ′′
a,b) is given by∑

(a,b)∈(a×b)/O×

ab=ξ

t(a, b) −
∑

(a,b)∈(ar×lb)/O×

ab=ξ

t(a, b)

=
∑

(a,b)∈(a×(b−lb))/O×

ab=ξ

t(a, b). (4.11)

We have the freedom of moving around the polarization ideal class [c] in the
coset NM/F (ClM )[c0] for the polarization ideal class [c0] of x(R). We first
look into a single class [c]. We choose c−1 to be a prime q prime to pfl (this is
possible by changing c−1 in its strict ideal class and choosing δ ∈ M suitably).
We take a class 0 ' ξ ∈ u for u ∈ O/lr so that (ξ) = qnle for an integral
ideal n � plC prime to the relative discriminant D(M/F ) and 0 ≤ e ≤ r. Since
we have a freedom of choosing ξ modulo lr, the ideal n moves around freely
in a given ray class modulo lr−e.

We pick a pair (a, b) ∈ F 2 with ab = ξ with a ∈ s−1 and b ∈ qs. Then
(a) = s−1lαx for an integral ideal x prime to l and (b) = sqle−αx′ for an
integral ideal x′ prime to l. Since (ab) = qnle, we find that xx′ = n. By (4.11),
b has to be prime to l; so, we find α = e. Since xx′ = n and hence r = O

because n is prime to D(M/F ). Thus for each factor x of n, we could have
two possible pairs (ax, bx) with axbx = ξ such that

((ax) = s−1
x lex, (bx) = (ξa−1

x ) = sxqnx−1)

for sx ∈ S representing the ideal class of the ideal lex. We put ψ = ν−1λ.
We then write down the q–expansion coefficient of qξ at the cusp (O, q) (see
[H04c] (4.30)):

G(ψf)−1a(ξ, f ′′
ν ) = ψ−1

Fc
(ξ)ψ(nle)−1N(nle)−1

∏
y|n

1 − (ψ(y)N(y))e(y)+1

1 − ψ(y)N(y)
,

(4.12)
where n =

∏
y|n ye(y) is the prime factorization of n.

We define, for the valuation v of W (normalized so that v(p) = 1)

μC(ψ) = Infnv

⎛⎝∏
y|n

1 − (ψ(y)N(y))e(y)+1

1 − ψ(y)N(y)

⎞⎠ , (4.13)

where n runs over a ray class C modulo lr−e made of all integral ideals prime
to Dl of the form q−1ξl−e, 0 ' ξ ∈ u. Thus if μC(ψ) = 0, we get the desired
non-vanishing. Since μC(ψ) only depends on the class C, we may assume
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(and will assume) that e = 0 without losing generality; thus ξ is prime to l, and
C is the class of u[q−1].

Suppose that n is a prime y. Then by (4.12), we have

G(ψf)−1a(ξ, f ′′
ν ) = ψ−1

Fc
(ξ)(1 + (ψ(y)N(y))−1).

If ψ(y)N(y) ≡ −1mod mW for all prime ideals y in the ray class C modulo
lr, the character a �→ (ψ(a)N(a)mod mW ) is of conductor lr. We write ψ for
the character: a �→ (ψ(a)N(a)mod mW ) of the ideal group of F with values
in F×. This character therefore has conductor C̃|lr. Since ν is anticyclotomic,
its restriction to F×

A has conductor 1. Since λ has conductor C prime to l, the
conductor of ψ is a factor of the conductor of λ mod mW , which is a factor of
pC. Thus C̃|pC. Since l � pC, we find that C̃ = 1.

We are going to show that if μC(ψ) > 0, M/F is unramified and ψ ≡(
M/F
)

mod mW . We now choose two prime ideals y and y′ so that qyy′ =
(ξ) with ξ ∈ u. Then by (4.12), we have

G(ψf)−1a(ξ, f ′′
ν ) = ψ−1

Fc
(ξ)
(

1 +
1

ψ(y)N(y)

)(
1 +

1
ψ(y′)N(y′)

)
.

(4.14)
Since ψ(yy′) = ψ(u[q−1]) = ψ(C) = −1, we find that if a(ξ, f ′′

ν ) ≡
0mod mW ,

−1 = ψ(y/y′) = ψ(l−1)ψ(y2) = −ψ(y2).

Since we can choose y arbitrary, we find that ψ is quadratic. Thus μC(ψ) > 0
if and only if ψ(c) = −1, which is independent of the choice of u. Since we
only need to show the existence of c with ψ(c) = 1, we can vary the strict
ideal class [c] in [c0]NM/F (ClM ). By class field theory, assuming that ψ has
conductor 1, we have

ψ(c) = −1 for all [c] ∈ [c0]NM/F (ClM )

if and only if ψ(c0) = −1 and ψ(a) =
(

M/F

a

)
for all a ∈ ClF . (4.15)

If M/F is unramified, by definition, 2δc∗ = 2δd−1c−1 = R. Taking squares,
we find that (dc)2 = 4δ2 ' 0. Thus 1 = ψ(d−2c−2) = (−1)[F :Q],
and this never happens when [F : Q] is odd. Thus (4.15) is equivalent
to the three conditions (M1-3). The conditions (M1) and (M3) combined is
equivalent to ψ∗ ≡ ψ mod mW , where the dual character ψ∗ is defined by
ψ∗(x) = ψ(x−c)N(x)−1. Then the vanishing of L(0, χ−1ν−1λ) ≡ 0 for all
anti-cyclotomic χν follows from the functional equation of the p-adic Katz
measure interpolating the p–adic Hecke L–values. This finishes the proof.
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5 Anticyclotomic Iwasawa series

We fix a conductor C satisfying (spt) and (opl) in 3.1. We consider Z =
Z(C) = lim←−n

ClM (Cpn) for the ray class group ClM (x) of M modulo x.
We split Z(C) = ΔC × ΓC for a finite group Δ = ΔC and a torsion-free
subgroup ΓC. Since the projection: Z(C) � Z(1) induces an isomorphism
ΓC = Z(C)/ΔC

∼= Z(1)/Δ1 = Γ1, we identify ΓC with Γ1 and write it as Γ,
which has a natural action of Gal(M/F ). We define Γ+ = H0(Gal(M/F ),Γ)
and Γ− = Γ/Γ+. Write π− : Z → Γ− and πΔ : Z → Δ for the two projec-

tions. Take a character ϕ : Δ → Q
×

, and regard it as a character of Z through
the projection: Z � Δ. The Katz measure μC on Z(C) associated to the p–
adic CM type Σp as in [HT1] Theorem II induces the anticyclotomic ϕ–branch
μ−

ϕ by

∫
Γ−

φdμ−
ϕ =

∫
Z(C)

φ(π−(z))ϕ(πΔ(z))dμC(z).

We write L−
p (ϕ) for this measure dμ−

ϕ regarding it as an element of the algebra
Λ− = W [[Γ−]] made up of measures with values in W .

We look into the arithmetic of the unique Z[F :Q]
p –extension M−

∞ of M on
which we have cσc−1 = σ−1 for all σ ∈ Gal(M−

∞/M) for complex con-
jugation c. The extension M−

∞/M is called the anticyclotomic tower over
M . Writing M(Cp∞) for the ray class field over M modulo Cp∞, we iden-
tify Z(C) with Gal(M(Cp∞)/M) via the Artin reciprocity law. Then one has
Gal(M(Cp∞)/M−

∞) = Γ+ × ΔC and Gal(M−
∞/M) = Γ−. We then define

MΔ by the fixed field of ΓC in M(Cp∞); so, Gal(MΔ/M) = Δ. Since ϕ is a
character of Δ, ϕ factors through Gal(M−

∞MΔ/M). Let L∞/M−
∞MΔ be the

maximal p–abelian extension unramified outside Σp. Each γ ∈ Gal(L∞/M)
acts on the normal subgroup X = Gal(L∞/M−

∞MΔ) continuously by
conjugation, and by the commutativity of X , this action factors through
Gal(MΔM−

∞/M). Then we look into the Γ−–module: X[ϕ] = X ⊗ΔC,ϕ W .
As is well known, X[ϕ] is a Λ−–module of finite type, and in many cases, it

is torsion by a result of Fujiwara (cf. [Fu], [H00] Corollary 5.4 and [HMI] Sec-
tion 5.3) generalizing the fundamental work of Wiles [Wi] and Taylor-Wiles
[TW]. If one assumes the Σ–Leopoldt conjecture for abelian extensions of M ,
we know that X[ϕ] is a torsion module over Λ− unconditionally (see [HT2]
Theorem 1.2.2). If X[ϕ] is a torsion Λ−–module, we can think of the character-
istic element F−(ϕ) ∈ Λ− of the module X[ϕ]. If X[ϕ] is not of torsion over
Λ−, we simply put F−(ϕ) = 0. A character ϕ of Δ is called anticyclotomic if
ϕ(cσc−1) = ϕ−1.
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We are going to prove in this section the following theorem:

Theorem 5.1 Let ψ be an anticyclotomic character of Δ. Suppose (spt) and
(opl) in 3.1 for the conductor C(ψ) of ψ. If p is odd and unramified in F/Q,
then the anticyclotomic p–adic Hecke L–function L−

p (ψ) is a factor of F−(ψ)
in Λ−.

Regarding ϕ as a Galois character, we define ϕ−(σ) = ϕ(cσc−1σ−1) for
σ ∈ Gal(M/M). Then ϕ− is anticyclotomic. By enlarging C if necessary, we
can find a character ϕ such that ψ = ϕ− for any given anticyclotomic ψ (e.g.
[GME] page 339 or [HMI] Lemma 5.31). Thus we may always assume that
ψ = ϕ−.

It is proven in [HT1] and [HT2] that Lp(ϕ−) is a factor of F−(ϕ−) in
Λ− ⊗Z Q. Thus the improvement concerns the p–factor of L−

p (ϕ−), which
has been shown to be trivial in [H04b]. The main point of this paper is to give
another proof of this fact reducing it to Theorem 4.3. The new proof actually
gives a stronger result: Corollary 5.6, which is used in our paper [H04d] to
prove the identity L−

p (ψ) = F−(ψ) under suitable assumptions on ψ. The
proof is a refinement of the argument in [HT1] and [HT2]. We first deduce a
refinement of the result in [HT1] Section 7 using a unique Hecke eigenform
(in a given automorphic representation) of minimal level. The minimal level
is possibly a proper factor of the conductor of the automorphic representation.
Then we proceed in the same manner as in [HT1] and [HT2].

Here we describe how to reduce Theorem 5.1 to Corollary 5.6. Since the
result is known for F = Q by the works of Rubin and Tilouine, we may
assume that F �= Q. Put Λ = W [[Γ]]. By definition, for the universal Galois
character ψ̃ : Gal(M(Cp∞)/M) → Λ× sending δ ∈ ΔC to ψ(δ) and γ ∈ Γ
to the group element γ ∈ Γ ⊂ Λ, the Pontryagin dual of the adjoint Selmer
group Sel(Ad(IndF

M ψ̃)) defined in [MFG] 5.2 is isomorphic to the direct sum
of X[ψ]⊗Λ−Λ and ClM⊗ZΛ

ClF ⊗ZΛ . Thus the characteristic power series of the Selmer
group is given by (h(M)/h(F ))F−(ψ).

To relate this power series (h(M)/h(F ))F−(ψ) to congruence among
automorphic forms, we identify Of

∼= RF
∼= RFc

. Recall the maximal
diagonal torus T0 ⊂ GL(2)/O. Thus ψ restricted to (RF × RFc

)× gives
rise to the character ψ of T 2

0 (Of). We then extend ψ to a character ψF of

T 2
0 (Of×OD(M/F )) by ψF (xf, yf, x

′, y′) = ψ(xf, yf)
(

M/F
y′

)
. Then we define

the level ideal N by (C(ψ−) ∩ F )D(M/F ) and consider the Hecke algebra
hn.ord = hn.ord(N, ψF ;W ). It is easy to see that there is a unique W [[Γ]]–
algebra homomorphism λ : hn.ord → Λ such that the associated Galois
representation ρλ ([H96] 2.8) is IndF

M ψ̃. Here Γ is the maximal torsion-free
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quotient of G introduced in 2.10. Note that the restriction of ρλ to the decom-

position group Dq at a prime q|N is the diagonal representation
(

ψF,1 0
0 ψF,2

)
with values in GL2(W ), which we write ρq. We write H(ψ) for the congru-
ence power series H(λ) of λ (see [H96] Section 2.9, where H(λ) is written
as η(λ)). Writing T for the local ring of hn.ord through which λ factors,
the divisibility: H(ψ)|(h(M)/h(F ))F−(ψ) follows from the surjectivity onto
T of the natural morphism from the universal nearly ordinary deformation
ring Rn.ord of IndM

F ψ mod mW (without deforming ρq for each q|N and the
restriction of the determinant character to Δ(N)). See [HT2] Section 6.2 for
details of this implication. The surjectivity is obvious from our construction
of hn.ord(N, ψF ;W ) because it is generated by Tr(ρλ(Frobq)) for primes
q outside pN and by the diagonal entries of ρλ restricted to Dq for q|pN.
Thus we need to prove (h(M)/h(F ))L−

p (ψ)|H(ψ), which is the statement
of Corollary 5.6. This corollary will be proven in the rest of this section.
As a final remark, if we write Tχ for the quotient of T which parametrizes
all p–adic modular Galois representations congruent to IndF

Mψ with a given
determinant character χ, we have T ∼= Tχ⊗̂W W [[Γ+]] = Tχ[[Γ+]] for the
maximal torsion-free quotient Γ+ of Cl+F (Np∞) (cf. [MFG] Theorem 5.44).
This implies H(ψ) ∈ W [[Γ−]].

5.1 Adjoint square L–values as Petersson metric

We now set G := ResO/ZGL(2). Let π be a cuspidal automorphic represen-
tation of G(A) which is everywhere principal at finite places and holomorphic
discrete series at all archimedean places. Since π is associated to holomorphic
automorphic forms on G(A), π is rational over the Hecke field generated by
eigenvalues of the primitive Hecke eigenform in π. We have π = π(∞) ⊗ π∞
for representations π(∞) of G(A(∞)) and π∞ of G(R). We further decompose

π(∞) = ⊗qπ(ε1,q, ε2,q)

for the principal series representation π(ε1,q, ε2,q) of GL2(Fq) with two char-

acters ε1,q, ε2,q : F×
q → Q

×
. By the rationality of π, these characters have

values in Q. The central character of π(∞) is given by ε+ =
∏

q
(ε1,qε2,q),

which is a Hecke character of F . However ε1 =
∏

q
ε1,q and ε2 =

∏
q
ε2,q are

just characters of F×
A(∞) and may not be Hecke characters.

In the space of automorphic forms in π, there is a unique normalized Hecke
eigenform f = fπ of minimal level satisfying the following conditions (see
[H89] Corollary 2.2):

(L1) The level N is the conductor of ε− = ε2ε
−1
1 .
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(L2) Note that επ :
(

a b
c d

)
�→ ε1(ad − bc)ε−(d) is a character of U0(N)

whose restriction to U0(C(π)) for the conductor C(π) of π induces the
“Neben” character

(
a b
c d

)
�→ ε1(a)ε2(d). Then f : G(Q)\G(A) → C

satisfies

f(xu) = επ(u)f(x).

(L3) The cusp form f corresponds to holomorphic cusp forms of weight
κ = (κ1, κ2) ∈ Z[I]2.

In short, fπ is a cusp form in Sκ(N, ε+; C). It is easy to see that Π = π ⊗ ε−1
2

has conductor N and that v ⊗ ε2 is a constant multiple of f for the new vector
v of Π (note here that Π may not be automorphic, but Π is an admissible
irreducible representation of G(A); so, the theory of new vectors still applies).
Since the conductor C(π) of π is given by the product of the conductors of ε1
and ε2, the minimal level N is a factor of the conductor C(π) and is often a
proper divisor of C(π).

By (L2), the Fourier coefficients a(y, f) satisfy a(uy, f) = ε1(u)a(y, f) for
u ∈ Ô× (Ô = O ⊗Z Ẑ). In particular, the function: y �→ a(y, f)a(y, f) only
depends on the fractional ideal yO. Thus writing a(a, f)a(a, f) for the ideal
a = yO, we defined in [H91] the self Rankin product by

D(s − [κ] − 1, f, f) =
∑
a⊂O

a(a, f)a(a, f)N(a)−s,

where N(a) = [O : a] = |O/a|. We have a shift: s �→ s − [κ] − 1, because
in order to normalize the L–function, we used in [H91] (4.6) the unitarization
πu = π ⊗ | · |([κ]−1)/2

A in place of π to define the Rankin product. The weight
κu of the unitarization satisfies [κu] = 1 and κu ≡ κ mod QI . Note that (cf.
[H91] (4.2b))

fu
π (x) := fπu(x) = D−([κ]+1)/2fπ(x)|det(x)|([κ]−1)/2

A . (5.1)

We are going to define Petersson metric on the space of cusp forms
satisfying (L1-3). For that, we write

X0 = X0(N) = G(Q)+\G(A)+/U0(N)F×
A SO2(FR).

We define the inner product (f, g) by

(f, g)N =
∫

X0(N)

f(x)g(x)|det(x)|[κ]−1
A dx (5.2)
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with respect to the invariant measure dx on X0 as in [H91] page 342. In exactly
the same manner as in [H91] (4.9), we obtain

Ds(4π)−I(s+1)−(κ1−κ2)ΓF ((s + 1)I + (κ1 − κ2))ζ
(N)
F (2s + 2)D(s, f, f)

= N(N)−1D−[κ]−2(f, fE0,0(x,1,1; s + 1))N,

where D is the discriminant N(d) of F , ζ
(N)
F (s) = ζF (s)

∏
q|N(1−N(q)−s)

for the Dedekind zeta function ζF (s) of F and Ek,w(x,1,1; s) (k = κ1−κ2+I

and w = I − κ2) is the Eisenstein series of level N defined above (4.8e) of
[H91] for the identity characters (1,1) in place of (χ−1ψ−1, θ) there.

By the residue formula at s = 1 of ζ
(N)
F (2s)E0,0(x,1,1; s) (e.g. (RES2) in

[H99] page 173), we find

(4π)−I−(κ1−κ2)ΓF (I + (κ1 − κ2))Ress=0ζ
(N)
F (2s + 2)D(s, f, f)

= D−[κ]−2N(N)−1
∏
q|N

(1 −N(q)−1)
2[F :Q]−1π[F :Q]R∞h(F )

w
√

D
(f, f)N,

(5.3)

where w = 2 is the number of roots of unity in F , h(F ) is the class number of
F and R∞ is the regulator of F .

Since f corresponds to v⊗ε2 for the new vector v ∈ Π of the principal series
representation Π(∞) of minimal level in its twist class {Π ⊗ η} (η running
over all finite order characters of F×

A(∞)), by making product f ·f , the effect of
tensoring ε2 disappears. Thus we may compute the Euler factor of D(s, f, f)
as if f were a new vector of the minimal level representation (which has the
“Neben” character with conductor exactly equal to that of Π). Then for each
prime factor q|N, the Euler q–factor of ζ

(N)
F (2s + 2)D(s, f, f) is given by

∞∑
ν=0

a(qν , f)a(qν , f)N(q)−νs =
(
1 −N(q)[κ]−s

)−1

,

because a(q, f)a(q, f) = N(q)[κ] by [H88] Lemma 12.2. Thus the zeta func-
tion ζ

(N)
F (2s + 2)D(s, f, f) has the single Euler factor (1 − N(q)−s−1)−1

at q|N, and the zeta function ζF (s + 1)L(s + 1, Ad(f)) has its square
(1 − N(q)−s−1)−2 at q|N, because L(s + 1, Ad(f)) contributes one more
factor (1 − N(q)−s−1)−1. The Euler factors outside N are the same by the
standard computation. Therefore, the left-hand-side of (5.3) is given by

ζ
(N)
F (2s + 2)D(s, f, f)

=

⎛⎝∏
q|N

(1 −N(q)−s−1)

⎞⎠ ζF (s + 1)L(s + 1, Ad(f)) (5.4)
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By comparing the residue at s = 0 of (5.4) with (5.3) (in view of (5.1)), we get

(fu
π , fu

π )N = D−[κ]−1(fπ, fπ)N =

DΓF ((κ1 − κ2) + I)N(N)2−2((κ1−κ2)+I)+1π−((κ1−κ2)+2I)L(1, Ad(f))
(5.5)

for the primitive adjoint square L–function L(s,Ad(f)) (e.g. [H99] 2.3).
Here we have written xs =

∏
σ xsσ for s =

∑
σ sσσ ∈ C[I], and

ΓF (s) =
∏

σ Γ(sσ) for the Γ–function Γ(s) =
∫∞
0

e−tts−1dt. This formula
is consistent with the one given in [HT1] Theorem 7.1 (but is much simpler).

5.2 Primitive p–Adic Rankin product

Let N and J be integral ideals of F prime to p. We shall use the notation
introduced in 2.10. Thus, for a p–adically complete valuation ring W ⊂
Q̂p, hn.ord(N, ψ;W ) and hn.ord(J, χ;W ) are the universal nearly ordinary
Hecke algebra with level (N, ψ) and (J, χ) respectively. The character ψ =
(ψ1, ψ2, ψ

t
+) is made of the characters of ψj of T0(Op × (O/N′(p))) (for

an ideal N′ ⊂ N) of finite order and for the restriction ψt
+ to ΔF (N) (the

torsion part of Cl+F (N′p∞)) of a Hecke character ψ+ extending ψ1ψ2. Sim-
ilarly we regard χ as a character of G(J′) for an ideal J′ ⊂ J); so, ψ− =
ψ−1

1 ψ2 and χ− are well defined (finite order) character of T0(Op × (O/N))
and T0(Op × (O/J)) respectively. In particular we have C(p)(ψ−)|N and
C(p)(χ−)|J, where C(p)(ψ−) is the prime-to–p part of the conductor C(ψ−)
of ψ−. We assume that

C(p)(ψ−) = N, and C(p)(χ−) = J. (5.6)

For the moment, we also assume for simplicity that

ψ−
q �= χ−

q on O×
q for q|JN and ψ1 = χ1 on Ô×. (5.7)

Let λ : hn.ord(N, ψ;W ) → Λ and ϕ : hn.ord(J, χ;W ) → Λ′ be
Λ–algebra homomorphisms for integral domains Λ and Λ′ finite torsion-
free over Λ. For each arithmetic point P ∈ Spf(Λ)(Qp), we let fP ∈
Sκ(P )(U0(Npα), ψP ; Qp) denote the normalized Hecke eigenform of minimal
level belonging to λ. In other words, for λP = P ◦ λ : hn.ord → Qp, we have
a(y, fP ) = λP (T (y)) for all integral ideles y with yp = 1. In the automor-
phic representation generated by fP , we can find a unique automorphic form
ford

P with a(y, ford
P ) = λ(T (y)) for all y, which we call the (nearly) ordinary

projection of fP . Similarly, using ϕ, we define gQ ∈ Sκ(Q)(U0(Jpβ), χQ; Qp)
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for each arithmetic point Q ∈ Spf(Λ′)(Qp). Recall that we have two charac-

ters (ψP,1, ψP,2) of T0(Ô) associated to ψP . Recall ψP = (ψP,1, ψP,2, ψP+) :
T0(Ô)2 × (F×

A /F×) → C×. The central character ψP+ of fP coincides with
ψP,1ψP,2 on Ô× and has infinity type (1− [κ(P )])I . We suppose

The character ψP,1χ
−1
Q,1 is induced by a global finite order character θ. (5.8)

This condition combined with (5.6) implies that θ is unramified outside p. As
seen in [H91] 7.F, we can find an automorphic form gQ|θ−1 on G(A) whose
Fourier coefficients are given by a(y, gQ|θ−1) = a(y, gQ)θ−1(yO), where
θ(a) = 0 if a is not prime to C(θ). The above condition implies, as explained
in the previous subsection,

y �→ a(y, fP )a(y, gQ|θ−1)θ(y)

factors through the ideal group of F . Note that

a(y, fP )a(y, gQ|θ−1)θ(y) = a(y, fP )a(y, gQ)

as long as yp is a unit. We thus write a(a, fP )a(a, gQ|θ−1)θ(a) for the above
product when yO = a and define

D(s − [κ(P )] + [κ(Q)]
2

− 1, fP , gQ|θ−1, θ−1)

=
∑

a

a(a, fP )a(a, gQ|θ−1)θ(a)N(a)−s.

Hereafter we write κ = κ(P ) and κ′ = κ(Q) if confusion is unlikely.
Note that for g′Q(x) = gQ|θ−1(x)θ(det(x)),

D(s, fP , g′Q) := D(s, fP , g′Q,1) = D(s, fP , gQ|θ−1, θ−1).

Though the introduction of the character θ further complicates our notation,
we can do away with it just replacing gQ by g′Q, since the local component
π(χ′

Q,1,q, χ
′
Q,2,q) of the automorphic representation generated by g′Q satisfies

χ′
1,Q = ψ1,P , and hence without losing much generality, we may assume a

slightly stronger condition:

ψP,1 = χQ,1 on Ô× (5.9)

in our computation.
For each holomorphic Hecke eigenform f , we write M(f) for the rank

2 motive attached to f (see [BR]), M̃(f) for its dual, ρf for the p–adic
Galois representation of M(f) and ρ̃f for the contragredient of ρf . Here p

is the p–adic place of the Hecke field of f induced by ip : Q ↪→ Qp. Thus
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L(s,M(f)) coincides with the standard L–function of the automorphic rep-
resentation generated by f , and the Hodge weight of M(fP ) is given by
{(κ1,σ, κ2,σ), (κ1,σ, κ2,σ)}σ for each embedding σ : F ↪→ C. We have
det(ρfP

(Frobq)) = ψu
P (q)N(q)[κ] (p �= q; see [MFG] 5.6.1).

Lemma 5.2 Suppose (5.6) and (5.8). For primes q � p, the Euler q–factor of

L(NJ)(2s − [κ] − [κ′], ψu
P χ−u

Q )D(s − [κ] + [κ′]
2

− 1, fP , g′Q)

is equal to the Euler q–factor of Lq(s,M(fP )⊗ M̃(gQ)) given by

det
(
1 − (ρfP

⊗ ρ̃gQ
)(Frobq)

∣∣
V I N(q)−s)

)−1
,

where V is the space of the p–adic Galois representation of the tensor product:
ρfP

⊗ ρ̃gQ
and V I = H0(I, V ) for the inertia group I ⊂ Gal(Q/F ) at q.

Proof As already explained, we may assume (5.9) instead of (5.8). By abus-
ing the notation, we write π(ψP,1,q, ψP,2,q) (resp. π(χQ,1,q, χQ,2,q)) for the
q–factor of the representation generated by fP (resp. gQ). By the work of
Carayol, R. Taylor and Blasius-Rogawski combined with a recent work of Bla-
sius [B], the restriction of ρfP

to the Decomposition group at q is isomorphic
to diag[ψP,1,q, ψP,2,q] (regarding ψi,P,q as Galois characters by local class
field theory). The same fact is true for gQ. If q|JN, then V I is one dimen-
sional on which Frobq acts by ψP,1,q(�q)χQ,1,q(�q) = a(q, fP )a(q, gQ)
because ψi,P,qχj,Q,q is ramified unless i = j = 1 (⇔ ψ1 = χ1 on Ô× and
ψ−

q �= ψ−
q ). If q � JN, both π(ψP,1,q, ψP,2,q) ⊗ ψ−1

P,1,q = π(1, ψ−
P,q) and

π(χQ,1,q, χQ,2,q) ⊗ χ−1
Q,1,q = π(1, χ−

Q,q) are unramified principal series. By
ψP,1,q = χQ,1,q:(5.8), we have an identity:

ρfP
⊗ ρgc

Q

∼= (ρfP
⊗ ψ−1

P,1,q)⊗ (ρgc
Q
⊗ χQ,1,q)

on the inertia group, which is unramified. Therefore V is unramified at q. At
the same time, the L–function has full Euler factor at q � JN.

We would like to compute fP |τ(x) := ψu
P (det(x))−1fP (xτ) for τ(N) =(

0 −1
N 0

)
∈ G(A(∞)) for an idele N = N(P ) with N (pN) = 1 and NO =

C(ψ−
P ) (whose prime-to–p factor is N). We continue to abuse notation and

write π(ψP,1,q, ψP,2,q) ⊗ ψ−1
P,1,q as π(1, ψ−

P,q) (thus ψ−
P,q is the character of

F×
q inducing the original ψ−

P,q on O×
q ). We write (ψ−

P,q)
u = ψ−

P,q/|ψ−
P,q|

(which is a unitary character). In the Whittaker model V (1, ψ−
P,q) of π(1, ψ−

P,q)
(realized in the space of functions on GL2(Fq)), we have a unique function
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φq on GL2(Fq) whose Mellin transform gives rise to the local L–function of
π(1, ψ−

q ). In particular, we have (cf. [H91] (4.10b))

φq|τq(x) := (ψ−
P )u(det(x))−1φq(xτq) = W (φq)|ψ−

P (Nq)|1/2φq(x),

where φq is the complex conjugate of φq belonging to the space repre-

sentation V (1, ψ
−
P,q) and W (φq) is the epsilon factor of the representation

π(1, ψ−
P,q) as in [H91] (4.10c) (so, |W (φq)| = 1). Then φq ⊗ ψP,1,q(x) :=

ψP,1,q(det(x))φq(x) is in V (ψP,1,q, ψP,2,q) and gives rise to the q–component
of the global Whittaker model of the representation π generated by fP . The
above formula then implies

(φq ⊗ ψP,1,q)|τq := ψu
P (det(x))−1(φq ⊗ ψP,1,q)(xτq)

= ψu
P,1,q(Nq)|Nq|(1−[κ])/2

q W (φq)(φq ⊗ ψP,1,q)(x).

Define the root number Wq(fP ) = W (φq) and W (fP ) =
∏

q
Wq(fP ).

Here note that Wq(fP ) = 1 if the prime q is outside C(ψP,1)C(ψP,2)D. We
conclude from the above computation the following formula:

fP |τ(x) := ψu
P (det(x))−1fP (xτ) = W (fP )ψu

P,1(N)|N |(1−[κ])/2
A fc

P (x),
(5.10)

where fc
P is determined by a(y, f c

P ) = a(y, fP ) for all y ∈ F×
A . This shows

W (fP )W (fc
P ) = ψu

P,∞(−1) = ψ+
P,∞(−1). (5.11)

Using the formula (5.10) instead of [H91] (4.10b), we can prove in exactly
the same manner as in [H91] Theorem 5.2 the following result:

Theorem 5.3 Suppose (5.6) and (5.7). There exists a unique element D in the
field of fractions of Λ⊗̂W Λ′ satisfying the following interpolation property:
Let (P,Q) ∈ Spf(Λ) × Spf(Λ′) be an arithmetic point such that

(W) κ1(P ) − κ1(Q) > 0 ≥ κ2(P )− κ2(Q) and ψP,1 = χQ,1 on Ô×.

Then D is finite at (P,Q) and we have

D(P,Q) = W (P,Q)C(P,Q)S(P )−1E(P,Q)
L(p)(1,M(fP ) ⊗ M̃(gQ))

(fP , fP )
,

where, writing k(P ) = κ1(P ) − κ2(P ) + I ,

W (P,Q) =

(−1)k(Q)

(−1)k(P )

N(J)([κ(Q)]+1)/2

N(N)([κ(P )]−1)/2
·
∏
p|p

χu
Q(dp)G(χ−1

Q,1,pψP,1,p)G(χ−1
Q,2,pψP,1,p)

ψu
P (dp)G((ψ−

P,p)−1)
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C(P,Q) = 2([κ(P )]−[κ(Q)])I−2k(P )π2κ2(P )−([κ(Q)]+1)I

× ΓF (κ1(Q) − κ2(P ) + I)ΓF (κ2(Q) − κ2(P ) + I),

S(P ) =∏
p�Cp(ψ−

P )

(
ψ−

P (�p) − 1
) (

1 − ψ−
P (�p)|�p|p

) ∏
p|Cp(ψ−

P )

(ψ−
P (�p)|�p|p)δ(p),

E(P,Q) =∏
p�Cp(χ−

Q)

(1 − χQ,1ψ
−1
P,1(�p))(1 − χQ,2ψ

−1
P,1(�p))

(1 − χ−1
Q,1ψP,1(�p)|�p|p)(1 − χ−1

Q,2ψP,1(�p)|�p|p)

×
∏

p|Cp(χ−
Q)

χQ,2ψ
−1
P,1(�

γ(p)
p )(1 − χQ,1ψ

−1
P,1(�p))

(1 − χ−1
Q,1ψP,1(�p)|�p|p)

.

Here Cp(ψ−
P ) := C(ψ−

P ) + (p) =
∏

p|p pδ(p) and Cp(χ−
P ) := C(χ−

Q) + (p) =∏
p|p pγ(p). Moreover for the congruence power series H(λ) of λ, H(λ)D ∈

Λ⊗̂W Λ′.

The expression of p–Euler factors and root numbers is simpler than the one
given in [H91] Theorem 5.1, because automorphic representations of fP and
gQ are everywhere principal at finite places (by (5.6)). The shape of the
constant W (P,Q) appears to be slightly different from [H91] Theorem 5.2.
Firstly the present factor (−1)k(P )+k(Q) is written as (χQ+ψP+)∞(−1) in
[H91]. Secondly, in [H91], it is assumed that χ−1

Q,1 and ψ−1
P,1 are both induced

by a global character ψ′
P and ψ′

P unramified outside p. Thus the factor
(χ′

Q,∞ψ′
P,∞)(−1) appears there. This factor is equal to (χQ,1,pψP,1,p)(−1) =

θp(−1), which is trivial because of the condition (W). We do not need to
assume the individual extensibility of χQ,1 and ψP,1. This extensibility is
assumed in order to have a global Hecke eigenform f◦

P = fu
P ⊗ ψ′

P . How-
ever this assumption is redundant, because all computation we have done in
[H91] can be done locally using the local Whittaker model. Also C(P,Q) in
the above theorem is slightly different from the one in [H91] Theorem 5.2,
because (fP , fP ) = D[κ(P )]+1(f◦

P , f◦
P ) for f◦

P appearing in the formula of
[H91] Theorem 5.2.

Proof We start with a slightly more general situation. We shall use the symbol
introduced in [H91]. Suppose C(ψ−)|N and C(χ−)|J, and take normalized
Hecke eigenforms f ∈ Sκ(N, ψ+; C) and g ∈ Sκ′(J, χ+; C). Suppose
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ψ1 = χ1. We define fc ∈ Sκ(N, ψ+; C) by a(y, f c) = a(y, f). Then
fc(w) = f(ε−1wε) for ε =

(−1 0
0 1

)
. We put Φ(w) = (fcgc)(w). Then

we see Φ(wu) = ψ(u)χ−1(u)Φ(w) for u ∈ U = U0(N′) ∩ U0(J′). Since
ψ1 = χ1, we find that ψ(u)χ(u)−1 = ψ−(χ−)−1(d) = ψu(χu)−1(d) if
u =

(
a b
c d

)
. We write simply ω for the central character of f

c
gc, which is the

Hecke character ψu
+(χu

+)−1| · |−[κ′]−[κ]
A . Then we have Φ(zw) = ω(z)Φ(w),

and Φ(wu∞) = Jκ(u∞, i)
−1

Jκ′(u∞, i)−1Φ(w). We then define ω∗(w) =
ω(dN′J′) for w =

(
a b
c d

)
∈ B(A)U ·G(R)+. Here B is the algebraic subgroup

of G made of matrices of the form ( y x
0 1 ). We extend ω∗ : G(A) → C outside

B(A)U ·G(R)+ just by 0. Similarly we define η : G(A) → C by

η(w) =

{
|y|A if g = ( y x

0 1 ) zu with z ∈ F×
A and u ∈ U · SO2(FR)

0 otherwise.

For each Q–subalgebra A ⊂ A, we write B(A)+ = B(A)∩G(A(∞)×G(R)+.
Note that Φ(w)ω∗(w)η(w)s−1 for s ∈ C is left invariant under B(Q)+. Then
we compute

Z(s, f, g) =
∫

B(Q)+\B(A)+

Φ(w)ω∗(w)η(w)s−1dϕB(w)

for the measure ϕB ( y x
0 1 ) = |y|−1

A dx ⊗ d×y defined in [H91] page 340. We
have

Z(s, f, g)

=
∫

F×
A+

∫
FA/F

Φ( y x
0 1 ) dx|y|s−1

A d×y

=D
1
2

∫
F×

A

a(dy, f)a(dy, g)eF (2
√
−1y∞)y−(κ2+κ′

2)∞ |y|sAd×y

dy �→y
= Ds+ 1

2

∫
F×

A

a(y, f)a(y, g)eF (2
√
−1y∞)y−(κ2+κ′

2)∞ |y|sAd×y

=Ds+ 1
2 (4π)−sI+κ2+κ′

2ΓF (sI − κ2 − κ′
2)D(s − [κ] + [κ′]

2
− 1, f, g).

Define C∞+ ⊂ G(R)+ by the stabilizer in G(R)+ of i ∈ Z. We now choose
an invariant measure ϕU on X(U) = G(Q)+\G(A)+/UC∞+ so that∫

X(U)

∑
γ∈O×B(Q)+\G(Q)+

φ(γw)dϕU (w) =
∫

B(Q)+\B(A)+

φ(b)dϕB(b)

whenever φ is supported on B(A(∞))u · G(R)+ and the two integrals are
absolutely convergent. There exists a unique invariant measure ϕU as seen
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in [H91] page 342 (where the measure is written as μU ). On B(A)+, Φ(w) =
f

c
gc(w)Jκ(w, i)Jκ′(w, i) and the right-hand-side is left C∞+ invariant (cf.

(S2) in 2.10). Then by the definition of ϕU , we have∫
B(Q)+\B(A)+

Φω∗ηs−1dϕB =
∫

X(U)

f
c
(w)gc(w)E(w, s − 1)dϕU (w),

(5.12)
where

E(w, s) =
∑

γ∈O×B(Q)+\G(Q)+

ω∗(γw)η(γw)sJκ(γw, i)Jκ′(γw, i).

Note that E(zw, s) = (ψ+
−uχu

+)(z)E(w, s) for z ∈ Ô×. By definition,
E(αx) = E(x) for α ∈ G(Q)+; in particular, it is invariant under α ∈ F×.
For z ∈ F×

R , one has E(zw, s) = N(z)[κ]+[κ′]−2E(w, s). It follows that

|det(w)|1−([κ]+[κ])/2
A E(w, s) has eigenvalue ψ−u

+ χu
+(z) under the central

action of z ∈ F×Ô×F×
R . The averaged Eisenstein series:

E(w, s) =
∑

a∈ClF

ψu
+χ−u

+ (a)|det(aw)|1−([κ]+[κ′])/2
A E(aw, s)

= |det(w)|1−([κ]+[κ′])/2
A

∑
a∈ClF

ψ+χ+(a)E(aw, s)

satisfies E(zw, s) = ψ−u
+ χu

+(z)E(w, s), where a runs over complete repre-

sentative set for F×
A /F×Ô×F×

R and ψ+ is the central character of f and χ+

is the central character of gc. Defining the PGL2 modular variety X(U) =
X(U)/F×

A , by averaging (5.12), we find

Ds+ 1
2 (4π)−sI+κ2+κ′

2ΓF (sI − κ2 − κ′
2)D(s − [κ] + [κ′]

2
− 1, f, g)

=
∫

X(U)

f
c
(w)gc(w)E(w, s − 1)|det(w)|([κ]+[κ′])/2−1

A dϕU (w).

(5.13)

Writing U = U0(L) and writing r = κ′
2 − κ2, we define an Eisenstein series

Ek−k′,r(ωu,1; s) by

N(L)−1
√

D|det(w)|
[κ′]−[κ]

2
A L(L)(2s, ωu)E(w, s +

[κ] + [κ′]
2

− 1),
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where k = κ1 − κ2 and k′ = κ′
1 − κ′

2. The ideal L is given by N ∩ J. Then,

changing variable s − [κ]+[κ′]
2 − 1 �→ s, we can rewrite (5.13) as

Ds+ 1
2 (4π)−sI− k+k′

2 ΓF (sI +
k + k′

2
)L(L)(2s + 2, ψuχ−u)D(s, f, g)

= N(L)−1D−(3+[κ]+[κ′])/2(fc, gcEk−k′,r(ωu,1; s + 1))L

= N(L)−s− [κ]+[κ′]
2 D−(3+[κ]+[κ′])/2(fc|τ, (gc|τ)Gk−k′,r(ωu,1; s + 1))L,

(5.14)

where Gk−k′,r(ωu,1; s) = N(L)s−1+
[κ′]−[κ]

2 Ek−k′,r(ωu,1; s)|τ for τ of
level L, and

(φ, ϕ)L =
∫

X(U)

φ(w)ϕ(w)|det(w)|[κ]−1
A dϕU (w)

is the normalized Petersson inner product on Sκ(U,ψ; C). This formula is
equivalent to the formula in [H91] (4.9) (although we have more general forms
f and g with character ψ and χ not considered in [H91]). In [H91] (4.9), k′ is
written as κ and r is written as w − ω.

Let E be the Eisenstein measure of level L = N ∩ J defined in [H91]
Section 8, where L is written as L. We take an idele L with LO = L and
L(L) = 1. Similarly we take ideles J and N replacing in the above formula L

by J and N, respective;y, and L by the corresponding J and N , respectively.
The algebra homomorphism ϕ : hn.ord(J, χ;W ) → Λ′ induces, by the

W–duality, ϕ∗ : Λ′∗ ↪→ Sn.ord(J, χ;W ), where Sn.ord(J, χ;W ) is a sub-
space of p–adic modular forms of level (J, χ) (see [H96] 2.6). We then
consider the convolution as in [H91] Section 9 (page 382):

D = λ ∗ ϕ =
E ∗λ ([L/J ] ◦ ϕ∗)

H(λ) ⊗ 1
for E ∗λ ([L/J ] ◦ ϕ∗) ∈ Λ⊗̂Λ′,

where [L/J ] is the operator defined in [H91] Section 7.B and all the ingredient
of the above formula is as in [H91] page 383. An important point here is that
we use the congruence power series H(λ) ∈ Λ (so H(λ)⊗1 ∈ Λ⊗̂Λ′) defined
with respect to hn.ord(N, ψ;W ) instead of h(ψu, ψ1) considered in [H91]
page 379 (so, H(λ) is actually a factor of H in [H91] page 379, which is an
improvement).

We write the minimal level of ford
P as Npα for pα =

∏
p|p pα(p). Then

we define �α =
∏

p|p �
α(p)
p . The integer α(p) is given by the exponent

of p in C(ψ−
P ) or 1 whichever larger. We now compute D(P,Q). We shall

give the argument only when j = [κ(P )] − [κ(Q)] ≥ 1, since the other
case can be treated in the same manner as in [H91] Case II (page 387).
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Put G = GjI,0

(
χ−u

Q ψu
P ,1; 1 − j

2

)
. We write (·, ·)Npα = (·, ·)α and put

m = Lpα. As before, m = L�α satisfies mO = m and m(m) = 1. Put
r(P,Q) = κ2(Q) − κ2(P ), which is non-negative by the weight condition
(W) in the theorem. Then in exactly the same manner as in [H91] Section 10
(page 386), we find, for c = (2

√
−1)j[F :Q]π[F :Q],

(−1)k(Q)N(J/L)−1N(Lpα)[κ(Q)]−1c((ford
P )c|τ(N�α), ford

P )αD(P,Q)

= ((ford
P )c|τ(m), (gord

Q |τ(J�α)|τ(m)) · (δr(P,Q)
jI G))m. (5.15)

By [H91] Corollary 6.3, we have, for r = r(P,Q),

δr
jIG = ΓF (r + I)(−4π)−rGjI+2r,r

(
χ−u

Q ψu
P ,1; 1 − j

2

)
.

Then by (5.14), we get

c(−1)k(Q)N(Jpα)−1C(P,Q)−1(ford
P |τ(N�α), ford

P )αD(P,Q)

= L(m)(2 − [κ(P )] + [κ(Q)], ωP,Q)

×D(
[κ(Q)] − [κ(P )]

2
, ford

P , (gord
Q |τ(J�α))c), (5.16)

where ωP,Q = χ−1
Q+ψP+ for the central characters χQ+ of gQ and ψP+ of fP .

Now we compute the Petersson inner product (ford
P |τ(N�α), ford

P )α in
terms of (fP , fP ). Note that for f, g ∈ Sκ(U0(N), ε; C)

(fu)|τ(N) = |N |([κ]−1)/2
A (f |τ(N))u and (f, g)N = D[κ]+1(fu, gu).

(5.17)
The computation we have done in [H91] page 357 in the proof of Lemma 5.3
(vi) is valid without any change for each p|p, since at p–adic places, fP in
[H91] has the Neben type we introduced in this paper also for places outside p.
The difference is that we compute the inner product in terms of (fP , fP ) not
(f◦

P , f◦
P ) as in [H91] Lemma 5.3 (vi), where f◦

P is the primitive form associated
to fu

P ⊗ ψu
P,1 assuming that ψu

P,1 lifts to a global finite order character (the
character ψ−u

P,1 is written as ψ′ in the proof of Lemma 5.3 (vi) of [H91]). Note

here f◦
P = fP ⊗ ψ−1

P,1 by definition and hence (f◦
P , f◦

P ) = (fu
P , fu

P ), because
tensoring a unitary character to a function does not alter the hermitian inner
product. Thus we find

(ford,u
P |τ(N�α), ford,u

P )
(f◦

P , f◦
P )

= |N�α|([κ(P )]−1)/2
A

(ford
P |τ(N�α), ford

P )
(fP , fP )

.

(5.18)
A key point of the proof of Lemma 5.3 (vi) is the formula writing down
ford,u

P ⊗ ψ−u
P,1 in terms of f◦

P . Even without assuming the liftability of ψu
P,1
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to a global character, the same formula is valid for ford
P and fP before tensor-

ing ψ−1
P,1 (by computation using local Whittaker model). We thus have ford

P =
fP |R for a product R =

∏
p|p Rp of local operators Rp given as follows: If the

prime p is a factor of C(ψ−
P ), then Rp is the identity operator. If p is prime to

C(ψ−
P ) (⇔ π(1, ψ−

P,p) is spherical), then f |Rp = f − ψP,2(�p)f |[�p], where

f |[�p](x) = |�p|pf |g with f |g(x) = f(xg) for g =
(

�−1
p 0

0 1

)
. Writing U for

the level group of fP and U ′ = U ∩U0(p), we note f |T (p) = TrU/U ′(f |g−1).
This shows

(fP |[�p], fP )U ′ = |�p|[κ(P )]
p (fP , fP |g−1)U ′

= |�p|[κ(P )]
p (fP ,TrU/U ′(fP |g−1))U = (a + b)(fP , fP )U ,

where a = |�p|[κ(P )]
p ψP,1(�p), b = |�p|[κ(P )]

p ψP,2(�p), and (·, ·)U is the
Petersson metric on X(U). Similarly we have,

(fP , fP |[�p])U ′ = (a + b)(fP , fP )U

and (fP |[�p], fP |[�p])U ′ = |�p|[κ(P )]
p (|�p|p + 1)(fP , fP )U .

By (5.10) and by (5.18), we conclude from [H91] Lemma 5.3 (vi)

((ford
P )c|τ(N�α), ford

P )α

(fP , fP )

= |N |(1−[κ(P )])/2
A (−1)k(P )ψu

P (dp)W ′(fP )S(P )

× ψP,2(�α)
∏

p|((p)+C(ψ−
P ))

G(ψ−1
P,2,pψP,1,p) (5.19)

for p running over the prime factors of p.
We now compute the extra Euler factors: E(P,Q) and W (P,Q). Again the

computation is the same as in [H91] Lemma 5.3 (iii)-(v), because the level
structure and the Neben character at p–adic places are the same as in [H91] for
fP and gQ and these factors only depend on p–adic places. Then we get the
Euler p–factor E(P,Q) and W (P,Q) as in the theorem from [H91] lemma 5.3.

Remark 5.4 We assumed the condition (5.7) to make the proof of the theorem
simpler. We now remove this condition. Let E be the set of all prime factors
q of IN such that χ−

q = ψ−
q on O×

q . Thus we assume that E �= ∅. Then
in the proof of Lemma 5.2, the inertia group at q ∈ E fixes a two-dimensional
subspace of ρfP

⊗ρgc
Q

, one corresponding to ψ1,q⊗χ−1
1,Q and the other coming

from ψ2,q ⊗χ−1
2,Q. The Euler factor corresponding to the latter does not appear
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in the Rankin product process; so, we get an imprimitive L–function, whose
missing Euler factors are

E′(P,Q)−1 =
∏
q∈E

(1 − ψ2,qχ
−1
2,Q(�q))−1.

Thus the final result is identical to Theorem 5.3 if we multiply E(P,Q) by
E′(P,Q) in the statement of the theorem. In our application, λ and ϕ will be
(Λ–adic) automorphic inductions of Λ–adic characters λ̃, ϕ̃ : Gal(M/M) →
Λ× for an ordinary CM field M/F . If the prime-to–p conductors of λ̃− and ϕ̃−

are made of primes split in M/F , E is the set of primes ramifying in M/F .
Then E′(P,Q) is the specialization of E′ =

∏
q∈E(1 − λ̃ ⊗ ϕ̃−1(Frobq))

at (P,Q), and E′ ∈ Λ⊗̂Λ is not divisible by the prime element of W (that
is, the μ–invariant of E′ vanishes). Actually, we can choose λ̃ and ϕ̃ so that
λ̃ϕ̃−1(Frobq) �≡ 1 mod mΛ, and under this choice, we may assume that E′ ∈
(Λ⊗̂Λ)×.

5.3 Comparison of p–adic L–functions

For each character ψ : ΔC → W×, we have the extension ψ̃ : Gal(Q/M) →
Λ sending (γ, δ) ∈ Γ × ΔC to ψ(δ)γ for the group element γ ∈ Γ inside
the group algebra Λ. Regarding ψ̃ as a character of Gal(Q/M), the induced
representation IndF

M ψ̃ is modular nearly ordinary at p, and hence, by the uni-
versality of the nearly p–ordinary Hecke algebra hn.ord

U (W ) defined in [H96]
2.5, we have a unique algebra homomorphism λ : hn.ord

U → Λ such that
IndF

M ψ̃ ∼= λ ◦ ρHecke for the universal nearly ordinary modular Galois rep-
resentation ρHecke with coefficients in h, where U = U1

1 (N) with N =
DM/F c(ψ) for the relative discriminant DM/F of M/F and c = C(ψ) ∩ F

for the conductor C(ψ) of ψ. Thus for each arithmetic point P ∈ Spf(Λ)(Qp)
(in the sense of [H96] 2.7), we have a classical Hecke eigenform θ(ψ̃P ) of
weight κ(P ).

We suppose that the conductor C(ψ−) of ψ− consists of primes of M split
over F . Then the automorphic representation π(ψ̃P ) of weight κ(P ) is every-
where principal at finite places. By [H96]7.1, the Hecke character ψ̃P has
infinity type

∞(ψ̃P ) = −
∑
σ∈Σ

(κ1(P )σ|F σ + κ2(P )σ|F σc).

In the automorphic representation π(ψ̃P ) generated by right translation of
θ(ψ̃P ), we have a unique normalized Hecke eigenform f(ψ̃P ) of minimal
level.
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The prime-to–p level of the cusp form f(ψ̃P ) is equal to

N(ψ) = NM/F (C(ψ−))DM/F ,

and it satisfies (L1-3) in 5.1 for ε = εP given by

ε1,q =

{
ψ̃P |Gal(ML/ML) if q = LL,

an extension of ψ̃P |Gal(ML/ML) to Gal(ML/Fq) otherwise,

ε2,q =

{
ψ̃P |Gal(M

L
/M

L
) if q = LL,

another extension of ψ̃P |Gal(ML/ML) to Gal(ML/Fq) otherwise,

(5.20)

where L and L are distinct primes in M .
Write εt

+ for the restriction of ε+ = ε1ε2 to ΔF (N′), which is indepen-
dent of P (because it factors through the torsion part of Cl+F (N′p∞)). Since
{f(ψ̃P )}P is again a p–adic analytic family of cusp forms, they are induced
by a new algebra homomorphism λψ : h = hn.ord(N, ε;W ) → Λ. Since λψ

is of minimal level, the congruence module C0(λψ; Λ) is a well defined Λ–
module of the form Λ/H(ψ)Λ (see [H96] 2.9). Actually we can choose H(ψ)
in Λ− = W [[Γ−]] (see [GME] Theorem 5.44). The element H(ψ) is called the
congruence power series of λψ (identifying Λ− with a power series ring over
W of [F : Q] variables)

By Theorem 5.3 and Remark 5.4, we have the (imprimitive) p–adic Rankin
product D = λψ ∗ λϕ with missing Euler factor E′ ∈ (Λ⊗̂Λ)× as in
Remark 5.4 for two characters ψ : ΔC → W× and ϕ : ΔC′ → W×. Writing
R = D ·H(ψ) ∈ Λ⊗̂W Λ, we have D = R

H(ψ) .

We define two p–adic L–functions Lp(ψ−1ϕ) and Lp(ψ−1ϕc) by

Lp(ψ−1ϕ)(P,Q) = E′(P,Q)Lp(ψ̃−1
P ϕ̃Q)

and

Lp(ψ−1ϕc)(P,Q) = Lp(ψ̃−1
P ϕ̃Q,c)

for the Katz p–adic L–function Lp, where χc(σ) = χ(cσc−1).
We follow the argument in [H91], [HT1] and [H96] to show the follow-

ing identity of p–adic L–functions, which is a more precise version of [HT1]
Theorem 8.1 without the redundant factor written as Δ(M/F ;C) there:

Theorem 5.5 Let ψ and ϕ be two characters of ΔC with values in W×.
Suppose the following three conditions:

(i) C(ψ−)C(ϕ−) is prime to any inert or ramified prime of M ;
(ii) At each inert or ramified prime factor q of C(ψ)C(ϕ), ψq = ϕq on R×

q ;
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(iii) For each split prime q|C(ψ)C(ϕ), we have a choice of one prime factor
Q|q so that ψQ = ϕQ on R×

Q
.

Then we have, for a power series L ∈ Λ⊗̂Λ,

L
H(ψ)

=
Lp(ψ−1ϕ)Lp(ψ−1ϕc)
(h(M)/h(F ))L−

p (ψ−)
.

The power series L is equal to (λψ ∗ λϕ) ·H(ψ) up to units in Λ⊗̂Λ.

The improvement over [HT1] Theorem 8.1 is that our identity is exact without
missing Euler factors, but we need to have the additional assumptions (i)–(iii)
to ensure the matching condition (5.6) for the automorphic induction of ψ̃P

and ϕ̃Q.
The proof of the theorem is identical to the one given in [HT1] Section 10,

since the factors C(P,Q), W (P,Q), S(P ) and E(P,Q) appearing in The-
orem 5.3 are identical to those appearing in [H91] Theorem 5.2 except for
the power of the discriminant D, which is compensated by the difference of
(f◦

P , f◦
P ) appearing in [H91] Theorem 5.2 from (fP , fP ) in Theorem 5.3. Since

we do not lose any Euler factors in (5.5) (thanks to our minimal level struc-
ture and the assumption (5.6) assuring principality everywhere), we are able to
remove the missing Euler factor denoted Δ(1) in [HT1] (0.6b).

If M/F is ramified at some finite place, by Theorem 4.3 and Remark 5.4, we
can always choose a pair (l, ϕ) of a prime ideal l and a character ϕ of l–power
conductor so that

(i) l is a split prime of F of degree 1;
(ii) Lp(ψ−1ϕ)Lp(ψ−1ϕc) is a unit in Λ⊗̂Λ.

Even if M/F is unramified, we shall show that such choice is possible: Writ-
ing Ξ for the set of primes q as specified in the condition (3) in the theorem.
Then we choose a prime L split in M/Q so that LL is outside Ξ. We then take
a finite order character ϕ′ : M×

A /M× → W× of conductor Lm so that ϕ′
L

is trivial but the reduction modulo mW of ψ−1ϕϕ′N and ψ−1ϕcϕ
′
cN is not

equal to
(

M/F
·

)
. Then again by Theorem 4.3, we find (infinitely many) ϕ′ with

unit power series Lp(ψ−1ϕϕ′)Lp(ψ−1(ϕϕ′)c). This implies the following
corollary:

Corollary 5.6 Suppose that C(ψ−) is prime to any inert or ramified prime of
M . Then in Λ−, we have (h(M)/h(F ))L−

p (ψ−)
∣∣H(ψ).

As a byproduct of the proof of Theorem 5.5, we can express the p–adic
L–value Lp(ψ̃−

P ) (up to units in W and the period in C×) by the Petersson
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metric of the normalized Hecke eigenform fP = f(ψ̃P ) of minimal level (in
the automorphic induction πP of ψ̃P ). We shall describe this fact.

We are going to express the value L(1, Ad(fP )) in terms of the L–values of
the Hecke character ψ̃P . The representation πP is everywhere principal outside
archimedean places if and only if ψ− has split conductor. Then

L(s,Ad(fP )) = L(1,

(
M/F

·

)
)L(0, (ψ̃−

P )∗).

The infinity type of ψ̃−
P is (κ1(P )− κ2(P )) + (κ2(P )− κ1(P ))c = (k(P )−

I)(1−c), where we identify Z[Σ] with Z[I] sending σ to σ|F . Thus the infinity
type of (ψ̃−

P )∗ is given by k(P )− k(P )c + 2Σc = 2Σ + (k(P )− 2I)(1− c).
Thus we have

Lp((ψ̃−
P )∗) = N(c)ψ̃−

P (c)W ′(ψ̃−
P )−1Lp(ψ̃−

P )

= CWp(ψ̃−
P )E(P )

πk(P )−IΓΣ(k(P ) − I)L(0, ψ−
P )

Ω2(k(P )−I)
∞

= C ′Wp((ψ̃−)∗P )E(P )
πk(P )−2IΓΣ(k(P ))L(0, (ψ−)∗P )

Ω2(k(P )−I)
∞

,

(5.21)

where C and C ′ are constants in W× and

E(P ) =
∏

P∈Σp

(
(1− ψ̃−

P (Pc))(1 − (ψ̃−
P )∗(Pc))

)
.

Since we have, for the conductor Pe(P) of ψ−
P,P,

(ψ̃−
P )∗(�−e(P)

P
) = N(P)e(P)ψ̃−

P (�−e(P)
P

),

by definition, W ((ψ̃−
P )∗) is the product over P ∈ Σ of G(2δP, ψ−

P,P), and
hence we have

Wp((ψ̃−
P )∗) = N(Pe(Σ))Wp(ψ̃−

P ),

where Pe(Σ) is the Σp–part of the conductor of ψ−
P . Thus we have, for

h(M/F ) = h(M)/h(F ),

Lp((ψ̃−
P )∗) = C ′Wp(ψ̃−

P )N(Pe(Σ))E(P )
πk(P )−2IΓΣ(k(P ))L(0, (ψ̃−)∗P )

Ω2(k(P )−I)
∞

= C ′′Wp(ψ̃−
P )E(P )

π2(κ1(P )−κ2(P ))(f(ψ̃P ), f(ψ̃P ))

h(M/F )Ω2(κ1(P )−κ2(P ))
∞

,

(5.22)

where C ′′ and C ′ are constants in W×.
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We suppose that the conductor C(ψ̃P ) is prime to p. Then Wp(ψ̃−
P ) = 1 if

p is unramified in F/Q (and even if p ramifies in F/Q, it is a unit in W ). Let
h = h(M), and choose a global generator � of Ph. Thus �Σ ≡ 0 mod mW

and �Σc �≡ 0 mod mW . By the arithmeticity of the point P , we have k =
k(P ) ≥ 2I . Then we have, up to p–adic unit,

ψ̃−
P (Pc)h = ψ̃−

P (�) = �(k−I)−(k−I)c

(ψ̃−
P )∗(Pc)h = (ψ̃−

P )∗(�) = �(k−2I)−kc.

Thus ψ̃−
P (Pc) ∈ mW if k ≥ 2I and (ψ̃−

P )∗(Pc) ∈ mW if k ≥ 3I . For each
σ ∈ Σ, we write Pσ for the place in Σp induced by ip ◦ σ. Thus we obtain

Proposition 5.7 Suppose that either k(P )σ = κ1(P )σ − κ2(P )σ + 1 ≥ 3
or (ψ̃−

P )∗(Pc
σ) �≡ 1 mod mW for all σ ∈ I and that ψ̃P has split conductor.

Write h(M/F ) for h(M)/h(F ). Then up to units in W , we have

h(M/F )Lp((ψ̃−
P )∗) = h(M/F )Lp(ψ̃−

P )

=
π2(k(P )−I)Wp(ψ̃−

P )(f(ψ̃P ), f(ψ̃P ))N

Ω2(k(P )−I)
∞

,

where f(ψ̃P ) is the normalized Hecke eigenform of minimal level N (neces-
sarily prime to p) of the automorphic induction of ψ̃P .

5.4 A case of the anticyclotomic main conjecture

Here we describe briefly an example of a case where the divisibility:
L−

p (ψ)|F−(ψ) implies the equality L−
p (ψ) = F−(ψ) (up to units), relying

on the proof by Rubin of the one variable main conjecture over an imaginary
quadratic field in [R] and [R1]. Thus we need to suppose

(ab) F/Q is abelian, p � [F : Q], and M = F [
√

D] with 0 > D ∈ Z,

in order to reduce our case to the imaginary quadratic case treated by Rubin.
Write E = Q[

√
D] and suppose that D is the discriminant of E/Q. We have

p � D since p is supposed to be unramified in M/Q. We suppose also

(sp) The prime ideal (p) splits into pp in E/Q.

Then we take Σ = {σ : M ↪→ Q|σ(
√

D) =
√

D}. By (sp), Σ is an ordinary
CM type.

We fix a conductor ideal c (prime to p) of E satisfying (opl) and (spt) for
E/Q (in place of M/F ). We then put C = cR. We consider ZE = ZE(c) =
lim←−n

ClE(cpn). We split ZE(c) = Δc × Γc for a finite group Δ = Δc and
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a torsion-free subgroup Γc. As before, we identify Γc and Γ1 for E and write
it as ΓE . We then write ΓE,− = ΓE/Γ+

E for Γ+
E = H0(Gal(E/Q),ΓE).

We consider the anticyclotomic Zp–extension E−
∞ of E on which we have

cσc−1 = σ−1 for all σ ∈ Gal(E−
∞/E) for complex conjugation c. Writ-

ing E(cp∞) (inside M(Cp∞)) for the ray class field over E modulo cp∞,
we identify ZE(c) with Gal(E(cp∞)/E) via the Artin reciprocity law. Then
Gal(E(cp∞)F/E−

∞) = Γ+
E × Δc and Gal(E−

∞/E) = ΓE,−. We then define
EΔ by the fixed field of Γc in the composite F · E(cp∞); so, Gal(EΔ/E) =
Δc and EΔ ⊃ F . We have MΔ ⊃ EΔ. Thus we have the restriction
maps ResZ : Z(C) = Gal(M(Cp∞)/M) → Gal(E(cp∞)/M) = ZE(c),
ResΓ : Γ− = Gal(M−

∞/M) → Gal(E−
∞/E) = ΓE,− and ResΔ : ΔC =

Gal(MΔ/M) → Gal(EΔ/E) = Δc. We suppose

(res) There exists an anticyclotomic character ψE of Δc such that ψ = ψE ◦
ResΔ.

Let LE
∞/E−

∞EΔ be the maximal p–abelian extension unramified outside p.
Each γ ∈ Gal(LE

∞/E) acts on the normal subgroup XE = Gal(LE
∞/E−

∞EΔ)
continuously by conjugation, and by the commutativity of XE , this action
factors through Gal(EΔE−

∞/E). Then we look into the Λ−
E–module:

XE [ψEχ] = XE ⊗Δc,ψχ W for a character χ of Gal(F/Q), where Λ−
E =

W [[ΓE,−]]. The projection ResΓ induces a W -algebra homomorphism Λ− →
Λ−

E whose kernel we write as a.

Theorem 5.8 Let the notation be as above. Suppose that ψ has order prime to
p in addition to (ab), (sp) and (res). Then L−

p (ψ) = F−(ψ) up to units in Λ−.

Proof We shall use functoriality of the Fitting ideal FA(H) of an A-module
H with finite presentation over a commutative ring A with identity (see [MW]
Appendix for the definition and the functoriality Fitting ideals listed below):

(i) If I ⊂ A is an ideal, we have FA/I(H/IH) = FA(H) ⊗A A/I;
(ii) If A is a noetherian normal integral domain and H is a torsion A-

module of finite type, the characteristic ideal charA(H) is the reflexive
closure of FA(H). In particular, we have charA(H) ⊃ FA(H).

By definition, we have

H0(Ker(ResΓ),X[ψ]) = X[ψ]/aX[ψ] ∼=
⊕

χ

XE [ψEχ]

for χ running all characters of Gal(F/Q). By (i) above, we have∏
χ

FΛ−
E
(XE [ψχ]) = FΛ−(X[ψ]) ⊗Λ− Λ−

E .
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Since charΛ−(X[ψ]) = F−(ψ), by Theorem 5.1, charΛ−(X[ψ]) ⊂ L−
p (ψ).

Thus by (ii), we obtain∏
χ

charΛ−
E
(XE [ψχ]) ⊂ L−

p (ψ)Λ−
E ,

where L−
p (ψ)Λ−

E is the ideal of Λ−
E generated by the image of L−

p (ψ) ∈ Λ−

in Λ−
E . Write RE for the integer ring of E, and let X(RE)/W be the elliptic

curve with complex multiplication whose complex points give the torus C/RE .
Since X(R) = X(RE)⊗RE

R for our choice of CM type Σ, the complex and
p-adic periods of X(R) and X(RE) are identical. Thus by the factorization of
Hecke L-functions, we have

L−
p (ψ)Λ−

E =
∏
χ

L−
p (ψEχ)Λ−

E .

Then by Rubin [R] Theorem 4.1 (i) applied to the Zp-extension E−
∞/E, we

find that

charΛ−
E
(XE [ψEχ]) = L−

p (ψEχ)Λ−
E .

Thus (F−(ψ)/L−
p (ψ))Λ−

E = Λ−
E , and hence F−(ψ)Λ− = L−

p (ψ)Λ−.
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