
ON THE RANK OF MORDELL–WEIL GROUPS

OF ABELIAN VARIETIES OF GL(2)-TYPE

HARUZO HIDA

Abstract. Pick an elliptic curve E of conductor N defined over Q with good
ordinary reduction at a prime p. We suppose that E is not anomalous at p up to
quadratic unramified twists. Suppose that E(k) is finite for a number field k and
p is outside a finite explicit set of primes (independent of k). We will prove that
almost all Q-simple abelian varieties A of GL(2)-type (with prime-to-p conductor
N) has finite A(k), as long as the p-divisible group A[p∞] contains a Galois module
isomorphic to E[p](Q). We also give a positive rank version of this result.

1. Introduction

Let Q be an algebraic closure of Q inside C and Fp be a fixed algebraic closure of
the finite field Fp of p elements. Throughout this paper, k/Q denotes a (fixed) field

extension inside Q of finite degree. Such a field is called a number field.
An F -simple abelian variety (with a polarization) defined over a number field F

is called, in this paper, “of GL(2)-type” if we have a subfield KA ⊂ End0(A/F ) =
End(A/F ) ⊗Z Q of degree dimA (stable under Rosati-involution). Then, for the
two-dimensional compatible system ρA of Galois representation of A with coefficients
in KA, KA is generated by traces Tr(ρA(Frobl)) of Frobenius elements Frobl for F -
primes l of good reduction (i.e., the field KA is uniquely determined by A). We
always regard F as a subfield of the algebraic closure Q. Thus O′

A := End(A/F )∩KA

is an order of KA. Write OA for the integer ring of KA. Replacing A by the abelian
variety representing the group functor R 7→ A(R)⊗O′

A
OA, we may choose A so that

O′
A = OA in the F -isogeny class of A. Since the Mordell–Weil rank dimQ A(k)⊗Z Q

for a field extension k/F is determined by the F -isogeny class of A, we hereafter
assume that End(A/F ) ∩ KA = OA for any abelian variety of GL(2)-type over F .
For two abelian varieties A and B of GL(2)-type over F , we say that A is congruent
to B modulo a prime p over F if we have a prime factor pA (resp. pB) of p in OA

(resp. OB) and field embeddings σA : OA/pA ↪→ Fp and σB : OB/pB ↪→ Fp such

that (A[pA] ⊗OA/pA,σA
Fp)

ss ∼= (B[pB] ⊗OB/pB,σB
Fp)

ss as Gal(Q/F )-modules, where
the superscript “ss” indicates the semi-simplification. Hereafter in this article, we
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always assume the field of definition F is equal to Q but that the evaluation field k
is any number field (unless otherwise specified).

Let E/Q be an elliptic curve. Writing the Hasse–Weil L-function L(s, E) as a
Dirichlet series

∑
n=1 ann

−s with an ∈ Z (i.e., 1 + p − ap = |E(Fp)| for each prime
p of good reduction for E), we call p admissible for E if E has good reduction at
p and ap mod p is not in ΩE := {±1, 0}. Therefore, the maximal étale quotient of
E[p] over Zp is not isomorphic to Z/pZ up to unramified quadratic twists. By the
Hasse bound |ap] ≤ 2

√
p, p ≥ 7 is not admissible if and only if ap ∈ ΩE (so, 2 and

3 are not admissible). Thus if E does not have complex multiplication, the Dirichlet
density of non-admissible primes is zero by a theorem of Serre as L(s, E) = L(s, f)
for a rational Hecke eigenform f (see [Se81, Théorème 15] and Section 8 in the text).
A proto-typical theorem we prove is:

Theorem A. Let E/Q be an elliptic curve with |E(k)| <∞. Let N be the conductor
of E, and pick an admissible prime p for E. Consider the set AE,p made up of all
Q-isogeny classes of Q-simple abelian varieties A/Q of GL(2)-type with prime-to-p
conductor N congruent to E modulo p over Q. Then there exists an explicit finite
set SE of primes depending on N such that if p 6∈ SE, almost all A ∈ AE,p has
Mordell–Weil k-rank 0 (i.e., we have |A(k)| <∞).

Here “almost all” means except for finitely many. The set S = SE will be specified
for each elliptic curve E/Q in Definition 5.1, and the definition of SE is nothing to do
with the Q-rank of E. For a given Q-rational elliptic curve E, there are density one
set of primes at which E has ordinary good reduction. According to the minimalist
conjecture, the “probability” of rational elliptic curves E with finite E(Q) is expected
to be 1

2
. As proven by Bhargava–Shankar, under reasonable ordering of elliptic curves,

at least a positive proportion of Q-rational elliptic curves has rank 0 (see [BS14a] and
[BS14b]). For each pair (E, p) with |E(Q)| < ∞ and an admissible prime p for E,
since E can be lifted to an infinite p-adic analytic family of Q-simple abelian varieties
of GL(2)-type of prime-to-p conductor equal to N (as we will see later), the set AE,p
is an infinite set. Thus the above theorem produces a lot of examples of Q-simple
abelian varieties with trivial Mordell–Weil Q-rank (perhaps, a positive proportion of
Q-simple abelian varieties of GL(2)-type once we order them by their conductor and
dimension).

Taking k = Q and applying the above theorem to the modular elliptic curvesX0(N)
for small N , we get the following corollary:

Corollary B. Let N be one of 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (all the cases
when X0(N) is an elliptic curve with finite X0(N)(Q)). As long as p is admissible
for X0(N), we have |A(Q)| <∞ for almost all A in AX0(N),p.

In these special cases, the set SX0(N) is contained in the set of non-admissible primes
(can be checked by the table by Stein and Cremona, or also theoretically except for
N = 11 for which a5 = 1, we know that for any square-free prime factor p of N is
non-admissble as ap = ±1, and the rest is just 2, 3 which are plainly not admissible),
and therefore the corollary follows from Theorem A. It is interesting to know if any
exceptional A ∈ AX0(N),p with |A(Q)| = ∞ appears for small admissible prime p for
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X0(N) in the above examples. We will prove similar results concerning the vanishing
of the k-rank for a number field k, replacing the starting rational elliptic curve of
Q-rank 0 by a Q-simple abelian variety B of GL(2)-type with k-rank 0, covering
Q-simple abelian varieties of GL(2)-type congruent to B.

In the rank one case, we prove, in Section 6, the following fact:

Theorem C. Let the notation be as in Thorem A. Suppose rankZ E(k) = 1 and that
p is admissible for E outside SE. Then, almost all A ∈ AE,p has k-rank 0 if and only
if there exists another member A′ ∈ AE,p such that |A′(k)| < ∞. Otherwise, almost
all A ∈ AE,p has dimKA

A(k)⊗Z Q = 1.

There is a rational rank 1 elliptic curve E− which has conductor 37 and has root
number −1 (there is another one E+ with root number +1, and J0(37) is isogenous to
E+×E−). The curve E− has the smallest conductor among rational elliptic curves of
positive rank (according to the table of Cremona), and the next one has conductor 43.
A positive proportion of rational elliptic curves has both Mordell–Weil and analytic
rank 1 by [BS14b], and the “proportion” of having rank 1 is conjectured to be 1

2
; so,

assuming to have E with rankZE(Q) = 1 in the theorem is natural. However we
deal with the general case where rankZE(k) = m ≥ 1 in Theorem 6.1. In Section 3,
we prove that for almost all A ∈ AE,p (for p admissible for E outside SE), A(k) has
constant rank r over OA, and in Section 6, we prove r ≤ m under the assumption that
rankZ E(k) = m. In Section 7, under some different set of assumptions, we extends
the result of Theorems A and C to some of the primes in the exceptional set SE.

We should be able to obtain a better result than Theorem C for rank 1 cases. If
we knew an analogue of the parity conjecture for the Mordell–Weil rank for partially
ordinary abelian varieties of GL(2)-type, assuming that the root number of L(s, E/k)
is equal to −1, plainly |A′(Q)| would not be finite (as the root number is constant on
AE,p for admissible p outside SE); so, we could conclude that almost all A ∈ AE,p has
dimKA

A(k)⊗Z Q = 1 by Theorem C. Some results on the parity conjecture for the
Selmer rank of abelian varieties of GL(2)-type can be found in [N06, Theorem 12.2.8].
Anyway, we hope to deal with the parity question for the Mordell–Weil rank in a future
article.

As indicated in [HM97, §1], any given two Hecke eigen cusp form f, g (of weight
2) should have a congruence f ≡ g mod P for some prime P of the field Q(f, g)
generated by Hecke eigenvalues of f and g. Thus the attached abelian varieties Af

and Ag are congruent each other. If we could remove the ordinarity assumption (and
the level restriction) for P in the above results, we would be able to show that most
of Q-simple abelian varieties of GL(2)-type have Mordell–Weil rank 0 or 1 over their
endomorphism field, since we are fairly close to see that most of rational elliptic curves
have Mordell–Weil rank 0 or 1. This paper is written this hope in mind, though our
proof really relies on our hypothesis of (partial) ordinarity.

Here is how to achieve our goal. Fix a prime p ≥ 5. By the solution of Serre’s mod p
modularity conjecture by Khare–Wintenberger–Kisin, any Q-simple abelian variety A
of GL(2)-type has Hasse–Weil zeta function L(s, f) for a cusp form f of weight 2 with
KA = Q(f). If f is p-ordinary, for a given integer N prime to p, congruence classes
of A with prime-to-p conductor N , is given by a connected component of the big
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ordinary Hecke algebra h = h(N) of prime-to-p level N . Indeed, Shimura’s abelian
subvarieties of the Jacobians of X1(Np

r) (for r > 0) parameterized by arithmetic
points of Spec(T) form a congruence class. We therefore study irreducible components
Spec(I) of Spec(T).

The normalization Spec(̃I) of Spec(I) is finite flat over the Iwasawa algebra Zp[[T ]],
and whose points P of codimension one and not in the special fiber correspond to
ordinary p-adic modular eigenforms fP . Among those points, many corresponds to
modular classical eigenforms of weight 2 and levelNpr (for variable r), and such points
are Zariski dense in Spec(I). A classical, well-known, and fundamental construction of
Eichler–Shimura attaches to any modular cuspidal eigenform f of weight 2 an abelian
variety Af defined over Q, of dimension the degree of the field Q(f) generated by the
coefficients of f over Q. We call Q(f) the Hecke field of f . For these abelian varieties
Af , one can consider the Mordell–Weil group Af (Q) and more generally, Af (k) for
a number field k. The group Af (k) is a finitely generated abelian group. Let us

set Âf(k) = Af(k) ⊗Z Zp. We consider the following natural question: how does

the Mordell–Weil group Âf(k) varies as f varies among those cuspidal eigenforms
of weight 2 in the family? For the Selmer/analytic λ-invariant, the variation was
studied by Emerton–Pollack–Weston [EPW06] for k = Q (and they proved constancy
over the irreducible family). Here their Selmer group is relative to the cyclotomic
Zp-extension, and the Mordel–Weil group could be a small part of the Selmer group
(concentrated to the zero at s = 1). Our partial answer to this question is that
dimQ(f)Af(k) ⊗Z Q for the fixed number field k is constant over the family except
for finitely many f in the family (Theorems 3.1 and 3.3), and the dimension is often
shown to be 0 if the parity of the functional equation of L(s, Af/k) is even in the
family. We recall the control theorem (Theorem 2.3) for these Mordell–Weil groups
proved in [H14b] and apply the theorem to our present problem discussed as above.

Here is the notation used throughout the paper. Fix a prime p. Let Xr =
X1(Np

r)/Q be the compactified moduli of the classification problem of pairs (E, φ)
of elliptic curves E and an embedding φ : µNpr ↪→ E[Npr] as finite flat group
schemes. Since Aut(µpr) = (Z/prZ)×, z ∈ Z×

p acts on Xr via φ 7→ φ ◦ z for the image
z ∈ (Z/prZ)×. We writeXr

s (s > r) for the quotient curveXs/(1+prZp). The complex
points Xr

s (C) contains Γrs\H as an open Riemann surface for Γrs = Γ0(p
s) ∩ Γ1(Np

r).
Write Jr/Q (resp. J rs/Q) for the Jacobian of Xr (resp. Xr

s ) whose origin is given by the
infinity cusp∞ of the modular curves. We regard Jr as the degree 0 component of the
Picard scheme of Xr . For a number field k, we consider the group of k-rational points
Jr(k). The Hecke operator U(p) acts on Jr(k) and the p-adic limit e = limn→∞ U(p)n!

is well defined on the Barsotti–Tate group Jr[p
∞] and the completed Mordell–Weil

group Ĵr(k) = Jr(k) ⊗Z Zp. For a general abelian variety over a number field k, we

put X̂(k) = X(k) ⊗Z Zp.
Let Γ be the maximal torsion-free quotient of Z×

p and identify it with 1 + pZp if
p > 2 and 1 + 4Z2 if p = 2. Writing γ = 1 + p ∈ Γ if p is odd and γ = 5 ∈ Γ if p = 2,
γ is a topological generator of the multiplicative group Γ = γZp.
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Let

hr(Z) = Z[T (n), U(l) : l|Np, (n,Np) = 1] ⊂ End(Jr),

and put hr(R) = hr(Z) ⊗Z R for any commutative ring R. Then we define hr =
hr(Zp) = e(hr(Zp)). The restriction morphism hs(Z) 3 h 7→ h|Jr ∈ hr(Z) for s > r
induces a projective system {hr}r whose limit gives rise to the big ordinary Hecke
algebra

h = h(N) := lim←−
r

hr.

Writing 〈l〉 (the diamond operator) for the action of l ∈ (Z/NprZ)× identified with
Gal(Xr/X0(Np

r)), we have an identity l〈l〉 = T (l)2 − T (l2) ∈ hr(Zp) for all primes
l - Np. Thus we have a canonical Λ-algebra structure Λ = Zp[[Γ]] ↪→ h. It is now well
known that h is a free of finite rank over Λ and hr = h ⊗Λ Λ/(γp

r − 1) (cf. [H86a],
[GK13] or [GME, §3.2.6]). A prime P in

⋃
r>0 Spec(hr)(Qp) ⊂ Spec(h)(Qp) is called

an arithmetic prime of weight 2. Though the construction of the big Hecke algebra is
intrinsic, to relate an algebra homomorphism λ : h→ Qp killing γp

r − 1 for r ≥ 0 to

a classical Hecke eigenform, we need to fix (once and for all) an embedding Q
ip−→ Qp

of the algebraic closure Q in C into a fixed algebraic closure Qp of Qp. We write i∞
for the inclusion Q ⊂ C.

Picard functoriality gives injective limits J∞(k) = lim−→r
Ĵr(k) and J∞[p∞](k) =

lim−→r
Jr[p

∞](k), on which e again acts. Write G := e(J∞[p∞]), which is called the

Λ-adic Barsotti–Tate group in [H14a] and whose integral property was scrutinized
there. We define the p-adic completion of J∞(k):

J̌∞(k) = lim←−
n

J∞(k)/pnJ∞(k).

These groups we call ind (limit) MW-groups. Since projective limit and injective limit
are left-exact, the functor R 7→ J∞(R) is a sheaf with values in abelian groups on
the fppf site over Q (we call such a sheaf an fppf abelian sheaf). Adding superscript
or subscript “ord”, we indicate the image of e. We studied in [H14b] the control
theorems of

(1.1) J̌∞(k)ord and its dual J̌∞(k)∗ord := HomZp(J̌∞(k)ord,Zp),

which we recall in the following section.
The compact cyclic group Γ acts on these modules by the diamond operators.

In other words, we identify canonically Gal(Xr/X0(Np
r)) for modular curves Xr

and X0(Np
r) with (Z/NprZ)×, and the group Γ acts on Jr through its image in

Gal(Xr/X0(Np
r)). Thus J̌∞(k)ord is a module over Λ := Zp[[Γ]] ∼= Zp[[T ]] by γ ↔

t = 1+T . The big ordinary Hecke algebra h acts on J̌ord
∞ and Jord

∞ as endomorphisms
of functors.

Contents
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2. Control theorems 6
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2. Control theorems

For a Z[U ]-modules X and Y , we call a Z[U ]-linear map f : X → Y a U -injection
(resp. a U -surjection) if Ker(f) is killed by a power of U (resp. Coker(f) is killed by
a power of U). If f is an U -injection and U -surjection, we call f is a U -isomorphism.
In other words, f is a U -injection (resp. a U -surjection, a U -isomorphism) if after
tensoring Z[U,U−1], it becomes an injection (resp. a surjection, an isomorphism). We
apply this notion of U -isomorphisms to the operator U(p)

As before, let k be a finite extension of Q inside Q or a finite extension of Ql inside
Ql for a prime l. Let Ar be a abelian subvariety of Jr defined over k. Write As (s > r)
for the image of Ar in Js under the morphism π∗ = π∗

s,r : Jr → Js induced by Picard
functoriality from the projection π = πs,r : Xs → Xr . If Ar is Shimura’s abelian
subvariety [IAT, Theorem 7.14] attached to a Hecke eigenform f , we write Af,s for
As to indicate this fact. We assume the following condition to have a good control of
the Mordell–Weil group of Âs(k) when s varies:

(A) We have a coherent sequence αs ∈ End(Js/Q) (for all s ≥ r) having the limit
α = lim←−s αs ∈ End(J∞/Q) such that

(a) As is the connected component of Js[αs] := Ker(αs) with Js = As+αs(Js)
so that the inclusion: As[p

∞] ∼= Js[α][p∞] is a U(p)-isomorphism,
(b) the restriction αs|α(Js) ∈ End(α(Js)) is a self-isogeny.

Here for s′ > s, coherency of αs means the following commutative diagram:

Js
π∗−−−→ Js′

αs

y
yαs′

Js −−−→
π∗

Js′ .

The Rosati involution h 7→ h∗ and T (n) 7→ T ∗(n) (with respect to the canonical
divisor on Jr) brings hr(Z) to h∗r(Z) ⊂ End(Jr/Q). Define A∗

s to be the identity
connected component of Js[α

∗]. The condition (A) is equivalent to

(B) The abelian quotient map Js � Bs = Coker(α) dual to A∗
s ⊂ Js induces

an U(p)-isomorphism of p-adic Tate modules: Tp(Js/αs(Js)) → TpBs and αs
induces an automorphism of the Qp-vector space Tpαs(Js)⊗Zp Qp.
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Again if Ar is Shimura’s abelian subvariety of Jr associated to a Hecke eigenform f ,
we sometimes write Bf,s for Bs as above. This abelian variety Bf,s is the abelian
variety quotient studied in [Sh73].

Take a connected (resp. an irreducible) component Spec(T) (resp. Spec(I)) of
Spec(h) and assume that I is primitive in the sense of [H86a, Section 3] or [H88,
page 317]. For each arithmetic P ∈ Spec(I)(Qp), the corresponding cusp form fP is
a p-stabilized Hecke eigenform of weight 2 new at each prime l|N if and only if I is
primitive. We quote the following fact from [H14b, Proposition 5.1] giving sufficient
conditions for the validity of (A) for Af,s when f = fP is in a p-adic anlytic family
indexed by P ∈ Spec(I).

Proposition 2.1. Let Spec(T) be a connected component of Spec(h) and Spec(I) be
a primitive irreducible component of Spec(T). Then the condition (A) holds for the
following choices of (α,As, Bs):

(1) Suppose that an eigen cusp form f = fP new at each prime l|N belongs to
Spec(T) and that T = I is regular (or more generally a unique factorization
domain). Then writing the level of fP as Npr, the algebra homomorphism λ :
T→ Qp given by f |T (l) = λ(T (l))f gives rise to the prime ideal P = Ker(λ).
Since P is of height 1, it is principal generated by $ ∈ T. This $ has its image
$s ∈ Ts = T⊗Λ Λs for Λs = Λ/(γp

s−1 − 1). Since hs = h⊗Λ Λs = Ts ⊕Xs as
an algebra direct sum, End(Js/Q)⊗Z Zp ⊃ hs(Zp) = Ts⊕Ys with Ys projecting
down onto Xs. Then, we can approximate as = $s ⊕ 1s ∈ hs(Zp) for the
identity 1s of Ys by αs ∈ hs(Z) so that αshs(Zp) = ashs(Zp) (hereafter we call
αs “sufficiently close” to as if αshs(Zp) = ashs(Zp)). For this choice of αs,
As := Af,s and Bs := Bf,s.

(2) More generally than (1), we pick a general connected component Spec(T) of
Spec(h). Pick a (classical) Hecke eigenform f = fP (of weight 2) for P ∈
Spec(T). Assume that hs (for every s ≥ r) is reduced and P = ($) for $ ∈ T,
and write $s for the image of $ in hs(Zp). Take the complementary direct
summand Ys of Ts in hs(Zp) and approximate as := $s⊕1s in hs(Zp) to get αs
sufficiently close to as. Then for this choice of αs, As := Af,s and Bs := Bf,s.

(3) Fix r > 0. Then αs = α for a factor α|(γpr−1 − 1) in Λ, let As = Js[α]◦ (the
identity connected component) and Bs = Pic0

As/Q for all s ≥ r.

Consider the Hecke algebra h2(Γ1(N)) = Z[T (n)|n = 1, 2, . . . ] ⊂ End(J1(N)).
Then by the diamond operators, h2(Γ1(N)) is naturally an algebra over the group al-
gebra Z[(Z/NZ)×]. For each character χ of (Z/NZ)×, writing Z[χ] for the subalgebra
of Q generated by the values of χ, we put

h2(Γ0(N), χ; Z[χ]) = h2(Γ1(N); Z)⊗Z[(Z/NZ)×],χ Z[χ].

Let Dχ be the discriminant of the reduced quotient of h2(Γ0(N), χ; Z[χ]) over Z[χ].
Here is an easy criterion from [F02, Theorem 3.1] for the condition (1) in the above
proposition to be met:

Theorem 2.2. Let f be a Hecke eigenform of conductor N , of weight 2 and with
Neben character χ, and define ap ∈ Q by f |T (p) = apf . Let p be a prime outside
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2DχNϕ(N) (for ϕ(N) = |(Z/NZ)×|). Suppose that for the prime ideal p of Z[ap]

induced by ip : Q ↪→ Qp, (apmod p) is different from 0 and ±
√
χ(p). Then for the

connected component Spec(T) acting non-trivially on the p-stabilized Hecke eigenform
corresponding to f in S2(Γ0(Np), χ), T is a regular integral domain isomorphic to
W ⊗Zp Λ = W [[T ]] for a complete discrete valuation ring W unramified at p.

Here is a short proof of this fact since the statement of [F02, Theorem 3.1] is slightly
different from the above theorem.

Proof. Since p - 2DχNϕ(N), we have p > 2 and p - ϕ(Np). By the diamond operators
〈z〉 for z ∈ (Z/NpZ)×, h is an algebra over Zp[(Z/NpZ)×]. Thus we can decompose
h = ⊕ψh(ψ) so that the diamond operator 〈z〉 for z ∈ (Z/NpZ)× acts by ψ(z) on
h(ψ), where ψ runs over all even characters of (Z/NpZ)×. From the exact control
h/Th ∼= h1 (T = γ − 1 ∈ Λ), we thus get

h(χ)/Th(χ) ∼= hord
2 (Γ0(Np), χ; Zp[χ]) =: h

for the character χ of (Z/NpZ)×, where

h2(Γ0(Np), χ; Zp[χ]) = h2(Γ1(Np), χ; Z)⊗Z[(Z/NpZ)×],χ Zp[χ]

and Zp[χ] is the Zp-subalgebra of Qp generated by the values of χ. Here the tensor
product is with respect to the algebra homomorphism Zp[(Z/NpZ)×]→ Zp[χ] induced
by χ. Writing Σ = Homalg(h(χ),Fp), for each λ ∈ Σ, Σ := {mλ = Ker(λ)|λ ∈ Σ}
is the set of all maximal ideals of h(χ). Thus we have compatible decompositions
h(χ) =

⊕
m∈Σ h(χ)m and h =

⊕
m∈Σ hm (see [BCM, III.4.6]). Here the subscript “m”

indicates the localizations at the maximal ideal m.
Identify Σ with Homalg(h,Fp). Write Σ◦ for the subset of Σ = Homalg(h,Fp) made

of λ’s such that there exists

λ◦ ∈ Homalg(h
ord
2 (Γ0(N), χ; Fp[χ]),Fp)

with λ(T (l)) = λ◦(T (l)) for all primes l - pN . Here we put

hord
2 (Γ0(N), χ; Fp[χ]) := hord

2 (Γ0(N), χ; Zp[χ])⊗Z Fp.

Accordingly let Σ
◦

denote the set of maximal ideals corresponding to λ ∈ Σ◦. Since
p-new forms in S2(Γ0(Np), χ) have U(p)-eigenvalues ±

√
χ(p) (see [MFM, Theo-

rem 4.6.17]), by ap 6≡ ±
√
χ(p) mod p, we have further decomposition h = hN ⊕ h′

so that hN is the direct sum of hm for m running over Σ
◦
. Since h(χ)/Th(χ) ∼= h,

by Hensel’s lemma (e.g., [BCM, III.4.6]), we have a unique algebra decomposition
h(χ) = hN ⊕ h′ so that hN/ThN = hN and h′/Th′ = h′.

Since T (p) ≡ U(p) mod (p) in hN , we have hN ∼= hord
2 (Γ0(N), χ; Zp[χ]). Since

p - Dχ, the reduction map modulo p: Homalg(h,Qp)→ Σ is a bijection. In particular,
we have h = hnew ⊕ hold where hnew is the direct sum of hmλ

for λ coming from the
eigenvalues of N -primitive forms. Again by Hensel’s lemma, we have the algebra
decomposition hN = hnew ⊕ hold with h?/Th? = h? for ? = new, old. Since hnew is
reduced by the theory of new forms ([H86a, §3] and [MFM, §4.6]) and unramified
over Zp by p - Dχϕ(N), we conclude hnew ∼=

⊕
W W for discrete valuation rings W

finite unramified over Zp (one of the direct summand W acts on f non-trivially; i.e.,
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W given by Zp[f ] = Zp[an|n = 1, 2, . . . ] ⊂ Qp for T (n)-eigenvalues an of f). Thus
again by Hensel’s lemma, we have a unique algebra direct factor T of hnew such that
T/TT = Zp[f ] = W . Since W is unramified over Zp, by the theory of Witt vectors
[BCM, IX.1], we have a unique section W ↪→ T of T � Zp[f ] = W . Then W [[T ]]⊂ T
which induces a surjection after reducing modulo T . Then by Nakayama’s lemma,
we have T = W [[T ]] = W ⊗Zp Λ as desired. �

Recall the module J̌∞(k)∗ord defined in (1.1). We define, for an h-algebra A,

(2.1) J̌∞(k)∗ord, A := J̌∞(k)∗ord ⊗h A and GA(k) = G(k)⊗h A.

For the use in the following section, we quote here the control theorem in [H14b,
Theorem 6.5] as follows:

Theorem 2.3. Assume that (αs, As, Bs) satisfies the condition (A), and let k be
a number field. Write Spec(T) for a connected component of Spec(h) such that α
projected to the complement of T in h is a unit. Then, the following sequence

J̌∞(k)∗ord,T ⊗Zp Qp
α−→ J̌∞(k)∗ord,T ⊗Zp Qp → Âr(k)

∗
ord ⊗Zp Qp → 0

is an exact sequence of p-adic Qp-Banach h-modules (with respect to the Banach
norm having the image of J̌∞(k)∗ord in J̌∞(k)∗ord ⊗Zp Qp as its closed unit ball), and

the module J̌∞(k)∗ord,T ⊗Zp Qp is a Λ[ 1
p
]-module of finite type.

3. Constancy of Mordell–Weil rank and näıve questions

We continue to use the notation introduced at the end of the previous section.
Take a connected (resp. a primitive irreducible) component Spec(T) (resp. Spec(I))
of Spec(h) (resp. of Spec(T)) and assume that I is primitive in the sense of [H86a,
Section 3]. Let P ∈ Spec(I)(Qp) be an arithmetic point of weight 2. We write κ(P )

for the residue field of P (i.e., the quotient field of the image P (I) in Qp). Then we

have a unique classical Hecke eigenform fP ∈ S2(Γ0(Np
r(P )), χεP) for a character χ

of (Z/NpZ)× and a character εP : Γ → µp∞(Qp) such that fP |T (l) = P (T (l))fP for

all primes l. The p-power root of unity εP (γ) has order ≤ pr(P ). We suppose that
Npr(P ) is the minimal possible level of fP (indeed, if χεP |Z×

p
6= 1, fP is primitive of

conductor Npr(P ), and otherwise, fP is the p-stabilized form associated to a primitive
form of conductor C with N |C|Np). Thus I gives rise to a family of p-adic Hecke
eigen cusp forms fP new at each prime l|N which in turn has the associated abelian
subvariety AP := AfP

(of Jr for r = r(P )) and the (isogenous) abelian variety quotient
BP := BfP

associated to fP . The abelian varieties AP and BP are all Q-simple (e.g.,
[R75], [R80] and [R81]). Write Q(fP ) for the Hecke field of fP generated by all Hecke
eigenvalues of fP . We also define Qp(fP ) for the p-adic closure of ip(Q(fP )) in Qp.
Then Qp(fP ) = κ(P ).

Let Ĩ be the normalization of I (in its quotient field). Then Ĩ[ 1
p
] is a Dedekind

domain (cf. [CRT, Theorem 11.6]). Since J̌∞(k)∗
ord, eI[ 1

p
]
is an Ĩ[ 1

p
]-module of finite type

by Theorem 2.3, its localization at any prime divisor P is isomorphic to Ĩ[ 1
p
]
rk(I)
P ×XI,P
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for a torsion Ĩ[ 1
p
]-module XI of finite type and an integer rk(I) ≥ 0 independent of P

(see [BCM, VII]). Indeed, XI is the maximal Ĩ[ 1
p
]-torsion submodule of J̌∞(k)∗

ord, eI[ 1
p
]
.

The support Supp(XI) (if non-empty) is a union of finitely many prime divisors of

Spec(̃I) (and the maximal point). We call rk(I) the Ĩ[ 1
p
]-free rank of J̌∞(k)∗

ord, eI[ 1
p
]
.

We start with Ar = AP and Br = BP (r = r(P )). If (A) is satisfied for {As}s, the
abelian variety As in (A) is given by π∗

s,r(AP ), and let Bs denote the dual quotient
Js � Bs of A∗

s = ws(As) ⊂ Js for Weil involution ws (cf. [H14b, §5]). We sometimes
write AP,s = AfP ,s for As and BP,s = BfP ,s for Bs. In the first of the following two
theorems, we assume the condition (A) in Section 2 for (As, Bs, Js)s. In Theorem 3.3,
we do not assume (A) for AP and BP .

Theorem 3.1. Let the notation be as above. Suppose infinity of the set A of arith-
metic points P of weight 2 of Spec(I) for which the condition (A) with As = AP,s =
AfP ,s (s ≥ r = r(P )) is satisfied. Then, for a number field k, except for finitely many
arithmetic points P ∈ A inside Supp(XI), the Mordell–Weil rank dimQ(fP )AP (k)⊗ZQ
of AP (and hence of BP ) over Q(fP ) is constant equal to the number rk(I).

As in Proposition 2.1 (1), if I = T and I is regular, A is the entire set of arithmetic
points of Spec(I) of weight 2. By Theorem 2.2, most of the cases, this condition is
satisfied.

Proof. In the proof, we write X := XI and R := rk(I) for simplicity. Thus, for

P ∈ Spec(I)(Qp) with XP = X ⊗eI ĨP = 0 (for the localization ĨP of Ĩ), we have

dimκ(P ) ÂP(k)ord ⊗Zp Qp = dimκ(P ) J∞(k)∗ord, κ(P ) = dimκ(P ) κ(P )R = R

for κ(P ) = ĨP /P ĨP .

Because of infinity of the setA, we have infinity of P ∈ AwithX⊗eI ĨP = 0. Suppose
this for P ∈ A. Since I is primitive, it is étale over at each arithmetic point of Λ (see

[HMI, Proposition 3.78]). Thus we have ĨP = IP . Therefore κ(P ) = IP /P IP = Qp(fP )
and hence

dimQp(fP ) ÂP (k)ord ⊗Zp Qp = dimκ(P ) ÂP (k)co-ord⊗Zp Qp = R.

Recall the Hecke field Q(fP ) of fP generated over Q by all T (n)-eigenvalues of f
(n = 1, 2, . . . ). Then AP (k)⊗Z Q is a Q(fP )-vector space. Write d for its dimension,
and fix an isomorphism AP (k) ⊗Z Q ∼= Q(fP )d. The field κ(P ) is a completion of
Q(fP ) at the prime p over p (induced by ip), and writing a(p) for the eigenvalue of

U(p) for fP , we have a(p) 6∈ p. Thus (ÂP(k)∗ord⊗Zp Qp) ∼= Q(fP )dp = Qp(fP )d = κ(P )R.
This shows the result. �

Definition 3.2. Suppose p - N . We call a connected component Spec(T) new if fP
is new at all primes l|N for all arithmetic points P ∈ Spec(T)(Qp).

Instead of assuming infinity of the set A and primitivity of I, to obtain a simialr
constancy of the Mordell–Weil rank, we could assume that Ts = T/(γp

s−1 − 1)T is
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reduced for all s > 0 (and hence T = lim←−s Ts is reduced). This condition of reduced-

ness of Ts is known either if N is cube-free (see [H13a, Corollary 1.2]) or if T is new
(see the theory of primitive components in [H86a, Section 3]). There could be a rare
exception of the reduced-ness of Ts if ρP (with s ≥ r(P )) is unramified at some primes
l|N (so, fP and I are l-old) such that the semi-simplification of ρ(Frobl) is a scalar
for some arithmetic point P of weight 2 (such a case is not expected to occur in the
elliptic modular case and is proven to be never the case if N is cube-free [CE98]). By
Proposition 2.1 (3), the condition (A) is satisfied for any factor of γp

r−1 − 1 (r ≥ 0)
in Λ as long as Ts is reduced for all s ≥ 0. Note that Λ[ 1

p
] is a principal ideal

domain. Since J := J̌∞(k)∗
ord, T[ 1

p
]
is a Λ[ 1

p
]-module of finite type unconditionally by

Theorem 2.3, we have an isomorphism J ∼= Λ[ 1
p
]R ×X for a torsion Λ[ 1

p
]-module X.

Theorem 3.3. Let the notation be as above. Pick a local ring T of h, and assume
either that Ts = T/(γp

s−1 −1)T is reduced for all s > 0 or N is cube-free or T is new.
Let k be a number field. Then for each irreducible component Spec(I) of Spec(T), if an
arithmetic points P of Spec(I) of weight 2 is outside the support of X in Spec(Λ[ 1

p
]),

we have dimQ(fP )AP (k)⊗Z Q = rk(I).

As already remarked, if N is cube-free or T is new, Ts is reduced for all s > 0.
Thus we prove the theorem assuming the reduced-ness of Ts all s > 0.

Proof. Write MT for M ⊗h T for an h-module M . Pick a prime factor ($)|(γpr − 1)
outside the support of X in Spec(Λ). Since γp

r − 1 ∈ End(Js) can be factored into a
product of primes inside End(Js), we may assume $ ∈ End(Js), and write this choice
of $ as $s for each s ≥ r. By Proposition 2.1 (3), As = Js[$s]

◦ satisfies the condition
(A); so, we can apply Theorem 2.3 to {As}s≥r. Writing the localization of a T-module
M at ($) as M($), we get J($)

∼= Λr
($). Write Spec(T) =

⋃
I Spec(I) for its irreducible

components I. Then we have T($) =
⊕

I I($) and I’s are domains (from reduced-ness
of T). Since Spec(T($)) is étale over Spec(Λ($)) by [HMI, Proposition 3.78], I($) is
a Dedekind domain with finitely many maximal ideals. Then as T($)-modules, we

have J($) =
⊕

I I
r($)(I)

($) for 0 ≤ r($)(I) ∈ Z with R =
∑

I r($)(I)[Q(I) : Q] for the

quotient field Q(I) (resp. Q) of I (resp. Λ). Writing Ĩ for the normalization of I

in Q(I), we have Ĩ($) = I($) as Spec(T($)) is étale over Λ. Thus r($)(I) is equal to
rk(I) = dimQ(I) J ⊗TQ(I), and it is independent of arithmetic primes ($) outside the
support of X. Thus, sometimes, we simply write r(I) = rk(I) = r($)(I).

For s ≥ r, we consider the identity connected component As ⊂ Js[$] and its dual
quotient Js � Bs. Since T is a direct factor of h, tensoring the exact sequence in
Theorem 2.3 with T over h, we get the following exact sequence

0→ J
$−→ J

π∞−−→ Âr(k)
∗

ord, T[ 1
p
]
→ 0.

Localizing at P , we get another exact sequence

0→ J($)
$−→ J($)

π∞−−→ Âr(k)
∗
ord, T($)

→ 0.
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Since T($) =
⊕

I I($), we can further take the I($)-component producing one more
exact sequence

0→ J ⊗T I($)
$−→ J ⊗T I($)

π∞−−→ Âr(k)
∗
ord, I($)

→ 0.

This shows

J ⊗T I($) ⊗Λ κ(($)) = Âr(k)
∗
ord, I($)

,

where κ(($)) is the quotient field of Λ/($). Decompose ($) =
∏

P P
e(P ) in Ĩ as a

product of (arithmetic) primes P in Ĩ. Again by étaleness of Spec(T) over arithmetic
primes, we have e(P ) = 1. Thus

Âr(k)
∗
ord, I($)

=
∏

P

Âr(k)
∗
ord ⊗T IP =

∏

P

Âr(k)
∗
ord ⊗T κ(P ).

Since J($) =
⊕

I I
r(I)

($), we get

(3.1)

dimκ(P ) Âr(k)
∗
ord⊗T κ(P ) = dimκ(P ) J ⊗T κ(P ) = dimκ(P ) J ⊗T I($)⊗I($)

κ(P ) = rk(I).

Let H be the subalgebra of End(Ar) generated over Z by all Hecke operators T (n).
We put H(R) = H ⊗Z R and Hord(R) = e(H(R)) if e is well defined over R. By
the control theorem of the big Hecke algebra (e.g., [H86b, Theorem 1.2]), we have
T/($)T ∼= H(Zp)

ord by an isomorphism sending T (l) to T (l) for all primes l.
Since Ar is isogenous to a sum

⊕
[fP ]AP for the Galois conjugacy classes [fP ] of

Hecke eigenforms fP associated to an arithmetic point P |($) of Spec(T), we have
H(Qp) =

⊕
[fP ] Qp(fP ) as an algebra direct sum. Note that κ(P ) = Qp(fP ). Since

AP is the factor of Ar corresponding to Q(fP ), we have

Âr(k)
∗
ord ⊗T κ(P ) ∼= Âr(k)

∗
ord ⊗H(Zp) Qp(fP ) ∼= ÂP (k)∗ord ⊗Zp Qp.

Then by the same argument at the end of the proof of Theorem 3.1, we conclude from
(3.1) the desired identity rankAP (k) = [Q(fP ) : Q]r(I) (⇔ dimQ(fP )AP (k) ⊗Z Q =
rk(I)). �

Let εP be the root number of the functional equation of L(s, f◦
P ) for the unique

primitive Hecke eigenform f◦
P associated to fP . If εP = ±1, this number is indepen-

dent of P . Let Q = Q(I) be the quotient field of I. Here is a conjectural description
of rQ(I).

Conjecture 3.4. Pick a rational elliptic curve E of ordinary good reduction at p with
conductor N . Write IE for the unique irreducible component of Spec(h(N)) such that
we have an arithmetic point P ∈ Spec(IE)(Qp) of weight 2 with AP isogenous to E;
so, εP = ±1. Then for a set of rational elliptic curves with ordinary reduction at p
having 100% “proportion” in Bargava’s sense in [BS14a] and [BS14b], we have

rQ(IE) ≤ 1 and rQ(IE) ≡ 1− εP
2

mod 2.



ON THE RANK OF MORDELL–WEIL GROUPS 13

We prove this conjecture under some mild conditions in Sections 5 and 7 if |E(k)| <
∞ (see Theorem 5.2 and Propositions 7.1 and 7.4). This also proves Theorem A in
the introduction. In this special case, of course, we have rk(I) = 0 (and necessarily
εP = 1).

There is a related conjecture on the analytic rank made by Greenberg in [Gr94],
and one can make a similar conjecture for the Λ-adic Selmer group (of the Galois
representation attached to I). Some positive result for the Selmer group is obtained
in [Hw07a, Corollary 3.4.4] and [Hw07b] towards the conjecture. In the cases where
Howard proved his conjecture, it implies that the Tate–Shafarevich part of the Λ-
adic Selmer group is Λ-torsion. This conjecture is a version for Mordell–Weil groups.
It would be interesting to study the limit Tate–Shafarevich group directly by our
method (which we hope to do in future). If we start with a rational elliptic curve
E with ordinary good reduction at p with L(1, E) 6= 0, under mild assumptions,
Kolyvagin (and Rubin in the CM case) proved the finiteness of the p-part of the
Tate–Shafarevich group of E. After that, Skinner and Urban proved cases of the
p-adic Birch-Swinnerton Dyer conjecture. Taking I whose family contains the cusp
form attached to E of rank 0, we conclude from [SU13, Theorems in §3.6] combined
with Theorem A that J̌∞(Q)∗ord, I is I-torsion and hence the above conjecture holds.

One can ask the following naive questions for a general number field k ) Q:

(Q1) What is rk(I)? It could be equal to 0 or 1 most of the time if k is totally real
(see [N06]). If k is an anticyclotomic abelian extension of an imaginary qua-
dratic field, [Hw07a] contains some answer that the rank could grow dependent
on [k : Q].

(Q2) If rQ(I) = 0, does the characteristic power series of J̌∞(Q)∗ord, I give a factor
of (the two variable) I-adic standard p-adic L-function (of Mazur–Kitagawa)
restricted to the self-dual line? Similarly, if rQ(I) = 1, does the characteristic
power series of the torsion part of J̌∞(Q)∗ord, I give a factor of the first derivative
(with respect to the cyclotomic variable) of the I-adic standard p-adic L-
function of two variables (restricted to the self-dual line)?

Again we can answer (Q2) affirmatively in the cases where the p-adic Birch-Swinnerton
Dyer conjecture is proven.

4. Preliminary lemmas

Let B/Q be a Q-simple abelian variety of GL(2)-type. We assume that OB =
End(B/Q) ∩ KB is the integer ring of its quotient field KB . Then the compatible
system of two dimensional Galois representations ρB = {ρB,l}l realized on the Tate
module of B has its L-function L(s, B) equal to L(s, f) for a primitive form f ∈
S2(Γ1(C)) for the conductor C = CB of ρB (see [KW09a, Theorem 10.1]). Thus B
is isogenous to Af over Q (by a theorem of Faltings). Let A be another Q-simple
abelian variety of GL(2)-type. Thus A is isogenous to Ag for another primitive form
g ∈ S2(Γ1(CA)) of conductor CA. Without losing generality, we may (and do) assume
that OA = End(A/Q)∩KA. Note that KB = Q(f) and KA = Q(g) which are subfield

of Q.
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Suppose A is congruent to B modulo p with (B[pB]⊗κ(pB)Fp)
ss ∼= (A[pA]⊗κ(pA)Fp)

ss

as Gal(Q/Q)-modules. Here, for any ring R and a prime ideal p of R, we write κ(p)
for the residue field of p.

Choosing g (resp. f) well in the Galois conjugacy class of g (resp. f), we may
assume that pA and pB are both induced by the fixed embedding ip : Q ↪→ Qp. We
suppose that B is pB-ordinary in the sense that we have dimκ(pB)H0(Ip, B[pB]) ≥ 1

for the inertia group Ip of Gal(Qp/Qp).

Lemma 4.1. Suppose that CA/CB is in Z[ 1
p
]× and that B is pB-ordinary. Write

CB = Npr. Then there exists a connected component Spec(T) of Spec(h(N)) such
that for some primes P,Q ∈ Spec(T), f = fP and g = fQ.

Proof. Let ρ be the two dimensional Galois representation into GL2(F) realized on
B[pB] for F = OB/pB . Replacing ρ by its semi-simplification, we may assume
that ρ is semi-simple. Since (B[pB] ⊗κ(pB) Fp)

ss ∼= (A[pA] ⊗κ(pA) Fp)
ss, L(s, A) =

L(s, g) and L(s, B) = L(s, f) imply f mod pB = g mod pB. Moreover writing
f =

∑∞

n=1 a(n, f)qn for the q-expansion of f at the infinity cusp, we have a(p, f) 6≡ 0
mod pA as B is pB-ordinary. Thus g (resp. f) is lifted to a p-adic analytic family
parameterized by an irreducible component Spec(I) (resp. Spec(J)) of Spec(h(N)).
Since f mod pB = g mod pB, the algebra homomorphisms λ? : h(N) → Qp real-
ized as f |T (n) = λf (T (n))f and g|T (n) = λg(T (n))g satisfy λf ≡ λg mod m for
a maximal ideal m of h(N). Then, P = Ker(λf ) and Q = Ker(λg) belongs to the
connected component Spec(T) given by T = h(N)m, since the local rings of h(N)
corresponds one-to-one to the maximal congruence classes of Hecke eigenforms of
prime-to-p level N modulo p just because the set of maximal ideals Σ of h(N) is
made of Ker(λ) for λ ∈ Σ = Homalg(h(N),Fp). The maximal ideal m is given by
Ker(λf mod P) = Ker(λg mod P) for P = {x ∈ Qp : |x|p < 1}. �

The following result is just the combination of the above Lemma 4.1 and Theo-
rem 2.2.

Corollary 4.2. Let the notation and the assumptions be as in Lemma 4.1 and The-
orem 2.2. Write χ for the Neben character of f . Suppose that N = CB is prime to p
and write f |U(p) = apf . If p - 2DχNϕ(N) and (apmod pB) 6∈ ΩB,p := {0,±

√
χ(p)},

then T is a regular integral domain I and f and g belongs to Spec(I).

5. Proof of Theorem A

LetB/Q be a Q-simple abelian variety of GL(2)-type such that OB = End(B/Q)∩KB

is the integer ring of its quotient field KB. Let ρB = {ρB,l} be the two dimensional
compatible system of Galois representations associated to B. Fix an embedding
OB ↪→ Q and write pB for the prime ideal of OB induced by ip : Q ↪→ Qp. Write
det ρB,pB

= νχ for the pB-adic cyclotomic character ν. Then χ gives the Neben

character of the cusp form f with the identity L(s, B) = L(s, f) under C
i∞←− Q

ip−→ Qp.
We write f =

∑∞

n=1 anq
n.
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Definition 5.1. Let S = SB be the set of prime factors of 2DχNϕ(N) for the conduc-
tor N of ρB, where Dχ is the discriminant of the reduced part of h2(Γ0(N), χ; Z[χ]).

The prime p is admissible for B if B has good reduction modulo p (so, p - N)

and (ap mod pB) 6∈ ΩB,p := {0,±
√
χ(p)} (so, B has partially pB-ordinary reduction

modulo p). We prove the following result slightly more general than Theorem A:

Theorem 5.2. Let p be a prime outside SB admissible for B and N be the conductor
of B. Suppose |B(k)| < ∞ for a number field k. Consider the set AB,p made up
of all Q-isogeny classes of Q-simple abelian varieties A/Q of GL(2)-type congruent
to B modulo p over Q with prime-to-p conductor N . Then almost all A ∈ AB,p has
Mordell–Weil Q-rank 0 (i.e., we have |A(Q)| <∞).

Theorem A follows from this theorem taking B = E in Theorem A. As is well
known, there are density one (partially) ordinary primes in OB if B does not have
complex multiplication (e.g., [H13b, Section 7])

Proof. Since B[p∞
B ] is an ordinary Barsotti–Tate group by our assumption, A[p∞

A ]
is potentially ordinary by the congruence modulo p between A and B. Here we say
A[p∞

A ] “potentially ordinary” ifH0(Ip, A[p∞
A ](Qp)) has non-trivial p-divisible rank and

A[p∞
A ] over Qp extends to a Barsotti–Tate group with non-trivial étale quotient over a

finite extension of Zp. Choosing the embeddingOA ↪→ Q well, we may assume that pA
is induced by ip : Q ↪→ Qp. Thus A and B are isogenous to a modular abelian variety
AP ′ and AP , respectively, for two points P, P ′ ∈ Spec(T) of a connected component
Spec(T) of Spec(h(N)) for the big p-adic Hecke algebra h(N). Thus we conclude

AB,p = {AQ|Q ∈ Spec(T) and Q is arithmetic of weight 2}
by the theorem of Khare–Wintenberger [KW09a, Theorem 10.1] (combined with the
proof of the Tate conjecture for abelian varieties by Faltings).

Since p is outside SB, by Corollary 4.2, T is a regular integral domain I. Thus
A1 = AP satisfies the condition (A) (in particular, P = (α) for α ∈ I). In other

words, for α ∈ I = T, by the control theorem Theorem 2.3, we have Â∗
P,ord(k)⊗Zp Qp

∼=
J̌∞(k)∗

ord, eI[ 1
p
]
⊗eI[ 1

p
] κ(P ) as P = (α). Here “∗” indicates the Zp-dual module of the

module ∗ attached. Since Â∗
P,ord(k)⊗Zp Qp ⊂ AP (k)⊗Z Qp = 0, we conclude rk(I) = 0

for rk(I) in Theorem 3.1. Thus XI := J̌∞(k)∗
ord, eI[ 1

p
]
is a torsion Ĩ[ 1

p
]-module of finite

type. In particular, Supp(XI) contains only finitely many maximal ideals of the

Dedekind domain Ĩ[ 1
p
]. By the above argument,

AB,p − {AP ∈ Supp(XI)|P : arithmetic}
is the set of A with finite A(Q). Since Supp(XI) contains only finitely many primes,
this concludes the proof. �

As for Corollary B, we remark that h2(Γ0(N); Z) = Z for the values N in the
corollary. Then we can check easily from the table of Stein and Cremona that either
p ∈ S ⇒ (apmod p) ∈ ΩE or X0(N) mod p is singular. Thus the condition that
p 6∈ S is not necessary for the corollary.
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Though we formulated Theorem 5.2 insisting that A has prime-to-p conductor equal
to the conductor of B, enlarging the exceptional set SB, we can allow the case where
B has conductor divisible by the conductor of A under some extra assumptions, in
particular, that rk(I) is independent of the irreducible components of Spec(T) (see
Proposition 7.1). For a level-raising prime p, B could have conductor Cp for the
conductor C of A. In such a case, the Selmer rank of B can be higher than that of A
[Z14, §5.3] (and also Mordell-Weil rank when p = 2 by a work of Chao Li). Thus the
assumption of constancy of rk(I) is necessary.1

6. Proof of Theorem C.

We keep the notation in the previous section. Again we prove the following slightly
stronger result.

Theorem 6.1. Let p be a prime outside SB admissible for B and N be the conductor
of B. Suppose dimKB

B(k) ⊗Z Q = m > 0 for a number field k. Consider the set
AB,p made up of all Q-isogeny classes of Q-simple abelian varieties A/Q of GL(2)-type
congruent to B modulo p with prime-to-p conductor N . Then we have rk(I) ≤ m. We
have rk(I) < m if and only if there exists another A′ ∈ AB,p with dimKA′

A′(k)⊗ZQ <
m.

Applying this result to B = E, k = Q and m = 1, we obtain Theorem C in the
introduction. Under the assumption of the theorem, if rk(I) = r for the component
Spec(I) containing B, for almost all A ∈ AB,p we have dimKA

A(k)⊗Z Q = r. Thus
if we prove r ≤ m, we get the theorem by an obvious induction on m (with the start
step given by Theorem 5.2).

Proof. As explained above, we first prove rk(I) ≤ m under the assumption of the the-
orem. Let P ∈ Spec(I) be the arithmetic point associated to B. Then after localizing
at P , by Nakayama’s lemma applied to the valuation ring IP and its maximal ideal,
the m-dimensionality of

Km
AP

= κ(P )m ∼= Â∗
P,ord(k)⊗Zp Qp

∼= J̌∞(k)∗
ord, eI[ 1

p
]
⊗eI[ 1

p
] κ(P )

tells us that J̌∞(k)∗
ord, eI[ 1

p
]
⊗eI[ 1

p
] IP is generated by m elements over IP . From which,

we conclude rk(I) ≤ m.
If we find A′ ∈ AB,p as in the theorem, we find rk(I) ≤ m − 1 from the above

argument applied to A′ in place of A. Since rk(I) ≤ m − 1, almost all A′′ ∈ AB,p
satisfies dimKA′′

A′′(k)⊗Z Q = rk(I) < m. Therefore for almost all A′′ ∈ AB,p has this
property. This finishes the proof. �

As discussed in (Q1), we expect to have 0 ≤ rk(I) ≤ 1 all the time as long as k is
totally real. This theorem is plainly short of this goal (because we do not have any
effective method to calculate the rank of A′(k) for other members A′ of AB,p).

1Ashay Burngale has pointed out the author that the Mordell-Weil rank could jump for level
raising primes; so, the constancy of rk(I) over Spec(T) is necessary. The author is grateful for his
timely remark.
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7. Good cases for non-regular T

In this section, we suppose that T is not regular integral domain; so, p ∈ SB by
Theorem 2.2. Under some different sets of assumptions, we prove the assertions of
Theorem 5.2 and Theorem 6.1 for such primes in p. For simplicity, throughout this
section, we suppose one of the following two conditions:

• N is cube-free,
• T is new (see Definition 3.2).

By the above assumption, Ts = T/(γp
s−1 − 1)T is reduced for all s (see [H13a, §1]

and [H86a, §3]).
If p ∈ SB, then T is often not regular. We divide our consideration into the following

two cases.

(R) Spec(T) is reducible;
(I) Spec(T) is an integral domain.

Proposition 7.1. Suppose that we are in Case R for a prime p admissible for B,
and let N be the conductor of B. Suppose |B(k)| < ∞ for a number field k. If
rk(T) := rk(I) is independent of the irreducible components Spec(I) of Spec(T), the
assertion of Theorem 5.2 is still valid for AB,p; that is for almost all A ∈ AB,p, we
have |A(k)| <∞.

Proof. The generic rank rk(I) is well defined by Theorem 3.3. Note that

AB,p = {AP |arithmetic points P of weight 2 of Spec(T)}.
If |B(k)| < ∞, we have an arithmetic point PB ∈ Spec(T) of weight 2 for which
APB

is isogenous to B over Q. By the étaleness of T over PB ∩ Λ (see [HMI, Propo-
sition 3.78]), this PB lies on a unique irreducible component Spec(I). By the same
argument proving Theorem 5.2, we conclude rk(I) = 0. Since the generic rank is
independent of irreducible components of Spec(T) by our assumption, rk(I

′) = 0 for
all other irreducible components Spec(I′) of Spec(T), and thus again by the proof of
Theorem 5.2, we conclude there are only finitely many exceptional abelian varieties
A ∈ AB,p with positive k-rank, as desired. �

Remark 7.2. Replacing the assumption |B(k)| < ∞ by rankOB
B(k) = 1 (and

keeping all other assumptions) in the above proposition, we conclude rk(T) ≤ 1 in
the same way as the proof of Theorem 6.1.

Remark 7.3. For any pair of irreducible component Spec(I) and Spec(I′) of Spec(T),
if each P ∈ Spec(I)(Qp)∩Spec(I′)(Qp) is outside of Supp(XI)∪Supp(XI′), we have the
equality of the generic ranks rk(I) = rk(I

′), and hence the generic rank for irreducible
components are independent of the components.

We assume that we are now in Case I.

Proposition 7.4. Suppose that we are in Case I for a prime p admissible for B, and
let N be the conductor of B. Suppose |B(k)| < ∞ for a number field k. Then, for
almost all A ∈ AB,p, we have |A(k)| <∞.
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Proof. Again we find rk(I) defined in Theorem 3.3 is zero. Then the conclusion holds
by the argument proving Theorem 5.2. �

In the same way as in Theorem 6.1,we get

Proposition 7.5. Suppose that we are in Case I for a prime p admissible for B, and
let N be the conductor of B. Suppose dimKB

B(k)⊗Z Q = m > 0 for a number field
k and that N is cube-free. Then we have rk(I) ≤ m. We have rk(I) < m if and only
if there exists another A′ ∈ AB,p with dimKA′

A′(k)⊗Z Q < m.

The proof is left to the attentive reader.

Remark 7.6. By the above propositions, only cases left open are when Spec(T) is
not an integral domain which does not satisfy the assumption of Proposition 7.1.
Such cases may occur as the λ-invariant of the standard p-adic L-functions indexed
by arithmetic points of Spec(T) may depends on irreducible components as shown in
[EPW06]. For T is not new but with mixed new and old irreducible components (i.e.,
when we have level N = N0 with level raising prime l - N0), this happens as verified
by Le Hung and Chao Li [HuL14] when p = 2 (see also [Z14] for such phenomena for
Selmer rank).

8. Zero density of primes p with (ap mod pB) ∈ ΩB

Let B/Q be a Q-simple abelian variety of GL(2)-type of conductor N . Since B is
a factor of J1(N) by [KW09a, Theorem 10.1] (combined with the Tate conjecture
proven by Faltings), it has a Q-rational polarization λ induced from the canonical
polarization of J1(N). We assume that End(B/Q)∩KB is the integer ring OB of KB.
Write det ρB = νχ for a character χ modulo N and the p-adic cyclotomic character
ν. Let

Σ = {p : rational prime outside N |(ap mod p) ∈ ΩB,p for all OB-prime ideal p|p}.
We prove the following lemma in this section.

Lemma 8.1. Assume that B×Q Q does not have complex multiplication. The subset
Σ has Dirichlet density 0 in the set of all rational primes.

Proof. Suppose that p ∈ Σ and p|p be a prime of OB with (ap mod p) ∈ ΩB,p. We
may assume that p is unramified over Z.

The reduction Bp = B mod p has the p-power Frobenius endomorphism φ whose
eigenvalues α satisfies |αϕ| =

√
p for all ϕ ∈ Gal(Q/Q). Since ap = α + χ(p)αc

for the complex conjugation c (i.e., the Rosati involution of OB with respect to the
polarization λ of B; see [GME, Theorem 4.2.1]), we have an estimate |aϕ| ≤ 2

√
p.

Taking the norm to Q, we have |NKB/Q(a)| ≤ 2dpd/2 for d = [KB : Q] = dimB.
We write ∞ for the set of all field embeddings of KB into C, and put

ΩB :=
⋃

p-N

ΩB,p = {0,±
√
χ(p)|p : prime outside N} ⊂ Qp.

Note that ΩB is a finite set. Since α is a Weil p-number of weight 1, If ap ≡ δp

mod p for some δp ∈ ΩB (which may depend on p) for all p|p, we have p|(ap − δp)
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(i.e., |aσp | ≥ p − 1 for all σ ∈ Gal(Q/Q)). Thus
∏

σ∈∞ |aσp | ≥ (p − 1)d. Therefore we

have (p − 1)d ≤ |NF/Q(ap)|; so, (p − 1)d ≤ |NF/Q(ap)| ≤ 2dpd/2 as long as ap 6∈ ΩB.
Thus if ap 6∈ ΩB, we have p ≤ 6, and therefore we may assume that ap ∈ ΩB if p ≥ 7.
This shows

Σ ⊂ {p ≤ 6}
⋃

a∈ΩB

{P |ap = a}.

For any given constant C , the set of primes {p|ap = C} has Dirichlet density 0
by [Se81, Théorème 15] applied to the cusp form f having Af isogenous to B. This
finishes the proof, since ΩB is a finite set. �
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