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CONGRUENCES OF CUSP FORMS AND HECKE ALGEBRAS
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0 - We begin by giving a short summary of the theory of congruences of a
fixed primitive cusp form f, and then, we shall sketch how we can cons-
truct a theory which allows the cusp form f to vary.

Finally, we shall discuss some examples of our results. The detailed
proofs of our theorems below will appear elsewhere.

1 - Fix a positive integer N and let ¢ be a Birichlet character
modulo N. Take a holomorphic cusp form f (#0) on the upper half com-
plex plane of weight k for the congruence subgroup TU(N) of SLZ(Z)
with character . Write its Fourier expansion as

f(z)= ZE a(n)e(nz)} (e(z) = exp (2wiz})
. n=

and suppose that f]T(n}= a(n)f for all Hecke cperators T(n) for
FU(N} including those with n dividing N, Any non-zero form with this
property is said to be normalized. Every Fourier coefficient of & norma-
Tized form is an algebraic integer. As usual, Jet Sk(FO(N),w) (resp.
Sk(FT(N))) denote the space of cusp forms for FD(N) of weight k with
character ¢ (resp. for the congruence subgroup F1(N) of FO{N}). A
prime ideal P of the ring of all algebraic integers in € and also its
restriction p= PnZ to Z are said to be a congruence prime of f if
the following conditions are satisfied :

{(1a) there is a normalized form g= I b{nle(nz) in S.(T,(N}) with
n=1

133




o MR peS

134

f=gmod P {i.e. a{n)=b{(n) mod 7 for all n);

(1b} the normalized form ¢ is different from any conjugates

t%z) = £ a(n)%(nz) of f under automorphisms o of C.
n=1 o

One of the key points in the study of congruence primes is to make
use of the Hecke algebras associated with the cusp form f. The Hecke
algebra h is by definition the subalgebra of the linear endomorphism
algebra of Sk{F1(N)) and it is generated over Z by all the Hecke ope-
rators T(n} acting on 8,(ry(N}) (including those with n dividing
N)}. Naturally, f s a common eigenvector of all operators in hk, and
thus one can associate with f an algebra homomorphism Xx of hk into
C via f|T= AMTIFf for Teh,. As is well known, the scalar extension
hR(Q) = h 2,0 is an Artin algebra over Q, and hence, X has values
in the field ¢ consisting of all algebraic numbers of C, Then, we can
find a unique local ring K of hk(Q) and a homomorphism )° of K
inte § which makes the following diagram commutative :

A :h“Q} — QctC

AI

Dececmpose hk(Q) into an algebra direct sum Ke A, which is certainly
unigue, and let h(K) and h{A) be the projected images of by in K
and A. This may be summarized by the diagram :

hk(Q) = KeA

U Y

h < h{K) & h(A}.
Define a module C(f) by

C(F) = (h(K) o h(A))/hy,

which has only finitely many elements. The importance of the module C(f)
Ties in the following fact :

(2a) a prime p divides the order of C(f) if and only if p is a
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congruence prime of f.

Another interesting fact is a relation between the module C(f) and the
special value at the weight k of a zeta function of ¥, which is de-
fined by

Ls,f)= (5 n2k2-25 (; w{nmaln)n"s)
n=1% n=1%
{n,N)=1
- 1 -Tpalpdp S + fiplalpfypk 1S - pPk33s) T,

P
We consider the product Z(s,f)= 1 L{s,f°) over all conjugates of f.

As shown in {1, (7.1} and Cor. 6.3?, there is a canomical integer part
of Z{k,f), and by the results of {1, 2] and those of Ribet [4]1, when
p is suffigiently large {i.e. p>5, p>k and (p,N)=1) and if f
is primitive, then

(2b) p divides the order of C(f) if and only if p divides the ca-
nonical integer part of Z(k,f).

It is Jn interesting problem to ¢larify the difference, if any, between
the canonical integer part of 2Z{k,f) and the order of C(f}. Some re-
sult in this direction can be found in [3, § 3].

2 - Let Sk(F1(N);Q) denote the subspace of Sk(F1(N)) consisting of
all cusp forms with rational Fourier coefficients. This space is known
to be stable under the action of the Hecke algebra hk(Q). For any ex-
tension F over (, put

SElry {5y = 8, (1 (N)5Q) & oF .

Ther, the Hecke algebra h (F)= h e ,F acts on S, (T4(N);F) and may
be considered as a F-subalgebra of the endomorphism algebra of
Sk(ri(N)‘F)' If the character ¥ has values in F, we denote by
Sk(TO(N},w;F) the subspace of Sk(r1(N);F) consisting of all forms
transformed under PO(N) via the character y.

We hereafter fix a prime p>5 and a prime ideal P over p in
the ring of all algebraic integers in C. Let & be the quotient field
of the P-adic completion of this ring, By continuity, the morphism
A hk(Q)‘;—4> Jc0 can be extended to a homomorphism Ap hk(Qp)+SL
Then Ao factors through a unique Jocal ring i<P of hk(Qp} {which is
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a direct summand of Ke QQD)' Decompose hk(Gp) = Kp e A, as an alge-
bra direct sum and Tet h{KP) and h(AP) be the natural images of
hk(zp)= hke Zzp in Kp ard Ap. Put )

Cp(f)= (h(KP) & h(AP})/hk(Zp).
So far, we have discussed only on the congruences of the fixed normali-
zed form f, but if p divides N, there is a sequence of normalized
forms £, in Si(ri{N}) for each weight & with f=f, mod P. Then,
we ask the following questions.

}
|
l
i

I. When Cp(f)# 0, are the modules Cp(fg) non-trivial ?

II. If so, how does the structure of Cp(fg) depend on % 7

Under the hypothesis that afp)#0 mod P and with some additional assump-
tions, the answer to question 1 is affirmative, and Cp(fz} depends p-
adic analytically on £. The meaning of the analycity is that there is

a power series H(X) with coefficients in 2Z_ depending only on f

and there is also a homomorphism of zp/H((1+p)“-1}zp into Cp(Fl) with
finite kernel and cokernel, whose orders are bounded independtly on 2.
Furthermore, we know that Cp(fm) o Cp(fﬁ.) if L and &' are suffi-
ciently close in the sense of the p-adic topology.

cooy EE L TemENY G

& 3 - One point which we must keep in mind to solve these questions is that
we have to specify f2 somehow, because fl may not be uniquely deter-
i mined only by the congruence f= fﬁ mod P. To accomplish this task, we
are naturaily led to consider some bigger Hecke algebras which act on f
and fy, for all 2 simultaneously. To define this, we assume that

the prime p divides N but p2 does not divide N.

Then, we put

: J
st e 5 (r,(N);Q) for §>0
9= % 1 p
and let hY for the subalgebra of the endomorphism altgebra of s which
is generated over Zp by all Hecke operators T(n} for F1{N). Here,

T(n} acts_on the direct sum & diagonally. The restriction of opera-
tors in n to the subspace §' (j> 1) induces a morphism of h  onto

h1, which defines a projective system {hJ} Forming the projective

i

Timit h= 1im hy, we obtain a compact ring acting on
J
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s= limst= o
* =1

J

51y (N)30,).

Our key idea is to consider the algebra h as an algebra over the
Iwasawa algebra A for the multiplicative grouwp T= 1 +p2p. Namely,
let I act on SE(T1(N);Qp) via gly==y2g for vye€Tr. Then the diago-
nal action of y€Tr on S <can be regarded as an operator in h. In
fact, the Hecke operator q(T(q)2 —T{qz)) for each prime q=1 mod N
in k gives the action of g on S as an element of T. Since such
primes are dense in T, h may be regarded as a continuous [I'-moduie,
and hence, is an algebra over A= iim Zp[F/1+anp3.

n
The A-algebra h is too big to handle right now; so, let us make

it a little smaller. Since hY s a (commutative) finite Z,-algebra,

the limit e = Tim T(p)P™M(P™1) exists in h' for a sufficiently
n-+e ;
large r and is an idempotent of h). The formation of ej is compa-

tible with the projective system {hJ}j. Thus, the projective limit
e= 1im ej ‘gives an idempotent of h. Write ho =eh and

hg(ng = ehR(Z ), etc. The restriction of operatoré in h to the sub-
space SQ(F1{N};Qb} of S defines a morphism of ho onto hg(Zp). Now
we identify A with Zp{[X}}_ by assigning the topological generater
1+p&€T to the unit 1+X in Zp[[X]]. Then we have

Theorem 1. The A-algebra ho is free of finite rank over A, Moreover,
if 2>2, then the natural morphism : h, —> hz(lp) defined above
induces an isomorphism hOIchO a2 hz(Zp), where

Py Pu(X)= (1K) - (1ep) e,
We can naturally identify SQ(F1(N};5) with the subspace of

SR(F1(N)) consisting of all forms with algebraic Fourier coefficients.
Thus, every normalized form belongs to Sg(r1(N);Q), and the Hecke al-
gebra hR(Qp} acts on the space Sl(?1(N);QP), hence, on SE{P1(N);Q).
Thus, we can consider the action of the idempotent e on any normalized
form g in SE(F1(N)). By the definition of e, if g 15 a normalized
form in Sg{r1(N)), then

(3) gle=g if and only if the p-th Fourier coefficient of g does

net vanishes module P,
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It is known that every normalized form g in SQ(Pl(N)) is a 1i-
near combination of a unique primitive form g, in Sa(rg(t)) for some
divisor t of N and its transforms gg{sz) with siN/t. We say that
a normalized form g of SR(F1(N)) is ordinary {of level M) if
gle=g and either g s primitive of conductor N (i.e. a new form in
SE(P1(N))) or the associated primitive form g5 s a new form of
SE(T1(N/p)). Then we have

Corallary 1. The number of ordinary forms in SE(F;{N)) is independent
of the weight & provided that 2>2.

For each primitive form f, there seems to be many primes at which
f (or more precisely, fle) is ordinary. For example, take
f=na=e{z) T {1—e(nz))26
n=1
numerically that Ale is ordinary for p with 11<{p< 1821, but at the

primes ©¢<p<11, Ale vanishes.

of S1Z(SL2(Z)). Then, it can be verified

We can now specify f, in Question { by assuming f to be

ordinary . lLet L be theaquotient field of A and put F-= hoa AL.

Then F s an Artin algebra over L by Theorem 1. Take a local ring K
of F. Then K s finite over L. Decompose F= K& A as an algebra
direct sum, and Tet A (K} and hO(AJ be the images of h, in K and

A. The projection morphism of k= onto hO(K) induces a morphism :

o
i h(Z,) — (2 ) = hy/Pohy ——> b (K}/Ph (K).
By tensoring Qp, this induces

0, 1 he{Q)) —— {ho(K)/PQ’hG(K))@Zpr.

We say that the normalized form f belongs to K 1if the homomerphism
p of hk(Qp) intc § associated with f factors through ®,. By
Theorem 1, any normalized form with fie=f always belongs to some local
ring of F.

Theorem 2. If the fixed normalized form f of weight k 1is ordinary
and if k>2, then f belongs te a unique Tocal ring K of F which
is a field. Moreover, for every £>2, the number of normatized forms
in SQ(F1(N)) which belong to K is exactly the index [K: L}, and all
such forms are ordinary.

i
4
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Let K be a lgcal ring of F to which f belongs. We assume that

(4a} the normalized form f 1is aordinary,

{4b) the weight k of f is greater than one,
{4¢) [K:1L]1=1.

Then, the ring hD{K) coincides with the subalgebra A of L (= K},

because hO(K) is integral over A. Let A(niX) be the image of the

n-th Hecke operator T(n} of h in h (K}=A= Zp[§X]}. Then, an ex-
plicit form of the ordinary forms belonging to K may be given by

Corollary 2. Let & be an arbitrary integer greater than 1, Under the
assumption (4a,b,c), the unique ordinary form fE of weight & be-
longing to K has the following Fourier expansion :

fz{z) = ¥ A(n;(1+p}2~1)e(nz).
n=1
This means that the element A(n;(1+p)£—1) of the field § 1is contai-
ned in § which is a subfield of €, and gives the n-th Fourier coef-
ficient of f, By Corollary 2, we see easily that

f= %;md? for a1l 2> 2.

After succeeding in specifying f2 as above, we are now ready to give a
precise formulation of the answer of Question I :

Theorem 3. Assume the conditions {4a,b,c) and define a A-module by

Co = (hO(K) 9 hO(A))/ho. Then there exists a non-zero power series H(X)
in Zp[[X]] such thqﬁ Cy = AMH(XA. Moreover, there is a finite tor-
sion A-module C such that :

(i} CO can be embedded into € as A-modules and the quotient
N= C/C0 has only finitely many elements {i.e. € 1is pseudo-
isomorphic to COJ;

(i1} For each £>2, there is an exact sequence :

i C/ch _— N/PR’N —_—

0 — Cp(fi)

where fg is the umique ordinary form of wieght & belonging to K.

Here are some remarks about Theorem 3. Certainly, the module ¢
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cannot be uniquely determined, but one may conjecture that C; itself
can be taken as € in Theorem 3. If this is true, the module of con-
gruences Cp{fz) will be completely described by the module Cy. A suf-
ficient condition for the conjecture can be given as follows : For 2>2,
write hﬁ(Qp)= Ky @ AR

Ky = (hy(K)/Poh (K)) @ Zpr,

as an algebra direct sum for
and Jet h(AE) be the image of hg(zp) in

Aﬁ. Then we have

(5) If h(A;) is integrally closed in A, for at least one 4>2,
then we can take C; as € in Theorem 3.

This gives us an effective method to check humerical]y the conjecture to
be true in each special case. Anyway, we can at least conclude the follo-
wing facts :

(6a) if C (F)#0, then C,(f))#0 forall 222

(6b) if pl anninilates N and if 2=k mod p' f{and 2>k>2), then
N/PkN o N/PEN as Zp-modu1es.

As a p-adic version of (2b), one may conjecture that the power series
H(X) as in Theorem 3 interpolates the algebraic part of L(i,fl). Mame -~
1y, a cancnical P-integral part of L(i,fg) can be defined, similarly
to the definition of the integer part of Z{Q,fg), and then we make

Conjecture. For all integers £>2, the number R((1+p) -1} coincides

with the canonical P-integral part of L(E,fg) up to the muitiple of
p-adic units,

4 - Before stating some examples for the local ring K and the Iwasawa
module Cj, we extend the action of T on h, to that of Tx({Z/NZ2)".
As easily seen, we have that

gi(T(Q)z-T(qz)) = q£'1g]cq for every  g€S8,(r (N)),

where 0= (2 E)EI‘O(N) with d=q med N and

(glog){z) = (322

cz+d
This shows that the finite group (Z/NZ)* acts on SQ(F1(N};QD) and
also, on S, hence on ho. This action is explicitly given by

)(cz+d}"2 is the usual transform of g under g

gla= w(g)¥glo,  (ges,(ry(NQ) and e/,
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where w is a Dirichlet character modulo p such that w(a)=a mod P .
Suppose that #{Z/NZ)* 1is prime to p and let £ be a character of
(Z/N2Y* with values in Z;. Then the subspace hO(E} of h, on which
(Z/NZ)" acts via £ s an algebra direct summand of hﬂ. By Theorem 1,
if the weight £ 1is greater than 1, then

(7) hO(E)/Plha(E) is isomorphic to the Hecke algebra of the space
8, (ry{N) ,Ew-g‘;Qp)

It is well known that :

e,

(8a} The idempotent e sends SR(FD(N/p),g;Qp) surjectively to
SE(PD(N);E;QP}|E, if & dis defined modulo N/p;:

(8b) If g is a primitive form in S,(r,{(N);0) whose p-th Fourier
coefficient is non-vanishing module P, gle does not vanish. Mo-
reover, if the conductor of g is N/p or N, then gle isa
constant muitiple of an ordinary form.

Now, we start with a simplest example of K with [K:L1=1, We
take p as the level N and consider the unique primitive form A of
Saz(SLE(Z))‘ Then, if the p-th Fourier coefficient of A does not va-
nish medulo p (as already mentioned, this is at least true for primes
p with 11<p <1021}, then ale is a constant muitiple of an ordinary
form f. Thus, we know from (8a) that f ds a unique ordinary form in
sz(Fa(p);Qp). Then, (7) shows that ho(m12)czn. 1gertain1y, the local
ring K corresponding to the direct summand h (v °)
phic to L.

of ho is isomor-

Next, we shall associate a local ring K of F with an imaginary
quadratic field M with discriminant -d. We have to assume that

() the prime p is split in M,

For simplicity, we also assume the ciass number of M to be one. Put

p= POM. Then, the prime p s decomposed in M as p=pp, and the
closure Mp of M in { coincides with Qp. YUrite R for the ring
of integers in M, and denote by w the number of roots of unity in R,
Let a be an integer with 0<adp-1 and a=1mod w. It is known by
Hecke that the formal Fourier series

L ma-ﬂ‘(x)xg-ge(xﬁ) for 2>2

f,(2) =
& wER-p

-2

is in fact the Fourier expansion of an ordinary form in SQ(FD(dp),wa

xh
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where x{q) 1is the Legendre symbol {E%) and w 15 a character of R
with w{x)=x mod P.

Theorem 4. Take dp as the level N. Then, for each integer a as
above, there is a unique local ring K of F to which £, belongs for
all 2>2. Moreover, we have [K:1]l=1 and for every prime q, the
power series Alg;X) in Corollary 2 for this. K is given by

wa(r)r—1(1+X)Iog(<r>}/§cg(u) -1(1+X)10g(<F>)/log(u)’

w2 (F)7
if q=rr for reR,

Masx) = wa(r)r"1(1+x)r-1(HX)MQK”)”%(”}, if q=r2 for reR,
0, otherwise,

where wu=1+p, <>= ralr)’l, (14X)%= % (ﬁ)x”ezp{[xn with the bi-
n=0

- nomial polynomial (%) in s and log denotes the p-adic logarithm.

n

By using this theorem, we can give several examples of non-trivial
torsion modules CD as in Theorem 3. By {7) and {Ba,b), if the Tocal
ring K corresponds to an integer a with 0<a<p-1 and a=1mod w,
we can get some information of K by examining the space Sk(I‘O(d),x)
for k=a mod p-1 1instead of Sk(ro(dp),x}‘ We take 7 as d (i.e.
M= Q(/-7)). Here, we give a table, due to the calculation done by Y.
Maeda, of primes p and the number a at which K as in Theorem 4 has
non-trivial module Cy of congruences.

p a | dim (8,(1a(7),x))
23 1 5=1+4

79 13| 7=1+6

191 91 6=1+4

33 1317=1+6

Here are some remarks about the table. The expression, for example,
5=1+4 in the Tast column at the line of p=23 means that the Hecke
algebra of 311(F0(7),X) over ( splits into the sum of two flelds of
degree 1 and 4 over (., The one dimensional component of the Hecke alge-

bra of each weight listed above corresponds to the imaginary quadratic
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field Q(v/=7) as in Theorem 4, In the cases Tisted above, one can check
numerically {cf. (5)) that the moduie €y can be taken as C in Theo-
rem 3. It should be also noted that the primes in the table are irregular
for Q(v¥~7) in the sense of [3, paragraph 1].

Finally, we shall give a numerical example of the local ring K
with the following properties :

(1ta) [K:Ll=2;

(10b) For any finite extension [ of Qp, Ka 0 E is a field {i.e.
P

K s not a scalar extension of L).

We take 13 as p and 39=3.13 as the level N, Llet £ be the charac-
ter of (Z/NZ)° such that &£(m) = (g}w(m), where (g) is the Legendre
symbol and w(x) = x mod P. Since £ is Zp—rationa1, we can decompose
hy= ho(E) ek as an algebra direct sum. Let ¢ be an integer with
=1mod 12 and £>2. Then, by {7} and (8a), the algebra
ho(g)/Piho(g) is the Hecke aTgebra over Z_ of the space
SQ(FU{H},X;Qp)le, where y{m) 1s the lLegendre symbol (g). Here, we
list, from the calculation done by Y. Maeda, the characteristic polyno-
mial P(X) of T(2) on S,{rg(3),x) for each %=13, 25 and £=37.

(11a) £-13 : P(X) = XF13(x2) with

p=25 : P(X) - HESHZ) with Foe(X)= X
2

3, 82005048X° +

F25(XJi X3+82005048X +1829235783453636X+8525473984011546132480,
the discriminant of F, = 2%6.326.53.7%.73.271.20753.618707,

the constant term of F25= 223-314

+5-713+467003;
=37 ¢ PX} = XFgp(X).

The polynomial F37(X)' is of degree 5 and the coefficients of Xi for

Fa7 and the discriminant D of Fa; are given as follows :




144

{11b) i

o | 2%8.322.52.7.113.13%.6311.32587% . 1304543

1 | 286049606581241273364343505769224571350548480

2 | 8830719713450547606263642355400704

3 | 109381854596941655267328

4 1 561197528712

b | 150,492 12 .7

-3413-a2 big factor of 112 digits

The polynomials F13, F25, F37 are irreducible over Q and every factor °
less than 1010 of the prime factorization given above is a prime, and
even if the factor exceeds 1910, it is not divisible by primes less

than 305. Now we give the factorization of FR(XZ) mod 13 and mod 133:

(12a) FZS{XZ) : X2(X247) (X+8) (X+5) mod 13,

B, {X)Gy (X} (X+1984) (x+213) mod 13°,

(1984 =8 mod 13, 213=5 mod 13),
where G1 and G, are irreducible quadratic poiynomials over Z/1332.
(120) Fap(X%) ¢ KE(XE7) (X48) (X5) (X+6) (X+7) (X+10) (X+3) mod 13,
&1 (X)65(X)(X-1643) (X-554}(X-1749) (X-448}(X-1693) (X-504) mod 13°

where Gi and Gé are irreducible over 2/1332, and all the factors
of F37 mod 133 correspond to those mod 13 in order.

The factor X in P(X) corresponds to the ordinary forms be-
longing to the local ring M associated with Q{/-3) as in Theorem 4
for a=1. The factor X° in the factorization of Fﬂ(x) mod 13 corres-
ponds to the twoe primitive forms congruent with the ordinary form be-
longing to M modulo a prime ideal P over 13 (cf. [1, (8.11)1). Thus,
the module Cy for M is non-trivial.

Since dim 313{FD(3),X)= 3 and since every primitive form in this space
is known to be congruent modulo P with each other, the rank of ho(g)
over A is 3 by Theorem 1. Thus, we canh decompose hg(g)@AL = MeK as
an algebra direct sum. We claim that K is a field with [K:L]=2.

The ring K is semi-simple by Theorem 2. Then K must be a Tield, be-

cause, Kyq= (hD(K}/P13h0(K))s Zpr is isomorphic to the field
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Qp[X]/(X2+8424). Since 8424 1is divisible by 13 exactly, K;3/Q, is
a ramified extension, Thus, if K 1is split over a finite extension E
of Q, (ie. KegE=(lag E)%), then E/Q, must be a ramified ex-

tension, and for any weight 2, K, = (A (K)/Ph (K)}a, Q, must ramify

over Q. We shall show that the extension K37/Qp is unramified. Then,
(10a,b) will be proved for the field K. This unramifiedness is obvious
from (11b), because the constant term of F37(X) is divisible by 132
exactly. The factorization of F37 mod 133 shows that K37 is a quadra-

tic field unramified over Qp'

1t may be noted that by (12a,b), we can conclude that for the or-
dinary forms fi belonging to M,

Cp(f13] v Cp(fzs} =~ Z/3L

and it is gquite plausible that C (f37) = 2/1322.

p
It is an interesting problem to determine when the Yocal rings of
F satisfy (18a,b}.
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