PM 59 Séminaire de Théorie des Nombres Paris 1983-84 © 1985 Birkhäuser Boston Inc.

## CONGRUENCES OF CUSP FORMS AND HECKE ALGEBRAS

## HARUZO HIDA

0 - We begin by giving a short summary of the theory of congruences of a fixed primitive cusp form f, and then, we shall sketch how we can construct a theory which allows the cusp form f to vary.

Finally, we shall discuss some examples of our results. The detailed proofs of our theorems below will appear elsewhere.

1 - Fix a positive integer N and let  $\psi$  be a Dirichlet character modulo N. Take a holomorphic cusp form  $f(\neq 0)$  on the upper half complex plane of weight k for the congruence subgroup  $\Gamma_0(N)$  of  $SL_2(Z)$  with character  $\psi$ . Write its Fourier expansion as

$$f(z) = \sum_{n=1}^{\infty} a(n)e(nz) \qquad (e(z) = exp(2\pi i z))$$

and suppose that f|T(n)=a(n)f for all Hecke operators T(n) for  $\Gamma_0(N)$  including those with n dividing N. Any non-zero form with this property is said to be normalized. Every Fourier coefficient of a normalized form is an algebraic integer. As usual, let  $S_k(\Gamma_0(N),\psi)$  (resp.  $S_k(\Gamma_1(N))$ ) denote the space of cusp forms for  $\Gamma_0(N)$  of weight k with character  $\psi$  (resp. for the congruence subgroup  $\Gamma_1(N)$  of  $\Gamma_0(N)$ ). A prime ideal P of the ring of all algebraic integers in C and also its restriction p=PnZ to Z are said to be a congruence prime of f if the following conditions are satisfied:

(1a) there is a normalized form 
$$g = \sum_{n=1}^{\infty} b(n)e(nz) = \sum_{k} (\Gamma_{1}(N)) = \sum_{k} (\Gamma_{1}(N))$$

 $f \equiv g \mod P$  (i.e.  $a(n) \equiv b(n) \mod P$  for all n);

(1b) the normalized form g is different from any conjugates  $f^{\sigma}(z) = \sum_{n=1}^{\infty} a(n)^{\sigma} e(nz) \quad \underline{of} \quad \underline{f} \quad \underline{under \ automorphisms} \quad \sigma \quad \underline{of} \quad \underline{C}.$ 

One of the key points in the study of congruence primes is to make use of the Hecke algebras associated with the cusp form f. The Hecke algebra  $h_k$  is by definition the subalgebra of the linear endomorphism algebra of  $S_k(\Gamma_1(N))$  and it is generated over Z by all the Hecke operators T(n) acting on  $S_k(\Gamma_1(N))$  (including those with n dividing N). Naturally, f is a common eigenvector of all operators in  $h_k$ , and thus one can associate with f an algebra homomorphism  $\lambda$  of  $h_k$  into C via  $f|T=\lambda(T)f$  for  $T\in h_k$ . As is well known, the scalar extension  $h_k(Q)=h_k\otimes_Z Q$  is an Artin algebra over Q, and hence,  $\lambda$  has values in the field  $\overline{Q}$  consisting of all algebraic numbers of C. Then, we can find a unique local ring K of  $h_k(Q)$  and a homomorphism  $\lambda'$  of K into  $\overline{Q}$  which makes the following diagram commutative :



Decompose  $h_k(Q)$  into an algebra direct sum  $K \bullet A$ , which is certainly unique, and let h(K) and h(A) be the projected images of  $h_k$  in K and A. This may be summarized by the diagram :

$$\begin{array}{lll} h_k(\mathbb{Q}) & = & K \oplus A \\ \mathbb{U} & & \mathbb{U} \\ h_k & \subseteq & h(K) \oplus h(A). \end{array}$$

Define a module C(f) by

$$C(f) = (h(K) \cdot h(A))/h_{k}$$

which has only finitely many elements. The importance of the module  $\,C(f)\,$  lies in the following fact :

(2a) a prime p divides the order of C(f) if and only if p is a

## congruence prime of f.

Another interesting fact is a relation between the module C(f) and the special value at the weight k of a zeta function of f, which is defined by

$$\begin{split} L(s,f) &= \left( \begin{array}{ccc} \sum & n^{2k-2-2s} \right) & \left( \sum & \overline{\psi}(n) a(n^2) n^{-s} \right) \\ & & n=1 \\ & (n,N) = 1 \\ &= & \prod (1 - \overline{\psi}(p) a(p^2) p^{-s} + \overline{\psi}(p) a(p^2) p^{k-1-s} - p^{3k-3-3s} \right)^{-1}. \end{split}$$

We consider the product  $Z(s,f)=\prod L(s,f^{O})$  over all conjugates of f. As shown in [1, (7.1) and Cor. 6.3], there is a canonical integer part of Z(k,f), and by the results of [1, 2] and those of Ribet [4], when p is sufficiently large (i.e.  $p \ge 5$ ,  $p \ge k$  and (p,N)=1) and if f is primitive, then

(2b) p <u>divides the order of</u> C(f) <u>if and only if</u> p <u>divides the canonical integer part of</u> Z(k,f).

It is an interesting problem to clarify the difference, if any, between the canonical integer part of Z(k,f) and the order of C(f). Some result in this direction can be found in  $[3, \S 3]$ .

2 - Let  $S_k(\Gamma_1(N);\mathbb{Q})$  denote the subspace of  $S_k(\Gamma_1(N))$  consisting of all cusp forms with rational Fourier coefficients. This space is known to be stable under the action of the Hecke algebra  $h_k(\mathbb{Q})$ . For any extension F over  $\mathbb{Q}$ , put

$$S_k(\Gamma_1(N);F) = S_k(\Gamma_1(N);Q) \otimes QF.$$

Then, the Hecke algebra  $h_k(F) = h_k *_Z F$  acts on  $S_k(\Gamma_1(N);F)$  and may be considered as a F-subalgebra of the endomorphism algebra of  $S_k(\Gamma_1(N);F)$ . If the character  $\psi$  has values in F, we denote by  $S_k(\Gamma_0(N),\psi;F)$  the subspace of  $S_k(\Gamma_1(N);F)$  consisting of all forms transformed under  $\Gamma_0(N)$  via the character  $\psi$ .

We hereafter fix a prime  $p \geq 5$  and a prime ideal P over p in the ring of all algebraic integers in C. Let  $\Omega$  be the quotient field of the P-adic completion of this ring. By continuity, the morphism  $\lambda$ :  $h_k(\mathbb{Q}) \longrightarrow \overline{\mathbb{Q}} \subseteq \Omega$  can be extended to a homomorphism  $\lambda_p: h_k(\mathbb{Q}_p) \to \Omega$ . Then  $\lambda_p$  factors through a unique local ring  $K_p$  of  $h_k(\mathbb{Q}_p)$  (which is

$$C_p(f) = (h(K_p) + h(A_p))/h_k(Z_p).$$

So far, we have discussed only on the congruences of the fixed normalized form f, but if p divides N, there is a sequence of normalized forms  $f_{\ell}$  in  $S_{\ell}(\Gamma_{1}(N))$  for each weight  $\ell$  with  $f = f_{\ell} \mod P$ . Then, we ask the following questions.

- I. When  $C_p(f) \neq 0$ , are the modules  $C_p(f_{\ell})$  non-trivial ?
- II. If so, how does the structure of  $C_p(f_{\ell})$  depend on  $\ell$ ?

Under the hypothesis that  $a(p) \neq 0 \mod P$  and with some additional assumptions, the answer to question I is affirmative, and  $C_p(f_\ell)$  depends padic analytically on  $\ell$ . The meaning of the analycity is that there is a power series H(X) with coefficients in  $Z_p$  depending only on f and there is also a homomorphism of  $Z_p/H((1+p)^{\ell}-1)Z_p$  into  $C_p(f_\ell)$  with finite kernel and cokernel, whose orders are bounded independtly on  $\ell$ . Furthermore, we know that  $C_p(f_\ell) \simeq C_p(f_\ell)$  if  $\ell$  and  $\ell$  are sufficiently close in the sense of the p-adic topology.

3 - One point which we must keep in mind to solve these questions is that we have to specify  $f_{\ell}$  somehow, because  $f_{\ell}$  may not be uniquely determined only by the congruence  $f\equiv f_{\ell} \mod P$ . To accomplish this task, we are naturally led to consider some bigger Hecke algebras which act on f and  $f_{\ell}$  for all  $\ell$  simultaneously. To define this, we assume that

$$S^{j} = \bigoplus_{\substack{\emptyset \\ \emptyset = 1}}^{j} S_{\emptyset}(\Gamma_{1}(N); \mathbb{Q}_{p}) \quad \text{for} \quad j > 0$$

and let  $h^j$  for the subalgebra of the endomorphism algebra of  $S^j$  which is generated over  $Z_p$  by all Hecke operators T(n) for  $\Gamma_1(N)$ . Here, T(n) acts on the direct sum  $S^j$  diagonally. The restriction of operators in  $h^j$  to the subspace  $S^i$  (j > i) induces a morphism of  $h^j$  onto  $h^i$ , which defines a projective system  $\{h^j\}_j$ . Forming the projective limit  $h = \lim_{i \to \infty} h^j$ , we obtain a compact ring acting on

$$S = \lim_{\substack{i \\ j}} S^{j} = \bigoplus_{\ell=1}^{\infty} S_{\ell}(\Gamma_{1}(N); Q_{p}).$$

Our key idea is to consider the algebra h as an algebra over the Iwasawa algebra  $\Lambda$  for the multiplicative group  $\Gamma=1+pZ_p$ . Namely, let  $\Gamma$  act on  $S_{\ell}(\Gamma_1(N);Q_p)$  via  $g|\gamma=\gamma^{\ell}g$  for  $\gamma\in\Gamma$ . Then the diagonal action of  $\gamma\in\Gamma$  on S can be regarded as an operator in h. In fact, the Hecke operator  $q(T(q)^2-T(q^2))$  for each prime  $q\equiv 1 \mod N$  in h gives the action of q on S as an element of  $\Gamma$ . Since such primes are dense in  $\Gamma$ , h may be regarded as a continuous  $\Gamma$ -module, and hence, is an algebra over  $\Lambda=\lim_{r\to\infty} Z_p[\Gamma/1+p^nZ_p]$ .

The  $\Lambda$ -algebra h is too big to handle right now; so, let us make it a little smaller. Since  $h^j$  is a (commutative) finite  $Z_p$ -algebra, the limit  $e_j=\lim_{n\to\infty} T(p)^{p^{n}(p^{n}-1)}$  exists in  $h^j$  for a sufficiently large r and is an idempotent of  $h^j$ . The formation of  $e_j$  is compatible with the projective system  $\{h^j\}_j$ . Thus, the projective limit  $e=\lim_{j\to\infty} e_j$  gives an idempotent of h. Write  $h_0=eh$  and  $h_{\ell}^0(Z_p)=eh_{\ell}(Z_p)$ , etc. The restriction of operators in h to the subspace  $S_{\ell}(\Gamma_1(N);\mathbb{Q}_p)$  of S defines a morphism of  $h_0$  onto  $h_{\ell}^0(Z_p)$ . Now we identify  $\Lambda$  with  $Z_p[[X]]$  by assigning the topological generator  $1+p\in\Gamma$  to the unit 1+X in  $Z_n[[X]]$ . Then we have

Theorem 1. The  $\Lambda$ -algebra  $h_o$  is free of finite rank over  $\Lambda$ . Moreover, if  $\ell \geq 2$ , then the natural morphism :  $h_o \longrightarrow h_\ell^0(Z_p)$  defined above induces an isomorphism  $h_o/P_{\ell}h_o \simeq h_\ell^0(Z_p)$ , where

$$P_{Q} = P_{Q}(X) = (1+X) - (1+p)^{Q} \in \Lambda.$$

We can naturally identify  $S_{\varrho}(\Gamma_1(N);\overline{\mathbb{Q}})$  with the subspace of  $S_{\varrho}(\Gamma_1(N))$  consisting of all forms with algebraic Fourier coefficients. Thus, every normalized form belongs to  $S_{\varrho}(\Gamma_1(N);\overline{\mathbb{Q}})$ , and the Hecke algebra  $h_{\varrho}(\mathbb{Q}_p)$  acts on the space  $S_{\varrho}(\Gamma_1(N);\mathbb{Q}_p)$ , hence, on  $S_{\varrho}(\Gamma_1(N);\Omega)$ . Thus, we can consider the action of the idempotent e on any normalized form g in  $S_{\varrho}(\Gamma_1(N))$ . By the definition of e, if g is a normalized form in  $S_{\varrho}(\Gamma_1(N))$ , then

(3) g|e=g if and only if the p-th Fourier coefficient of g does not vanishes modulo P.

It is known that every normalized form g in  $S_{\ell}(\Gamma_1(N))$  is a linear combination of a unique primitive form  $g_0$  in  $S_{\ell}(\Gamma_1(t))$  for some divisor t of N and its transforms  $g_0(sz)$  with  $s|_N/t$ . We say that a normalized form g of  $S_{\ell}(\Gamma_1(N))$  is ordinary (of level N) if  $g|_{\ell}=g$  and either g is primitive of conductor N (i.e. a new form in  $S_{\ell}(\Gamma_1(N))$ ) or the associated primitive form  $g_0$  is a new form of  $S_{\ell}(\Gamma_1(N/p))$ . Then we have

Corollary 1. The number of ordinary forms in  $S_{g}(\Gamma_{1}(N))$  is independent of the weight  $\ell$  provided that  $\ell \geq 2$ .

For each primitive form f, there seems to be many primes at which f (or more precisely, f|e) is ordinary. For example, take  $f = \Delta = e(z) \prod_{n=1}^{\infty} (1-e(nz))^{24} \text{ of } S_{12}(SL_2(Z)). \text{ Then, it can be verified numerically that } \Delta|e \text{ is ordinary for p with } 11 \leq p \leq 1021, \text{ but at the primes } 0$ 

We can now specify  $f_{\ell}$  in Question I by assuming f to be ordinary. Let L be the quotient field of  $\Lambda$  and put  $F = h_0 \otimes_{\Lambda} L$ . Then F is an Artin algebra over L by Theorem 1. Take a local ring K of F. Then K is finite over L. Decompose  $F = K \oplus A$  as an algebra direct sum, and let  $h_0(K)$  and  $h_0(A)$  be the images of  $h_0$  in K and A. The projection morphism of  $h_0$  onto  $h_0(K)$  induces a morphism:

$$h_{\ell}(Z_{\mathbf{p}}) \longrightarrow h_{\ell}^{0}(Z_{\mathbf{p}}) = h_{0}/P_{\ell}h_{0} \longrightarrow h_{0}(K)/P_{\ell}h_{0}(K).$$

By tensoring  $Q_n$ , this induces

$$\Phi_{\ell} \; : \; \mathsf{h}_{\ell}(\mathsf{Q}_{\mathsf{p}}) \; \longrightarrow \; \; (h_{\mathsf{o}}(K)/\mathsf{P}_{\ell}h_{\mathsf{o}}(K)) \circ \mathsf{Z}_{\mathsf{p}}\mathsf{Q}_{\mathsf{p}}.$$

We say that the normalized form f belongs to K if the homomorphism  $\lambda_p$  of  $h_k(\mathbb{Q}_p)$  into  $\Omega$  associated with f factors through  $\Phi_k$ . By Theorem 1, any normalized form with f|e=f always belongs to some local ring of F.

<u>Theorem 2.</u> If the fixed normalized form f of weight k is ordinary and if  $k \ge 2$ , then f belongs to a unique local ring K of F which is a field. Moreover, for every  $\ell \ge 2$ , the number of normalized forms in  $S_{\ell}(r_1(N))$  which belong to K is exactly the index  $[K:\ell]$ , and all such forms are ordinary.

Let K be a local ring of F to which f belongs. We assume that

- (4a) the normalized form f is ordinary,
- (4b) the weight k of f is greater than one,
- (4c) [K:L] = 1.

Then, the ring  $h_0(K)$  coincides with the subalgebra  $\Lambda$  of L (= K), because  $h_0(K)$  is integral over  $\Lambda$ . Let A(n;X) be the image of the n-th Hecke operator T(n) of h in  $h_0(K) = \Lambda = Z_p[[X]]$ . Then, an explicit form of the ordinary forms belonging to K may be given by

Corollary 2. Let  $\ell$  be an arbitrary integer greater than 1. Under the assumption (4a,b,c), the unique ordinary form  $f_{\ell}$  of weight  $\ell$  belonging to K has the following Fourier expansion:

$$f_{\ell}(z) = \sum_{n=1}^{\infty} A(n;(1+p)^{\ell}-1)e(nz).$$

This means that the element  $A(n;(1+p)^{\ell}-1)$  of the field  $\Omega$  is contained in  $\overline{\mathbb{Q}}$  which is a subfield of  $\mathbb{C}$ , and gives the n-th Fourier coefficient of f. By Corollary 2, we see easily that

$$f = f_{\ell} \mod P$$
 for all  $\ell \ge 2$ .

After succeeding in specifying  $\ f_{\hat{\chi}}$  as above, we are now ready to give a precise formulation of the answer of Question I :

Theorem 3. Assume the conditions (4a,b,c) and define a  $\Lambda$ -module by  $C_0 = (h_0(K) \oplus h_0(A))/h_0$ . Then there exists a non-zero power series H(X) in  $Z_p[[X]]$  such that  $C_0 \simeq \Lambda/H(X)\Lambda$ . Moreover, there is a finite torsion  $\Lambda$ -module C such that :

- (i)  $C_0$  can be embedded into C as  $\Lambda$ -modules and the quotient  $N=C/C_0$  has only finitely many elements (i.e. C is pseudo-isomorphic to  $C_0$ );
- (ii) For each  $\ell \geq 2$ , there is an exact sequence :

$$0 \,\longrightarrow\, \, C_p(f_\ell) \,\longrightarrow\, \, C/P_\ell C \,\longrightarrow\, \, N/P_\ell N \,\longrightarrow\, 0$$

where  $f_{\varrho}$  is the unique ordinary form of wieght  $\ell$  belonging to K.

Here are some remarks about Theorem 3. Certainly, the module C

(5) If  $h(A_g)$  is integrally closed in  $A_g$  for at least one  $\ell \geq 2$ , then we can take  $C_0$  as C in Theorem 3.

This gives us an effective method to check numerically the conjecture to be true in each special case. Anyway, we can at least conclude the following facts:

(6a) if  $C_p(f) \neq 0$ , then  $C_p(f_{\ell}) \neq 0$  for all  $\ell \geq 2$ ;

(6b) if  $p^i$  annihilates N and if  $\ell = k \mod p^i$  (and  $\ell \ge k \ge 2$ ), then  $N/P_k N \simeq N/P_\ell N$  as  $Z_p$ -modules.

As a p-adic version of (2b), one may conjecture that the power series H(X) as in Theorem 3 interpolates the algebraic part of  $L(\ell,f_{\ell})$ . Namely, a canonical P-integral part of  $L(\ell,f_{\ell})$  can be defined, similarly to the definition of the integer part of  $Z(\ell,f_{\ell})$ , and then we make

Conjecture. For all integers  $2 \ge 2$ , the number H((1+p)-1) coincides with the canonical P-integral part of  $L(2,f_{\ell})$  up to the multiple of p-adic units.

4 - Before stating some examples for the local ring K and the Iwasawa module  $C_0$ , we extend the action of  $\Gamma$  on  $h_0$  to that of  $\Gamma \times (\text{Z/NZ})^{\times}$ . As easily seen, we have that

$$g \mid (\mathsf{T}(\mathsf{q})^2 - \mathsf{T}(\mathsf{q}^2)) = \mathsf{q}^{\ell-1} g \mid \sigma_q \quad \text{ for every } \quad g \in S_{\ell}(\mathsf{r}_1(\mathsf{N})) \,,$$

where  $\sigma_q = \binom{a \ b}{c \ d} \in \Gamma_0(\mathbb{N})$  with  $d \equiv q \mod \mathbb{N}$  and  $(g|\sigma_q)(z) = g(\frac{az+b}{cz+d})(cz+d)^{-l}$  is the usual transform of g under  $\sigma_q$ . This shows that the finite group  $(Z/NZ)^x$  acts on  $S_{\ell}(\Gamma_1(\mathbb{N});\mathbb{Q}_p)$  and also, on  $S_{\ell}$ , hence on  $h_0$ . This action is explicitly given by

$$g|q = \omega(q)^{\ell}g|\sigma_{q}$$
  $(g \in S_{\ell}(r_{1}(N);Q_{p}) \text{ and } q \in (Z/NZ)^{*}),$ 

| 10 mm | 1

where  $\omega$  is a Dirichlet character modulo p such that  $\omega(a) \equiv a \mod P$ . Suppose that  $\#(\mathbb{Z}/N\mathbb{Z})^{\times}$  is prime to p and let  $\xi$  be a character of  $(\mathbb{Z}/N\mathbb{Z})^{\times}$  with values in  $\mathbb{Z}_p^{\times}$ . Then the subspace  $h_0(\xi)$  of  $h_0$  on which  $(\mathbb{Z}/N\mathbb{Z})^{\times}$  acts via  $\xi$  is an algebra direct summand of  $h_0$ . By Theorem 1, if the weight  $\ell$  is greater than 1, then

(7)  $h_0(\xi)/P_{\ell}h_0(\xi)$  is isomorphic to the Hecke algebra of the space  $S_{\ell}(\Gamma_0(N), \xi\omega^{-\ell}; Q_p)|e$ .

It is well known that :

- (8a) The idempotent e sends  $S_{\ell}(\Gamma_{0}(N/p), \xi; Q_{p})$  surjectively to  $S_{\ell}(\Gamma_{0}(N); \xi; Q_{p}) | e$ , if  $\xi$  is defined modulo N/p;
- (8b) If g is a primitive form in  $S_{\ell}(\Gamma_1(N);\Omega)$  whose p-th Fourier coefficient is non-vanishing modulo P, g|e does not vanish. Moreover, if the conductor of g is N/p or N, then g|e is a constant multiple of an ordinary form.

Now, we start with a simplest example of K with [K:L]=1. We take p as the level N and consider the unique primitive form  $\Delta$  of  $S_{12}(\operatorname{SL}_2(Z))$ . Then, if the p-th Fourier coefficient of  $\Delta$  does not vanish modulo p (as already mentioned, this is at least true for primes p with  $11 \le p \le 1021$ ), then  $\Delta | e$  is a constant multiple of an ordinary form f. Thus, we know from (8a) that f is a unique ordinary form in  $S_{12}(\Gamma_0(p); Q_p)$ . Then, (7) shows that  $h_o(\omega^{12}) \simeq \Lambda$ . Certainly, the local ring K corresponding to the direct summand  $h_o(\omega^{12})$  of  $h_o$  is isomorphic to L.

Next, we shall associate a local ring K of F with an imaginary quadratic field M with discriminant -d. We have to assume that

(9) the prime p is split in M.

For simplicity, we also assume the class number of M to be one. Put  $p=P\cap M$ . Then, the prime p is decomposed in M as  $p=p\overline{p}$ , and the closure M<sub>p</sub> of M in  $\Omega$  coincides with  $Q_p$ . Write R for the ring of integers in M, and denote by w the number of roots of unity in R. Let a be an integer with 0 < a < p-1 and  $a = 1 \mod w$ . It is known by Hecke that the formal Fourier series

$$f_{\ell}(z) = \frac{1}{w} \sum_{w \in R-p} \omega^{a-\ell}(x) x^{\ell-1} e(x\overline{x}z)$$
 for  $\ell \ge 2$ 

is in fact the Fourier expansion of an ordinary form in  $S_{\ell}(\Gamma_0(\mathrm{dp}),\omega^{\mathrm{d-\ell}}\chi)$ ,

where  $\chi(q)$  is the Legendre symbol  $(\frac{-d}{q})$  and  $\omega$  is a character of R with  $\omega(x) \equiv x \mod P$ .

Theorem 4. Take dp as the level N. Then, for each integer a as above, there is a unique local ring K of F to which  $f_{\ell}$  belongs for all  $\ell \geq 2$ . Moreover, we have [K:L]=1 and for every prime q, the power series A(q;X) in Corollary 2 for this K is given by

$$A(q;X) = \begin{cases} \omega^{a}(r)r^{-1}(1+X)^{\log(\langle r \rangle)/\log(u)}_{+\omega^{a}(\overline{r})\overline{r}^{-1}(1+X)^{\log(\langle \overline{r} \rangle)/\log(u)}, & \text{if } q = r\overline{r} \text{ for } r \in \mathbb{R}, \\ \\ \omega^{a}(r)r^{-1}(1+X)r^{-1}(1+X)^{\log(\langle r \rangle)/\log(u)}, & \text{if } q = r^{2} \text{ for } r \in \mathbb{R}, \\ \\ 0, & \text{otherwise,} \end{cases}$$

where u=1+p,  $\langle r\rangle = r\omega(r)^{-1}$ ,  $(1+X)^S = \sum_{n=0}^{\infty} {s \choose n} X^n \in \mathbb{Z}_p[[X]]$  with the binomial polynomial  ${s \choose n}$  in s and log denotes the p-adic logarithm.

By using this theorem, we can give several examples of non-trivial torsion modules  $C_0$  as in Theorem 3. By (7) and (8a,b), if the local ring K corresponds to an integer a with 0 < a < p-1 and  $a \equiv 1 \mod w$ , we can get some information of K by examining the space  $S_k(\Gamma_0(d),\chi)$  for  $k \equiv a \mod p-1$  instead of  $S_k(\Gamma_0(dp),\chi)$ . We take 7 as d (i.e.  $M = Q(\sqrt{-7})$ ). Here, we give a table, due to the calculation done by Y. Maeda, of primes p and the number a at which K as in Theorem 4 has non-trivial module  $C_0$  of congruences.

| р   | a  | $\dim (s_a(r_0(7),\chi))$ |
|-----|----|---------------------------|
| 23  | 11 | 5 = 1 + 4                 |
| 79  | 13 | 7 = 1 + 6                 |
| 191 | 9  | 5 = 1 + 4                 |
| 331 | 13 | 7 = 1 + 6                 |

Here are some remarks about the table. The expression, for example, 5=1+4 in the last column at the line of p=23 means that the Hecke algebra of  $S_{11}(\Gamma_0(7),\chi)$  over Q splits into the sum of two fields of degree 1 and 4 over Q. The one dimensional component of the Hecke algebra of each weight listed above corresponds to the imaginary quadratic

field  $Q(\sqrt{-7})$  as in Theorem 4. In the cases listed above, one can check numerically (cf. (5)) that the module  $C_0$  can be taken as C in Theorem 3. It should be also noted that the primes in the table are irregular for  $Q(\sqrt{-7})$  in the sense of [3, paragraph 1].

Finally, we shall give a numerical example of the local ring  $\ensuremath{\mathsf{K}}$  with the following properties :

- (10a) [K:L] = 2;
- (10b) For any finite extension E of  $Q_p$ ,  $K * Q_p^E$  is a field (i.e. K is not a scalar extension of L).

We take 13 as p and  $39=3\cdot13$  as the level N. Let  $\xi$  be the character of  $(\text{Z/NZ})^{\times}$  such that  $\xi(\mathfrak{m})=(\frac{\mathfrak{m}}{3})\omega(\mathfrak{m})$ , where  $(\frac{\mathfrak{m}}{3})$  is the Legendre symbol and  $\omega(x)\equiv x$  mod P. Since  $\xi$  is  $Z_p$ -rational, we can decompose  $h_0=h_0(\xi)\oplus k$  as an algebra direct sum. Let  $\ell$  be an integer with  $\ell=1$  mod 12 and  $\ell\geq 2$ . Then, by (7) and (8a), the algebra  $h_0(\xi)/P_{g}h_0(\xi)$  is the Hecke algebra over  $Z_p$  of the space  $S_{\ell}(\Gamma_0(3),\chi;\mathbb{Q}_p)|_{\ell}$ , where  $\chi(\mathfrak{m})$  is the Legendre symbol  $(\frac{\mathfrak{m}}{3})$ . Here, we list, from the calculation done by Y. Maeda, the characteristic polynomial P(X) of T(2) on  $S_{\ell}(\Gamma_0(3),\chi)$  for each  $\ell=13$ , 25 and  $\ell=37$ .

(11a)  $\ell=13: P(X)=XF_{13}(X^2)$  with  $\ell=25: P(X)=XF_{25}(X^2) \text{ with } F_{25}(X)=X^3+82005048X^2+ \\ F_{25}(X)=X^3+82005048X^2+1829235783453696X+8525473984011546132480, \\ \text{the discriminant of } F_{25}=2^{26}\cdot 3^{26}\cdot 5^3\cdot 7^4\cdot 73\cdot 271\cdot 20753\cdot 618707, \\ \text{the constant term of } F_{25}=2^{23}\cdot 3^{14}\cdot 5\cdot 7\cdot 13\cdot 467003; \\ \ell=37: P(X)=XF_{37}(X).$ 

The polynomial  $F_{37}(X)$  is of degree 5 and the coefficients of  $X^1$  for  $F_{37}$  and the discriminant D of  $F_{37}$  are given as follows:

| (11b) | i |                                                                                                                        |  |
|-------|---|------------------------------------------------------------------------------------------------------------------------|--|
|       | 0 | 2 <sup>58</sup> ·3 <sup>22</sup> ·5 <sup>2</sup> ·7·11 <sup>3</sup> ·13 <sup>2</sup> ·6311·32587 <sup>2</sup> ·1304543 |  |
|       | 1 | 286049606581241273364343505789224571350548480                                                                          |  |
|       | 2 | 8830719713450547606263642355400704                                                                                     |  |
|       | 3 | 109381854596941655267328                                                                                               |  |
|       | 4 | 561197528712                                                                                                           |  |
|       | D | 2 <sup>150</sup> ·3 <sup>92</sup> ·5 <sup>12</sup> ·7 <sup>7</sup> ·3413·a big factor of 112 digits                    |  |

The polynomials  $F_{13}$ ,  $F_{25}$ ,  $F_{37}$  are irreducible over Q and every factor less than  $10^{10}$  of the prime factorization given above is a prime, and even if the factor exceeds  $10^{10}$ , it is not divisible by primes less than  $10^5$ . Now we give the factorization of  $F_{g}(\chi^2)$  mod 13 and mod 13 $^3$ :

(12a) 
$$F_{25}(X^2)$$
:  $X^2(X^2+7)(X+8)(X+5) \mod 13$ ,  
 $G_1(X)G_2(X)(X+1984)(X+213) \mod 13^3$ ,  
(1984 = 8 mod 13, 213 = 5 mod 13),

where  ${\it G}_1$  and  ${\it G}_2$  are irreducible quadratic polynomials over Z/13 $^3$ Z.

(12b) 
$$F_{37}(X^2) : X^2(X^2+7)(X+8)(X+5)(X+6)(X+7)(X+10)(X+3) \mod 13$$
,

 $G_1^1(X)G_2^1(X)(X-1643)(X-554)(X-1749)(X-448)(X-1693)(X-504) \mod 13^3$  where  $G_1^1$  and  $G_2^1$  are irreducible over  $\mathbb{Z}/13^3\mathbb{Z}$ , and all the factors of  $\mathbb{F}_{37}$  mod  $\mathbb{I}3^3$  correspond to those mod 13 in order.

The factor X in P(X) corresponds to the ordinary forms belonging to the local ring M associated with  $Q(\sqrt{-3})$  as in Theorem 4 for a = 1. The factor  $X^2$  in the factorization of  $F_{\chi}(X)$  mod 13 corresponds to the two primitive forms congruent with the ordinary form belonging to M modulo a prime ideal P over 13 (cf. [1, (8.11)]). Thus, the module  $C_0$  for M is non-trivial.

Since  $\dim S_{13}(\Gamma_0(3),\chi)=3$  and since every primitive form in this space is known to be congruent modulo P with each other, the rank of  $h_0(\xi)$  over  $\Lambda$  is 3 by Theorem 1. Thus, we can decompose  $h_0(\xi) \otimes_{\Lambda} L = M \oplus K$  as an algebra direct sum. We claim that K is a field with [K:L]=2. The ring K is semi-simple by Theorem 2. Then K must be a field, because,  $K_{13}=(h_0(K)/P_{13}h_0(K)) \otimes_{Z_p} Q_p$  is isomorphic to the field

 $Q_p[X]/(X^2+8424)$ . Since 8424 is divisible by 13 exactly,  $K_{13}/Q_p$  is a ramified extension. Thus, if K is split over a finite extension E of  $Q_p$  (i.e.  $K \otimes_{Q_p} E \simeq (L \otimes_{Q_p} E)^2$ ), then  $E/Q_p$  must be a ramified extension, and for any weight  $\mathcal{L}$ ,  $K_{\mathcal{L}} = (h_0(K)/P_{\mathcal{L}}h_0(K)) \otimes_{Z_p} Q_p$  must ramify over  $Q_p$ . We shall show that the extension  $K_{37}/Q_p$  is unramified. Then, (10a,b) will be proved for the field K. This unramifiedness is obvious from (11b), because the constant term of  $F_{37}(X)$  is divisible by  $13^2$  exactly. The factorization of  $F_{37}$  mod  $13^3$  shows that  $K_{37}$  is a quadratic field unramified over  $Q_p$ .

It may be noted that by (12a,b), we can conclude that for the ordinary forms  $\,f_{\varrho}\,$  belonging to  $\,\text{M},\,$ 

$$c_p(f_{13}) \approx c_p(f_{25}) \approx Z/13Z$$

and it is quite plausible that  $C_p(f_{37}) \simeq Z/13^2 Z$ .

It is an interesting problem to determine when the local rings of F satisfy (10a,b).

## **BIBLIOGRAPHIE**

- [1] H. Hida.- Congruences of cusp forms and special values of their zeta functions, Inventiones Math. 63 (1981), 225-261.
- [2] H. Hida.- On congruence divisors of cusp forms as factors of the special values of their zeta functions, Inventiones Math. 64 (1981), 221-262.
- [3] H. Hida.- Kummer's criterion for the special values of Hecke Lfunctions of imaginary quadratic fields and congruences among cusp forms, Inventiones Math. 66 (1982), 415-459.
- [4] K.A. Ribet.- Mod p Hecke operators and congruences between modular forms, Inventiones Math. 71 (1983), 193-205.

H. Hida Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan

and

Université Paris-Sud Mathématique Bât 425 91405 Orsay cedex France