* Local one generator theorem.

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. Columbia RTG Seminar, 11/19/2020.

*The author is partially supported by the NSF grant: DMS 1464106.

Abstract: The universal modular ordinary representation $\rho_{\mathbb{T}}$ deforming a pdistinguished modulo p representation $\overline{\rho}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$ for a finite field \mathbb{F} of characteristic $p \geq 3$ has values in the Hecke algebra \mathbb{T} which is an algebra free of finite rank over $\Lambda = W[[T]]$ for $W = W(\mathbb{F})$ (the ring of Witt vectors with coefficients in \mathbb{F}). We want to compute $\rho_{\mathbb{T}}|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$ very explicitly. §0. Set-up, assumptions and notations. Let \mathbb{T} be a local ring free of finite rank over the Iwasawa algebra $\Lambda := \mathbb{Z}_p[[T]]$ and let $\rho = \rho_{\mathbb{T}}$ be an ordinary Galois representation $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \operatorname{GL}_2(\mathbb{T})$. Ordinarity means that for the decomposition group $D = \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \ \rho_{\mathbb{T}}|_D = \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with unramified δ . Let $I \triangleleft D$ be the wild inertia subgroup. By local class field theory $\rho_{\mathbb{T}}|_I$ factors through $\operatorname{Gal}(\mathbb{Q}_p[\mu_p\infty]/\mathbb{Q}_p)$, we assume that $\epsilon([1 + p, \mathbb{Q}_p]) = t = 1 + T \in \mathbb{Z}_p[[T]]$ which determines the *p*-profinite part of $\epsilon|_I$.

Consider the composite \mathcal{K}_{∞} of the unramified \mathbb{Z}_p -extension k_{∞}/k and the cyclotomic \mathbb{Z}_p -extension K_{∞} over a p-adic field k. Let $\Gamma = \operatorname{Gal}(K_{\infty}/k)$ and $\Upsilon = \operatorname{Gal}(k_{\infty}/k)$. Taking k to be splitting field of $\overline{\rho} := \rho_{\mathbb{T}} \mod \mathfrak{m}_{\mathbb{T}}$ restricted to D, then for the stabilizer D_k of k, we find that $\rho_{\mathbb{T}}|D_k$ factors through $\operatorname{Gal}(\mathcal{M}/k)$ for the maximal p-abelian p-ramified extension $\mathcal{M}/\mathcal{K}_{\infty}$. Thus we study the maximal quotient Y of $\operatorname{Gal}(\mathcal{M}/\mathcal{K}_{\infty})$ on which Γ and Υ commute. Our goal is to show $Y = W[[\Gamma \times \Upsilon]]\theta$ for a finite extension $W_{/\mathbb{Z}_p}$. Write $d = [k : \mathbb{Q}_p]$. §1. A theorem of Iwasawa. Let $\Gamma = \gamma^{\mathbb{Z}_p}$ and put $K_n := K_{\infty}^{\Gamma_p^n}$ with integer ring \mathfrak{O}_n . Let L (resp. L_n) be the maximal abelian p-extension of K_{∞} (resp. K_n); so, $L_n \supset K_{\infty}$.

Theorem 1 (Iwasawa). Let $\Lambda := \mathbb{Z}_p[[\Gamma]]$ and $X := \text{Gal}(L/K_{\infty})$. As Λ -modules, we have

 $X \cong \begin{cases} \Lambda^d & \text{if } |\mu_{p^{\infty}}(K_{\infty})| = 1, \\ \Lambda^d \oplus \mathbb{Z}_p(1) & \text{otherwise.} \end{cases}$

We split $Gal(L/k) = \Gamma \ltimes X$. Then the commutator subgroup of $Gal(L/K_n)$ is given by $(\gamma^{p^n} - 1)X$. Thus

$$X_n = \operatorname{Gal}(L_n/K_\infty) = X/(\gamma^{p^n} - 1)X$$
 and $X = \varprojlim_n X_n.$

For a multiplicative module M, let $\widehat{M} := \varprojlim_m M/M^{p^m}$.

§2. Proof. We only prove the case when $\mu_{p^{\infty}} = \{1\}$. By local class field theory, noting $dp^n = [K_n : \mathbb{Q}_p]$,

$$\mathsf{Gal}(L_n/K_n) \cong \widehat{K}_n^{\times} \cong \mu_{p^{\infty}}(K_n) \times \mathbb{Z}_p^{dp^n+1} = \mathbb{Z}_p^{dp^n+1}$$

which implies, from $Gal(L_n/K_n) \twoheadrightarrow \Gamma_n \cong \mathbb{Z}_p$,

$$X/(\gamma^{p^n} - 1)X = X_n \cong \mathbb{Z}_p^{dp^n}, \tag{1}$$

and by Nakayama's lemma applied to n = 0, we have a Λ -linear surjection $\Lambda^d \rightarrow X$.

Take n > 0. Then

$$\mathbb{Z}_p[\Gamma/\Gamma^{p^n}]]^d = \Lambda^d/(\gamma^{p^n}-1)\Lambda^d \cong X_n \cong \mathbb{Z}_p^{dp^n}.$$

comparing the \mathbb{Z}_p -rank of the two sides, we have $\mathbb{Z}_p[\Gamma/\Gamma^{p^n}]]^d \cong X_n$, and passing to the limit, we get $\Lambda^d \cong X$.

For a general \mathbb{Z}_p -extension K_{∞}/k with $|\mu_{p^{\infty}}(K_{\infty})| < \infty$, we have an exact sequence $X \hookrightarrow \Lambda^d \twoheadrightarrow \mu_{p^{\infty}}(K_{\infty})$ of Λ -modules. §3. A Corollary. We now assume that k/\mathbb{Q}_p is a finite abelian extension with $G = \operatorname{Gal}(k/\mathbb{Q}_p)$ and $p \nmid [k : \mathbb{Q}_p]$. Then L/\mathbb{Q}_p is a Galois extension and $\operatorname{Gal}(L/\mathbb{Q}_p) = (\Gamma \times \operatorname{Gal}(k/\mathbb{Q}_p)) \ltimes X$. Thus X is naturally a $\mathbb{Z}_p[[\operatorname{Gal}(K_\infty/\mathbb{Q})]]$ -module. Note

 $\mathbb{Z}_p[[\operatorname{Gal}(K_\infty/\mathbb{Q})]] = \Lambda[\operatorname{Gal}(k/\mathbb{Q})].$

Corollary 1. Suppose $p \nmid [k : \mathbb{Q}_p]$. Then

$$X \cong \begin{cases} \mathbb{Z}_p[[\mathsf{Gal}(K_{\infty}/\mathbb{Q})]] & \text{if } \mu_p(k) = 1, \\ \mathbb{Z}_p[[\mathsf{Gal}(K_{\infty}/\mathbb{Q})]] \oplus \mathbb{Z}_p(1) & \text{if } \mu_p(k) \neq 1 \end{cases}$$

as $\Lambda[Gal(k/\mathbb{Q}_p)]$ -modules. Thus for each character η of $Gal(k/\mathbb{Q}_p)$ with values in he ring $\mathbb{Z}_p[\eta] =: W$ generated by the values of η , we have

$$X[\eta] = X \otimes_{\mathbb{Z}_p[G]} \eta \cong \begin{cases} W[[\Gamma]] & \text{if } \eta \neq \omega, \\ \mathbb{Z}_p[[\Gamma]] \oplus \mathbb{Z}_p(1) & \text{if } \eta = \omega \end{cases}$$

as $Gal(K_{\infty}/\mathbb{Q}_p)$ -modules. Here ω is the Teichmüller character and $\sigma \in Gal(F/\mathbb{Q}_p)$ acts on W via η . §4. A version for a \mathbb{Z}_p^2 -extension. Recall $\mathcal{K}_n = K_\infty k_n$ and $\Upsilon := \operatorname{Gal}(k_{\infty}/k) \cong \operatorname{Gal}(\mathcal{K}_{\infty}/K_{\infty})$. Let \mathcal{L} be the maximal abelian *p*-extension of \mathcal{K}_{∞} . Set $\mathcal{Y} := \operatorname{Gal}(\mathcal{L}/\mathcal{K}_{\infty})$. Pick a lift $\phi \in \operatorname{Gal}(\mathcal{L}/k)$ (a Frobenius) of a generator of Υ with $\phi|_{\mathcal{K}_{\infty}}$ generating Υ and a lift $\tilde{\gamma} \in \text{Gal}(\mathcal{L}/k)$ of the generator γ of $\text{Gal}(K_{\infty}/k) = \Gamma$. The commutator $\tau := [\phi, \tilde{\gamma}]$ acts on \mathcal{Y} by conjugation, and $(\tau - 1)x :=$ $[\tau, x] = \tau x \tau^{-1} x^{-1}$ for $x \in \mathcal{Y}$ is determined independent of the choice of γ and ϕ . Define $\mathcal{M} \subset \mathcal{L}$ and $\mathcal{M}_n \subset \mathcal{L}_n$ by the fixed field of $(\tau - 1)\mathcal{Y}$ (i.e., the fixed field of τ), which is independent of the choice of $\tilde{\gamma}$ and ϕ . Let $Y = \text{Gal}(\mathcal{M}/\mathcal{K}_{\infty}) = \mathcal{Y}/(\tau - 1)\mathcal{Y}$. **Theorem 2.** (1) The restriction map $Y \to X$ induces an isomor-

phism of $Y/(\phi - 1)Y \cong \mathfrak{a}$ for the augmentation ideal \mathfrak{a} of the factor $\mathbb{Z}_p[[\operatorname{Gal}(K_\infty/\mathbb{Q})]] \subset X$.

(2) For the character η : Gal $(k/\mathbb{Q}_p) \to W^{\times}$ in Corollary 1, the factor $Y[\eta] = W[[\Gamma \times \Upsilon]]\theta_{\eta}$ for $\theta_{\eta} \in Y[\eta]$.

What is the exact structure of $W[[\Gamma \times \Upsilon]]$ -module $Y[\eta]$?

§5. Proof. (1): For simplicity, we suppose $\mu_p(k) = 1$. We have an exact sequence: $Y_{\infty}/(\phi - 1)Y_{\infty} \hookrightarrow Y_0 \xrightarrow[onto]{\text{Res}} \text{Gal}(K_{\infty}/k) = \mathbb{Z}_p$. Since $Y_0 \cong \mathbb{Z}_p[[\text{Gal}(K_{\infty}/\mathbb{Q}_p)]]$, the image of $Y_{\infty}/(\phi - 1)Y_{\infty}$ is a.

Proof of (2). Note that $\mathbb{Z}_p[[\operatorname{Gal}(K_{\infty}/\mathbb{Q}_p)]] = \bigoplus_{\chi} \mathbb{Z}_p[\chi][[\Gamma]]$ for χ running over all characters of $\operatorname{Gal}(k/\mathbb{Q})$ (up to Galois conjugation). Every factor has one generator over the Iwasdawa algebra. Then $\mathfrak{a} = (\gamma - 1)\mathbb{Z}_p[[\Gamma]] \oplus \bigoplus_{\chi \neq 1} \mathbb{Z}_p[\chi][[\Gamma]]$. Thus $Y[\eta]/(\phi-1)Y[\eta] \cong W[[\Gamma]]$ or $(\gamma-1)\mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[\Gamma]]$ as $\mathbb{Z}_p[\eta][[\Gamma]]$ modules by the assertion (1).

For the splitting field k of a representation $\overline{\rho}$ of D_p , writing $\rho_{\mathbb{T}}([p,\mathbb{Q}_p]) = \begin{pmatrix} a_0^{-1} & 0 \\ 0 & a \end{pmatrix}$, we have an exact sequence

 $I \hookrightarrow \operatorname{Gal}(F(\rho_{\mathbb{T}})/k) \twoheadrightarrow \operatorname{Gal}(k_{\infty}/k).$

By Theorem 2, for $\theta \in \mathbb{T}$, $\Lambda[a^2]\theta \hookrightarrow \rho_{\mathbb{T}}(I) \twoheadrightarrow \text{Gal}(K_{\infty}/k)$ is exact. What is this θ ? Any arithmetic meaning of θ ?