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1. INTRODUCTION

Let p be a prime. Let Ry be a discrete valuation ring of mixed characteristic
unramified over Z,, (with finite residue field F of characteristic p). Let R = J,, Rx
for R,, = Ro[pyn]; so, R, is a discrete valuation ring with residue field F. Write K,
for the quotient field of R,, and K., for an algebraic closure of K. A A-adic BT
group G /g, (a A-BT group) is by definition an inductive limit of Barsotti-Tate groups
Gn K, defined over Ky such that G, xg, K, is the generic fiber of a Barsotti-Tate
group Gy/p, defined over R, with an action of the Iwasawa algebra A = W/[[z]] as
endomorphisms over Ky; so, A acts on G, /g, (resp. G,/k,) as endomorphisms of
Barsotti-Tate grousp over R,, (resp. over Ky). Here W is a discrete valuation ring
finite flat over Z,. We impose the following conditions:

(RT) The generic fiber G,, is defined over K, (as an étale Barsotti-Tate group over
Kj) and the action of A on G, /k, is also defined over Kj;

(CT) Writing v = 1 + x, we have G,, = Ker(v*" — 1 : G — G) (closed immersion);

(DV) G(K ) =2 A" for A* := Homni (A, Q,/Z,) (Pontryagin dual);

(DL) We have a Cartier self duality G,[p™] x G,[p™] — ppm over K, which, after
taking the limit, gives the duality TG x G(K) — ppe over K. Here
TG =lm TGh(Ke) (for TG, =lim  Gu[p™](K)) with respect to the map
Gpi1 — G, dual to G,, — G41.

The first talk of the two lectures at CRM (Montréal) in September 2005 while the author was
a Clay research scholar, and the note was revised on November 3, 2009; the author is supported
partially by NSF grant: DMS 0244401 and DMS 0456252.
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(OD) The connected component of G, over each strict henselization of R, is a
multiplicative group (i.e., isomorphic to a product of copies of p,~) for all n
(so, Gy, is ordinary);
(U) On the special fiber, we have the Frobenius map F' and its dual V. Thus we
have a splitting Gr = G° x G so that G° = Ker(er) and G = Ker(ey ) for
er = lim, o F™ and ey = lim, .. V™. Then we have an automorphism U
of G such that U commutes with F' and V and U on G lifts F'|ge:.

Thus a A-adic BT group is give by data (G,,/g,) with the above compatibility condi-
tions. If G /g, and H,p, are A-adic BT groups, a morphism f : G — H of A-adic BT
groups is given by a A linear map f : G — H of abelian fppf sheaves over R, such
that the induced morphism f, : G,, — H,, of Barsotti—Tate groups over R, descends
to a morphism G, /g, — H, /g, of Barsotti-Tate groups and it further commutes with
the action of Gal(K.,/Kj) on the generic fibers. We write Hom . pr Jr, (G, H) for the
A-module of such morphisms (defined genertically over Kj).

If L € Endppr,,, (T) is a linear operator, we can think of the p-divisible part G[L]*"
of Ker(L : G — G). By the classification of A-modules, if det(L) # 0, G[L]*" has
finite corank, and it is a classical Barsotti-Tate group over R.,. Of course, starting
with a self-dual Barsotti-Tate group H with a lift U, TH ®z, A* gives a constant
A-adic BT-group. We hereafter suppose that all A-adic BT-groups we consider are
non-constant. This could be said that the representation of Gal(K,/Kj) on TG is a
non-constant deformation of T'G; in the sense of Mazur.

A p-ordinary Barsotti-Tate group H over a discrete valuation ring Byz,,, with
quotient field F' is called a GL(2g)-type if it is self dual with a local ring A C
Endgr,, (H) such that TH = A*. We call H minimal if A is generated by Tr(s) € A

for all 0 € Gal(F/F). For a A-adic BT group Gg,, if we have a local A[U]-algebra T
inside Endp g, (G) such that TG = T29 and T is self-adjoint under the duality, we
call G a GL(2g)-type over T. In this A-adic case, we call G minimal if T is generated
by Tr(o) and U topologically. Supposing the existence of such G (that we will see
today), we can ask a lot of simple questions.

(Q1) If we are given G over a finite field F of characteristic p, can one lift it to
characteristic 07 (Deformation question).

(Q2) Is there any systematic way of constructing such G over a given R.? If it
exists, does it create all such G over R, of GL(2g)-type? (Construction).

(Q3) If G is nonconstant, can det(U) € T* be algebraic over W? (Non-constancy)

(Q4) Let us give ourselves a Weil number a € Q N W with |a| = /D of degree 2g.
Supposing « ordinary (that is, the minimal polynomial of & modulo p can only
divisible by X9 not more), does G[U — a]% descend to a discrete valuation
ring? (Descent).
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(Q5) Is it possible to embed the p-divisible part G[U—a]% of G[U—a] = Ker(U —«)
into an abelian scheme defined over a finite extension of R..? (Relation to
abelian varieties).

(Q6) For a given minimal G of GL(2g)-type with irreducible TG, ®z Q, is there
a universal G7 (Universality). Here the universality is defined as follows.
If we have a minimal p-divisible group H of GL(2g)-type with a morphism
i : Gy — H with finite kernel (so, i o Tr(o|g,) = Tr(o|m) o i), we have
a morphism iy : H — G with finite kernel making the following diagram

commutes:
G, —— H
|l
G —— G.

The A-adic BT group cannot descend to (an inductive limit of) G, r over a finite
extension R C R, of Ry (independent of n) unless it is a constant. Here is a reason
for it. Suppose that G is minimal of GL(2)-type and suppose that G extends as a
BT-group to the integral closure of Z[+] in R. If G is defined over a discrete valuation
ring R = Z, or Z). Then by Raynaud’s classification of p-ordinary divisible groups
[R] 4.2, the determinant of the Galois representation on TG has to be the p-adic
cyclotomic character x. Thus T'G is a deformation of T'G; which is p-ordinary and
of determinant x. If T'G; is modular whose residual representation is irreducible over
Q7] (p* = (—=1)P~=Y/2p) by Wiles (see [W]), the universal Galois deformation ring
for p-ordinary deformations unramified outside Np with fixed determinant x is of
finite rank over Z,. Thus T'G has to be constant; so, G has to be constant. Thus
if such a G exists, at least R contains the p-adic valuation ring of the cyclotomic
Zy-extension Q/Q.

Questions related to the above have been studied in [H86b], [MW1], [Ti] and [Oh1].
Today I will give an automorphic way of constructing such G over Z,). By the solution
of Galois deformation problems (of ordinary type) by Mazur and Wiles—Taylor, this
gives almost all such A-adic BT-groups, basically solving (Q2) and (Q6) for GL(2)-

type groups.

2. CONSTRUCTION OVER QQ

Fix a prime p > 5 and a positive integer N prime to p. We consider the modular
curve X;(Np") which classify elliptic curves E with an embedding piy, — E[Np"] =
Ker(Np" : E — E). Suppose N > 4 so that X;(Np") gives a fine moduli of the
problem. Let J, = Picgﬁ( npry/@ e the Jacobian variety. Similarly we take JJ to be
the Jacobian variety associated to the modular curve with the congruence subgroup
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I'"=T1(Np") NTy(p®). Note that

DAL (3,2 ) Ta(Vp) = {3,

a modps_r}
=Ty (Np )\LL(NDT) (g poor ) D1 (ND).

Writing Ug(p*~") : J: — J, for the Hecke operator of I} (¢, ) I'1(Np ) Then we
have the following commutative diagram by the above identity:

J. =
l U / u/ l u//
J. = o,

where the middle «’ is given by U2(p°~") and u and u” are U(p*~"). Thus if we
take the ordinary projector e = lim,_. U(p)™ on J[p*] for J = J,, J,, J', noting
U(p™) =U(p)™, we have

J;",ord[poo] ~ J;)rd[poo],
where “ord” indicates the image of e.

We now identify J[p>](C) with a subgroup of H*(I', T, for T, := Q,/Z,) for
the congruence subgroup I' defining the modular curve whose Jacobian is J. Since
[>T (Np®), by the inflation restriction sequence, we have the following commutative
diagram with exact rows:

H (it T) —— H'(TLT,) —— H'(Di(Np*), T,)" H (i35, Tp)
T | o T
? — S LI -1 ?

By sheer computation, we can prove ngd(%,'ﬂ'p) = 0 and the all the vertical

arrows above are injective, we get the controllability
Ker(y” — 12 J2p) — J2[p)) = 7]

Define JZ[p>] = lim J2"¥[p>]. For each character & : I'/T”" — piye0, by the inflation
and restriction technique that Jo¢[p|@Ze][y—e(7)] = Jo U p|@Z[e][y—e ()] = J™[p].
Thus Jo4[p>®| @ Z|[e][y — ()] is a nontrivial p-divisible group. Taking the Pontryagin
dual T = J24p™]*, we find a surjection 7 : A™ — T for m = dimg, J"*[p]. Then
for a prime P. = (v —e(y)) N A, T/PT is the dual of J7¢p>®| @ Z[e]ly — e(v)]
which is Z,-free of rank m (by Nakayama’s lemma). Thus Ker(7) C P.A™. Moving
around ¢, we find that T = A™; so, Jop>] is a A-adic BT-group satisfying (CT)
and (DV). As for the duality, the canonical polarization of .J,. gives rise to the self-
duality pairing [-, -] of J.[p"] and J, = J.. Let U*(p) (resp. T*(n)) be the image
of U(p) (resp. Hecke operator T'(n)) under the canonical Rosati involution of J, in
End(J/;). The Weil involution 7 associated to (N?Dr o) satisfies TU(p)r~! = U*(p)
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and 7T(n)7~" = U*(n) inside End(J;/q[uy,.]) because 7 is only defined over Q[uunyr].
Thus twisting the pairing by 7 and U(p)™", we get the self-duality pairing (-, ),
[-,7oU(p)~"(-)] of Jord[p™]. Writing R’ : Jo"¢[p>®] — Jr¢[p>] for the inclusion, and

S—T

Ng =378 Al I pe] — Jrp™] for v, = 4*", we can verify by computation

From this we get (DL) over Q[unpe]-

3. CONSTRUCTION OVER Zp)|ftpe-]

We construct the generic fiber of a A-adic BT group, and in the following section,
we extend it t0 Z)[pp]. By the above construction, the Tate module 7, = T.J"[p>°]
carries Galois representations of Hecke eigenforms satisfying the following properties:

(1) cusp forms in Sy(T'o(p) N1 (NV));
(2) all cusp forms in Sy(I';(Np™)) whose Neben character has p-conductor equal
top™ form=1,2,...,r.
By a theorem of Langlands (and Carayol), the (-adic Galois representation (¢ # p)
associated to such a Hecke eigenform f does not ramify at p on Gal(Q/Q]u,r]) except
for the case (1). In the case (1), it is semi-stable at p. Thus the abelian subvariety Ay
attached to f extends a semi-abelian scheme over Z ) [p,r]. Let 'Gr =31 o shove Af C
J,. Thus we have an inclusion 'G, — J,. Let J. — G, be the dual quotient under
the canonical polarization twisted by 7.
For any abelian subvariety A of X = J,. stable under U(q) for ¢/ Np and T'(n) for
n prime to Np, if there exists an abelian subvariety B stable under the same Hecke
operators such that A + B = X and A N B is finite, the abelian subvariety B is
uniquely determined by A (the multiplicity one theorem). The abelian subvariety B
is called the complement of A in X.
By definition, G, and 'G, extend to a semi-abelian scheme over Z[u,r]. The
group i = pi,—1 C Z) acts on J,, ‘G, and G, by the diamond operators. If we define

G\ in tG, to be the complement of abelian subvariety fixed by i, tG'9 and its dual
quotient G extend to an abelian scheme over Zp)ptpr]. Anyway, we take the Néron

model of these abelian schemes over Z,)[u,-] and take its p-divisible groups (whose
p-power division group is at worst quasi-finite flat groups schemes).

Theorem 3.1. We have ‘G4 [p™] = J[p™] = G [p>] canonically over Z|j,r].
To prove the theorem, we first prove the following lemma.

Lemma 3.2. Let R be a henselian discrete valuation ring with fraction field K. Let
Gk and G’ be either both Barsotti-Tate groups or both abelian schemes over K
with abelian generic fiber. If Gk and G’ are abelian schemes, let Gg and G’ be the
identity connected component of the Néron models over R of G and G, respectively.
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If Gk and G are Barsotti-Tate groups, we assume to have Barsotti—Tate groups Gg
and G, over R whose generic fibers are isomorphic to Gx and G, respectively.

(1) Suppose we have a surjective morphism fr : Gx — G and an endomorphism
gi : G — Gg such that Ker(fx : Gk — G%) C Ker(gx : Gk — Gk). Then
for the extensions f : G — G' and g : G — G over R, Ker(f) is a closed
subscheme of Ker(g);

(2) Suppose we have an injective morphism fx : G% — G and an endomorphism
gr : Gk — Gk such that Coker(fx : G — Gk) is the surjective image of
Coker(gx : Gx — Gk). Then, for the extensions f : G' — G and g: G — G
over R, Coker(f) is a quotient group of Coker(g).

Proof. We first prove the assertion (1). Let A be a K-algebra. By the surjectivity
of fk, for each x € G'(A), we can find a fppf extension A’/A such that there exists
y € G(A") with fx(y) = z. Then gx(y) € G(A’) is well defined independently of
the choice of y. Then by fppf descent, we conclude that gx(y) € G(A). Thus we
get a morphism of group functors G% — Gy sending = to gx(y). Since a functor
morphism gives a unique morphism of schemes (Yoneda’s lemma), we get a morphism
fx + G% — Gk such that fj o fx = gk.

First suppose that G and G’ are abelian schemes. Since G and G’ are the
connected components of the Néron models of Gk and G, respectively (see [NMD]
Proposition 7.4.3), any generic morphism ¢y of these schemes extends to a unique
morphism over R. Then f} and fx extend to morphisms f': G' - Gand f : G — G’
over R, respectively, and f and f’ satisfies f’ o f = g, which shows that Ker(f) is a
closed subscheme of Ker(g).

If G and G’ are Barsotti-Tate groups, we only need to verify that extensions f and
f" exist. This extension properties follows from [T] Theorem 4.

The second assertion is the dual of the first. OJ

Now we prove the theorem:

Proof. Note that over Q, by the definition, Jo"¢[p>] C ‘{G"¢[p>]. Let B = Ker(J, —
G,) which is the complement of ‘G,. By definition, e kills B[p™]; so, it kills the p-
primary part of H = BN!'G,.. Thus over Q, we have the identity in the theorem. Since
H is finite, H is killed by M - U(p)’ for an integer M prime to p and another integer
L sufficiently large. We apply the first statement of the lemma to the projection
fo : 'Gg — Gg and gg = M - U(p)*. Thus by the lemma, we have Ker(f) C
Ker(M - U(p)F); so, we get an injection 'Go4[p>] — G"[p>] which are p-divisible
group of the same corank; so, the injection is a surjection. 0

Corollary 3.3. The natural morphism i : '\Go4[p>°] — 'Go4[p>] is a closed immer-
sion for s > r.

Proof. We can factor the isomorphism ¢, : ‘{Go4[p>] =2 G [p™] as 1, = Yiors0i. This
shows that 7 is a closed immersion. O
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Theorem 3.4. Over Zg,|u,ys], the natural inclusion 'GZ[p>] into ‘G [p™] is a
closed immersion whose image is equal to the kernel Ker(y*" —1) on 'G°™¢[p*] for all
s>

Proof. For simplicity, we write G, for G;”’d[poo]. Look at the inclusion 7 : G, — G,.
Since 17 is a closed immersion, H := Im(i) is a Barsotti-Tate subgroup of G,. Since
Gs[p"] — Gi[p"]/H[p"] is an epimorphism of fppf abelian sheaves, G,[p"]/H[p"] =
(G/H)[p"] is a finite flat group scheme. Thus G,/H is a Barsotti-Tate group. Gener-
ically, " — 1 : Gs/k, — Gs/i, factors through G,/H inducing an isomorphism
Im(y*" — 1)k, = (Gs/H) k. ; so, by Lemma 3.2, 4#" —1 factors through G;/H over R,,
getting a morphism 7 : G,/H — Im(y*" — 1). Restricting the projection G, — G,/H
to Im(y*" — 1) C G, we get a morphism: Im(7?" —1) — G,/H of fppf abelian sheaves,
which is generically the inverse of 7, and hence we have Im(y*" — 1) & G,/H over R,.
Thus we must have H = Ker(y?" — 1) over R, (as the category of fppf abelian sheaves
is an abelian category), showing Ker(7?" — 1) = Im(i : G, — G,) as desired. O
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