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1. Introduction

Let p be a prime. Let R0 be a discrete valuation ring of mixed characteristic
unramified over Z(p) (with finite residue field F of characteristic p). Let R∞ =

⋃
n Rn

for Rn = R0[µpn ]; so, Rn is a discrete valuation ring with residue field F. Write Kn

for the quotient field of Rn and K∞ for an algebraic closure of K∞. A Λ-adic BT
group G/R0 (a Λ-BT group) is by definition an inductive limit of Barsotti–Tate groups
Gn/K0 defined over K0 such that Gn ×K0 Kn is the generic fiber of a Barsotti–Tate
group Gn/Rn defined over Rn with an action of the Iwasawa algebra Λ = W [[x]] as
endomorphisms over K0; so, Λ acts on Gn/Rn (resp. Gn/K0) as endomorphisms of
Barsotti–Tate grousp over Rn (resp. over K0). Here W is a discrete valuation ring
finite flat over Zp. We impose the following conditions:

(RT) The generic fiber Gn is defined over K0 (as an étale Barsotti–Tate group over
K0) and the action of Λ on Gn/K0 is also defined over K0;

(CT) Writing γ = 1 + x, we have Gn = Ker(γpn − 1 : G→ G) (closed immersion);
(DV) G(K∞) ∼= Λ∗r for Λ∗ := Homcont(Λ, Qp/Zp) (Pontryagin dual);
(DL) We have a Cartier self duality Gn[pm] × Gn[pm] → µpm over Kn which, after

taking the limit, gives the duality TG × G(K∞) → µp∞ over K∞. Here
TG = lim←−n

TGn(K∞) (for TGn = lim←−m
Gn[pm](K∞)) with respect to the map

Gn+1 � Gn dual to Gn ↪→ Gn+1.

The first talk of the two lectures at CRM (Montréal) in September 2005 while the author was
a Clay research scholar, and the note was revised on November 3, 2009; the author is supported
partially by NSF grant: DMS 0244401 and DMS 0456252.

1



Λ-ADIC p-DIVISIBLE GROUPS, I 2

(OD) The connected component of Gn over each strict henselization of Rn is a
multiplicative group (i.e., isomorphic to a product of copies of µp∞) for all n
(so, Gn is ordinary);

(U) On the special fiber, we have the Frobenius map F and its dual V . Thus we
have a splitting GF = G◦ × Get so that G◦ = Ker(eF ) and Get = Ker(eV ) for
eF = limn→∞ F n! and eV = limn→∞ V n!. Then we have an automorphism U
of G such that U commutes with F and V and U on Get lifts F |Get .

Thus a Λ-adic BT group is give by data (Gn/Rn) with the above compatibility condi-
tions. If G/R0 and H/R0 are Λ-adic BT groups, a morphism f : G→ H of Λ-adic BT
groups is given by a Λ linear map f : G → H of abelian fppf sheaves over R∞ such
that the induced morphism fn : Gn → Hn of Barsotti–Tate groups over R∞ descends
to a morphism Gn/Rn → Hn/Rn of Barsotti–Tate groups and it further commutes with

the action of Gal(K∞/K0) on the generic fibers. We write HomΛ-BT/R0
(G, H) for the

Λ-module of such morphisms (defined genertically over K0).
If L ∈ EndΛ-BT/R0

(T ) is a linear operator, we can think of the p-divisible part G[L]div

of Ker(L : G → G). By the classification of Λ-modules, if det(L) 6= 0, G[L]div has
finite corank, and it is a classical Barsotti–Tate group over R∞. Of course, starting
with a self-dual Barsotti–Tate group H with a lift U , TH ⊗Zp Λ∗ gives a constant
Λ-adic BT-group. We hereafter suppose that all Λ-adic BT-groups we consider are
non-constant. This could be said that the representation of Gal(K∞/K0) on TG is a
non-constant deformation of TG1 in the sense of Mazur.

A p-ordinary Barsotti–Tate group H over a discrete valuation ring B/Z(p)
with

quotient field F is called a GL(2g)-type if it is self dual with a local ring A ⊂
EndBT/B

(H) such that TH ∼= A2g. We call H minimal if A is generated by Tr(σ) ∈ A

for all σ ∈ Gal(F/F ). For a Λ-adic BT group G/R0 , if we have a local Λ[U ]-algebra T
inside EndΛ-BT/R0

(G) such that TG ∼= T2g and T is self-adjoint under the duality, we

call G a GL(2g)-type over T. In this Λ-adic case, we call G minimal if T is generated
by Tr(σ) and U topologically. Supposing the existence of such G (that we will see
today), we can ask a lot of simple questions.

(Q1) If we are given G over a finite field F of characteristic p, can one lift it to
characteristic 0? (Deformation question).

(Q2) Is there any systematic way of constructing such G over a given R∞? If it
exists, does it create all such G over R∞ of GL(2g)-type? (Construction).

(Q3) If G is nonconstant, can det(U) ∈ T× be algebraic over W? (Non-constancy)
(Q4) Let us give ourselves a Weil number α ∈ Q ∩W with |α| = √p of degree 2g.

Supposing α ordinary (that is, the minimal polynomial of α modulo p can only
divisible by Xg not more), does G[U − α]div descend to a discrete valuation
ring? (Descent).
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(Q5) Is it possible to embed the p-divisible part G[U−α]div of G[U−α] = Ker(U−α)
into an abelian scheme defined over a finite extension of R∞? (Relation to
abelian varieties).

(Q6) For a given minimal G1 of GL(2g)-type with irreducible TG1 ⊗Z Q, is there
a universal G? (Universality). Here the universality is defined as follows.
If we have a minimal p-divisible group H of GL(2g)-type with a morphism
i : G1 → H with finite kernel (so, i ◦ Tr(σ|G1) = Tr(σ|H) ◦ i), we have
a morphism iH : H ↪→ G with finite kernel making the following diagram
commutes:

G1
i−−−→ Hy yiH

G G.

The Λ-adic BT group cannot descend to (an inductive limit of) Gn/R over a finite
extension R ⊂ R∞ of R0 (independent of n) unless it is a constant. Here is a reason
for it. Suppose that G is minimal of GL(2)-type and suppose that G extends as a
BT-group to the integral closure of Z[ 1

N
] in R. If G is defined over a discrete valuation

ring R = Zp or Z(p). Then by Raynaud’s classification of p-ordinary divisible groups
[R] 4.2, the determinant of the Galois representation on TG has to be the p-adic
cyclotomic character χ. Thus TG is a deformation of TG1 which is p-ordinary and
of determinant χ. If TG1 is modular whose residual representation is irreducible over
Q[
√

p∗] (p∗ = (−1)(p−1)/2p), by Wiles (see [W]), the universal Galois deformation ring
for p-ordinary deformations unramified outside Np with fixed determinant χ is of
finite rank over Zp. Thus TG has to be constant; so, G has to be constant. Thus
if such a G exists, at least R contains the p-adic valuation ring of the cyclotomic
Zp-extension Q∞/Q.

Questions related to the above have been studied in [H86b], [MW1], [Ti] and [Oh1].
Today I will give an automorphic way of constructing such G over Z(p). By the solution
of Galois deformation problems (of ordinary type) by Mazur and Wiles–Taylor, this
gives almost all such Λ-adic BT-groups, basically solving (Q2) and (Q6) for GL(2)-
type groups.

2. Construction over Q

Fix a prime p ≥ 5 and a positive integer N prime to p. We consider the modular
curve X1(Npr) which classify elliptic curves E with an embedding µNpr ↪→ E[Npr] =
Ker(Npr : E → E). Suppose N ≥ 4 so that X1(Npr) gives a fine moduli of the
problem. Let Jr = Pic0

X1(Npr)/Q be the Jacobian variety. Similarly we take Jr
s to be

the Jacobian variety associated to the modular curve with the congruence subgroup
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Γr
s = Γ1(Npr) ∩ Γ0(p

s). Note that

Γr
s\Γr

s

(
1 0
0 ps−r

)
Γ1(Npr) =

{(
1 a
0 ps−r

) ∣∣∣a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)
(

1 0
0 ps−r

)
Γ1(Npr).

Writing U s
r (ps−r) : Js

r → Jr for the Hecke operator of Γr
s

(
1 0
0 ps−r

)
Γ1(Npr). Then we

have the following commutative diagram by the above identity:

Jr
π∗−→ Jr

s

↓ u ↙ u′ ↓ u′′

Jr
π∗−→ Jr

s ,

where the middle u′ is given by U s
r (ps−r) and u and u′′ are U(ps−r). Thus if we

take the ordinary projector e = limn→∞ U(p)n! on J [p∞] for J = Jr, Js, J
r
s , noting

U(pm) = U(p)m, we have

Jr,ord
s [p∞] ∼= Jord

r [p∞],

where “ord” indicates the image of e.
We now identify J [p∞](C) with a subgroup of H1(Γ, Tp for Tp := Qp/Zp) for

the congruence subgroup Γ defining the modular curve whose Jacobian is J . Since
Γr

s .Γ1(Nps), by the inflation restriction sequence, we have the following commutative
diagram with exact rows:

H1( Γr
s

Γ1(Nps)
, Tp)

↪→−−−→ H1(Γr
s, Tp) −−−→ H1(Γ1(Nps), Tp)

γpr
=1 −−−→ H2( Γr

s

Γ1(Nps)
, Tp)x ∪

x x∪ x
? −−−→ Jr

s [p∞] −−−→ Js[p
∞][γpr − 1] −−−→ ?

By sheer computation, we can prove Hj
ord(

Γr
s

Γ1(Nps)
, Tp) = 0 and the all the vertical

arrows above are injective, we get the controllability

Ker(γpr − 1 : Jord
s [p∞]→ Jord

s [p∞]) = Jord
r [p∞].

Define Jord
∞ [p∞] = lim−→r

Jord
r [p∞]. For each character ε : Γ/Γpr → µp∞ , by the inflation

and restriction technique that Jord
∞ [p]⊗Z[ε][γ−ε(γ)] ∼= Jord

r [p]⊗Z[ε][γ−ε(γ)] ∼= Jord
1 [p].

Thus Jord
∞ [p∞]⊗Z[ε][γ−ε(γ)] is a nontrivial p-divisible group. Taking the Pontryagin

dual T = Jord
∞ [p∞]∗, we find a surjection π : Λm � T for m = dimFp Jord

1 [p]. Then
for a prime Pε = (γ − ε(γ)) ∩ Λ, T/PT is the dual of Jord

∞ [p∞] ⊗ Z[ε][γ − ε(γ)]
which is Zp-free of rank m (by Nakayama’s lemma). Thus Ker(π) ⊂ PεΛ

m. Moving
around ε, we find that T ∼= Λm; so, Jord

∞ [p∞] is a Λ-adic BT-group satisfying (CT)
and (DV). As for the duality, the canonical polarization of Jr gives rise to the self-
duality pairing [·, ·] of Jr[p

r] and Jr
∼= tJr. Let U∗(p) (resp. T ∗(n)) be the image

of U(p) (resp. Hecke operator T (n)) under the canonical Rosati involution of Jr in
End(Jr). The Weil involution τ associated to

(
0 −1

Npr 0

)
satisfies τU(p)τ−1 = U∗(p)
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and τT (n)τ−1 = U∗(n) inside End(Jr/Q[µNpr ]) because τ is only defined over Q[µNpr ].
Thus twisting the pairing by τ and U(p)−r, we get the self-duality pairing 〈·, ·〉r =
[·, τ ◦ U(p)−r(·)] of Jord

r [pm]. Writing Rr
s : Jord

r [p∞] ↪→ Jord
s [p∞] for the inclusion, and

N s
r =

∑ps−r

j=1 γj
r : Jord

s [p∞]→ Jord
r [p∞] for γr = γpr

, we can verify by computation

〈Rr
s(x), y〉s = 〈x, N s

r (y)〉r.

From this we get (DL) over Q[µNp∞ ].

3. Construction over Z(p)[µp∞ ]

We construct the generic fiber of a Λ-adic BT group, and in the following section,
we extend it to Z(p)[µp∞ ]. By the above construction, the Tate module Tr = TJord

r [p∞]
carries Galois representations of Hecke eigenforms satisfying the following properties:

(1) cusp forms in S2(Γ0(p) ∩ Γ1(N));
(2) all cusp forms in S2(Γ1(Npm)) whose Neben character has p-conductor equal

to pm for m = 1, 2, . . . , r.

By a theorem of Langlands (and Carayol), the `-adic Galois representation (` 6= p)
associated to such a Hecke eigenform f does not ramify at p on Gal(Q/Q[µpr ]) except
for the case (1). In the case (1), it is semi-stable at p. Thus the abelian subvariety Af

attached to f extends a semi-abelian scheme over Z(p)[µpr ]. Let tGr =
∑

f as above Af ⊂
Jr. Thus we have an inclusion tGr ↪→ Jr. Let Jr � Gr be the dual quotient under
the canonical polarization twisted by τ .

For any abelian subvariety A of X = Jr stable under U(q) for q|Np and T (n) for
n prime to Np, if there exists an abelian subvariety B stable under the same Hecke
operators such that A + B = X and A ∩ B is finite, the abelian subvariety B is
uniquely determined by A (the multiplicity one theorem). The abelian subvariety B
is called the complement of A in X.

By definition, Gr and tGr extend to a semi-abelian scheme over Z(p)[µpr ]. The
group µ = µp−1 ⊂ Z×p acts on Jr,

tGr and Gr by the diamond operators. If we define
tG

(0)
r in tGr to be the complement of abelian subvariety fixed by µ, tG

(0)
r and its dual

quotient G
(0)
r extend to an abelian scheme over Z(p)[µpr ]. Anyway, we take the Néron

model of these abelian schemes over Z(p)[µpr ] and take its p-divisible groups (whose
p-power division group is at worst quasi-finite flat groups schemes).

Theorem 3.1. We have tGord
r [p∞] ∼= Jord

r [p∞] ∼= Gord
r [p∞] canonically over Z(p)[µpr ].

To prove the theorem, we first prove the following lemma.

Lemma 3.2. Let R be a henselian discrete valuation ring with fraction field K. Let
GK and G′

K be either both Barsotti–Tate groups or both abelian schemes over K
with abelian generic fiber. If GK and G′

K are abelian schemes, let GR and G′
R be the

identity connected component of the Néron models over R of GK and G′
K, respectively.
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If GK and G′
K are Barsotti–Tate groups, we assume to have Barsotti–Tate groups GR

and G′
R over R whose generic fibers are isomorphic to GK and G′

K, respectively.

(1) Suppose we have a surjective morphism fK : GK → G′
K and an endomorphism

gK : GK → GK such that Ker(fK : GK → G′
K) ⊂ Ker(gK : GK → GK). Then

for the extensions f : G → G′ and g : G → G over R, Ker(f) is a closed
subscheme of Ker(g);

(2) Suppose we have an injective morphism fK : G′
K → GK and an endomorphism

gK : GK → GK such that Coker(fK : G′
K → GK) is the surjective image of

Coker(gK : GK → GK). Then, for the extensions f : G′ → G and g : G→ G
over R, Coker(f) is a quotient group of Coker(g).

Proof. We first prove the assertion (1). Let A be a K-algebra. By the surjectivity
of fK , for each x ∈ G′(A), we can find a fppf extension A′/A such that there exists
y ∈ G(A′) with fK(y) = x. Then gK(y) ∈ G(A′) is well defined independently of
the choice of y. Then by fppf descent, we conclude that gK(y) ∈ G(A). Thus we
get a morphism of group functors G′

K → GK sending x to gK(y). Since a functor
morphism gives a unique morphism of schemes (Yoneda’s lemma), we get a morphism
f ′K : G′

K → GK such that f ′K ◦ fK = gK .
First suppose that GK and G′

K are abelian schemes. Since G and G′ are the
connected components of the Néron models of GK and G′

K , respectively (see [NMD]
Proposition 7.4.3), any generic morphism φK of these schemes extends to a unique
morphism over R. Then f ′K and fK extend to morphisms f ′ : G′ → G and f : G→ G′

over R, respectively, and f and f ′ satisfies f ′ ◦ f = g, which shows that Ker(f) is a
closed subscheme of Ker(g).

If G and G′ are Barsotti–Tate groups, we only need to verify that extensions f and
f ′ exist. This extension properties follows from [T] Theorem 4.

The second assertion is the dual of the first. �

Now we prove the theorem:

Proof. Note that over Q, by the definition, Jord
r [p∞] ⊂ tGord

r [p∞]. Let B = Ker(Jr →
Gr) which is the complement of tGr. By definition, e kills B[p∞]; so, it kills the p-
primary part of H = B∩tGr. Thus over Q, we have the identity in the theorem. Since
H is finite, H is killed by M ·U(p)L for an integer M prime to p and another integer
L sufficiently large. We apply the first statement of the lemma to the projection
fQ : tGQ → GQ and gQ = M · U(p)L. Thus by the lemma, we have Ker(f) ⊂
Ker(M · U(p)L); so, we get an injection tGord

r [p∞] ↪→ Gord
r [p∞] which are p-divisible

group of the same corank; so, the injection is a surjection. �

Corollary 3.3. The natural morphism i : tGord
r [p∞] → tGord

s [p∞] is a closed immer-
sion for s > r.

Proof. We can factor the isomorphism ιr : tGord
r [p∞] ∼= Gord

r [p∞] as ιr = ti◦ ιs ◦ i. This
shows that i is a closed immersion. �
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Theorem 3.4. Over Z(p)[µps ], the natural inclusion tGord
r [p∞] into tGord

s [p∞] is a
closed immersion whose image is equal to the kernel Ker(γpr − 1) on tGord

s [p∞] for all
s > r.

Proof. For simplicity, we write Gr for Gord
r [p∞]. Look at the inclusion i : Gr → Gs.

Since i is a closed immersion, H := Im(i) is a Barsotti–Tate subgroup of Gs. Since
Gs[p

n] � Gs[p
n]/H[pn] is an epimorphism of fppf abelian sheaves, Gs[p

n]/H[pn] =
(G/H)[pn] is a finite flat group scheme. Thus Gs/H is a Barsotti–Tate group. Gener-
ically, γpr − 1 : Gs/Ks → Gs/Ks factors through Gs/H inducing an isomorphism
Im(γpr−1)/Ks

∼= (Gs/H)/Ks ; so, by Lemma 3.2, γpr−1 factors through Gs/H over Rr,
getting a morphism π : Gs/H → Im(γpr − 1). Restricting the projection Gs � Gs/H
to Im(γpr−1) ⊂ Gs, we get a morphism: Im(γpr−1)→ Gs/H of fppf abelian sheaves,
which is generically the inverse of π, and hence we have Im(γpr − 1) ∼= Gs/H over Rs.
Thus we must have H = Ker(γpr−1) over Rs (as the category of fppf abelian sheaves
is an abelian category), showing Ker(γpr − 1) = Im(i : Gr → Gs) as desired. �
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