* Adjoint L-value as a period integral and the mass formula of Siegel–Shimura

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. CEFIPRA Conference, L-functions and Iwasawa theory November 15, 2021.

*The author is partially supported by the NSF grant: DMS 1464106.

Abstract: For a quaternion algebra $D_{/\mathbb{Q}}$ and a quadratic field $E = \mathbb{Q}[\sqrt{\Delta}]_{/\mathbb{Q}}$, we compute as $L(1, Ad(\rho_F) \otimes (\Delta))$ times the mass of Siegel–Shimura the period of Doi-Naganuma lift of an elliptic Hecke eigen new form F to the quaternionic Shimura variety associated to $D \otimes_{\mathbb{Q}} E$ over Shimura subvarieties associated to D. Here ρ_F is the compatible system of Galois representations associated to F.

§0. An idea of Waldspurger. For an elliptic cusp form F of level M, an idea of Waldspurger of computing the period of a theta lift of F for a quadratic space $V = W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S \times S^{\perp} \subset S_V$ is two-folds:

(S) Split $\theta(\phi)(\tau, h_0, h^{\perp}) = \theta(\phi_0)(\tau, h_0) \cdot \theta(\tau, \phi^{\perp})(h^{\perp})$ for a decomposition $\phi = \phi_0 \otimes \phi^{\perp}$ (ϕ and ϕ^{\perp} Schwartz–Bruhat functions on $W_{\mathbb{A}}$ and $W_{\mathbb{A}}^{\perp}$);

(R) For the theta lift $\theta^*(F)(h) = \int_X F(\tau)\theta(\phi)(\tau,h)d\mu$ with $X = X_0(M)$, the period P over the Shimura subvariety $S \times S^{\perp}$ is:

$$\int_{S\times S^{\perp}} \int_{X} F(\tau)\theta(\Phi)(\tau;h)d\mu dh \quad (d\mu = \eta^{-2}d\xi d\eta)$$
$$= \int_{X} F(\tau) \left(\int_{S^{\perp}} \theta(\phi^{\perp})(\tau;h^{\perp})dh^{\perp} \right) \cdot \left(\int_{S} \theta(\phi_{0})(\tau;h_{0})dh \right) d\mu.$$

Then invoke the Siegel–Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\phi)$ and $E(\phi^{\perp})$, reaching Rankin-Selberg integral

$$P = \int_X F(\tau) E(\phi^{\perp}) E(\phi_0) d\mu = L\text{-value}.$$

Interesting to explore what L-value shows up?

§1. Choice of V: For a Q-vector space V and a Q-algebra A, write $V_A := V \otimes_{\mathbb{Q}} A$. Let $E := \mathbb{Q}[\sqrt{\Delta}]$ or $\mathbb{Q} \times \mathbb{Q}$ with square-free $\Delta \in \mathbb{Z}$. Pick a quaternion algebra $D_{/\mathbb{Q}}$ and put $D_E := D \otimes_{\mathbb{Q}} E$. Let $1 \neq \sigma \in \text{Gal}(E/\mathbb{Q})$ act on D through the factor E. Then

 $V = D_{\sigma} := \{ x \in D_E | x^{\sigma} = x^{\iota} \} \text{ for } x^{\iota} = \mathsf{Tr}(x) - x.$

We have $Q(x) = xx^{\sigma} = N(x) = s(x, x)/2 \in \mathbb{Q}$ for $s(x, y) = \text{Tr}(x^{\iota}y)$. We have four Cases RM, RH, CM, CH of $(E_{\mathbb{R}}, D_{\mathbb{R}})$. Here the symbol "M" (resp. "C", "R" "H") indicates $D_{\mathbb{R}} = \mathbb{H}$ (resp. $E_{\mathbb{R}} = \mathbb{C}, E_{\mathbb{R}} = \mathbb{R} \times \mathbb{R}, D_{\mathbb{R}} = M_2(\mathbb{R})$). The splitting in (S) is

 $V = Z \oplus D_0$, $Z = \mathbb{Q}$ with quadratic form $Q_Z(z) = z^2$, and

$$D_0 := \{v \in \sqrt{\Delta}D | \operatorname{Tr}(v) = 0\} \text{ with } Q_0(v) = vv^{\sigma} = N(v)$$

Signature of Z is positive and that of D_0 depends on the cases, write $SO_0 := SO_{D_0} \cong D^{\times}/\text{center}$ and $SO_{\sigma} := SO_{D_{\sigma}}$. §2. Schwartz-Bruhat functions of weight k. On $Z = \mathbb{Q}$, for a Dirichlet character ψ as a function supported on $\widehat{\mathbb{Z}} \subset Z_{\mathbb{A}(\infty)}$. For $\mathbf{e}(\tau) = \exp(2\pi\sqrt{-1}\tau)$, this ψ produces theta series $\sum_{n \in \mathbb{Z}} \psi(n) n^j \mathbf{e}(n^2 \tau)$. On D_0 , take an Eichler order R_0 and take (C): $\phi_0(v) = (\phi_{\widehat{L}}(v) - c^3 \phi_{\widehat{L}}(c^{-1}v))/(1 - c^3)$ $(1 < c \in \mathbb{Z} \text{ fixed})$ for the characteristic function $\phi_{\widehat{L}}$ of $\widehat{L} := D_{0,\mathbb{A}} \cap \sqrt{\Delta}\widehat{R}_0$.

At ∞ , $\phi(x_{\infty}) = H(x_{\infty})e(P(x_{\infty})\sqrt{-1})$ for a harmonic polynomial H, a positive majorant $P = Q_Z \oplus P_0$ of the reduced norm and $H(z \oplus v) = (z + H_0(v))^k = \sum_{j=0}^k {k \choose j} z^j H_0(v)^{k-j}$ for linear $H_0(v)$.

$$\phi = \sum_{j=0}^{k} {k \choose j} \phi_j^Z \otimes \phi_{k-j}^0 \text{ on } D_{0,\mathbb{A}} \text{ with } \phi_{k-j}^0(0) = 0 \text{ unless } j = k.$$

with $\phi_j^Z(z_\infty) = z_\infty^j e(z_\infty^2 \sqrt{-1}), \ \phi_j^0(v_\infty) = H_0(v_\infty)^j e(P_0(v_\infty)\sqrt{-1}),$

§3. Theta kernel. We have

 $SO_{\sigma}(\mathbb{Q}) = \{h \in D_E^{\times} | N(h) \in \mathbb{Q}^{\times}\} / \mathbb{Q}^{\times} \subset D_E^{\times} / E^{\times}$

and $h \in D_E^{\times}$ acts on D_{σ} by $x \mapsto h^{-1}xh^{\sigma}$. Thus $S_E = SO_{\sigma}(\mathbb{Q}) \setminus SO_{\sigma}(\mathbb{A})$ is a Shimura surface in Case RM, S_E has dimension 0 in Case RH and S_E is real 3-dimensional in Case C.

Let $Mp(\mathbb{A}) \rightarrow SL_2(\mathbb{A})$ be the metaplectic cover, and $\mathbf{r}(g)$ be the Weil representation. The theta series for $g_{\tau} = \eta^{-1/2} \begin{pmatrix} \eta & \xi \\ 0 & 1 \end{pmatrix}$ is

 $\theta(\tau;h) = \eta \sum_{\alpha \in D_{\sigma}} (\mathbf{r}(g_{\tau})\phi)(h^{-1}\alpha h^{\sigma}) : \mathsf{Mp}(\mathbb{A}) \times \mathsf{SO}_{\sigma}(\mathbb{A}) \to \mathbb{C},$

which is left $SL_2(\mathbb{Q}) \times SO_{\sigma}(\mathbb{Q})$ -invariant. Assume $\frac{\theta^*(F) \neq 0}{\theta^*(F)}$ for $\theta^*(F) := \int_X F(-\overline{\tau})\theta(\phi)(\tau;h)\eta^{k-2}d\xi d\eta$. The theta lift $\theta^*(F)$ is a weight (k,k) automorphic form on D_E^{\times} .

§4. Theta differential form. To compute the period on $S = SO_0(\mathbb{Q}) \setminus SO_0(\mathbb{A}) \subset S_E$, we convert $\theta^*(F)$ into a sheaf valued differential d-form $\Theta^*(F)$ over S_E for $d = \dim_{\mathbb{R}} S$ in a canonical way of Eichler-Shimura and Hida. Similarly $\theta(\phi)(\tau; h)$ is converted to a differential d-form $\Theta(\phi)$.

The sheaf $L_E^*(n; A)$ (n = k-2) comes from the D_E^{\times} -representation $g \mapsto g^{sym \otimes n} \otimes \sigma(g)^{sym \otimes n}$ and $L_E^*(n; A)$ has a canonical Clebsch-Gordan projection $\nabla : L_E^*(n; A)|_S \to A$. Any other component has vanishing period. The period is

$$P_1(F) := \int_S \nabla \Theta^*(F).$$

§5. Siegel–Weil Eisenstein series. By Weil, $g \mapsto (\mathbf{r}(g)\phi)(0)$ factors through $B(\mathbb{Q}) \setminus Mp(\mathbb{A})$ for the Borel subgroup $B = \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \subset$ SL₂. Siegel–Weil Eisenstein series is

$$E(\phi)(g) = \sum_{\gamma \in B(\mathbb{Q}) \setminus SL_2(\mathbb{Q})} (\mathbf{r}(\gamma g)\phi)(0) |\operatorname{Im}(\gamma_{\infty} g_{\infty}(\sqrt{-1}))|^s|_{s=0}.$$

Note $E(\phi_{k-j}^0)|_{B(\mathbb{A})} = 0$ unless $k = j$.

The Siegel–Weil formula by Kudla-Rallis/Sweet is

 $2E(\phi)(g) = \int_{S} \theta(\phi)(g;h) d\omega(h)$ for the Tamagawa measure $d\omega$.

Our measure dh has volume 1 on \widehat{R}_0^{\times} ; so, $dh \neq d\omega$. The ratio $\mathbb{m}_1(\zeta(2)/\pi^{\epsilon}) = \mathbb{m}(R_0) = 2dh/d\omega$ is the mass of Siegel–Shimura, which is an explicit rational number \mathbb{m}_1 (computed by Shimura in 1999) times $\zeta(2)/\pi^{\epsilon}$ for $\epsilon = 1$ in Case M and $\epsilon = 2$ in Case H.

§6. Conclusion in Case RM. Note $SL_2(\mathbb{Q}) = B(\mathbb{Q}) \sqcup B(\mathbb{Q}) JB(\mathbb{Q})$ for $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $SL_2(\mathbb{A}) = SL_2(\mathbb{Q})B(\mathbb{A})\widehat{\Gamma}_0(M)SO_2(\mathbb{R})$ by strong approximation. Then $B(\mathbb{Q})\backslash SL_2(\mathbb{A}) = \overline{B} \sqcup T(\mathbb{Q})\backslash JB(\mathbb{A})$ for $\overline{B} := B(\mathbb{Q})\backslash B(\mathbb{A})/B(\widehat{\mathbb{Z}})SO_2(\mathbb{R}) \cong [0,1) \times \mathbb{R}^{\times}_+$ and the diagonal torus T. Thus for $X = SL_2(\mathbb{Q})\backslash SL_2(\mathbb{A})/\widehat{\Gamma}_0(M)SO_2(\mathbb{R})$

$$P_{1}(F) = \mathfrak{m}(R_{0}) \int_{X} F(-\overline{\tau}) \sum_{j} {k \choose j} \theta(\phi_{j}^{Z}) E(\phi_{0}^{k-j}) \eta^{-2} d\xi d\eta$$

$$\stackrel{(C)}{=} \mathfrak{m}(R_{0}) \int_{\overline{B}} F(-\overline{\tau}) \theta(\phi_{k}^{Z}) (\mathbf{r}(g_{\tau})\phi_{0}^{0}) (0) \eta^{-1} d\xi d\eta$$

$$= \mathfrak{m}(R_{0}) \int_{0}^{\infty} \int_{0}^{1} \sum_{n \in \mathbb{Z}} \psi(n) n^{k} \mathbf{e}(n^{2}\tau) F(-\overline{\tau}) d\xi \eta^{k-1} d\eta$$

$$= c_{E} \mathfrak{m}_{1}(2\pi)^{-k} \Gamma(k) L(1, Ad(F) \otimes \left(\frac{\Delta}{-}\right))$$

for a simple constant $0 \neq c_E \in \mathbb{Q}$ depending on *E*.

In the other cases, the Γ -factor changes slightly.

$\S \textbf{7. Case RH}$ has interesting feature. In this case, we have

$$P_1(F) = c_E \mathfrak{m}_1 2 (4\pi)^{-k+1} \Gamma(k) (1, Ad(F) \otimes (\left(\frac{\Delta}{-1}\right))$$

Suppose k = 2 now for simplicity. Writing $S = \{x\}_{x \in Cl_D(\hat{R}_0)}$, for $e_x = |x\hat{R}_0^{\times}x^{-1} \cap D^{\times}|$,

 $\mathfrak{m}_1(\zeta(2)/\pi^2) = \sum_{x \in Cl_D(\widehat{R}_0)} e_x^{-1}$ (Mass formula of Siegel–Shimura)

and

$$\mathfrak{m}_1(c_E 2(4\pi)^{-k+1} \Gamma(k) L(1, Ad(F) \otimes (\left(\frac{\Delta}{-}\right))) = \sum_{x \in Cl_D(\widehat{R}_0)} e_x^{-1} \theta^*(F)(x)$$

(an adjoint mass formula).

The period formula is an adjoint analogue of the mass formula.

§8. Periods over Shimura curves other than S.

For each $\alpha \in D_{\sigma} \cap D_{E}^{\times}$, consider an involution σ_{α} of D_{E} given by $x \mapsto \alpha x^{\sigma} \alpha^{-1}$. Then $\alpha \mapsto D_{\alpha} = H^{0}(\langle \sigma_{\alpha} \rangle, D_{E})$ is a parameterization of all quaternion subalgebras of D_{E} . If $\alpha \in Z$, then $D_{\alpha} = D$. Let $S_{\alpha} := SO_{D_{\alpha,0}}(\mathbb{Q}) \setminus SO_{D_{\alpha,0}}(\mathbb{A}) \hookrightarrow S_{E}$ be the Shimura subvariety associated to D_{α} .

Pick a Hecke eigen harmonic differential 2-form f with values in $L_E^*(n; E)$ on S_E . Then the S_{α} -period of f is defined by

$$P_{\alpha}(f) := \int_{S_{\alpha}} \nabla f$$

So $P_1(\Theta^*(F)) = P_1(F)$.

§9. Expansion of theta descent. For the invariant pairing $(\cdot, \cdot) : L_E^*(n; \mathbb{C}) \times L_E^*(n; \mathbb{C}) \to \mathbb{C}$, $(f(h) \land \Theta(\phi)(\tau))|_{S_\alpha}$ is a harmonic differential 2-form on S_α . Define the theta descent by $\theta_*(f)(\tau) := \int_{S_E} (f \land \Theta(\phi)(\tau))$. Let Γ be the level group of $(f \land \Theta(\tau))$ in D_E^{\times} . Then

$$\theta_*(f) = c_? \sum_{\alpha \in D_\sigma/\Gamma; D_{\alpha, \mathbb{R}} \cong M_2(\mathbb{R})} \phi^{(\infty)}(\alpha) P_\alpha(f) \mathbf{e}(|N(\alpha)|\tau_?),$$

where $\tau_{?} = \tau$ in Case RH and $-\overline{\tau}$ otherwise, $c_{?} \neq 0$ is a simple constant depending on the cases.

Write $\mathbb{Q}(f)$ for the Hecke field of f, and assume that θ_* is Hecke equivariant. Consequences:

 $P_{\alpha}(f) = 0$ if f is not a theta lift; transcendence of $P_{\alpha}(\Theta^*(F))$ is independent of D and α ; $P_{\alpha}(\Theta^*(F))$ is $P_{\alpha}(F)$ replacing m_{α} by a constant $m_{\alpha} \in \mathbb{O}(F)$

 $P_{\alpha}(\Theta^*(F))$ is $P_1(F)$ replacing \mathfrak{m}_1 by a constant $\mathfrak{m}_{\alpha} \in \mathbb{Q}(F)$.

We call \mathfrak{m}_{α} an adjoint mass, which is not yet fully computed.