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We can formulate certain Gorenstein property of subrings of the universal
deformation ring (i.e., the corresponding Hecke algebra) as a condition almost
equivalent to the cyclicity of the Iwasawa module over Z,-extensions of an
imaginary quadratic field if the starting residual representation is induced from
the imaginary quadratic field. I will discuss this fact in some details.



0. Setting over an imaginary quadratic field. Let F be an
imaginary quadratic field with discriminant —D and integer ring
O. Assume that the prime (p) splitsinto (p) = pp in O with p £ p.
Let L/F be a Zp-extension with group I'; := Gal(L/F) = Z,.
Take a branch character ¢ : Gal(Q/F) — F* (for F = F_r) with
its Teichmiiller lift ¢ with values in W = W (F). Regard it as an
idele character ¢ : F/F* — @Q, with

W = Zp[¢] := Zplp(x)|x € Fi] C Q.

Consider the Iwasawa algebra W[[I';]] = mnW[I‘L/I‘L ].

Let F(¢)/F be the extension cut out by ¢ (i.e., F(¢) = @Ker(¢)).
Let Y; be the Galois group of the maximal p-abelian extension
over the composite L(¢) := L - F(¢) unramified outside p. By
the splitting: Gal(L(¢)/F) = Gal(F(¢)/F) x I';, we have

Y7 (o) ;=Y W (Gal(F(6)/F)],6 W (the ¢-eigenspace).
This is a torsion module over W{[I';]] of finite type by Rubin.
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§1. Cyclicity conjecture for an anti-cyclotomic branch. Let
c be complex conjugation in Gal(F/Q). Suppose that ¢(x) =
o(x)p(x™¢) := ¢ (x) for a finite order character o : FK/F>< —>

Q,.

Conjecture for L: Assume ¢~ #= 1 and that the conductor ¢ is
a product of split primes over Q. If the class number hyp of F
is prime to p, then Y (¢~ ) is pseudo isomorphic to W[[T'r]11/(fL)
as WI[I't]]-modules for an element f; € W[[I't]].

We know f;, = 0 by Rubin. For some specific Z,-extension (e.g.,
the anticyclotomic Zj,-extension), we know that (f7) is prime to
pW|[[I'r]] (vanishing of the u-invariant).

The anti-cyclotomic cyclicity conjecture is the one for the anticy-
clotomic Zp-extension L = F, such thaton I'_ :=1,_, we have

coc™t =071 Write Y~ (¢7) for the W[ _]]-module Y, (¢7).



§2. Anti-cyclotomic cyclicity < L-cyclicity.
In this talk, we only deal with “pure” cyclicity. Hereafter, we
suppose

(H1) We have ¢ = ¢~ for a character ¢ of conductor c¢p with
¢+ (p) = O and of order prime to p,

(H2) N = DNF/@(c) for an O-ideal ¢ prime to D with square-free
NF/@(c) (so, N is cube-free),

(H3) p is prime to NH”N(Z — 1) for prime factors [ of N,

(H4) the character ¢~ has order at least 3,

(H5) the class number of F' is prime to p.

We first note:

Theorem 1. The anticyclotomic pure cyclicity is equivalent to
the pure cyclicity for Y; (¢~ ). (Note that the branch character
iIs anti-cyclotomic.)

This follows from a control theorem of Rubin.



3. Anti-cyclotomic Cyclicity and Hecke algebra. Anti-
cyclotomic cyclicity follows from a ring theoretic assertion on
the big ordinary Hecke algebra h. We identify the Iwasawa al-
gebra A = W/][I']] with the one variable power series ring W|[[T]]
by T 5= (14+p)—t=1+4+T € NA. Take a Dirichlet character
Y : (Z/NpZ)* — W*, and consider the big ordinary Hecke alge-
bra h (over A) of prime-to-p level N and the character ¢. We
just mention here the following three facts about h:

e h is an algebra flat over the Iwasawa (weight) algebra A =
W[T]] interpolating p-ordinary Hecke algebras of level Np'+1,
of weight k + 1 > 2 and of character eyw™F, where € : ZX — p,r
(r >0) and k£ > 1 vary. If N is cube-free, h is a reduced algebra;
e Each prime P € Spec(h) has a unique Galois representation

pp - Gal(Q/Q) — GLa(k(P)), Trpp(Frob;) =T(l) mod P(l{ Np)
for the residue field k(P) of P;

aY

€ * . e g .
o pP|Ga|@p/Qp) = < 5 5P) with unramified quotient character op.



34. Ring theoretic setting.

Let Spec(T) be the connected component of Spec(h) of p := pr
mod m = Ind%@. Since T is universal among ordinary defor-
mation of p with certain extra properties insensitive to the twist

pr— pRx for y = (F/—@) T has an algebra involution o over A

coming from the twist. For any ring A with an involution o, we
put Ay = A* = {z € Alo(z) = £z}. Then Ay C A is a subring
and A_ is an A4 -module.

It is easy to see

e For the ideal I of T generated by T_ (the “-" eigenspace),
we have a canonical isomorphism T/I = W[l _]] as A-algebras,
where the A-algebra structure is given by sending u € I' naturally
iINnto u € O£< = Z;; and then projecting the local Artin symbol

T = [u, Fp] € I to Vrer—lel = 7(1-0)/2 c_,




5. Non CM components.

e The fixed points Spec(T)°=! is known to be canonically iso-
morphic to Spec(W [l _]]),

e Y (p~) # 0 if and only if o is non-trivial on T (and hence
T = WI[[r-]]).

e The ring T is reduced (as N is cube-free), and for the kernel
I =T(c —1)T = Ker(T — W[l _]]), I span over Frac(A) a ring
direct summand X complementary to Frac(W][l _]]).

We write T"M for the image of T in the ring direct summand X
(and call it the non-CM component of T). Plainly T"“M is stable
under o, but

Spec(T"“M)?=1 has codimension 1 in Spec(T"™),

which does not therefore contain an irreducible component.



§6. Galois deformation theory. By irreducibility of p, we have
a Galois representation

pr : Gal(@/Q) — GL(T) with Tr(pp(Frob)) = T(l)

for all primes [ { Np. By the celebrated R = T theorem of
Taylor—Wiles, the couple (T, p) is universal among deformations

p: Gal(Q/Q) — GLo(A) satisfying
(D1) p mod my = p.
B A e kN .
(D2) p|Ga|(@p/Qp) = (§ 5) with § unramified.
(D3) det(p)|r, = 4y for the I-part ¢, of ¢ for each prime [|N.
(D4) det(p)|r, = ¢|1, mod my (& €|, = 9|, mod my).
By the R =T theorem and a theorem of Mazur, if pthp,

[)I? = Qpa@r WM ]] 2 Y (¢),

and principality of I implies cyclicity.



7. Theorem.

Theorem A: Suppose (H1-5). Then for the following state-
ments (1) & (2) & (3) < (4):

(1) The rings T"M and Tq_cm are both local complete intersec-
tions free of finite rank over A.

(2) The T"“M_jdeal I = T(c —1)T c T"“M js principal and is gen-

erated by a non-zero-divisor § € T_ = TNM with 62 ¢ Tf‘l_cm, and
Them — Tﬂfm[e] is free of rank 2 over Tq_cm.

(3) The Iwasawa module Y (o) is cyclic over W[l _]].

(4) The Iwasawa module Y~ (p~w) is cyclic over W[l _]].
Under the condition (4), the ring T is a local complete inter-
section.

(2) & (3) follows from I/I2 = Y~ (o), and we expect (3) <
(4) (a sort of modulo p Tate duality).



8. A key duality lemma from the theory of dualizing modules
by Grothendieck, Hartshorne and Kleiman in a simplest case:

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein inte-
gral domain and A be a reduced Gorenstein local S-algebra
free of finite rank over S. Suppose

e A has a ring involution o with Ay := {a € Alo(a) = a},

° A_|_ iIs Gorenstein,

e Frac(A)/Frac(AL) is étale quadratic extension.

o 02}A+ = {x € Frac(4)|Tr 4, (®A) C Ay} 2 A,

Then A is free of rank 2 over Ay and A = AL & A4o for an
element § € A with o(§) = —96.

Lemma 2. Let S be a Gorenstein local ring. Let A be a local
Cohen—Macaulay ring and is an S-algebra with dimA = dim S.
If A is an S-module of finite type, the following conditions are
equivalent:

e The local ring A is Gorenstein;

o AT :=Homg(A,S5) = A as A-modules.



§9. We can apply the key lemmas to T"“M: (1) & (2).
(D)=(2): T"“M and Tq_cm are local complete intersections by
assumption; so, Gorenstein.

Use of Main conjecture: The proof of the anti-cyclotomic
Main conjecture by Mazur—Tilouine (combined with a theorem
of Tate on Gorenstein rings [MFG, Lemma 5.21]) shows

Tncm/aTncm/Tq_cm = WIIr-]1/(L, (¢™)) (Congruence module identity);

SO, aTncm/Tq_Cm C mpnem for the anti-cyclotomic Katz p-adic L-

function L, (¢™). The key lemma tells us (2).
(2)=(1): We have I = () C T"°M and I, = (%) c Th°™.
Note that T"°M/(0) = WI[F_]]/(Ly(¢™)) = THEM/(62). Since

0 is a non-zero divisor, the two rings T"M and Tq_cm are local
complete intersection.



§10. Presentation of T.

To see a possibility of applying the key lemmma to T/T_|_, we like to
lift T to a power series ring R = A[[Ty,...,Tr]] with an involution
0co such that RT := {r € Rlowo(r) = —r} is Gorenstein and that
(R/A, 000 mod A) = (T, o) for an ideal 2 stable under ox.

Taylor and Wiles (with a later idea of Diamond and Fujiwara)
found a pair (R := A[[14,...,Tr]],(S1,...,Sr)) with a regular se-
quence S := (S1,...,Sr) C A\[[T1,...,T]]) such that

ATy, ..., T]1/(S1,...,8) =T

by their Taylor—Wiles system argument.

We need to lift ¢ somehow to an involution oo € Aut(R) and
show also that R is Gorenstein. If further 0z - C mz, R-R™ =
(dc) and the image § € T~ of do in T generates I as desired.



§11. Taylor—Wiles method. Taylor—Wiles found an integer
r > 0 and an infinite sequence of r-sets Q := {Qm|m =1,2,...}
of primes ¢ =1 mod p™ such that for the local ring T®m of p of
the Hecke algebra h®m of tame-level Ny = N [l,c0,, g- The pair
(TQm,pTQm) is universal among deformation satisfying (D1-4)
but ramification at q € Q, is allowed. Then p+— p®x induces an
involution og, and Tfl?_m = {x € TQm|an(a;) = x} is Gorenstein.

Actually they work with Tg = T®m/(t — 4F)TCm (¢t = 1+ T,
~=1+4p e ; the weight k Hecke algebra of weight k£ > 2 fixed).
The product inertia group Ig,, = [l;c0,, {g acts on T, by the p-
abelian quotient Ag,  of [[,c,,(Z/qZ)*. We choose an ordering
of primes Qm = {q1,.-..,q9r} and a generator 57;,m(n) of the p-
Sylow group of (Z/q;Z)*. The sequence Q is chosen so that for
a given integer n > 0, we can find m = m(n) > n so that we have
ring projection maps R, 1 — Rn 1= TQm(n)/(p”,(Spn —1);, and

i,m(n)



§12. Lifting involution.

Write S, for the image of W{[S]] for S = (S1,...,Sr) in Ry (Sn
is a Gorenstein local ring). We can add the involution to this
projective system and an Rp-linear isomorphism ¢, : R;ﬁ =
Homgn(Rn,En) = R, commuting with the involution o, of Rp,
induced by oQ to the Taylor-Wiles system, and get the lifting

m(n)

With oo 1 Rl 1= Homyy(rs11(Reo, WIIST]) £ Reo
compatible with ooo; i.€., ¢ © 0o = 00 © Po. T hiS shows
RLT = RY
as R;"O—modules, as desired. Then we can further lift involution
to R =A[[T1,...,Ty]] as R/(t — ) = Ry for t =1 4+ T.

The remaining point of the key lemma I have not done is to
show



§13. Index set of @, (towards (4) < (2)).
Write Dy for the local version of the deformation functor asso-
ciated to (D1—4) adding a fixed determinant condition

(det) det(p) = vFv for the chosen k > 2 (the weight condition);
so, the tangent spec of T is given by a Selmer group Sel(Ad) for
Ad = 5[2(F).

Then the index set of Q. is any choice of [F-basis of a “dual”
Selmer group. Regard Dy(F[e]) for the dual number € as a sub-
space of Hl(Qq,Ad) in the standard way: Thus we have the
orthogonal complement Dq(IEf‘[e])l C H1(Qq, Ad*(1)) under Tate
local duality. The dual Selmer group Selt-(Ad*(1)) is given by

H(Qy, Ad*(1))

Sel™ (Ad"(1)) := Ker(HH(Q"7/Q, Ad"() — [] = &t

[INp

).

Then r = dimy Sel+-(A4d*(1)).



314. Interpretation of the dual Selmer group.
Define QF := {q € Qm|x(¢) = +q}. Then if Sy is the variable in
W[S]] corresponding from ¢ € Q, then (14 S;) = (1 + Sy)*!.

We have splitting Ad = X@IndQ © SO, Seli(Ad*(l)) = Sell(y(l))@
SeIL(IndF(go (1))) and

Sel-(Ind2(7 (1)) = Homyir_ (Y (¢~ w), ).

Thus the number MW[[S]]+(W[[S]]—) of generators of W][[S]]-
over WI[S]]+ is

pw s (WIS =) = dimp Y™ (o™ w) @y r_p F.
Writing a number of generators of an A-module M over A as

wa(M), we thus have

pws)) . (WIS -) = codimgpecwiisn) Spec(W[[SI)7=1.



§15. Generator count “R;(Rgo) of R..

Lemma 3. We have

gt (RS) = codimspec(y((s)y) SPec(W [[S1)7~1
= dimg Y (o w) ®W[[|__]] I¥.

In the construction of Taylor—Wiles system, for each g € Qm, an
eigenvalue of p(Froby) is chosen, which is equivalent to choose
a factor q|q if q € Q$.

Then qu +(Op/q)* has p-Sylow subgroup A _ .. The projec-
. o o o pn . . . .
tive limit mn AQm(n)/AQm(n) gives rise to a group isomorphic to

A_|_ .= Z;+ for r4 = |Q¢_;|;|



16. QED.

Let Ioo = Roo(0 — 1)Reo, I® =TP(0 —1)T? and Hg =_ x Ao+
By TQ/I9 = W([Hg]] = TS /1T, we get
Reo/Ioo = W{[AL]] 2 RE /I,
Note that
Spec(Roo)?= 1 = Spec(Roo/Ioo) = Spec(W[[AL]]).
Thus we get
’LLR(—)'_O(R(:O) = codimSDeC(W[[S]]) SDGC(W[[A_I_]])
= r_ =dimg Y (o w) ®W[[|__]] I¥.
This shows the implication (4) = (2) of Theorem A.



