* Ring theoretic properties of Hecke algebras and Cyclicity in Iwasawa theory

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A. A talk in June, 2016 at Banff conference center.

*The author is partially supported by the NSF grant: DMS 1464106.

We can formulate certain Gorenstein property of subrings of the universal deformation ring (i.e., the corresponding Hecke algebra) as a condition almost equivalent to the cyclicity of the Iwasawa module over \mathbb{Z}_p -extensions of an imaginary quadratic field if the starting residual representation is induced from the imaginary quadratic field. I will discuss this fact in some details.

§0. Setting over an imaginary quadratic field. Let F be an imaginary quadratic field with discriminant -D and integer ring O. Assume that the prime (p) splits into $(p) = \mathfrak{p}\overline{\mathfrak{p}}$ in O with $\mathfrak{p} \neq \overline{\mathfrak{p}}$. Let L/F be a \mathbb{Z}_p -extension with group $\Gamma_L := \operatorname{Gal}(L/F) \cong \mathbb{Z}_p$. Take a branch character $\overline{\phi} : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \mathbb{F}^{\times}$ (for $\mathbb{F} = \mathbb{F}_{pf}$) with its Teichmüller lift ϕ with values in $W = W(\mathbb{F})$. Regard it as an idele character $\phi : F_{\mathbb{A}}^{\times}/F^{\times} \to \overline{\mathbb{Q}}_p^{\times}$ with

$$W = \mathbb{Z}_p[\phi] := \mathbb{Z}_p[\phi(x)|x \in F_{\mathbb{A}}^{\times}] \subset \overline{\mathbb{Q}}_p.$$

Consider the Iwasawa algebra $W[[\Gamma_L]] = \varprojlim_n W[\Gamma_L / \Gamma_L^{p^n}].$

Let $F(\phi)/F$ be the extension cut out by ϕ (i.e., $F(\phi) = \overline{\mathbb{Q}}^{\text{Ker}(\phi)}$). Let Y_L be the Galois group of the maximal *p*-abelian extension over the composite $L(\phi) := L \cdot F(\phi)$ unramified outside \mathfrak{p} . By the splitting: $\text{Gal}(L(\phi)/F) = \text{Gal}(F(\phi)/F) \times \Gamma_L$, we have

 $Y_L(\phi) := Y_L \otimes_{W[\operatorname{Gal}(F(\phi)/F)],\phi} W$ (the ϕ -eigenspace). This is a torsion module over $W[[\Gamma_L]]$ of finite type by Rubin. §1. Cyclicity conjecture for an anti-cyclotomic branch. Let c be complex conjugation in $\operatorname{Gal}(F/\mathbb{Q})$. Suppose that $\phi(x) = \varphi(x)\varphi(x^{-c}) := \varphi^{-}(x)$ for a finite order character $\varphi : F_{\mathbb{A}}^{\times}/F^{\times} \to \overline{\mathbb{Q}}_{p}^{\times}$.

Conjecture for *L*: Assume $\varphi^- \neq 1$ and that the conductor φ is a product of split primes over \mathbb{Q} . If the class number h_F of *F* is prime to *p*, then $Y_L(\varphi^-)$ is pseudo isomorphic to $W[[\Gamma_L]]/(f_L)$ as $W[[\Gamma_L]]$ -modules for an element $f_L \in W[[\Gamma_L]]$.

We know $f_L \neq 0$ by Rubin. For some specific \mathbb{Z}_p -extension (e.g., the anticyclotomic \mathbb{Z}_p -extension), we know that (f_L) is prime to $pW[[\Gamma_L]]$ (vanishing of the μ -invariant).

The anti-cyclotomic cyclicity conjecture is the one for the anticyclotomic \mathbb{Z}_p -extension $L = F_{\infty}^-$ such that on $\Gamma_- := \Gamma_{F_{\infty}^-}$, we have $c\sigma c^{-1} = \sigma^{-1}$. Write $Y^-(\varphi^-)$ for the $W[[\Gamma_-]]$ -module $Y_{F_{\infty}^-}(\varphi^-)$.

§2. Anti-cyclotomic cyclicity \Leftrightarrow *L*-cyclicity.

In this talk, we only deal with "pure" cyclicity. Hereafter, we suppose

(H1) We have $\phi = \varphi^-$ for a character φ of conductor \mathfrak{cp} with $\mathfrak{c} + (p) = O$ and of order prime to p, (H2) $N = DN_{F/\mathbb{Q}}(\mathfrak{c})$ for an O-ideal \mathfrak{c} prime to D with square-free $N_{F/\mathbb{Q}}(\mathfrak{c})$ (so, N is cube-free), (H3) p is prime to $N \prod_{l|N} (l-1)$ for prime factors l of N, (H4) the character φ^- has order at least 3, (H5) the class number of F is prime to p.

We first note:

Theorem 1. The anticyclotomic pure cyclicity is equivalent to the pure cyclicity for $Y_L(\varphi^-)$. (Note that the branch character is anti-cyclotomic.)

This follows from a control theorem of Rubin.

§3. Anti-cyclotomic Cyclicity and Hecke algebra. Anticyclotomic cyclicity follows from a ring theoretic assertion on the big ordinary Hecke algebra h. We identify the Iwasawa algebra $\Lambda = W[[\Gamma]]$ with the one variable power series ring W[[T]]by $\Gamma \ni \gamma = (1 + p) \mapsto t = 1 + T \in \Lambda$. Take a Dirichlet character $\psi : (\mathbb{Z}/Np\mathbb{Z})^{\times} \to W^{\times}$, and consider the big ordinary Hecke algebra h (over Λ) of prime-to-p level N and the character ψ . We just mention here the following three facts about h:

• h is an algebra flat over the Iwasawa (weight) algebra $\Lambda := W[[T]]$ interpolating *p*-ordinary Hecke algebras of level Np^{r+1} , of weight $k + 1 \ge 2$ and of character $\epsilon \psi \omega^{-k}$, where $\epsilon : \mathbb{Z}_p^{\times} \to \mu_{p^r}$ $(r \ge 0)$ and $k \ge 1$ vary. If N is cube-free, h is a **reduced** algebra; • Each prime $P \in \text{Spec}(h)$ has a unique Galois representation

 $\rho_P : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\kappa(P)), \operatorname{Tr}\rho_P(\operatorname{Frob}_l) = T(l) \mod P(l \nmid Np)$ for the residue field $\kappa(P)$ of P;

• $\rho_P|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon_P & * \\ 0 & \delta_P \end{pmatrix}$ with unramified quotient character δ_P .

$\S4$. Ring theoretic setting.

Let $\operatorname{Spec}(\mathbb{T})$ be the connected component of $\operatorname{Spec}(h)$ of $\overline{\rho} := \rho_{\mathbb{T}}$ mod $\mathfrak{m}_{\mathbb{T}} = \operatorname{Ind}_{F}^{\mathbb{Q}}\overline{\varphi}$. Since \mathbb{T} is universal among ordinary deformation of $\overline{\rho}$ with certain extra properties insensitive to the twist $\rho \mapsto \rho \otimes \chi$ for $\chi = \left(\frac{F/\mathbb{Q}}{P}\right)$, \mathbb{T} has an **algebra involution** σ over Λ coming from the twist. For any ring A with an involution σ , we put $A_{\pm} = A^{\pm} := \{x \in A | \sigma(x) = \pm x\}$. Then $A_{+} \subset A$ is a subring and A_{-} is an A_{+} -module.

It is easy to see

• For the ideal I of \mathbb{T} generated by \mathbb{T}_- (the "-" eigenspace), we have a canonical isomorphism $\mathbb{T}/I \cong W[[\Gamma_-]]$ as Λ -algebras, where the Λ -algebra structure is given by sending $u \in \Gamma$ naturally into $u \in O_{\mathfrak{p}}^{\times} = \mathbb{Z}_p^{\times}$ and then projecting the local Artin symbol $\tau = [u, F_{\mathfrak{p}}] \in \Gamma$ to $\sqrt{\tau c \tau^{-1} c^{-1}} = \tau^{(1-c)/2} \in \Gamma_-$.

$\S5$. Non CM components.

- The fixed points $\operatorname{Spec}(\mathbb{T})^{\sigma=1}$ is known to be canonically isomorphic to $\operatorname{Spec}(W[[\Gamma_{-}]])$,
- $Y^{-}(\varphi^{-}) \neq 0$ if and only if σ is non-trivial on \mathbb{T} (and hence $\mathbb{T} \neq W[[\Gamma_{-}]]$).
- The ring \mathbb{T} is reduced (as N is cube-free), and for the kernel $I = \mathbb{T}(\sigma 1)\mathbb{T} = \text{Ker}(\mathbb{T} \twoheadrightarrow W[[\Gamma_-]])$, I span over $\text{Frac}(\Lambda)$ a ring direct summand X complementary to $\text{Frac}(W[[\Gamma_-]])$.

We write \mathbb{T}^{ncm} for the image of \mathbb{T} in the ring direct summand X (and call it the non-CM component of \mathbb{T}). Plainly \mathbb{T}^{ncm} is stable under σ , but

 $\operatorname{Spec}(\mathbb{T}^{\operatorname{ncm}})^{\sigma=1}$ has codimension 1 in $\operatorname{Spec}(\mathbb{T}^{\operatorname{ncm}})$,

which does not therefore contain an irreducible component.

§6. Galois deformation theory. By irreducibility of $\overline{\rho}$, we have a Galois representation

 $\rho_{\mathbb{T}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ with $\operatorname{Tr}(\rho_{\mathbb{T}}(\operatorname{Frob}_l)) = T(l)$

for all primes $l \nmid Np$. By the celebrated $R = \mathbb{T}$ theorem of Taylor–Wiles, the couple $(\mathbb{T}, \rho_{\mathbb{T}})$ is universal among deformations $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(A)$ satisfying (D1) $\rho \mod \mathfrak{m}_A \cong \overline{\rho}$. (D2) $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with δ unramified. (D3) $\det(\rho)|_{I_l} = \psi_l$ for the *l*-part ψ_l of ψ for each prime l|N. (D4) $\det(\rho)|_{I_p} \equiv \psi|_{I_p} \mod \mathfrak{m}_A$ ($\Leftrightarrow \epsilon|_{I_p} \equiv \psi|_{I_p} \mod \mathfrak{m}_A$). By the $R = \mathbb{T}$ theorem and a theorem of Mazur, if $p \nmid h_F$,

$$I/I^{2} = \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} W[[\Gamma_{-}]] \cong Y^{-}(\varphi^{-}),$$

and principality of *I* implies cyclicity.

$\S7$. Theorem.

Theorem A: Suppose (H1-5). Then for the following statements $(1) \Leftrightarrow (2) \Leftrightarrow (3) \leftarrow (4)$: (1) The rings \mathbb{T}^{ncm} and \mathbb{T}^{ncm}_+ are both local complete intersections free of finite rank over Λ . (2) The \mathbb{T}^{ncm} -ideal $I = \mathbb{T}(\sigma - 1)\mathbb{T} \subset \mathbb{T}^{ncm}$ is principal and is generated by a non-zero-divisor $\theta \in \mathbb{T}_- = \mathbb{T}^{ncm}_-$ with $\theta^2 \in \mathbb{T}^{ncm}_+$, and $\mathbb{T}^{ncm} = \mathbb{T}^{ncm}_+[\theta]$ is free of rank 2 over \mathbb{T}^{ncm}_+ . (3) The Iwasawa module $Y^-(\varphi^-)$ is cyclic over $W[[\Gamma_-]]$. (4) The Iwasawa module $Y^-(\varphi^-\omega)$ is cyclic over $W[[\Gamma_-]]$. Under the condition (4), the ring \mathbb{T}_+ is a local complete intersection.

(2) \Leftrightarrow (3) follows from $I/I^2 \cong Y^-(\varphi^-)$, and we expect (3) \Leftrightarrow (4) (a sort of modulo p Tate duality).

 \S 8. A key duality lemma from the theory of dualizing modules by Grothendieck, Hartshorne and Kleiman in a simplest case:

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein integral domain and A be a reduced Gorenstein local S-algebra free of finite rank over S. Suppose

- A has a ring involution σ with $A_+ := \{a \in A | \sigma(a) = a\}$,
- A₊ is Gorenstein,
- $Frac(A)/Frac(A_+)$ is étale quadratic extension.
- $\mathfrak{d}_{A/A_{+}}^{-1} := \{x \in \operatorname{Frac}(A) | \operatorname{Tr}_{A/A_{+}}(xA) \subset A_{+}\} \supseteq A,$

Then A is free of rank 2 over A_+ and $A = A_+ \oplus A_+\delta$ for an element $\delta \in A$ with $\sigma(\delta) = -\delta$.

Lemma 2. Let *S* be a **Gorenstein local ring**. Let *A* be a local Cohen–Macaulay ring and is an *S*-algebra with dim $A = \dim S$. If *A* is an *S*-module of finite type, the following conditions are equivalent:

- The local ring A is Gorenstein;
- $A^{\dagger} := \operatorname{Hom}_{S}(A, S) \cong A$ as A-modules.

§9. We can apply the key lemmas to \mathbb{T}^{ncm} : (1) \Leftrightarrow (2). (1) \Rightarrow (2): \mathbb{T}^{ncm} and \mathbb{T}^{ncm}_+ are local complete intersections by assumption; so, Gorenstein.

Use of Main conjecture: The proof of the anti-cyclotomic Main conjecture by Mazur–Tilouine (combined with a theorem of Tate on Gorenstein rings [MFG, Lemma 5.21]) shows

 $\mathbb{T}^{\operatorname{ncm}}/\mathfrak{d}_{\mathbb{T}^{\operatorname{ncm}}/\mathbb{T}^{\operatorname{ncm}}_{+}} \cong W[[\Gamma_{-}]]/(L_{p}^{-}(\varphi^{-}))$ (Congruence module identity); so, $\mathfrak{d}_{\mathbb{T}^{\operatorname{ncm}}/\mathbb{T}^{\operatorname{ncm}}_{+}} \subset \mathfrak{m}_{\mathbb{T}^{\operatorname{ncm}}}$ for the anti-cyclotomic Katz *p*-adic *L*-function $L_{p}^{-}(\varphi^{-})$. The key lemma tells us (2).

(2)
$$\Rightarrow$$
(1): We have $I = (\theta) \subset \mathbb{T}^{ncm}$ and $I_+ = (\theta^2) \subset \mathbb{T}^{ncm}$.

Note that $\mathbb{T}^{ncm}/(\theta) \cong W[[\Gamma_-]]/(L_p(\varphi^-)) \cong \mathbb{T}^{ncm}_+/(\theta^2)$. Since θ is a non-zero divisor, the two rings \mathbb{T}^{ncm} and \mathbb{T}^{ncm}_+ are local complete intersection.

$\S10.$ Presentation of $\mathbb{T}.$

To see a possibility of applying the key lemma to \mathbb{T}/\mathbb{T}_+ , we like to lift \mathbb{T} to a power series ring $\mathcal{R} = \Lambda[[T_1, \ldots, T_r]]$ with an involution σ_{∞} such that $\mathcal{R}^+ := \{r \in \mathcal{R} | \sigma_{\infty}(r) = -r\}$ is Gorenstein and that $(\mathcal{R}/\mathfrak{A}, \sigma_{\infty} \mod \mathfrak{A}) \cong (\mathbb{T}, \sigma)$ for an ideal \mathfrak{A} stable under σ_{∞} .

Taylor and Wiles (with a later idea of Diamond and Fujiwara) found a pair $(\mathcal{R} := \Lambda[[T_1, \ldots, T_r]], (S_1, \ldots, S_r))$ with a regular sequence $S := (S_1, \ldots, S_r) \subset \Lambda[[T_1, \ldots, T_r]])$ such that

$$\Lambda[[T_1,\ldots,T_r]]/(S_1,\ldots,S_r)\cong\mathbb{T}$$

by their Taylor–Wiles system argument.

We need to lift σ somehow to an involution $\sigma_{\infty} \in \operatorname{Aut}(\mathcal{R})$ and show also that \mathcal{R}^+ is Gorenstein. If further $\mathfrak{d}_{\mathcal{R}/\mathcal{R}^-} \subset \mathfrak{m}_{\mathcal{R}}, \mathcal{R} \cdot \mathcal{R}^- =$ (δ_{∞}) and the image $\delta \in \mathbb{T}^-$ of δ_{∞} in \mathbb{T} generates I as desired. §11. Taylor–Wiles method. Taylor–Wiles found an integer r > 0 and an infinite sequence of r-sets $\mathcal{Q} := \{Q_m | m = 1, 2, ...\}$ of primes $q \equiv 1 \mod p^m$ such that for **the local ring** \mathbb{T}^{Q_m} of $\overline{\rho}$ of the Hecke algebra \mathbf{h}^{Q_m} of tame-level $N_m = N \prod_{q \in Q_m} q$. The pair $(\mathbb{T}^{Q_m}, \rho_{\mathbb{T}^{Q_m}})$ is universal among deformation satisfying (D1–4) but ramification at $q \in Q_m$ is allowed. Then $\rho \mapsto \rho \otimes \chi$ induces an involution σ_{Q_m} and $\mathbb{T}^{Q_m}_+ := \{x \in \mathbb{T}^{Q_m} | \sigma_{Q_m}(x) = x\}$ is Gorenstein.

Actually they work with $\mathbb{T}_{Q_m} = \mathbb{T}^{Q_m}/(t - \gamma^k)\mathbb{T}^{Q_m}$ $(t = 1 + T, \gamma = 1 + p \in \Gamma$; the weight k Hecke algebra of weight $k \ge 2$ fixed). The product inertia group $I_{Q_m} = \prod_{q \in Q_m} I_q$ acts on \mathbb{T}_{Q_m} by the p-abelian quotient Δ_{Q_m} of $\prod_{q \in Q_m} (\mathbb{Z}/q\mathbb{Z})^{\times}$. We choose an ordering of primes $Q_m = \{q_1, \ldots, q_r\}$ and a generator $\delta_{i,m(n)}$ of the p-Sylow group of $(\mathbb{Z}/q_i\mathbb{Z})^{\times}$. The sequence Q is chosen so that for a given integer n > 0, we can find m = m(n) > n so that we have ring projection maps $R_{n+1} \to R_n := \mathbb{T}_{Q_m(n)}/(p^n, \delta_{i,m(n)}^{p^n} - 1)_i$, and $R_\infty = \varprojlim_n R_n \cong W[[T_1, \ldots, T_r]]$ and $S_i = \varprojlim_n (\delta_{i,m(n)} - 1)$.

\S **12.** Lifting involution.

Write \overline{S}_n for the image of W[[S]] for $S = (S_1, \ldots, S_r)$ in R_n (\overline{S}_n is a Gorenstein local ring). We can add the involution to this projective system and an R_n -linear isomorphism $\phi_n : R_n^{\dagger} := \text{Hom}_{\overline{S}_n}(R_n, \overline{S}_n) \cong R_n$ commuting with the involution σ_n of R_n induced by $\sigma_{Q_m(n)}$ to the Taylor-Wiles system, and get the lifting

 $\sigma_{\infty} \in \operatorname{Aut}(R_{\infty})$

with $\phi_{\infty}: R_{\infty}^{\dagger} := \operatorname{Hom}_{W[[S]]}(R_{\infty}, W[[S]]) \cong R_{\infty}$

compatible with σ_{∞} ; i.e., $\phi_{\infty} \circ \sigma_{\infty} = \sigma_{\infty} \circ \phi_{\infty}$. This shows

$$R_{\infty}^{+,\dagger} \cong R_{\infty}^{+}$$

as R_{∞}^+ -modules, as desired. Then we can further lift involution to $\mathcal{R} = \Lambda[[T_1, \dots, T_r]]$ as $\mathcal{R}/(t - \gamma^k) = R_{\infty}$ for t = 1 + T.

The remaining point of the key lemma I have not done is to show

$$\mathfrak{d}_{\mathcal{R}/\mathcal{R}^+} \subset \mathfrak{m}_{\mathcal{R}}?$$

§13. Index set of Q_m (towards (4) \Leftrightarrow (2)).

Write D_q for the local version of the deformation functor associated to (D1-4) adding a fixed determinant condition

(det) det(ρ) = $\nu^k \psi$ for the chosen $k \ge 2$ (the weight condition); so, the tangent spec of \mathbb{T} is given by a Selmer group Sel(Ad) for $Ad = \mathfrak{sl}_2(\mathbb{F})$.

Then the index set of Q_m is any choice of \mathbb{F} -basis of a "dual" Selmer group. Regard $\mathcal{D}_q(\mathbb{F}[\epsilon])$ for the dual number ϵ as a subspace of $H^1(\mathbb{Q}_q, Ad)$ in the standard way: Thus we have the orthogonal complement $\mathcal{D}_q(\mathbb{F}[\epsilon])^{\perp} \subset H^1(\mathbb{Q}_q, Ad^*(1))$ under Tate local duality. The dual Selmer group $\mathrm{Sel}^{\perp}(Ad^*(1))$ is given by

$$\mathsf{Sel}^{\perp}(Ad^*(1)) := \mathsf{Ker}(H^1(\mathbb{Q}^{(Np)}/\mathbb{Q}, Ad^*(1)) \to \prod_{l \mid Np} \frac{H^1(\mathbb{Q}_l, Ad^*(1))}{\mathcal{D}_l(\mathbb{F}[\epsilon])^{\perp}}).$$

Then $r = \dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad^*(1)).$

§14. Interpretation of the dual Selmer group. Define $Q_m^{\pm} := \{q \in Q_m | \chi(q) = \pm q\}$. Then if S_q is the variable in W[[S]] corresponding from $q \in Q_m^{\pm}$, then $\sigma(1 + S_q) = (1 + S_q)^{\pm 1}$.

We have splitting $Ad = \overline{\chi} \oplus \operatorname{Ind}_{F}^{\mathbb{Q}} \overline{\varphi}^{-}$; so, $\operatorname{Sel}^{\perp}(Ad^{*}(1)) = \operatorname{Sel}^{\perp}(\overline{\chi}(1)) \oplus \operatorname{Sel}^{\perp}(\operatorname{Ind}_{F}^{\mathbb{Q}}(\overline{\varphi}^{-}(1)))$ and

$$\mathsf{Sel}^{\perp}(\mathsf{Ind}_{F}^{\mathbb{Q}}(\overline{\varphi}^{-}(1))) = \mathsf{Hom}_{W[[\Gamma_{-}]]}(Y^{-}(\varphi^{-}\omega), \mathbb{F}).$$

Thus the number $\mu_{W[[S]]_+}(W[[S]]_-)$ of generators of $W[[S]]_-$ over $W[[S]]_+$ is

$$\mu_{W[[S]]_{+}}(W[[S]]_{-}) = \dim_{\mathbb{F}} Y^{-}(\varphi^{-}\omega) \otimes_{W[[\Gamma_{-}]]} \mathbb{F}.$$

Writing a number of generators of an A-module M over A as $\mu_A(M)$, we thus have

$$\mu_{W[[S]]_{+}}(W[[S]]_{-}) = \operatorname{codim}_{\operatorname{Spec}(W[[S]])} \operatorname{Spec}(W[[S]])^{\sigma=1}.$$

§15. Generator count $\mu_{R_{\infty}^+}(R_{\infty}^-)$ of R_{∞}^- .

Lemma 3. We have

$$\mu_{R_{\infty}^{+}}(R_{\infty}^{-}) = \operatorname{codim}_{\operatorname{Spec}(W[[S]])} \operatorname{Spec}(W[[S]])^{\sigma=1}$$
$$= \dim_{\mathbb{F}} Y^{-}(\varphi^{-}\omega) \otimes_{W[[\Gamma_{-}]]} \mathbb{F}.$$

In the construction of Taylor–Wiles system, for each $q \in Q_m$, an eigenvalue of $\overline{\rho}(\operatorname{Frob}_q)$ is chosen, which is equivalent to choose a factor $\mathfrak{q}|q$ if $q \in Q_m^+$.

Then $\prod_{q \in Q_m^+} (O_F/\mathfrak{q})^{\times}$ has *p*-Sylow subgroup $\Delta_{Q_m^+}$. The projective limit $\varprojlim_n \Delta_{Q_{m(n)}} / \Delta_{Q_{m(n)}}^{p^n}$ gives rise to a group isomorphic to $\Delta_+ := \mathbb{Z}_p^{r_+}$ for $r_+ = |Q_m^+|$.

§16. QED.

Let $I_{\infty} = R_{\infty}(\sigma - 1)R_{\infty}$, $I^Q = \mathbb{T}^Q(\sigma - 1)\mathbb{T}^Q$ and $H_Q = \Gamma_- \times \Delta_{Q^+}$. By $\mathbb{T}^Q/I^Q \cong W[[H_Q]] = \mathbb{T}^Q_+/I^Q_+$, we get

$$R_{\infty}/I_{\infty} \cong W[[\Delta_+]] \cong R_{\infty}^+/I_{\infty}^+.$$

Note that

$$\operatorname{Spec}(R_{\infty})^{\sigma=1} = \operatorname{Spec}(R_{\infty}/I_{\infty}) = \operatorname{Spec}(W[[\Delta_{+}]]).$$

Thus we get

$$\begin{split} \mu_{R_{\infty}^{+}}(R_{\infty}^{-}) &= \operatorname{codim}_{\operatorname{Spec}(W[[S]])}\operatorname{Spec}(W[[\Delta_{+}]]) \\ &= r_{-} = \dim_{\mathbb{F}}Y^{-}(\varphi^{-}\omega)\otimes_{W[[\Gamma_{-}]]}\mathbb{F}. \end{split}$$

This shows the implication (4) \Rightarrow (2) of Theorem A.