* Ring theoretic properties of Hecke algebras and Cyclicity in Iwasawa theory

Haruzo Hida
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.
A talk in June, 2016
at Banff conference center.

*The author is partially supported by the NSF grant: DMS 1464106.
We can formulate certain Gorenstein property of subrings of the universal deformation ring (i.e., the corresponding Hecke algebra) as a condition almost equivalent to the cyclicity of the Iwasawa module over \mathbb{Z}_{p}-extensions of an imaginary quadratic field if the starting residual representation is induced from the imaginary quadratic field. I will discuss this fact in some details.
§0. Setting over an imaginary quadratic field. Let F be an imaginary quadratic field with discriminant $-D$ and integer ring O. Assume that the prime (p) splits into $(p)=\mathfrak{p} \bar{p}$ in O with $\mathfrak{p} \neq \overline{\mathfrak{p}}$. Let L / F be a \mathbb{Z}_{p}-extension with group $\Gamma_{L}:=\operatorname{Gal}(L / F) \cong \mathbb{Z}_{p}$. Take a branch character $\bar{\phi}: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \mathbb{F}^{\times}\left(\right.$for $\left.\mathbb{F}=\mathbb{F}_{p f}\right)$ with its Teichmüller lift ϕ with values in $W=W(\mathbb{F})$. Regard it as an idele character $\phi: F_{\mathbb{A}}^{\times} / F^{\times} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$with

$$
W=\mathbb{Z}_{p}[\phi]:=\mathbb{Z}_{p}\left[\phi(x) \mid x \in F_{\mathbb{A}}^{\times}\right] \subset \overline{\mathbb{Q}}_{p} .
$$

Consider the Iwasawa algebra $W\left[\left[\boldsymbol{\Gamma}_{L}\right]\right]=\varliminf_{n} W\left[\boldsymbol{\Gamma}_{L} / \boldsymbol{\Gamma}_{L}^{p^{n}}\right]$.
Let $F(\phi) / F$ be the extension cut out by ϕ (i.e., $F(\phi)=\overline{\mathbb{Q}}^{\operatorname{Ker}(\phi)}$). Let Y_{L} be the Galois group of the maximal p-abelian extension over the composite $L(\phi):=L \cdot F(\phi)$ unramified outside \mathfrak{p}. By the splitting: $\operatorname{Gal}(L(\phi) / F)=\operatorname{Gal}(F(\phi) / F) \times \Gamma_{L}$, we have

$$
Y_{L}(\phi):=Y_{L} \otimes_{W[\operatorname{Gal}(F(\phi) / F)], \phi} W \text { (the } \phi \text {-eigenspace). }
$$

This is a torsion module over $W\left[\left[\Gamma_{L}\right]\right]$ of finite type by Rubin.
§1. Cyclicity conjecture for an anti-cyclotomic branch. Let c be complex conjugation in $\operatorname{Gal}(F / \mathbb{Q})$. Suppose that $\phi(x)=$ $\varphi(x) \varphi\left(x^{-c}\right):=\varphi^{-}(x)$ for a finite order character $\varphi: F_{\mathbb{A}}^{\times} / F^{\times} \rightarrow$ $\overline{\mathbb{Q}}_{p}^{\times}$.

Conjecture for L : Assume $\varphi^{-} \neq 1$ and that the conductor φ is a product of split primes over \mathbb{Q}. If the class number h_{F} of F is prime to p, then $Y_{L}\left(\varphi^{-}\right)$is pseudo isomorphic to $W\left[\left[\Gamma_{L}\right]\right] /\left(f_{L}\right)$ as $W\left[\left[\boldsymbol{\Gamma}_{L}\right]\right]$-modules for an element $f_{L} \in W\left[\left[\boldsymbol{\Gamma}_{L}\right]\right]$.

We know $f_{L} \neq 0$ by Rubin. For some specific \mathbb{Z}_{p}-extension (e.g., the anticyclotomic \mathbb{Z}_{p}-extension), we know that (f_{L}) is prime to $p W\left[\left[\boldsymbol{\Gamma}_{L}\right]\right]$ (vanishing of the μ-invariant).

The anti-cyclotomic cyclicity conjecture is the one for the anticyclotomic \mathbb{Z}_{p}-extension $L=F_{\infty}^{-}$such that on $\Gamma_{-}:=\Gamma_{F_{\infty}^{-}}$, we have $c \sigma c^{-1}=\sigma^{-1}$. Write $Y^{-}\left(\varphi^{-}\right)$for the $W\left[\left[\Gamma_{-}\right]\right]$-module $Y_{F_{\infty}^{-}}\left(\varphi^{-}\right)$.
§2. Anti-cyclotomic cyclicity $\Leftrightarrow L$-cyclicity.
In this talk, we only deal with "pure" cyclicity. Hereafter, we suppose
(H1) We have $\phi=\varphi^{-}$for a character φ of conductor $\mathfrak{c p}$ with $\mathfrak{c}+(p)=O$ and of order prime to p,
(H2) $N=D N_{F / \mathbb{Q}}(\mathfrak{c})$ for an O-ideal \mathfrak{c} prime to D with square-free $N_{F / \mathbb{Q}}(\mathfrak{c})$ (so, N is cube-free),
(H3) p is prime to $N \prod_{l \mid N}(l-1)$ for prime factors l of N,
(H4) the character φ^{-}has order at least 3 ,
(H5) the class number of F is prime to p.
We first note:
Theorem 1. The anticyclotomic pure cyclicity is equivalent to the pure cyclicity for $Y_{L}\left(\varphi^{-}\right)$. (Note that the branch character is anti-cyclotomic.)

This follows from a control theorem of Rubin.
§3. Anti-cyclotomic Cyclicity and Hecke algebra. Anticyclotomic cyclicity follows from a ring theoretic assertion on the big ordinary Hecke algebra h. We identify the Iwasawa algebra $\wedge=W[[\Gamma]]$ with the one variable power series ring $W[[T]]$ by $\Gamma \ni \gamma=(1+p) \mapsto t=1+T \in \wedge$. Take a Dirichlet character $\psi:(\mathbb{Z} / N p \mathbb{Z})^{\times} \rightarrow W^{\times}$, and consider the big ordinary Hecke algebra h (over \wedge) of prime-to- p level N and the character ψ. We just mention here the following three facts about h:

- h is an algebra flat over the Iwasawa (weight) algebra $\wedge:=$ $W[[T]]$ interpolating p-ordinary Hecke algebras of level $N p^{r+1}$, of weight $k+1 \geq 2$ and of character $\epsilon \psi \omega^{-k}$, where $\epsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p^{r}}$ ($r \geq 0$) and $k \geq 1$ vary. If N is cube-free, \mathbf{h} is a reduced algebra;
- Each prime $P \in \operatorname{Spec}(\mathrm{~h})$ has a unique Galois representation
$\rho_{P}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\kappa(P)), \quad \operatorname{Tr} \rho_{P}\left(\mathrm{Frob}_{l}\right)=T(l) \bmod P(l \nmid N p)$
for the residue field $\kappa(P)$ of P;
- $\left.\rho_{P}\right|_{\mathrm{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)} \cong\left(\begin{array}{cc}\epsilon_{P} & * \\ 0 & \delta_{P}\end{array}\right)$ with unramified quotient character δ_{P}.

§4. Ring theoretic setting.

Let $\operatorname{Spec}(\mathbb{T})$ be the connected component of $\operatorname{Spec}(\mathbf{h})$ of $\bar{\rho}:=\rho_{\mathbb{T}}$ $\bmod \mathfrak{m}_{\mathbb{T}}=\operatorname{Ind} \mathbb{Q}_{F}^{\mathbb{\varphi}} \overline{\text {. }}$. Since \mathbb{T} is universal among ordinary deformation of $\bar{\rho}$ with certain extra properties insensitive to the twist $\rho \mapsto \rho \otimes \chi$ for $\chi=\left(\frac{F / \mathbb{Q}}{}\right), \mathbb{T}$ has an algebra involution σ over \wedge coming from the twist. For any ring A with an involution σ, we put $A_{ \pm}=A^{ \pm}:=\{x \in A \mid \sigma(x)= \pm x\}$. Then $A_{+} \subset A$ is a subring and A_{-}is an A_{+}-module.

It is easy to see

- For the ideal I of \mathbb{T} generated by \mathbb{T}_{-}(the "-" eigenspace), we have a canonical isomorphism $\mathbb{T} / I \cong W\left[\left[\Gamma_{-}\right]\right]$as \wedge-algebras, where the Λ-algebra structure is given by sending $u \in \Gamma$ naturally into $u \in O_{\mathfrak{p}}^{\times}=\mathbb{Z}_{p}^{\times}$and then projecting the local Artin symbol $\tau=\left[u, F_{\mathfrak{p}}\right] \in \Gamma$ to $\sqrt{\tau c \tau^{-1} c^{-1}}=\tau^{(1-c) / 2} \in \Gamma_{-}$.

§5. Non CM components.

- The fixed points $\operatorname{Spec}(\mathbb{T})^{\sigma=1}$ is known to be canonically isomorphic to $\operatorname{Spec}\left(W\left[\left[\Gamma_{-}\right]\right]\right)$,
- $Y^{-}\left(\varphi^{-}\right) \neq 0$ if and only if σ is non-trivial on \mathbb{T} (and hence $\left.\mathbb{T} \neq W\left[\left[\Gamma_{-}\right]\right]\right)$.
- The ring \mathbb{T} is reduced (as N is cube-free), and for the kernel $I=\mathbb{T}(\sigma-1) \mathbb{T}=\operatorname{Ker}\left(\mathbb{T} \rightarrow W\left[\left[\Gamma_{-}\right]\right]\right), I$ span over $\operatorname{Frac}(\Lambda)$ a ring direct summand X complementary to $\operatorname{Frac}\left(W\left[\left[\Gamma_{-}\right]\right]\right)$.

We write $\mathbb{T}^{\mathrm{ncm}}$ for the image of \mathbb{T} in the ring direct summand X (and call it the non-CM component of \mathbb{T}). Plainly $\mathbb{T}^{\text {ncm }}$ is stable under σ, but

$$
\operatorname{Spec}\left(\mathbb{T}^{\mathrm{ncm}}\right)^{\sigma=1} \text { has codimension } 1 \text { in } \operatorname{Spec}\left(\mathbb{T}^{\mathrm{ncm}}\right)
$$

which does not therefore contain an irreducible component.
§6. Galois deformation theory. By irreducibility of $\bar{\rho}$, we have a Galois representation

$$
\rho_{\mathbb{T}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T}) \text { with } \operatorname{Tr}\left(\rho_{\mathbb{T}}\left(\mathrm{Frob}_{l}\right)\right)=T(l)
$$

for all primes $l \nmid N p$. By the celebrated $R=\mathbb{T}$ theorem of Taylor-Wiles, the couple ($\mathbb{T}, \rho_{\mathbb{T}}$) is universal among deformations $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(A)$ satisfying
(D1) $\rho \bmod \mathfrak{m}_{A} \cong \bar{\rho}$.
(D2) $\left.\rho\right|_{\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)} \cong\left(\begin{array}{cc}\epsilon \\ 0 & \delta\end{array}\right)$ with δ unramified.
(D3) $\left.\operatorname{det}(\rho)\right|_{I_{l}}=\psi_{l}$ for the l-part ψ_{l} of ψ for each prime $l \mid N$.
(D4) $\left.\left.\operatorname{det}(\rho)\right|_{I_{p}} \equiv \psi\right|_{I_{p}} \bmod \mathfrak{m}_{A}\left(\left.\left.\Leftrightarrow \epsilon\right|_{I_{p}} \equiv \psi\right|_{I_{p}} \bmod \mathfrak{m}_{A}\right)$.
By the $R=\mathbb{T}$ theorem and a theorem of Mazur, if $p \nmid h_{F}$,

$$
I / I^{2}=\Omega_{\mathbb{T} / \wedge} \otimes_{\mathbb{T}} W\left[\left[\Gamma_{-}\right]\right] \cong Y^{-}\left(\varphi^{-}\right)
$$

and principality of I implies cyclicity.

§7. Theorem.

Theorem A: Suppose (H1-5). Then for the following statements $(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftarrow(4)$:
(1) The rings $\mathbb{T}^{\mathrm{ncm}}$ and $\mathbb{T}_{+}^{\mathrm{ncm}}$ are both local complete intersections free of finite rank over \wedge.
(2) The $\mathbb{T}^{\mathrm{ncm}}$-ideal $I=\mathbb{T}(\sigma-1) \mathbb{T} \subset \mathbb{T}^{\mathrm{ncm}}$ is principal and is generated by a non-zero-divisor $\theta \in \mathbb{T}_{-}=\mathbb{T}_{-}^{\text {ncm }}$ with $\theta^{2} \in \mathbb{T}_{+}^{\text {ncm }}$, and $\mathbb{T}^{\mathrm{ncm}}=\mathbb{T}_{+}^{\mathrm{ncm}}[\theta]$ is free of rank 2 over $\mathbb{T}_{+}^{\mathrm{ncm}}$.
(3) The Iwasawa module $Y^{-}\left(\varphi^{-}\right)$is cyclic over $W\left[\left[\Gamma_{-}\right]\right]$.
(4) The Iwasawa module $Y^{-}\left(\varphi^{-} \omega\right)$ is cyclic over $W\left[\left[\Gamma_{-}\right]\right]$.

Under the condition (4), the ring \mathbb{T}_{+}is a local complete intersection.
(2) \Leftrightarrow (3) follows from $I / I^{2} \cong Y^{-}\left(\varphi^{-}\right)$, and we expect (3) \Leftrightarrow
(4) (a sort of modulo p Tate duality).
\S 8. A key duality lemma from the theory of dualizing modules by Grothendieck, Hartshorne and Kleiman in a simplest case:

Lemma 1 (Key lemma). Let S be a p-profinite Gorenstein integral domain and A be a reduced Gorenstein local S-algebra free of finite rank over S. Suppose

- A has a ring involution σ with $A_{+}:=\{a \in A \mid \sigma(a)=a\}$,
- A_{+}is Gorenstein,
- Frac $(A) / \operatorname{Frac}\left(A_{+}\right)$is étale quadratic extension.
- $\mathfrak{d}_{A / A_{+}}^{-1}:=\left\{x \in \operatorname{Frac}(A) \mid \operatorname{Tr}_{A / A_{+}}(x A) \subset A_{+}\right\} \supsetneq A$,

Then A is free of rank 2 over A_{+}and $A=A_{+} \oplus A_{+} \delta$ for an element $\delta \in A$ with $\sigma(\delta)=-\delta$.
Lemma 2. Let S be a Gorenstein local ring. Let A be a local Cohen-Macaulay ring and is an S-algebra with $\operatorname{dim} A=\operatorname{dim} S$. If A is an S-module of finite type, the following conditions are equivalent:

- The local ring A is Gorenstein;
- $A^{\dagger}:=\operatorname{Hom}_{S}(A, S) \cong A$ as A-modules.
§9. We can apply the key lemmas to $\mathbb{T}^{\mathrm{ncm}}:(1) \Leftrightarrow(2)$.
$\mathbf{(1)} \Rightarrow \mathbf{(2) : ~} \mathbb{T}^{\mathrm{ncm}}$ and $\mathbb{T}_{+}^{\mathrm{ncm}}$ are local complete intersections by assumption; so, Gorenstein.

Use of Main conjecture: The proof of the anti-cyclotomic Main conjecture by Mazur-Tilouine (combined with a theorem of Tate on Gorenstein rings [MFG, Lemma 5.21]) shows
 so, $\mathfrak{d}_{\mathbb{T}} \mathrm{ncm} / \mathbb{T}_{+}^{\mathrm{ncm}} \subset \mathfrak{m}_{\mathbb{T}} \mathrm{ncm}$ for the anti-Cyclotomic Katz p-adic L function $L_{p}^{-}\left(\varphi^{-}\right)$. The key lemma tells us (2).
$\mathbf{(2)} \Rightarrow \mathbf{(1) : ~ W e ~ h a v e ~} I=(\theta) \subset \mathbb{T}^{\mathrm{ncm}}$ and $I_{+}=\left(\theta^{2}\right) \subset \mathbb{T}^{\mathrm{ncm}}$.
Note that $\mathbb{T}^{n c m} /(\theta) \cong W\left[\left[\Gamma_{-}\right]\right] /\left(L_{p}\left(\varphi^{-}\right)\right) \cong \mathbb{T}_{+}^{n c m} /\left(\theta^{2}\right)$. Since θ is a non-zero divisor, the two rings $\mathbb{T}^{\mathrm{ncm}}$ and $\mathbb{T}_{+}^{\mathrm{ncm}}$ are local complete intersection.

§10. Presentation of \mathbb{T}.

To see a possibility of applying the key lemma to $\mathbb{T} / \mathbb{T}_{+}$, we like to lift \mathbb{T} to a power series ring $\mathcal{R}=\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ with an involution σ_{∞} such that $\mathcal{R}^{+}:=\left\{r \in \mathcal{R} \mid \sigma_{\infty}(r)=-r\right\}$ is Gorenstein and that $\left(\mathcal{R} / \mathfrak{A}, \sigma_{\infty} \bmod \mathfrak{A}\right) \cong(\mathbb{T}, \sigma)$ for an ideal \mathfrak{A} stable under σ_{∞}.

Taylor and Wiles (with a later idea of Diamond and Fujiwara) found a pair $\left(\mathcal{R}:=\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right],\left(S_{1}, \ldots, S_{r}\right)\right)$ with a regular sequence $\left.S:=\left(S_{1}, \ldots, S_{r}\right) \subset \wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right]\right)$ such that

$$
\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right] /\left(S_{1}, \ldots, S_{r}\right) \cong \mathbb{T}
$$

by their Taylor-Wiles system argument.

We need to lift σ somehow to an involution $\sigma_{\infty} \in \operatorname{Aut}(\mathcal{R})$ and show also that \mathcal{R}^{+}is Gorenstein. If further $\mathfrak{d}_{\mathcal{R} / \mathcal{R}^{-}} \subset \mathfrak{m}_{\mathcal{R}}, \mathcal{R} \cdot \mathcal{R}^{-}=$ $\left(\delta_{\infty}\right)$ and the image $\delta \in \mathbb{T}^{-}$of δ_{∞} in \mathbb{T} generates I as desired.
§11. Taylor-Wiles method. Taylor-Wiles found an integer $r>0$ and an infinite sequence of r-sets $\mathcal{Q}:=\left\{Q_{m} \mid m=1,2, \ldots\right\}$ of primes $q \equiv 1 \bmod p^{m}$ such that for the local ring $\mathbb{T}^{Q_{m}}$ of $\bar{\rho}$ of the Hecke algebra $\mathbf{h}^{Q_{m}}$ of tame-level $N_{m}=N \prod_{q \in Q_{m}} q$. The pair ($\mathbb{T}^{Q_{m}}, \rho_{\mathbb{T}_{m}}$) is universal among deformation satisfying (D1-4) but ramification at $q \in Q_{m}$ is allowed. Then $\rho \mapsto \rho \otimes \chi$ induces an involution $\sigma_{Q_{m}}$ and $\mathbb{T}_{+}^{Q_{m}}:=\left\{x \in \mathbb{T}^{Q_{m}} \mid \sigma_{Q_{m}}(x)=x\right\}$ is Gorenstein.

Actually they work with $\mathbb{T}_{Q_{m}}=\mathbb{T}^{Q_{m}} /\left(t-\gamma^{k}\right) \mathbb{T}^{Q_{m}}(t=1+T$, $\gamma=1+p \in \Gamma$; the weight k Hecke algebra of weight $k \geq 2$ fixed). The product inertia group $I_{Q_{m}}=\prod_{q \in Q_{m}} I_{q}$ acts on $\mathbb{T}_{Q_{m}}$ by the p abelian quotient $\Delta_{Q_{m}}$ of $\Pi_{q \in Q_{m}}(\mathbb{Z} / q \mathbb{Z})^{\times}$. We choose an ordering of primes $Q_{m}=\left\{q_{1}, \ldots, q_{r}\right\}$ and a generator $\delta_{i, m(n)}$ of the p Sylow group of $\left(\mathbb{Z} / q_{i} \mathbb{Z}\right)^{\times}$. The sequence \mathcal{Q} is chosen so that for a given integer $n>0$, we can find $m=m(n)>n$ so that we have ring projection maps $R_{n+1} \rightarrow R_{n}:=\mathbb{T}_{Q_{m(n)}} /\left(p^{n}, \delta_{i, m(n)}^{p^{n}}-1\right)_{i}$, and $R_{\infty}=\varliminf_{n} R_{n} \cong W\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ and $S_{i}=\varliminf_{n}\left(\delta_{i, m(n)}-1\right)$.

\S 12. Lifting involution.

Write $\overline{\mathcal{S}}_{n}$ for the image of $W[[S]]$ for $S=\left(S_{1}, \ldots, S_{r}\right)$ in $R_{n}\left(\overline{\mathcal{S}}_{n}\right.$ is a Gorenstein local ring). We can add the involution to this projective system and an R_{n}-linear isomorphism $\phi_{n}: R_{n}^{\dagger}:=$ $\operatorname{Hom}_{\overline{\mathcal{S}}_{n}}\left(R_{n}, \overline{\mathcal{S}}_{n}\right) \cong R_{n}$ commuting with the involution σ_{n} of R_{n} induced by $\sigma_{Q_{m(n)}}$ to the Taylor-Wiles system, and get the lifting

$$
\begin{gathered}
\sigma_{\infty} \in \operatorname{Aut}\left(R_{\infty}\right) \\
\text { with } \phi_{\infty}: R_{\infty}^{\dagger}:=\operatorname{Hom}_{W[[S]]}\left(R_{\infty}, W[[S]]\right) \cong R_{\infty}
\end{gathered}
$$

compatible with σ_{∞}; i.e., $\phi_{\infty} \circ \sigma_{\infty}=\sigma_{\infty} \circ \phi_{\infty}$. This shows

$$
R_{\infty}^{+, \dagger} \cong R_{\infty}^{+}
$$

as R_{∞}^{+}-modules, as desired. Then we can further lift involution to $\mathcal{R}=\wedge\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ as $\mathcal{R} /\left(t-\gamma^{k}\right)=R_{\infty}$ for $t=1+T$.

The remaining point of the key lemma I have not done is to show

$$
\mathfrak{d}_{\mathcal{R} / \mathcal{R}}+\subset \mathfrak{m}_{\mathcal{R}} ?
$$

$\S 13$. Index set of Q_{m} (towards (4) $\Leftrightarrow(2)$).
Write \mathcal{D}_{q} for the local version of the deformation functor associated to (D1-4) adding a fixed determinant condition
(det) $\operatorname{det}(\rho)=\nu^{k} \psi$ for the chosen $k \geq 2$ (the weight condition); so, the tangent spec of \mathbb{T} is given by a Selmer group $\operatorname{Sel}(A d)$ for $A d=\mathfrak{s l}_{2}(\mathbb{F})$.

Then the index set of Q_{m} is any choice of \mathbb{F}-basis of a "dual" Selmer group. Regard $\mathcal{D}_{q}(\mathbb{F}[\epsilon])$ for the dual number ϵ as a subspace of $H^{1}\left(\mathbb{Q}_{q}, A d\right)$ in the standard way: Thus we have the orthogonal complement $\mathcal{D}_{q}(\mathbb{F}[\epsilon])^{\perp} \subset H^{1}\left(\mathbb{Q}_{q}, A d^{*}(1)\right)$ under Tate local duality. The dual Selmer group $\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)$ is given by
$\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right):=\operatorname{Ker}\left(H^{1}\left(\mathbb{Q}^{(N p)} / \mathbb{Q}, A d^{*}(1)\right) \rightarrow \prod_{l \mid N p} \frac{H^{1}\left(\mathbb{Q}_{l}, A d^{*}(1)\right)}{\mathcal{D}_{l}(\mathbb{F}[\epsilon])^{\perp}}\right)$.
Then $r=\operatorname{dim}_{\mathbb{F}} \operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)$.

§14. Interpretation of the dual Selmer group.

Define $Q_{m}^{ \pm}:=\left\{q \in Q_{m} \mid \chi(q)= \pm q\right\}$. Then if S_{q} is the variable in $W[[S]]$ corresponding from $q \in Q_{m}^{ \pm}$, then $\sigma\left(1+S_{q}\right)=\left(1+S_{q}\right)^{ \pm 1}$.

We have splitting $A d=\bar{\chi} \oplus \operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}^{-}$; so, $\operatorname{Sel}^{\perp}\left(A d^{*}(1)\right)=\operatorname{Sel}^{\perp}(\bar{\chi}(1)) \oplus$ $\operatorname{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right)$ and

$$
\operatorname{Sel}^{\perp}\left(\operatorname{Ind}_{F}^{\mathbb{Q}}\left(\bar{\varphi}^{-}(1)\right)\right)=\operatorname{Hom}_{W\left[\left[\Gamma_{-}\right]\right]}\left(Y^{-}\left(\varphi^{-} \omega\right), \mathbb{F}\right) .
$$

Thus the number $\mu_{W[[S]]_{+}}\left(W[[S]]_{-}\right)$of generators of $W[[S]]_{-}$ over $W[[S]]_{+}$is

$$
\mu_{W[[S]]_{+}}\left(W[[S]]_{-}\right)=\operatorname{dim}_{\mathbb{F}} Y^{-}\left(\varphi^{-} \omega\right) \otimes_{W\left[\left[\Gamma_{-}\right]\right]} \mathbb{F} .
$$

Writing a number of generators of an A-module M over A as $\mu_{A}(M)$, we thus have

$$
\mu_{W[[S]]_{+}}\left(W[[S]]_{-}\right)=\operatorname{codim}_{\operatorname{Spec}(W[[S]])} \operatorname{Spec}(W[[S]])^{\sigma=1} .
$$

§15. Generator count $\mu_{R_{\infty}^{+}}\left(R_{\infty}^{-}\right)$of R_{∞}^{-}.
Lemma 3. We have

$$
\begin{aligned}
\mu_{R_{\infty}^{+}}\left(R_{\infty}^{-}\right)=\operatorname{codim}_{\operatorname{Spec}(W[[S]])} \operatorname{Spec} & (W[[S]])^{\sigma=1} \\
& =\operatorname{dim}_{\mathbb{F}} Y^{-}\left(\varphi^{-} \omega\right) \otimes_{W\left[\left[\Gamma_{-}\right]\right]} \mathbb{F}
\end{aligned}
$$

In the construction of Taylor-Wiles system, for each $q \in Q_{m}$, an eigenvalue of $\bar{\rho}\left(\operatorname{Frob}_{q}\right)$ is chosen, which is equivalent to choose a factor $\mathfrak{q} \mid q$ if $q \in Q_{m}^{+}$.

Then $\Pi_{q \in Q_{m}^{+}}\left(O_{F} / \mathfrak{q}\right)^{\times}$has p-Sylow subgroup $\Delta_{Q_{m}^{+}}$. The projective limit $\varliminf_{n} \Delta_{Q_{m(n)}} / \Delta_{Q_{m(n)}}^{p^{n}}$ gives rise to a group isomorphic to $\Delta_{+}:=\mathbb{Z}_{p}^{r_{+}}$for $r_{+}=\left|Q_{m}^{+}\right|$.
§16. QED.
Let $I_{\infty}=R_{\infty}(\sigma-1) R_{\infty}, I^{Q}=\mathbb{T}^{Q}(\sigma-1) \mathbb{T}^{Q}$ and $H_{Q}=\Gamma_{-} \times \Delta_{Q^{+}}$.
By $\mathbb{T}^{Q} / I^{Q} \cong W\left[\left[H_{Q}\right]\right]=\mathbb{T}_{+}^{Q} / I_{+}^{Q}$, we get

$$
R_{\infty} / I_{\infty} \cong W\left[\left[\Delta_{+}\right]\right] \cong R_{\infty}^{+} / I_{\infty}^{+} .
$$

Note that

$$
\operatorname{Spec}\left(R_{\infty}\right)^{\sigma=1}=\operatorname{Spec}\left(R_{\infty} / I_{\infty}\right)=\operatorname{Spec}\left(W\left[\left[\Delta_{+}\right]\right]\right) .
$$

Thus we get

$$
\begin{aligned}
\mu_{R_{\infty}^{+}}\left(R_{\infty}^{-}\right)=\operatorname{codim}_{\operatorname{Spec}(W[[S]])} & \operatorname{Spec}\left(W\left[\left[\Delta_{+}\right]\right]\right) \\
& =r_{-}=\operatorname{dim}_{\mathbb{F}} Y^{-}\left(\varphi^{-} \omega\right) \otimes_{W\left[\left[\Gamma_{-}\right]\right]} \mathbb{F}
\end{aligned}
$$

This shows the implication (4) \Rightarrow (2) of Theorem A.

