

\mathcal{L} -INVARIANTS AND p -ORDINARY FAMILIES OF HILBERT MODULAR FORMS

HARUZO HIDA

1. INTRODUCTION

Let $p > 2$ be a prime. After the conjecture of Mazur-Tate-Teitelbaum, number theorists have proposed diverse definitions of the \mathcal{L} -invariant which are expected to give the leading term of the Taylor expansion of a given motivic p -adic L -function at an exceptional zero. For an elliptic curve E/\mathbb{Q} with multiplicative reduction modulo p , its p -adic L -function $L_p(s, E)$ has the following expression at $s = 1$:

$$L_p(1, E) = (1 - (a_p^{-1}p)p^{-s}|_{s=1}) \frac{L_\infty(1, E)}{\text{period}} \quad (s \in \mathbb{C}),$$

where $L_\infty(s, E)$ is the archimedean L -function of E , and a_p is the eigenvalue of the arithmetic Frobenius element at p on the unramified quotient of the p -adic Tate module $T(E)$ of E . Thus if E has *split* multiplicative reduction, $a_p = 1$, and $L_p(s, E)$ has zero at $s = 1$. This type of zero of a p -adic L -function resulted from the modification Euler p -factor is called an exceptional zero, and it is generally believed that if the archimedean L -values does not vanish, the order of the zero is the number e of such Euler p -factors; so, in this case, $e = 1$. Then $L'_p(1, E) = \frac{dL_p(s, E)}{ds}|_{s=1}$ is conjectured to be equal to the archimedean value $\frac{L_\infty(1, E)}{\text{period}}$ times an error factor $\mathcal{L}(E)$, the so-called \mathcal{L} -invariant:

$$L'_p(1, E) = \mathcal{L}(E) \frac{L_\infty(1, E)}{\text{period}}.$$

Writing $E(\mathbb{Q}_p) = \mathbb{Q}_p^\times/q^\mathbb{Z}$ for the Tate period $q \in p\mathbb{Z}_p$, the solution conjectured and proved by Greenberg-Stevens is

$$(\mathcal{L}) \quad \mathcal{L}(E) = \frac{\log_p(q)}{\text{ord}_p(q)}.$$

Since E is modular, it is associated to an elliptic Hecke eigenform f_E of weight 2 with $L(s, f_E) = L(s, E)$. In particular, $f_E|U(p) = a_p f$ for

Talk at PIMS Conference at Banff on December in 2003; The author is partially supported by an NSF grant. DMS 0244401.

$a_p = 1$. We can lift f_E to a unique Λ -adic form \mathcal{F} with $\mathcal{F}|U(p) = a(p)\mathcal{F}$ for a finite flat extension Λ of $\mathbb{Z}_p[[X]]$ so that f_E is a specialization of \mathcal{F} at $X = 0$. Then one of the key ingredient in of the proof of (\mathcal{L}) is:

$$\mathcal{L}(E) = -2 \log_p(\gamma) \frac{da(p)}{dX} \Big|_{X=0} = \log_p(\gamma) \frac{da(p)}{dx} \Big|_{x=0} (1 + x = \sqrt{1 + X}^{-1}),$$

where γ is the generator of $\Gamma = 1 + p\mathbb{Z}_p$ corresponding to $1 + x$ under the identification: $W[[\Gamma]] = W[[x]]$.

Greenberg has generalized the conjectural formula of his \mathcal{L} -invariant to general p -adic representation V of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ when V is p -ordinary. Take a p -ordinary two dimensional Galois representation ρ associated to a Hilbert modular Hecke eigenform f of (parallel) weight $k \geq 2$ for a totally real field F . Let O be the integer ring of F . We write S for the set of all prime factors of p in F , and assume that F/\mathbb{Q} is **unramified** at p . We consider $\Lambda = W[[x_{\mathfrak{p}}]]_{\mathfrak{p} \in S}$ and regard it as the Iwasawa algebra of $\prod_{\mathfrak{p}} N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(1 + \mathfrak{p}O_{\mathfrak{p}})$ sending a generator $\gamma_{\mathfrak{p}} \in 1 + p\mathbb{Z}_p = N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(1 + \mathfrak{p}O_{\mathfrak{p}})$ to $1 + x_{\mathfrak{p}}$. We have a unique Λ -adic Hecke eigenform \mathcal{F} so that its specialization at a point of $\text{Spf}(\Lambda)$ over $(x_{\mathfrak{p}})_{\mathfrak{p}}$ gives f . Write $\mathcal{F}|U(p_{\mathfrak{p}}) = a(\mathfrak{p})\mathcal{F}$. We would like to prove

Theorem 1.1. *If the versal nearly p -ordinary deformation ring R of ρ with the fixed determinant $\det(\rho)$, after localization completion at ρ , is isomorphic to a local ring at ρ of the universal nearly p -ordinary Hecke algebra with the fixed central character, then we have*

$$\mathcal{L}(\text{Ind}_F^{\mathbb{Q}} \text{Ad}(\rho)) = \pm \left(\prod_{\mathfrak{p}} \log_p(\gamma_{\mathfrak{p}}) \right) \det \left(\frac{da(\mathfrak{p})}{dx_{\mathfrak{p}'}} \right)_{\mathfrak{p}, \mathfrak{p}' \in S} \Big|_{x=0}.$$

If f gives an elliptic curve E/F with split multiplicative reduction at all $\mathfrak{p} \in S$, taking the Tate period $q_{\mathfrak{p}}$ with $E(F_{\mathfrak{p}}) = F_{\mathfrak{p}}^{\times}/q_{\mathfrak{p}}^{\mathbb{Z}}$, we have

$$\mathcal{L}(\text{Ind}_F^{\mathbb{Q}} \text{Ad}(\rho)) = \prod_{\mathfrak{p}} \frac{\log_p(N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(q_{\mathfrak{p}}))}{\text{ord}_p(N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(q_{\mathfrak{p}}))}.$$

The assumption of the theorem has been verified in many cases by Wiles, Taylor-Wiles, Diamond, Fujiwara and Skinner-Wiles.

I will try to give the proof of this fact in the rest of the talk, assuming for simplicity that ρ is **finitely** ramified outside p and ∞ .

2. SELMER GROUPS

We recall the Greenberg's definition of Selmer groups. Let K be a finite extension of \mathbb{Q}_p . Fix a finite set Σ of rational primes containing p and write $\mathbb{Q}^{(\Sigma)}/\mathbb{Q}$ for the maximal extension unramified outside Σ

and ∞ . We put $\mathfrak{G} = \text{Gal}(\mathbb{Q}^{(\Sigma)} / \mathbb{Q})$ and $\mathfrak{G}_F = \text{Gal}(\mathbb{Q}^{(\Sigma)} / F)$. Let V be a finite dimensional K -vector space with a continuous action of \mathfrak{G} .

Fix an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p and an embedding $i_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. We write $D = D_p$ for the decomposition group of the p -adic norm: $|*|_p = |i_p(*)|_p$.

Let $\chi : \mathfrak{G} \rightarrow \mathbb{Z}_p^\times$ be the p -adic cyclotomic character; so, $\zeta^\sigma = \zeta^{\chi(\sigma)}$ for $\zeta \in \mu_{p^\infty}$. We assume V to be p -ordinary; so, we have a filtration of the following type for integers a and b with $b \leq 0 < a$:

$$(\text{ord}) \quad V = F^b V \supset F^{b+1} V \supset \cdots \supset F^0 V \supset F^1 V \supset \cdots \supset F^{a+1} V = \{0\}$$

stable under the decomposition group D and the inertia group $I_p \subset D$ acts on each subquotient $F^i V / F^{i+1} V$ by χ^i . Once V satisfies (ord), its dual $V^*(1) = \text{Hom}_K(V, K) \otimes \chi$ again satisfies (ord) for $F^{-i} V^*(1) = (F^i V)^\perp(1)$. Let W be the p -adic integer ring of K , and take a W -lattice T in V stable under \mathfrak{G} .

Let M/\mathbb{Q} be a subfield of $\overline{\mathbb{Q}}$. We write \mathfrak{p} for a prime of M over p and \mathfrak{q} for general primes of M . Write $D_{\mathfrak{q}}$ for the decomposition group at \mathfrak{q} in \mathfrak{G}_M and $I_{\mathfrak{q}}$ for the inertia subgroup of $D_{\mathfrak{q}}$. We write $F^+ V = F^1 V$. For each prime \mathfrak{q} of M , we put

$$L_{\mathfrak{q}}(V) = \begin{cases} \text{Ker}(\text{Res} : H^1(M_{\mathfrak{q}}, V) \rightarrow H^1(I_{\mathfrak{q}}, V)) & \text{if } \mathfrak{q} \nmid p, \\ \text{Ker}(\text{Res} : H^1(M_{\mathfrak{p}}, V) \rightarrow H^1(I_{\mathfrak{p}}, \frac{V}{F^+(V)})) & \text{if } \mathfrak{p} \mid p. \end{cases}$$

Then we define for the image $L_{\mathfrak{q}}(V/T)$ of $L_{\mathfrak{q}}(V)$ in $H^1(M_{\mathfrak{q}}, V/T)$

$$(2.1) \quad \text{Sel}_M(A) = \text{Ker}(H^1(M, A) \rightarrow \prod_{\mathfrak{q}} \frac{H^1(M_{\mathfrak{q}}, A)}{L_{\mathfrak{q}}(A)}) \quad \text{for } A = V, V/T.$$

The classical Selmer group of V is given by $\text{Sel}_M(V/T)$, equipped with discrete topology. Write \mathbb{Q}_∞ for the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . The Selmer group $\text{Sel}_{\mathbb{Q}_\infty}(V/T)$ is an Iwasawa module of co-finite type.

We define $F^{00} V \supset F^+ V$ to be the largest subspace of V stable under D_p so that D_p acts trivially on $F^{00} V / F^+ V$. Similarly let $F^{11} V$ be the smallest subspace of $F^+ V$ so that D_p acts on $F^+ V / F^{11} V$ by χ . Then we write $F^{jj} V / T$ for the image of $F^{jj} V$ in V/T . For simplicity, referring to [G] Section 3 the treatment in more general cases, we assume

(*) Either $F^{11} V = F^+ V$ or $F^{00} V / F^{11} V$ does not have a direct summand isomorphic to K or $K(1)$.

Using the global Tate duality and the Poitou-Tate exact sequence, Greenberg has shown the following implication: ([G] proposition 2):

$$(V) \quad |\text{Sel}_{\mathbb{Q}}(V/T)| < \infty \Rightarrow H^1(\mathfrak{G}, V) \cong \prod_{q \in \Sigma} \frac{H^1(\mathbb{Q}_q, V)}{L_q(V)}.$$

The definition of the Selmer group $\text{Sel}_M(V/T)$ can be obviously extended to a representation V of \mathfrak{G}_F for a number field F and an extension M/F if V is ordinary at every p -adic place $\sigma \in S$ of F . In that case, we call V and T ordinary at p , and we freely speak of Selmer group $\text{Sel}_M(V/T)$ and $\text{Sel}_M(V)$ defined for such \mathfrak{G}_F -representations V . If F/\mathbb{Q} is unramified at p and a \mathfrak{G}_F -representation V is ordinary at p , $\text{Ind}_F^\mathbb{Q} V$ is ordinary at p as a \mathfrak{G} -representation.

3. GREENBERG'S \mathcal{L} -INVARIANT

We suppose the following condition in addition to (V):

(S) D_p acts semi-simply on $gr^i(V) = F^iV/F^{i+1}V$ for all i .

Regard $\text{Sel}_{\mathbb{Q}_\infty}(V/T)$ as an Iwasawa module and write its characteristic power series as $f_V(X) \in W[[X]]$. We set $e = \dim_K F^+V/F^{11}V + \dim_H F^{00}V/F^+V$. Then Greenberg proved $X^e|f_V(X)$ and conjectured in [G] Conjecture 2 that

- (C1) $\text{Sel}_{\mathbb{Q}_\infty}(V/T)$ is a co-torsion module over $W[[X]]$,
- (C2) If the condition (V) is satisfied, $f_V(X)$ is factored as $f_V(X) = X^e g_V(X)$ with $g_V(0) \neq 0$.

Here is Greenberg's definition of $\mathcal{L}(V)$ giving $g_V(0)$: The long exact sequence of $F^{00}V/F^+V \hookrightarrow V/F^+V \rightarrow V/F^{00}V$ gives a homomorphism:

$$H^1(\mathbb{Q}_p, F^{00}V/F^+V) = \text{Hom}(G_{\mathbb{Q}_p}^{ab}, F^{00}V/F^+V) \xrightarrow{\iota} H^1(\mathbb{Q}_p, V)/L_p(V).$$

Note that

$$\text{Hom}(G_{\mathbb{Q}_p}^{ab}, F^{00}V/F^+V) \cong (F^{00}V/F^+V)^2$$

canonically by $\phi \mapsto (\frac{\phi([\gamma, \mathbb{Q}_p])}{\log_p(\gamma)}, \phi([p, \mathbb{Q}_p]))$. Here $[\gamma, \mathbb{Q}_p]$ is the local Artin symbol (suitably normalized). Since

$$L_p(F^{00}V/F^+V) = \text{Ker}(H^1(\mathbb{Q}_p, F^{00}V/F^+V) \xrightarrow{\text{Res}} H^1(I_p, F^{00}V/F^+V)),$$

the image of ι is isomorphic to $F^{00}V/F^+V$. By (V), we have a unique subspace \mathbb{T} of $H^1(\mathfrak{G}, V)$ projecting down onto

$$\text{Im}(\iota) \hookrightarrow \prod_{q \in \Sigma} \frac{H^1(\mathbb{Q}_q, V)}{L_q(V)}.$$

Then by the restriction, \mathbb{T} gives rise to a subspace L of

$$\text{Hom}(G_{\mathbb{Q}_p}^{ab}, F^{00}V/F^+V) \cong (F^{00}V/F^+V)^2$$

isomorphic to $F^{00}V/F^+V$. If a cocycle c representing an element in \mathbb{T} is unramified, it gives rise to an element in $\text{Sel}_{\mathbb{Q}}(V/T)$. By finiteness of $\text{Sel}_{\mathbb{Q}}(V/T)$, this implies $c = 0$; so, the projection of L to the first factor $F^{00}V/F^+V$ (via $\phi \mapsto \phi([\gamma, \mathbb{Q}_p])/\log_p(\gamma)$) is surjective. Thus this

subspace L is a graph of a K -linear map $\mathcal{L} : F^{00}V/F^+V \rightarrow F^{00}V/F^+V$. We then define $\mathcal{L}(V) = \det(\mathcal{L}) \in K$.

4. PROOF OF THE THEOREM

For simplicity, we suppose that p splits completely in F/\mathbb{Q} . We take a p -ordinary Hecke eigenform f and its 2-dimensional Galois representation $\rho : \mathfrak{G}_F \rightarrow GL_2(W)$. We take $T = \text{Ind}_F^\mathbb{Q} Ad(\rho)$ and put $V = T \otimes_W K$. If ρ is p -ordinary at all p -adic places, V is also ordinary. For each $\sigma \in S$, identifying it with $\sigma : F \hookrightarrow \overline{\mathbb{Q}}$ and extending it to \mathfrak{G} , put $D_\sigma = \sigma D \sigma^{-1}$ and ${}_\sigma D = D_\sigma \cap \mathfrak{G}_F$.

For each ${}_\sigma D$, we can define $F_\sigma^{00} Ad(\rho)$. If we take a matrix form $\rho : \mathfrak{G} \rightarrow M_2(W)$ of the Galois representation T so that its restriction to ${}_\sigma D$ is given by $\rho(\tau) = \begin{pmatrix} \epsilon_\sigma(\tau) & \beta_\sigma(\tau) \\ 0 & \delta_\sigma(\tau) \end{pmatrix}$. We may identify $Ad(\rho)$ with the following subspace of $M_2(W)$:

$$\{\xi \in M_2(W) \mid \text{Tr}(\xi) = 0\}.$$

Then $F_\sigma^{00} Ad(\rho)$ is the subspace of $Ad(\rho)$ made up of upper triangular matrices, and $F_\sigma^+ Ad(\rho)$ (on which ${}_\sigma D$ acts by $\epsilon_\sigma \delta_\sigma^{-1}$) is made up of upper nilpotent matrices.

Identifying $\text{Ind}_F^\mathbb{Q} Ad(\rho) = W[\mathfrak{G}] \otimes_{W[\mathfrak{G}_F]} Ad(\rho)$, we have

$$F^?T = \bigoplus_{\sigma \in S} \sigma^{-1} (F_\sigma^? Ad[\rho]) \quad \text{for } ? = 00 \text{ and } +.$$

By Shapiro's lemma, we have for a field M linearly disjoint from F

$$\text{Sel}_M(V/T) \cong \text{Sel}_{MF}(Ad(\rho) \otimes_W K/W),$$

and the following commutative diagram:

$$(4.1) \quad \begin{array}{ccc} H^1(\mathfrak{G}, \text{Ind}_F^\mathbb{Q} V) & \supset & \mathbb{T} & \xrightarrow{\text{Res}} & H^1(\mathbb{Q}_p, \frac{F^{00} \text{Ind}_F^\mathbb{Q} V}{\text{Ind}_F^\mathbb{Q} F^+ V}) \cong \left(\frac{F^{00} \text{Ind}_F^\mathbb{Q} V}{\text{Ind}_F^\mathbb{Q} F^+ V} \right)^2 \\ \downarrow & & \downarrow & & \downarrow \iota_p \\ H^1(\mathfrak{G}_F, V) & \supset & \mathbb{T}_F & \xrightarrow{\text{Res}} & \prod_{\sigma \in S} \sigma^{-1} \left(H^1(\mathbb{Q}_p, \frac{F_\sigma^{00} V}{F_\sigma^+ V}) \right) \cong \prod_{\sigma \in S} \left(\frac{F_\sigma^{00} V}{F_\sigma^+ V} \right)^2. \end{array}$$

Then taking an inhomogeneous cocycle $c : \mathfrak{G}_F \rightarrow Ad(T)$ representing an element of \mathbb{T}_F , we may write $c(\tau) = \begin{pmatrix} a_\sigma(\tau) & b_\sigma(\tau) \\ 0 & -a_\sigma(\tau) \end{pmatrix}$ for $\sigma \in D_\sigma$. The cocycle c therefore gives rise to an infinitesimal nearly ordinary deformation $\tilde{\rho}$ with $\det(\tilde{\rho}) = \det \rho$:

$$\tilde{\rho} : \mathfrak{G}_F \rightarrow GL_2(W[x]/(x^2))$$

by $\tilde{\rho}(\sigma) = \rho(\sigma) + c(\sigma)\rho(\sigma)x$ (see [MFG] 5.2.4).

Let $\rho : \mathfrak{G}_F \rightarrow GL_2(R)$ be the versal nearly ordinary deformation over W for the minimal versal ring R . We thus have a W -algebra homomorphism $\varphi_\rho : R \rightarrow W[x]/(x^2)$ with $\varphi_\rho \circ \rho \cong \tilde{\rho}$. This φ_ρ may not be unique, but its differential $d\varphi_\rho$ from the tangent space $W\frac{\partial}{\partial x}$ of $Spec(W[x]/(x^2))$ to the tangent space T_ρ of $Spec(R_\rho)$ for the localization-completion R_ρ of R at ρ is injective (by the assumption $R_\rho \cong \mathbf{T}_\rho$). Sending c to $d\varphi_\rho(\frac{\partial}{\partial x}) \in T_\rho$, we get an injection $\mathbb{T}_F \hookrightarrow T_\rho$. By our assumption $R_\rho \cong \mathbf{T}_\rho \cong K[[x_\sigma]]_{\sigma \in S}$, T_ρ is generated by $\{\frac{\partial}{\partial x_\sigma}\}_{\sigma \in S}$, and thus T_ρ is $[F : \mathbb{Q}]$ -dimensional over K . By the injectivity we have shown, $\mathbb{T}_F \cong T_\rho$, and we have

$$(4.2) \quad \begin{aligned} a_\sigma([p_\sigma, F_\sigma]) &= \sum_{\tau} c_\tau \frac{d\delta_p([p_\sigma, \mathbb{Q}_p])}{dx_\tau} \Big|_{x=0} \\ a_\sigma([\gamma_\sigma, \mathbb{Q}_p]) &= \sum_{\tau} c_\tau \frac{d\delta_\sigma([\gamma_\sigma, \mathbb{Q}_p])}{dx_\tau} \Big|_{x=0}, \end{aligned}$$

for the generator $\gamma_\sigma = \gamma$ of the σ -component of $1 + pO_p = (1 + p\mathbb{Z}_p)^S$. Thus

$$\mathcal{L}(V) = \pm \prod_{\sigma} (\log_p(\gamma_\sigma)) \det \left(\left(\frac{\partial \delta([\gamma_\sigma, \mathbb{Q}_p])}{\partial x_\tau} \right)_{\sigma, \tau}^{-1} \left(\frac{\partial \delta([p_\sigma, \mathbb{Q}_p])}{\partial x_\tau} \right)_{\sigma, \tau} \right).$$

This yields the desired formula, because $\delta_\sigma([\gamma_\sigma, \mathbb{Q}_p]^s) = (1 + x_\sigma)^s$ and $\mathcal{F}|U(p_\sigma) = \delta_\sigma([p_\sigma, \mathbb{Q}_p])\mathcal{F}$ for the Hecke operator $U(p_\sigma)$.

If f is associated to a split multiplicative abelian variety, it has been shown in my Israeli journal paper that $\left(\frac{\partial \delta([p_\sigma, \mathbb{Q}_p])}{\partial x_\tau} \right)_{\sigma, \tau}$ is diagonal. Then the linear map L is the direct sum of local linear maps sending σ -component $F_\sigma = \mathbb{Q}_p$ into itself. Then an argument due to Greenberg shows the formula relating $\mathcal{L}(V)$ to the product of $\frac{\log_p(q_\sigma)}{\text{ord}_p(q_\sigma)}$ over $\sigma \in S$.

REFERENCES

- [G] R. Greenberg, Trivial zeros of p -adic L -functions, *Contemporary Math.* **165** (1994), 149–174
- [GS] R. Greenberg and G. Stevens, p -adic L -functions and p -adic periods of modular forms, *Inventiones Math.* **111** (1993), 407–447
- [H00] H. Hida, Adjoint Selmer groups as Iwasawa modules, *Israel Journal of Math.* **120** (2000), 361–427
- [MFG] H. Hida, *Modular Forms and Galois Cohomology*, Cambridge Studies in Advanced Mathematics **69**, 2000, Cambridge University Press
- [SW] C. Skinner and A. Wiles, Residually reducible representations and modular forms. *Inst. Hautes tudes Sci. Publ. Math.* No. **89** (2000), 5–126
- [W] A. Wiles, Modular elliptic curves and Fermat’s last theorem, *Ann. of Math.* **141** (1995), 443–551