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1. Introduction

Let p > 2 be a prime. After the conjecture of Mazur-Tate-Teitelbaum,
number theorists have proposed diverse definitions of the L–invariant
which are expected to give the leading term of the Taylor expansion
of a given motivic p–adic L–function at an exceptional zero. For an
elliptic curve E/Q with multiplicative reduction modulo p, its p–adic
L–function Lp(s, E) has the following expression at s = 1:

Lp(1, E) = (1 − (a−1
p p)p−s|s=1)

L∞(1, E)

period
(s ∈ C),

where L∞(s, E) is the archimedean L–function of E, and ap is the
eigenvalue of the arithmetic Frobenius element at p on the unramified
quotient of the p–adic Tate module T (E) of E. Thus if E has split

multiplicative reduction, ap = 1, and Lp(s, E) has zero at s = 1. This
type of zero of a p–adic L–function resulted from the modification Euler
p–factor is called an exceptional zero, and it is generally believed that
if the archimedean L–values does not vanish, the order of the zero is
the number e of such Euler p–factors; so, in this case, e = 1. Then

L′
p(1, E) = dLp(s,E)

ds
|s=1 is conjectured to be equal to the archimedean

value L∞(1,E)
period

times an error factor L(E), the so-called L–invariant:

L′

p(1, E) = L(E)
L∞(1, E)

period
.

Writing E(Qp) = Q×
p /qZ for the Tate period q ∈ pZp, the solution

conjectured and proved by Greenberg-Stevens is

(L) L(E) =
logp(q)

ordp(q)
.

Since E is modular, it is associated to an elliptic Hecke eigenform fE

of weight 2 with L(s, fE) = L(s, E). In particular, fE|U(p) = apf for
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ap = 1. We can lift fE to a unique Λ–adic form F with F|U(p) = a(p)F
for a finite flat extension Λ of Zp[[X]] so that fE is a specialization of
F at X = 0. Then one of the key ingredient in of the proof of (L) is:

L(E) = −2 logp(γ)
da(p)

dX

∣∣∣
X=0

= logp(γ)
da(p)

dx

∣∣∣
x=0

(1 + x =
√

1 + X
−1

),

where γ is the generator of Γ = 1 + pZp corresponding to 1 + x under
the identification: W [[Γ]] = W [[x]].

Greenberg has generalized the conjectural formula of his L–invariant
to general p-adic representation V of Gal(Q/Q) when V is p–ordinary.
Take a p-ordinary two dimensional Galois representation ρ associated
to a Hilbert modular Hecke eigenform f of (parallel) weight k ≥ 2
for a totally real field F . Let O be the integer ring of F . We write
S for the set of all prime factors of p in F , and assume that F/Q
is unramified at p. We consider Λ = W [[xp]]p∈S and regard it as
the Iwasawa algebra of

∏
p NFp/Qp

(1 + pOp) sending a generator γp ∈
1 + pZp = NFp/Qp

(1 + pOp) to 1 + xp. We have a unique Λ–adic Hecke
eigenform F so that its specialization at a point of Spf(Λ) over (xp)p

gives f . Write F|U(pp) = a(p)F . We would like to prove

Theorem 1.1. If the versal nearly p–ordinary deformation ring R of ρ
with the fixed determinant det(ρ), after localization completion at ρ, is

isomorphic to a local ring at ρ of the universal nearly p–ordinary Hecke

algebra with the fixed central character, then we have

L(IndQ
F Ad(ρ)) = ±

(
∏

p

logp(γp)

)
det

(
da(p)

dxp′

)

p,p′∈S

∣∣∣
x=0

.

If f gives an elliptic curve E/F with split multiplicative reduction at all

p ∈ S, taking the Tate period qp with E(Fp) = F×
p /qZ

p , we have

L(IndQ
F Ad(ρ)) =

∏

p

logp(NFp/Qp
(qp))

ordp(NFp/Qp
(qp))

.

The assumption of the theorem has been verified in many cases by
Wiles, Taylor-Wiles, Diamond, Fujiwara and Skinner-Wiles.

I will try to give the proof of this fact in the rest of the talk, assuming
for simplicity that ρ is finitely ramified outside p and ∞.

2. Selmer Groups

We recall the Greenberg’s definition of Selmer groups. Let K be a
finite extension of Qp. Fix a finite set Σ of rational primes containing
p and write Q(Σ)/Q for the maximal extension unramified outside Σ
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and ∞. We put G = Gal(Q(Σ)/Q) and GF = Gal(Q(Σ)/F ). Let V be
a finite dimensional K-vector space with a continuous action of G.

Fix an algebraic closure Qp of Qp and an embedding ip : Q ↪→ Qp.
We write D = Dp for the decomposition group of the p–adic norm:
| ∗ |p = |ip(∗)|p.

Let χ : G → Z×
p be the p-adic cyclotomic character; so, ζσ = ζχ(σ)

for ζ ∈ µp∞. We assume V to be p-ordinary; so, we have a filtration of
the following type for integers a and b with b ≤ 0 < a:

(ord) V = F bV ⊃ F b+1V ⊃ · · · ⊃ F 0V ⊃ F 1V ⊃ · · · ⊃ F a+1V = {0}
stable under the decomposition group D and the inertia group Ip ⊂ D
acts on each subquotient F iV/F i+1V by χi. Once V satisfies (ord), its
dual V ∗(1) = HomK(V, K) ⊗ χ again satisfies (ord) for F−iV ∗(1) =
(F iV )⊥(1). Let W be the p–adic integer ring of K, and take a W–
lattice T in V stable under G.

Let M/Q be a subfield of Q. We write p for a prime of M over p and
q for general primes of M . Write Dq for the decomposition group at q

in GM and Iq for the inertia subgroup of Dq. We write F +V = F 1V .
For each prime q of M , we put

Lq(V ) =

{
Ker(Res : H1(Mq, V ) → H1(Iq, V )) if q - p,

Ker(Res : H1(Mp, V ) → H1(Ip,
V

F+(V )
)) if p|p.

Then we define for the image Lq(V/T ) of Lq(V ) in H1(Mq, V/T )

(2.1) SelM(A) = Ker(H1(M, A) →
∏

q

H1(Mq, A)

Lq(A)
) for A = V, V/T .

The classical Selmer group of V is given by SelM (V/T ), equipped with
discrete topology. Write Q∞ for the cyclotomic Zp–extension of Q. The
Selmer group SelQ∞

(V/T ) is an Iwasawa module of co-finite type.
We define F 00V ⊃ F +V to be the largest subspace of V stable under

Dp so that Dp acts trivially on F 00V/F +V . Similarly let F 11V be the
smallest subspace of F +V so that Dp acts on F +V/F 11V by χ. Then
we write F jjV/T for the image of F jjV in V/T . For simplicity, referring
to [G] Section 3 the treatment in more general cases, we assume

(∗) Either F 11V = F +V or F 00V/F 11V does not have a direct
summand isomorphic to K or K(1).

Using the global Tate duality and the Poitou-Tate exact sequence,
Greenberg has shown the following implication: ([G] proposition 2):

(V) |SelQ(V/T )| < ∞ ⇒ H1(G, V ) ∼=
∏

q∈Σ

H1(Qq, V )

Lq(V )
.
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The definition of the Selmer group SelM (V/T ) can be obviouly ex-
tended to a representation V of GF for a number field F and an ex-
tension M/F if V is ordinary at every p-adic place σ ∈ S of F . In
that case, we call V and T ordinary at p, and we freely speak of Selmer
group SelM(V/T ) and SelM (V ) defined for such GF -representations V .
If F/Q is unramified at p and a GF -representation V is ordinary at p,
IndQ

F V is ordinary at p as a G-representation.

3. Greenberg’s L–invariant

We suppose the following condition in addition to (V):

(S) Dp acts semi-simply on gri(V ) = F iV/F i+1V for all i.

Regard SelQ∞
(V/T ) as an Iwasawa module and write its characteristic

power series as fV (X) ∈ W [[X]]. We set e = dimK F +V/F 11V +
dimH F 00V/F +V . Then Greenberg proved Xe|f(X) and conjectured
in [G] Conjecture 2 that

(C1) SelQ∞
(V/T ) is a co-torsion module over W [[X]],

(C2) If the condition (V) is satisfied, fV (X) is factored as fV (X) =
XegV (X) with gV (0) 6= 0.

Here is Greenberg’s definition of L(V ) giving gV (0): The long exact
sequence of F 00V/F +V ↪→ V/F +V � V/F 00V gives a homomorphism:

H1(Qp, F
00V/F +V ) = Hom(Gab

Qp
, F 00V/F +V )

ι−→ H1(Qp, V )/Lp(V ).

Note that
Hom(Gab

Qp
, F 00V/F +V ) ∼= (F 00V/F +V )2

canonically by φ 7→ (
φ([γ,Qp])

logp(γ)
, φ([p, Qp])). Here [x, Qp] is the local Artin

symbol (suitably normalized). Since

Lp(F
00V/F +V ) = Ker(H1(Qp, F

00V/F +V )
Res−−→ H1(Ip, F

00V/F +V )),

the image of ι is isomorphic to F 00V/F +V . By (V), we have a unique
subspace T of H1(G, V ) projecting down onto

Im(ι) ↪→
∏

q∈Σ

H1(Qq, V )

Lq(V )
.

Then by the restriction, T gives rise to a subspace L of

Hom(Gab
Qp

, F 00V/F +V ) ∼= (F 00V/F +V )2

isomorphic to F 00V/F +V . If a cocycle c representing an element in T
is unramified, it gives rise to an element in SelQ(V/T ). By finiteness
of SelQ(V/T ), this implies c = 0; so, the projection of L to the first
factor F 00V/F +V (via φ 7→ φ([γ, Qp])/ logp(γ)) is surjective. Thus this
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subspace L is a graph of a K–linear map L : F 00V/F +V → F 00V/F +V .
We then define L(V ) = det(L) ∈ K.

4. Proof of the theorem

For simplicity, we suppose that p splits completely in F/Q. We
take a p–ordinary Hecke eigenform f and its 2–dimensional Galois rep-
resentation ρ : GF → GL2(W ). We take T = IndQ

F Ad(ρ) and put
V = T ⊗W K. If ρ is p-ordinary at all p-adic places, V is also ordinary.
For each σ ∈ S, identifying it with σ : F ↪→ Q and extending it to G,
put Dσ = σDσ−1 and σD = Dσ ∩ GF .

For each σD, we can define F 00
σ Ad(ρ). If we take a matrix form

ρ : G → M2(W ) of the Galois representation T so that its restriction

to σD is given by ρ(τ ) =
(

εσ(τ ) βσ(τ )
0 δσ(τ )

)
. We may identify Ad(ρ) with

the following subspace of M2(W ):
{
ξ ∈ M2(W )

∣∣Tr(ξ) = 0
}

.

Then F 00
σ Ad(ρ) is the subspace of Ad(ρ) made up of upper triangular

matrices, and F +
σ Ad(ρ) (on which σD acts by εσδ

−1
σ )) is made up of

upper nilpotent matrices.
Identifying IndQ

F Ad(ρ) = W [G] ⊗W [GF ] Ad(ρ), we have

F ?T =
⊕

σ∈S

σ−1
(
F ?

σAd[ρ]
)

for ? = 00 and +.

By Shapiro’s lemma, we have for a field M linearly disjoint from F

SelM (V/T ) ∼= SelMF (Ad(ρ) ⊗W K/W ),

and the following commutative diagram:
(4.1)

H1(G, IndQ
F V ) ⊃ T

Res−−→ H1(Qp,
F 00 IndQ

F
V

IndQ
F

F+V
) ∼=

(
F 00 IndQ

F
V

IndQ
F

F+V

)2

o
y o

y ιp
y

H1(GF , V ) ⊃ TF
Res−−→ ∏

σ∈S σ−1
(
H1(Qp,

F 00
σ V

F+
σ V

)
)
∼=
∏

σ∈S

(
F 00

σ V

F+
σ V

)2

.

Then taking an inhomogeneous cocycle c : GF → Ad(T ) representing

an element of TF , we may write c(τ ) =
(

aσ(τ ) bσ(τ )
0 −aσ(τ )

)
for σ ∈ Dσ.

The cocycle c therefore gives rise to an infinitesimal nearly ordinary
deformation ρ̃ with det(ρ̃) = det ρ:

ρ̃ : GF → GL2(W [x]/(x2)))

by ρ̃(σ) = ρ(σ) + c(σ)ρ(σ)x (see [MFG] 5.2.4).
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Let ρ : GF → GL2(R) be the versal nearly ordinary deformation over
W for the minimal versal ring R. We thus have a W -algebra homomor-
phism ϕρ : R → W [x]/(x2) with ϕρ◦ρ ∼= ρ̃. This ϕρ may not be unique,
but its differential dϕρ from the tangent space W ∂

∂x
of Spec(W [x]/(x2))

to the tangent space Tρ of Spec(Rρ) for the localization-completion
Rρ of R at ρ is injective (by the assumption Rρ

∼= Tρ). Sending c
to dϕρ

(
∂
∂x

)
∈ Tρ, we get an injection TF ↪→ Tρ. By our assump-

tion Rρ
∼= Tρ

∼= K[[xσ]]σ∈S, Tρ is generated by { ∂
∂xσ

}σ∈S, and thus

Tρ is [F : Q]-dimensional over K. By the injectivity we have shown,
TF

∼= Tρ, and we have

aσ([pσ, Fσ]) =
∑

τ

cτ
dδp([pσ, Qp])

dxτ

∣∣∣
x=0

aσ([γσ, Qp]) =
∑

τ

cτ
dδσ([γσ, Qp])

dxτ

∣∣∣
x=0

,

(4.2)

for the generator γσ = γ of the σ-component of 1 + pOp = (1 + pZp)
S .

Thus

L(V ) = ±
∏

σ

(
logp(γσ)

)
det

((
∂δ([γs, Qp]

∂xτ

)−1

σ,τ

(
∂δ([ps, Qp])

∂xτ

)

σ,τ

)
.

This yields the desired formula, beacuse δσ([γσ, Qp]
s) = (1 + xσ)

s and
F|U(pσ) = δσ([pσ, Qp)]F for the Hecke operator U(pσ).

If f is associated to a split multiplicative abelian variety, it has beeen

shown in my Israeli journal paper that
(

∂δ([ps,Qp])
∂xτ

)

σ,τ
is diagonal. Then

the the linear map L is the direct sum of local linear maps sending σ-
component Fσ = Qp into itself. Then an argument due to Greenberg

shows tha formula relating L(V ) to the product of
logp(qσ)

ordp(qσ)
over σ ∈ S.
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