L-INVARIANTS AND p-ORDINARY FAMILIES
OF HILBERT MODULAR FORMS

HARUZO HIDA

1. INTRODUCTION

Let p > 2 be a prime. After the conjecture of Mazur-Tate-Teitelbaum,
number theorists have proposed diverse definitions of the L—invariant
which are expected to give the leading term of the Taylor expansion
of a given motivic p—adic L—function at an exceptional zero. For an
elliptic curve E/g with multiplicative reduction modulo p, its p-adic
L-function L,(s, E') has the following expression at s = 1:
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where Lo (s, F) is the archimedean L—function of E, and a, is the
eigenvalue of the arithmetic Frobenius element at p on the unramified
quotient of the p-adic Tate module T'(F) of E. Thus if E has split
multiplicative reduction, a, = 1, and L,(s, E') has zero at s = 1. This
type of zero of a p—adic L—function resulted from the modification Euler
p-factor is called an exceptional zero, and it is generally believed that
if the archimedean L—values does not vanish, the order of the zero is
the number e of such Euler p—factors; so, in this case, e = 1. Then

L,(1,E) = dbp(B)| _\is conjectured to be equal to the archimedean

ds
L*(}’f) times an error factor L(E), the so-called L-invariant:
perio
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Writing E£(Q,) = Q) /g% for the Tate period ¢ € pZ,, the solution

conjectured and proved by Greenberg-Stevens is

log,,(q)
(L) L(F) = —2—.
)= oy )
Since F is modular, it is associated to an elliptic Hecke eigenform fg

of weight 2 with L(s, fg) = L(s, F). In particular, fg|U(p) = a,f for

Ly(1,E) = (1 = (a,'p)p~*|s=1)

value

L/(1,E) = L(E)
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a, = 1. We can lift fr to a unique A-adic form F with F|U(p) = a(p)F
for a finite flat extension A of Z,[[X]] so that fg is a specialization of
F at X = 0. Then one of the key ingredient in of the proof of (£) is:

d;g) = ogp(v)dzgf) - (l+z=Vi+ X ),

where 7 is the generator of I' = 1 + pZ, corresponding to 1 4+ = under
the identification: W|[[I']] = W[[z]].

Greenberg has generalized the conjectural formula of his L-invariant
to general p-adic representation V' of Gal(Q/Q) when V is p-ordinary.
Take a p-ordinary two dimensional Galois representation p associated
to a Hilbert modular Hecke eigenform f of (parallel) weight & > 2
for a totally real field F'. Let O be the integer ring of . We write
S for the set of all prime factors of p in F', and assume that F/Q
is unramified at p. We consider A = W/[[z,|]pes and regard it as
the Iwasawa algebra of Hp NE, j0,(1 + pOy) sending a generator 7, €
1+ pZy = Np, jg,(1 +pO,) to 14 x,. We have a unique A-adic Hecke
eigenform F so that its specialization at a point of Spf(A) over (z,),
gives f. Write F|U(p,) = a(p)F. We would like to prove

L(E) = —2log,(7)

Theorem 1.1. If the versal nearly p—ordinary deformation ring R of p
with the fized determinant det(p), after localization completion at p, is
1somorphic to a local ring at p of the universal nearly p—ordinary Hecke
algebra with the fived central character, then we have

£(Ind2 Ad(p)) = lo dot ( 221P)
( (p)) i(l;[ gp(W)) t(datp/ )p,p’es

If f gives an elliptic curve E;p with split multiplicative reduction at all
p € S, taking the Tate period q, with E(F,) = F* /qf, we have

m=0‘

log,(Ng,/0,(qp))
ord, (N, /g, (4p))

The assumption of the theorem has been verified in many cases by
Wiles, Taylor-Wiles, Diamond, Fujiwara and Skinner-Wiles.

I will try to give the proof of this fact in the rest of the talk, assuming
for simplicity that p is finitely ramified outside p and oo.

L(Indj; Ad(p) = [ |
p

2. SELMER GROUPS

We recall the Greenberg’s definition of Selmer groups. Let K be a
finite extension of QQ,. Fix a finite set X of rational primes containing
p and write Q®*)/Q for the maximal extension unramified outside %
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and co. We put & = Gal(Q®/Q) and & = Gal(Q® /F). Let V be
a finite dimensional K-vector space with a continuous action of &.

Fix an algebraic closure @p of Q, and an embedding 7, : Q— @p.
We write D = D, for the decomposition group of the p-adic norm:
| # |p = 1ip (%) |p-

Let x : & — Z; be the p-adic cyclotomic character; so, (7 = ¢x(9)
for ¢ € ppo. We assume V' to be p-ordinary; so, we have a filtration of
the following type for integers a and b with b < 0 < a:

(ord) V=FV OF*"V>.-.>FVOF'V>.. > F*V ={0}

stable under the decomposition group D and the inertia group 1, C D
acts on each subquotient F'V/F™1V by y. Once V satisfies (ord), its
dual V*(1) = Homg(V, K) ® x again satisfies (ord) for F~'V*(1) =
(F'V)*(1). Let W be the p-adic integer ring of K, and take a W-
lattice T"in V stable under &.

Let M/Q be a subfield of Q. We write p for a prime of M over p and
q for general primes of M. Write D, for the decomposition group at q
in &), and I, for the inertia subgroup of D,. We write F*V = F'V.
For each prime q of M, we put

Lo(V) = Ker(Res : H'(M,,V) — H'(I;,V)) if g1 p,
0 | Ker(Res : HY (M, V) — H'(Ip, gy))  if plp.
Then we define for the image Lq(V/T) of Ly(V) in H'(M,,V/T)
H'(My, A)

(2.1) Sely(A) = Ker(H' (M, A) — [ [ ) for A=V, V/T.

Ly(A)

The classical Selmer group of V' is given by Sely,(V/T), equipped with
discrete topology. Write Q for the cyclotomic Z,—extension of Q. The
Selmer group Selg, (V/T) is an Iwasawa module of co-finite type.

We define FP°V > F*V to be the largest subspace of V stable under
D, so that D, acts trivially on F°V/F*V. Similarly let F''V be the
smallest subspace of F'*V so that D, acts on F*V/F'V by y. Then
we write F7V/T for the image of F#7V in V/T'. For simplicity, referring
to [G] Section 3 the treatment in more general cases, we assume

(x) Either FI'V = F*V or FV/FYV does not have a direct
summand isomorphic to K or K(1).

Using the global Tate duality and the Poitou-Tate exact sequence,
Greenberg has shown the following implication: ([G] proposition 2):
H! Vv
(V) Selg(V/T)| < 00 = H'(®,V) =[] %.
qeY q
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The definition of the Selmer group Sely;(V/T) can be obviouly ex-
tended to a representation V of &p for a number field F' and an ex-
tension M/F if V is ordinary at every p-adic place ¢ € S of F. In
that case, we call V and T ordinary at p, and we freely speak of Selmer
group Sely (V/T) and Selys (V) defined for such & g-representations V.
If F/Q is unramified at p and a & p-representation V' is ordinary at p,
Indg V is ordinary at p as a ®-representation.

3. GREENBERG’S L—INVARIANT

We suppose the following condition in addition to (V):
(S) D, acts semi-simply on gr'(V) = F'V/F™V for all i.

Regard Selg, (V/T) as an Iwasawa module and write its characteristic
power series as fy(X) € W[[X]]. We set e = dimg FTV/F1V +
dimg FV/F*V. Then Greenberg proved X¢|f(X) and conjectured
in [G] Conjecture 2 that

(C1) Selg, (V/T) is a co-torsion module over W[[X]],

(C2) If the condition (V) is satisfied, fi (X) is factored as fy(X) =

X¢gv(X) with gy (0) # 0.

Here is Greenberg’s definition of £(V') giving gy (0): The long exact
sequence of FOOV/FTV — V/F*V — V/F"V gives a homomorphism:

HY(Q,, F®V/F*V) = Hom(Gg , F®V/F*V) = H'(Q,,V)/L,(V).
Note that
Hom(Gg , FPV/F*V) = (FOV/F*V)?

canonically by ¢ — (%%’3]), o([p, Q,))). Here [z,Q,] is the local Artin

symbol (suitably normalized). Since

L,(F®V/F*V) = Ker(H'(Q,, F*V/F*V) Res, HY(I,, FV/F*V)),

the image of ¢ is isomorphic to F°V/FTV. By (V), we have a unique
subspace T of H'(®,V) projecting down onto

H'(Qg, V)

)= 1 =7 )

qEX

Then by the restriction, T gives rise to a subspace L of
Hom(G?Ql;, FOV/FTV) & (FOV/FTV)?

isomorphic to FV/F*V. If a cocycle ¢ representing an element in T
is unramified, it gives rise to an element in Selg(V/7"). By finiteness
of Selg(V/T), this implies ¢ = 0; so, the projection of L to the first
factor FOV/FTV (via ¢ — ¢([v,Qp))/ log,(7)) is surjective. Thus this
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subspace L is a graph of a K-linear map £ : F®°V/F*V — FOV/FTV.
We then define L(V') = det(£) € K.

4. PROOF OF THE THEOREM

For simplicity, we suppose that p splits completely in F/Q. We
take a p—ordinary Hecke eigenform f and its 2-dimensional Galois rep-
resentation p : &p — GLy(W). We take T = Ind% Ad(p) and put
V =T®w K. If pis p-ordinary at all p-adic places, V is also ordinary.
For each o € S, identifying it with o : F' — Q and extending it to &,
put D, = cDo ! and ,D = D, N &p.

For each ,D, we can define F°Ad(p). If we take a matrix form
p B — My(W) of the Galois representation 7" so that its restriction

to D is given by p(1) = <E"((]T) ?:((:))) We may identify Ad(p) with
the following subspace of My(WW):

{¢ e My(W)|Tx(¢) =0} .

Then F2°Ad(p) is the subspace of Ad(p) made up of upper triangular
matrices, and F,;FAd(p) (on which ,D acts by €,0,1)) is made up of
upper nilpotent matrices.

Identifying Ind} Ad(p) = W[®] @w(e. Ad(p), we have

F'T =o' (F!Adlp]) for ? =00 and +.
oces

By Shapiro’s lemma, we have for a field M linearly disjoint from F
SelM(V/T) = SelMp(Ad(p) Rw K/W),

and the following commutative diagram:
(4.1)
Res FO1A2 V. o, [ FOImd2 V>
HY(6,Ind?V) > T =% H(Q,, Tty = (Indgiﬂv)
] ] ]

Res _ 00 ~ 00 2
H'(®pV) D Tr =% [Lego (HYQn B50)) * [es (5

Then taking an inhomogeneous cocycle ¢ : & — Ad(T') representing

an element of Tr, we may write ¢(7) = (a"éT) _b;’cfz)) for o € D,.

The cocycle ¢ therefore gives rise to an infinitesimal nearly ordinary
deformation p with det(p) = det p:

p:®p — GLy(Wla]/(2%))
by p(o) = p(o) + c(o)p(o)x (see [MFG]| 5.2.4).
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Let p : & — GL2(R) be the versal nearly ordinary deformation over
W for the minimal versal ring R. We thus have a W-algebra homomor-
phism ¢, : R — Wlz]/(2*) with ¢,0p = p. This ¢, may not be unique,
but its differential dp, from the tangent space Wg—m of Spec(Wx]/(z?))
to the tangent space T, of Spec(R,) for the localization-completion
R, of R at p is injective (by the assumption R, = T,). Sending c
to dy, (g—z) € T,, we get an injection Tp — T,. By our assump-
tion R, = T, = Kl[z,]]ses, T, is generated by {8870}065, and thus
T, is [F : Q]-dimensional over K. By the injectivity we have shown,
Tr =1T,, and we have

ao([ps, F5]) = ZCTM

dx.,
(4.2) -
o (Yo, Qp)) = ) CTM

dx,
~

=0

=0

for the generator v, = v of the o-component of 1+ pO, = (1 + pZ,)".
Thus

I H og,(00) d <(85(?;;@p] ) - (85([5;;@10]) ) ) |

o,T

This yields the desired formula, beacuse 8, ([v,, Q,]°) = (1 + 2,)® and
FlU(ps) = 0,([ps, Qp)|F for the Hecke operator U(p, ).
If f is associated to a split multiplicative abelian variety, it has beeen

shown in my Israeli journal paper that <%i@p])) is diagonal. Then

the the linear map L is the direct sum of local linear maps sending o-
component F, = Q, into itself. Then an argument due to Greenberg

. 1 -
shows tha formula relating £(V') to the product of Oii’; ((ZJ)) over o € S.
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