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Abstract. Indecomposability of p-adic Tate modules over the p-inertia group for non CM (par-
tially p-ordinary) abelian varieties with real multiplication is proven under unramifiedness of p in

the base field and in the multiplication field.
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As quoted by Ghate–Vatsal in [GV] Question 1 (and answered there affirmatively to a good
extent), it is a fundamental problem posed by R. Greenberg to decide indecomposability of an elliptic
modular p-adic Galois representation restricted to the decomposition group at p in the ordinary case
(as long as the representation is not of CM type). Jointly with B. Balasubramanyam, they have
generalized the result to the cases of Hilbert modular forms for primes p splitting completely in the
totally real base field (see [GV1]). There are some good applications of their results (see for example
[E] and [G]). We can ask the same question for p-adic Galois representations arising from the Tate
module of an abelian variety A with real multiplication defined over a number field k; so, End(A/k)
is the integer ring O of a totally real field of degree dimA. This concerns the p-adic Tate module
TpA for a prime p|(p) of O as a module over the decomposition group Dp at a place P over p of k.
Suppose that A has good reduction modulo P. If the finite flat group scheme A[p] of p-torsion points
is local-local at P, as is well known, the Dp-module A[p](Qp) or TpA ⊗Op

Fp is often irreducible
(as proven in [ALR] IV-38, §A.2.2 for elliptic curves, see also the generalization of Serre’s modulo
p modularity conjecture for totally real k; in particular, §3.1 of [BDJ]). Anyway in this paper, we
limit ourselves to the case where A[p](Fp) 6= {0}. This assumption does not necessarily mean that
A has ordinary good reduction at p.

We answer this question affirmatively in Theorem 5.1 for an abelian variety with sufficiently many
real multiplication but without complex multiplication (over Q) if the endomorphism totally real
field F and the field k of definition are unramified at p over Q. Since simple factors of the jacobian
of a Shimura curve are often of this type, we should be able to answer the original question by
Greenberg. Indeed, Bin Zhao [Z] has just removed our assumption of unramifiedness of p in the base
field k and in the multiplication field F and has proved unconditionally indecomposability for the
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nearly ordinary Galois representation of each weight 2 Hilbert cusp form at least over an odd degree
totally real base field. If the base field has even degree, he had to assume square-integrability at a
finite place or the existence of an abelian variety associated to the cusp form.

Since a CM abelian variety with ordinary good reduction at p has semi-simple Tate module over
Dp, we may regard the p-local indecomposability of the p-adic Tate module as a characterization of
non CM/CM abelian varieties via local p-inertia action. The importance of such characterization is
emphasized in [H11a], and other examples of characterization are listed there.

Throughout this paper, we fix an algebraic closure Q in C and an algebraic closure Qv of Qv (the

v-adic field or R for v =∞) for each rational place v. We write Cv for the completion of Qv under
v. Therefore, for each v, we fix a field embedding iv : Q ↪→ Cv (here i∞ coincides with the original
inclusion Q ⊂ C) and identify all Cv with C so that we have the following commutative diagram for
each v:

Q Q

iv

y∩ ∩

yi∞

Cv C.

Here is a sketch of our proof of indecomposability (and an outline of the paper), assuming for
simplicity that the abelian variety A over a number field k ⊂ Q has multiplication by the integer ring
O of a real quadratic field F ; so, 2 = [F : Q] = dimA and End0

F (A/Q) = End0
F (A/k×kQ/Q) = F (this

means that A does not have complex multiplication), where “End0
F (?)” denotes the total quotient

ring of the O-linear endomorphism algebra EndO(?) of the object “?” inside. Such abelian varieties
are parameterized by Hilbert modular varieties whose theory we recall in Section 2 to the extent we
need (explicitly or implicitly).

Let O denote the integer ring of k. We denote primes of k by upper case Gothic letters and those
of F by lower case Gothic letters, and the corresponding Roman (lower case) character is the residual
characteristic of a prime denoted by a Gothic character. Suppose further for simplicity that A has
ordinary good reduction at primes P and L with p 6= l. On the contrary to what we want to prove,
suppose that A[p∞] for a prime p above p has a semi-simple Tate module over Dp = Gal(Qp/kP).
Then the p-adic Serre–Tate coordinate tp(A) of A is equal to 1. If p is a unique prime over (p) in
O, this identity tp(A) = 1 forces A to be a canonical lift having complex multiplication. Thus we
assume (p) = pp′ in F with p 6= p′. By the Serre–Tate theory, for the Witt vector ring Wp with

coefficients in an algebraic closure Fp of Fp, the deformation space of the reduction AP = A⊗OP
Fp

(for FP := O/P regarded as sitting in Fp) is isomorphic to Ŝ/Wp
= Ŝp/Wp

:= Ĝm⊗Zp Op = Ŝp× Ŝp′

with Ŝp := Ĝm⊗Zp Op, and tp is the coordinate of the multiplicative formal group Ĝm⊗Zp Op = Ĝm

(as Op = Zp). In other words, Ĝm/Wp
is the formal completion of Gm = Spec(Wp[tp, t

−1
p ]) along

the origin (i.e., the identity) of its reduction modulo p. We recall in Section 1 some details of the
construction of Serre–Tate coordinates.

The field M = End0
F (AP/Fp

) is a CM quadratic extension of F . We have two Serre–Tate coordi-

nates tp and tp′ . Since A does not have CM, we must have tp′ (A) 6= 1 (as the origin of Ŝ corresponds
to the canonical lift of AP which has complex multiplication by the CM field M). By the universality

of Ŝ, M× acts on Ŝ naturally by an isogeny action. Then by the reciprocity law of Ŝ in [H10] §3.3, we

have tp ◦ α = tα
σ(1−c)

p for an embedding σ : M ↪→ Q inducing the place p of F after composing with
ip. Here c denotes the generator of Gal(M/F ). For the l-adic place l induced by il ◦ σ, we have the

Serre–Tate coordinate tl of the deformation space Ŝl = Ĝm⊗Zp Ol of AL. Now the abelian variety A
gives rise to a k-point x of the Hilbert modular Shimura variety Sh/Q for GL(2)/F . Looking at the

k-tangent space Tanx at x ∈ ShK (k) (for a neat open compact subgroup K ⊂ GL2(F
(∞)
A ) maximal

at p and l), the Lie algebras Lie(Ŝp) and Lie(Ŝl) are related to (the σ-part of) Tanx via appropriate

scalar extension; therefore, the action of M× on Lie(Ŝp) can be transferred to Lie(Ŝl) via Tanx.
We will see in Section 4 that tp (resp. tl) is the exponential of the corresponding linear coordinate

τp (resp. τl) of Lie(Ŝp) (resp. Lie(Ŝl)). From this, we conclude in Theorem 4.5 that tl also satisfies

tl ◦ α = tα
σ(1−c)

l for α ∈ M×; so, End0
F (AL/Fl

) must be isomorphic to M . In Section 3, we describe
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the canonical O-action on ΩSh/k, Tanx and on Lie(Ŝ), and in Section 4, we study the M -action
(extending the O-action) on the Serre–Tate coordinates (and its linear version).

Because of x ∈ Sh(k) ⊂ Sh(Cp) = Sh(Cl) (under our identification: Cp = Cl), the formal

completion ÔSh,x along the points x ∈ Sh(Cp) = Sh(Cl) canonically contains ObSp
and ObSl

. Thus

in ÔSh,x, we can compare τp = logp ◦tp and τl = logl ◦tl for the v-adic logarithm logv. Since they

both satisfy τ? ◦ α = ασ(1−c)τ?, they are proportional; so, τl(A) = 0 and hence tl(A) = 1, which
implies the Tate module TlA of A[l∞] is also semi-simple under Dl. As is well known (cf. [O] 2.7
and Section 7 in the text), split ordinary primes for an abelian surface have Dirichlet density 1 for
k (replacing k by its finite extension if necessary), and using non-CM property of the p-adic Galois
representation on the Tate module TpA (combined with Chebotarev density), we can find l such

that M 6∼= End0
F (AL/Fl

), getting a contradiction (whose details will be given in Section 5). In the

text, we fill details of this argument and generalize this to totally real fields F with [F : Q] ≥ 2, to
primes p with residual degree ≥ 1 and to abelian varieties A which may not be ordinary at P (i.e.,
only partially ordinary at P).

As a byproduct of our proof, we get (in Theorem 4.5) the proportionality of τp and τl. Though it is
irrelevant to the proof of the main theorem, we will compute in Section 6 explicitly the proportionality
constant as the ratio of the square of the Katz p-adic and l-adic CM periods. In the above sketch
of the proof, we used heavily existence of many primes of k at which the given abelian variety A/k
has good (partially) ordinary reduction. We give a brief account of the fact that such primes has
density 1 among primes of (the Galois closure of) k in Section 7.

As is clear from this sketch, there is much room for generalization of our argument to abelian
varieties with less multiplication. We hope to come back to the study of local indecomposability for
general abelian varieties in near future.

The author thanks Brian Conrad for some help of identifying an optimal reference in rigid analytic
geometry for quotes here.

1. Deformation space of an AVRM

Pick a rational primes p. Let F be a totally real field with integer ring O in which p is unramified.
Write d = [F : Q]. Let (A, λ, θ)/k be an abelian variety with real multiplication by O (in short an

AVRM by O) over a number field k ⊂ Q with integer ring O in which p is unramified. Here
θ : O ↪→ End(A/k) is a ring homomorphism sending the identity to the identity making Lie(A)

a free O ⊗Z k-module of rank 1, and λ : A → tA for the dual abelian scheme tA = Pic0
A/k is an

O-linear polarization of degree prime to p. Thus the p-adic Tate module TpA is free of rank 2 over
Op = O ⊗Z Zp, and dimA = [F : Q]. Let P = {x ∈ O : |ip(x)|p < 1} be the prime of k induced by

ip : Q ↪→ Cp. Let Fp = FP be an algebraic closure of FP = O/P, and write W = Wp for the ring

of Witt vectors with coefficients in Fp. We identify W with the subring of Cp which is the p-adic

completion of the ring of integers in the maximal unramified extension of Qp in Qp ⊂ Cp. Thus ip
embeds O in W , and we regard OP ⊂ W . We put W = Wp = i−1

p (Wp) ⊂ Q which is a discrete

valuation ring with residue field Fp (and is a strict henselization of Z(p) = Q ∩ Zp).
Let OP be the P-adic completion of O, and suppose that (A, λ, θ)/k extends to the triple

(A, λ, θ)/OP
for an abelian scheme A/OP

. Thus we can think of the special fiber (A0, λ0, θ0)/Fp
=

(A, λ, θ) ×Op
Fp. Let CLW denote the category of complete local W -algebras with residue field

Fp. We consider the fiber category D/W (over CLW ) of deformations over R of (A0, λ0, θ0)/Fp
over

R ∈ CLW . Objects ofD/W are triples (A′, λ′, θ′)/R satisfying ιA′ : (A′, λ′, θ′)×RFp ∼= (A0, λ0, θ0)/Fp
.

A morphism φ : (A′, λ′, θ′)/R → (A′′, λ′′, θ′′)/R is a morphism of AVRM’s φ : A′ → A′′ such that

(1) the special fiber φ0 of φ satisfies ιA′′ ◦ φ0 ◦ ι−1
A′ = idA0 for the identity map idA0 of A0;

(2) λ′ = tφ ◦ λ′′ ◦ φ;
(3) φ ◦ θ′(a) = θ′′(a) ◦ φ for all a ∈ O.

We suppose that

(NLL) the reduction A0 := AP = A ⊗OP
Fp has nontrivial p-torsion Fp-points.
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So, we have a prime ideal p|p of O such that the p-adic Barsotti–Tate group A[p∞] is ordinary, fitting
into the following connected-étale exact sequence of Barsotti–Tate Op-modules over W :

0→ µp∞ ⊗Zp Op → A[p∞]/W → Fp/Op → 0.

Let Σord = Σordp be the set of primes p in O over p such that A[p∞]/W is not connected. Then we

put Σll = Σllp =
{
p|p : p 6∈ Σord

}
. We may regard Σ? as a set of field embeddings σ : F ↪→ Q made

up of σ with {α ∈ O : |ip(σ(α))|p < 1} = p ∈ Σ?.
We now want to relate D/W with the following fiber category DEF over CLW of quadruples

(A0, D,Λ, ε)/R, where D is a Barsotti–Tate O-module over R, Λ : D → tD is an O-linear isomorphism
of Barsotti–Tate groups into the Cartier dual tD of D and ε : D0

∼= A0[p
∞] is anO-linear isomorphism

of Barsotti–Tate O-modules for the special fiber D0 = D⊗Spec(W) Spec(Fp). We require ε to satisfy
the following commutativity:

D0
ε−−−−→ A0[p

∞]

Λ0

y
yλ0

tD0 ←−−−−
tε

tA0[p
∞],

where Λ0 is the special fiber of Λ. A morphism

φ : (A0, D,Λ, ε)→ (A′
0, D

′,Λ′, ε′)

of DEF is a pair of O-linear morphisms φBT : D → D′ in HomBT/W (D,D′) and φD : A0 → A′
0 in

HomGSCH/Fp
(A0, A

′
0) making the following two diagrams commutative:

A0[p
∞]

φD−−−−→ A′
0[p

∞]

ε

x
xε′

D0 −−−−→
φBT

D′
0

and

D0
φBT−−−−→ D′

0

Λ

y
yΛ′

tD0 ←−−−−
tφBT

tD′
0.

Here GSCH (resp. BT ) stands for the fiber category of group schemes (resp. Barsotti–Tate groups)
over CLW . We have a natural functor: D/W → DEF given by

A 7→ (A0 = A⊗W Fp, A[p∞], λ|A[p∞], ι)

for the canonical isomorphism ι : A[p∞]⊗W Fp ∼= A0[p
∞].

Theorem 1.1 (Serre–Tate). The above functor: D/W → DEF is a canonical equivalence of cate-
gories.

A proof of this is given in [K] though the input of θ and λ is not there (see [K1] Lemma 1.11.6 or
[Ra] §1.7 for how to modify the argument incorporating endomorphisms and a polarization).

We can split DEF into the product of the following fiber categories: DEF ord and DEF ll over
CLW . Here “ord” stands for ordinary Barsotti–Tate groups and “ll” stands for local-local Barsotti–
Tate groups. The objects of DEF ? is given by (A0, D

?,Λ?, ε?)/R such that D? is a Barsotti-Tate

O-module deforming A0[p
∞]? =

∏
p∈Σ? A0[p

∞] for ? = ord, ll and Λ? : D? ∼= tD? is an O-linear

isomorphism and ε? : D?
0
∼= A0[p

∞]?. Thus Dll is local-local (i.e., Dll and tDll both connected).
The quadruple (A0, D

?,Λ?, ε?) is supposed to satisfy the same compatibility of diagrams defining
DEF . Since by O-linearity, we have a canonical decomposition D = Dord × Dll for an object
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(A0, D,Λ, ε)/R of DEF with the maximal ordinary Barsotti–Tate O-module Dord in D and the

local-local complement Dll of Dord in D so that D = Dord ×Dll , we get a decomposition

DEF 3 (A0, D,Λ, ε) 7→ {(A0, D
ord ,Λ|Dord, ε|Dord), (A0, D

ll ,Λ|Dll, εll)} ∈ DEF ord ×DEF ll

which induces the equivalence between DEF and DEF ord ×DEF ll.
We consider the following deformation functor D̂ : CL/W → SETS given by

D̂(R) = {(A, λ, θ)/R|(A, λ, θ)/R ∈ D}/ ∼= .

To describe the deformation space representing D̂, we write OΞ =
∏

l∈Ξ Ol for the Ξ-adic completion
of O for any finite set of prime ideals Ξ of O. Then we put FΞ = OΞ ⊗O F and O(Ξ) = F ∩ OΞ in
FΞ.

Proposition 1.2. Let the notation be as above. Suppose that p is unramified in F/Q and in k/Q.

Then the deformation functor D̂ is representable by the smooth formal scheme Ŝ/W which is a

product of two smooth formal schemes: Ŝord isomorphic to Ĝm ⊗Zp OΣord =
∏

p∈Σord Ĝm ⊗Zp Op

and Ŝll, where Ŝll ∼= Spf(W [[T1, . . . , Tm]]) (non-canonically) for m = rankZp OΣll , and each factor

Ŝ? represents the formal stack DEF ?.

Proof. As is well known, the formal stack DEF over W is represented by a formal scheme Ŝ smooth
over W of relative dimension equal to rankZp Op. Indeed, adding an O-linear prime-to-p adelic level

structure η(p) : (Ô(p))2 ∼= T (p)A = lim←−p-N
A0[N ](Fp) to (A0, λ0, θ0), the quadruple (A0, λ0, θ0, η

(p))

(called a test object) gives rise to an Fp-point x0 of the Hilbert modular Shimura variety Sh
(p)
/W =

Sh
(p)
/Z(p)

×W of prime to p level. We recall in Section 2 the definition of the Shimura variety. Then

Ŝ/W can be identified with the formal completion of Sh
(p)
/W along x0 (and the Shimura variety is

smooth over Z(p) of relative dimension equal to rankZp Op = [F : Q]). For the part DEF ord, by the

theory of Serre–Tate, once we identify A0[p
∞]ord with (µp∞ ⊗Zp OΣord) × (FΣord/OΣord) by a level

p-structure
ηp : (µp∞ ⊗Zp OΣord)× (FΣord/OΣord) ∼= A0[p

∞]ord,

the space Ŝord is isomorphic to Ĝm ⊗Zp OΣord whose origin corresponds to the unique canonical

lift of A0[p
∞]ord with complex multiplication (which may be different from the starting A[p∞]ord).

Since DEF ≈ DEF ord × DEF ll (equivalence of categories), we have a product decomposition

Ŝ = Ŝord × Ŝll . Since Ŝ and Ŝord are formally smooth, Ŝll must be formally smooth. Then by

dimension computation, we have dimW Ŝll = m as above. �

We have Ŝordp
∼= Ĝm ⊗Zp OΣord =

∏
p∈Σord Ŝ

ord
p for Ŝordp = Ĝm ⊗Zp Op. Thus Ŝordp is the Op-

factor of the formal completion of Gm⊗ZO = Spec(W [tξ]ξ∈O) along the origin corresponding to the
maximal ideal (p, t−1). Here we used the fact that for the cocharacter group L of a split torus T/W ,

we have a canonical isomorphism: T ∼= Spec(W [tl]l∈L) = Gm ⊗Z L for the group algebra W [L] ∼=
W [tl]l∈L with the canonical variable t of Gm. Since Ĝm ⊗Z O = Ĝm ⊗Z Op (Op = lim←−nO/p

nO),

Ĝm ⊗Zp Op has variable tp = t ⊗ 1p for the idempotent 1p of Op in Op =
∏

p′|pOp′ . We call tp the

Serre–Tate (multiplicative) coordinate of Ŝordp .

2. Hilbert modular Shimura variety

Here is a more detailed definition of AVRM by O. Write O∗ = HomZ(O,Z) (the Z-linear dual),
which can be identified with the different inverse of F/Q by the trace pairing. A triple (A, λ, θ)/S
with an abelian scheme A over a scheme S with real multiplication is called an AVRM by O if it
satisfies the following four conditions:

(rm1) θ = θA : O ↪→ End(A/S) is an embedding of algebras taking the identity to the identity.

(rm2) λ is an O-linear symmetric isogeny λ : A→ tA induced by an ample line bundle fiber-by-fiber
geometrically (see [GIT] 6.2). Identifying tA with A ⊗O c for a fractional ideal c of F , λ is
called a c-polarization of A. Here λ is called symmetric if λ = tλ.
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(rm3) The image of θA is stable under the Rosati involution on the endomorphism algebra End0(A):
α 7→ α∗ = λ−1 ◦ tα ◦ λ.

(rm4) As O⊗ZOS-modules, we have an isomorphism: Lie(A) ∼= O⊗ZOS (⇔ π∗(ΩA/S) ∼= O∗⊗ZOS
for π : A→ S) locally under the Zariski topology of S, where the sheaf Lie(A) of Lie algebras
of A (i.e., the pull-back of the tangent bundle over A/S by the 0-section) is an O-module by
the action induced from θ.

An AVRM A defined over a field κ (potentially) has complex multiplication (or has CM) if the

algebra End0
F (A ×κ κ) = EndO(A ×κ κ) ⊗O Q (of F -linear endomorphisms of A ×κ κ defined over

κ) for an algebraic closure κ of κ is not equal to F (and if κ ⊂ Q and A has CM, End0
F (A ×κ κ) is

a quadratic extension of F ). An AVRM A over an integral domain r has CM if A ×r κ has CM for

the quotient field κ of r. An AVRM A/r is said to be non CM if End0
F (A×r κ) = F .

In the rest of the paper, we denote by Ξ a finite set of rational primes unramified in F containing
the fixed prime p, and we put Z(Ξ) =

⋂
l∈Ξ(Q ∩ Zl) ⊂ Q (the localization at Ξ of Z). We write

O(Ξ) for the ring O ⊗Z Z(Ξ) ⊂ F and let O×
(Ξ)+ be the group of totally positive units in O(Ξ). Let

A(Ξ) be the fiber category over Z(Ξ)-schemes made of abelian schemes with real multiplication by

O up to prime-to-Ξ isogenies. Thus the objects of A(Ξ) are triples (A, λ, θA)/S over a Z(Ξ)-scheme

S, and λ is the set {aλ := λ ◦ θA(a)}a∈O×

(Ξ)+
for a polarization λ with polarization ideal prime to

Ξ. The morphisms: (A, λ, θA)/S → (A′, λ
′
, θ′A)/S of A(Ξ) are given by the elements φ : A → A′ in

HomGSCH/Z(Ξ)
(A,A′)⊗Z Z(Ξ) compatible with the data (λ, θA) and (λ

′
, θA′). Here GSCH/R stands

for the category of group schemes over a ring R. We consider the Hilbert modular Shimura variety

Sh
(Ξ)
/Z(Ξ)

which is known to represent the stack made out of (A, λ, θA, η
(Ξ)) for a prime-to-Ξ O-linear

level structure η(Ξ) : (F
(Ξ,∞)
A )2 ∼= T (Ξ)A ⊗Z Z(Ξ) sending the determinant pairing (a, b) 7→ det(a, b)

for a, b ∈ (F
(Ξ,∞)
A )2 to the pairing on T (Ξ)A induced by the polarization up to similitude factors in

(F
(Ξ,∞)
A )×, where T (Ξ)A is the prime-to-Ξ Tate module of A, FA is the adele ring of F and F

(Ξ,∞)
A

is its prime-to-Ξ part given by {x ∈ FA|xl = x∞ = 0 for all l ∈ Ξ}. Strictly speaking, to get Sh
(Ξ)
Z(l)

(l ∈ Ξ), for Ξ(l) := Ξ \ {l}, we need to actually identify the Ξ(l)-part of the Tate module TΞ(l)A
with O2

Ξ(l) (without specifying an isomorphism; see [H06] §1 for more details). Then the schemes

{Sh/Z(l)
}l∈Ξ glue into Sh

(Ξ)
/Z(Ξ)

. The pro-scheme Sh(Ξ) is smooth over Z(Ξ) (cf. [PAF] Section 4.2).

Let G = ResF/QGL(2) with center Z/Q. Under the action η(Ξ) 7→ η(Ξ) ◦ g, each g ∈ G(A(Ξ),∞)

acts on Sh(Ξ) as an automorphism. Let WΞ =
⋂
l∈ΞWl (inside Q) which is a henselian semi-local

Dedekind domain with localization at each maximal ideal ml of residual characteristic l equal toWl.
We fix a non CM test object (A, λ, θ, η(Ξ))/WΞ

satisfying (NLL). Let x ∈ Sh(Ξ)(WΞ) be the point
representing this test object.

Suppose p ∈ Ξ. By a theorem of Tate (cf. [ABV] Appendix I), the reduction (A0, λ0, θ0, η
(Ξ)
0 )/Fp

=

(A, λ, θ, η(Ξ))/WΞ
×WΞ Fp has complex multiplication by a field M = End0

F (A0/Fp
) (F -linear endo-

morphism algebra). Regarding M ⊂ Q as an F -algebra, we write θ̃P : M ∼= End0
F (A0/Fp

) for the

identification (so, θ̃P|F = θ0). Let R = EndO(A0/Fp
) which is an order of M . The quadruple

(A0, λ0, θ0, η
(Ξ)
0 )/F gives rise to a point x0 ∈ Sh(Ξ)(Fp). Let V be the geometrically irreducible

component of Sh
(Ξ)
/WΞ

containing x; so, V/Fp
= V ×WΞ Fp is geometrically irreducible and contains

x0. By the smoothness of Sh(Ξ) over Z(Ξ) and the existence of the smooth projective toroidal

compactification of Sh(Ξ), V/Fp
is geometrically connected.

By the global reciprocity law of Shimura (cf. [Sh] II), we know

Theorem 2.1. Let the notation and the assumption be as above. Suppose p ∈ Ξ which is unramified

in F/Q. Let κ = Fp or Q. For the geometrically connected component V/κ ⊂ Sh
(Ξ)
/Z(Ξ)

×Z(Ξ)
κ, the

scheme automorphism group Aut(V/κ) ⊂ G(A(Ξ),∞) is given by the semi-direct product of the field
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automorphism group Aut(F/Q) and

E (Ξ)
=
{g ∈ G(A(Ξ))| det(g) ∈ O×

(Ξ)+F
×
∞+}

Z(Z(Ξ))G(R)+
=
{g ∈ G(A(Ξ),∞)| det(g) ∈ O×

(Ξ)+}
Z(Z(Ξ))

,

where G(R)+ is the identity connected component of G(R) and “· · ·” indicates closure under adelic

topology. Here Aut(F/Q) acts on E (Ξ)
through its action on G(A). For the above point x0 ∈

Sh(Ξ)(Fp), the stabilizer of x0 in E(Ξ)
is the image of the morphism ρ̂ : R×

(Ξ) → G(A(Ξ),∞) given by

θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α) for α ∈ R×

(Ξ) = (R⊗Z Z(Ξ))
× ⊂M×.

By this theorem, the stabilizer T in E = Aut(V/Fp
) of x0 is the image of R×

(Ξ) for the order R in

the integer ring o of M under the morphism ρ̂ : TM = ResR/ZGm → G of group schemes defined

over A(Ξ),∞ (so, it is a conjugate of an anisotropic torus in G under an element in G(A(Ξ),∞)). It
would appear later that we do not use this theorem, but it will be implicitly used to assure that our
action of TM (Z(Ξ)) preserves each geometrically irreducible component of Sh(Ξ) as its action factors

through E (Ξ)
.

Proof. The first assertion is proven by T. Miyake in [M] for κ = Q (following the method of Shimura
in [Sh] II) via the well known identification of the automorphism group of a bounded symmetric
domain with the corresponding Lie group (e.g., [DLS] Chapter IV); in our Hilbert modular case,
Aut(HI) (H = {z ∈ C| Im(z) > 0}) has identity connected component isomorphic to PSL2(R)I for
I = Homfield(F,Q). See [PAF] Theorem 4.14 for another algebraic proof for κ = Q, and the case

where κ = Fp is treated in [H06]. If g ∈ E (Ξ)
stabilizes x0, by universality, we have a prime-to-Ξ

F -linear endo-isogeny

α : (A0, λ0, θ0, η
(Ξ)
0 )/Fp

∼= (A0, λ0, θ0, η
(Ξ)
0 ◦ g)/Fp

.

In other words, α can be regarded as an element of R×
(Ξ)

. Since θ̃P(α)◦η(Ξ) = η(Ξ) ◦ ρ̂(α), the matrix

ρ̂(α) coincides with g in the quotient E (Ξ)
. �

Lemma 2.2. Suppose that the AVRM (A0, λ)/Fp
is defined over a finite field Fq ⊂ Fp and p ∈

Σord. Then the algebra M = End0
F (A0/Fp

) is a CM quadratic extension M over F generated by the

Frobenius endomorphism over Fq. In particular, the prime p in F splits into PP in R for primes

P 6= P.

By this lemma, we have Rp = op = RP × RP
∼= Op × Op for the integer ring o of M .

Proof. By definition, Mp is isomorphic to F -linear endomorphism algebra End0
F (A0[p

∞]/Fq), which
is therefore a semi-simple quadratic extension of Fp. Thus M is commutative, and the embedding
restricted to M ⊂Mp factors through EndF (A0/Fq ) and its image contains the q-th power Frobenius
map φ. Since F [φ]/F is a CM field because of the positivity and non-triviality of Rosati involution
c of λ0, we must have M = F [φ] which is a CM quadratic extension of F .

Note that φ and its dual φc = λ−1 ◦ tφ ◦ λ satisfy φφc = φcφ = q. Since φ is invertible on
A0(Fp) ⊃ A0[p

∞] 6= 0, a = φ + φc ∈ O is prime to p. Thus the minimal polynomial X2 − aX + q
of φ over F satisfies X2 − aX + q ≡ X(X − a) mod p with (a mod p) 6= 0; so, p must split in
R ⊃ O[φ]. �

We often choose P so that P contains φ; so, A0[P] is connected.

3. Eigen differentials

We keep the notation introduced in Theorem 2.1 in the rest of the paper. For an open compact

subgroup K of G(A(Ξ),∞), we write VK for the image of V under V ⊂ Sh(Ξ)
� Sh

(Ξ)
K for the
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geometric quotient Sh
(Ξ)
K := Sh(Ξ)/K (thus V is the pro-variety V = lim←−K VK in the sense of

Grothendieck [EGA] IV.8 or [EAI] §5.1.4). We take K sufficiently small so that K is neat; i.e.,

ΓgKg−1 = {α ∈ gKg−1 ∩G(Q)|det(α) is totally positive}

does not have torsion modulo its center (this holds true if K is inside the principal congruence
subgroup of level N ≥ 3). Under neatness, VK is smooth over WΞ.

Let π : (A, θA) → VK be the universal AVRM over VK . Then ω = π∗ΩA/VK has an O-action
via θA and by (rm4), is locally free of rank 1 over O ⊗Z OVK (which is a module over O ⊗Z WΞ).

Since O ⊗Z WΞ = WI
Ξ by sending a ⊗ b to ϕ(a)b for ϕ ∈ I = Homfield(F,Q) (as primes in Ξ are

unramified in O), we can accordingly split ω =
⊕

ϕ∈I ω
ϕ for a line bundle ωϕ on which the O-action

factors through ϕ. By the Kodaira-Spencer map (see [K] §3.6), ΩVK/WΞ
is canonically isomorphic to⊕

ϕ ω
2ϕ for ω2ϕ = ωϕ ⊗OVK

ωϕ (see [K1] 1.0.21). Thus the cotangent space ΩVK/W has a canonical

O×
(Ξ)

-action. A section T of the structure sheaf of a Zariski (resp. complex analytic, p-adic rigid

analytic) neighborhood Dx (of x) is called “belonging to ϕ” if dT ∈ H0(Dx, (ω
2ϕ)∗) for the line

bundle (ω2ϕ)∗ corresponding to the algebraic bundle ω2ϕ (by GAGA theorems; see Example 2.4.6 in
[C]). Here we use ∗ = an in the complex analytic case and in the rigid analytic case (and we place
nothing in the algebraic case; if we need to specify the place v, we write ∗ = v-an). If T is a part of
the coordinate system belonging to ϕ (at v ∈ Ξ ∪ {∞}), we call T a ϕ-coordinate (at v).

Recall M = End0
F (A0) ⊃ EndO(A0) = R. The field M is a CM quadratic extension of F , and

let TM = ResR/ZGm. Recall the morphism ρ̂ : TM → G(A(Ξ),∞) of algebraic groups over A(Ξ),∞

given by θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α). The point x0 ∈ V (Fp) is a fixed point of ρ̂(TM (Z(Ξ))), and let

U be a Zariski open neighborhood of x0. Suppose that we have a non-constant f ∈ Fp(V ) vanishing
at x0 and a p-adically open subgroup T of TM (Z(Ξ)) such that f ◦ ρ̂(α) = λαf with a constant

λα ∈ Fp for all α ∈ T . Let X◦ = {u ∈ U |f(u) = 0} and X be the Zariski closure of X◦. Since
f is non-constant, dimX = d − 1. Then, by definition, X is stable under the action of the image

T ⊂ E (Ξ)
of ρ̂(TM (Z(Ξ))). Supposing that x0 is in the ordinary locus, by [H10] Proposition 3.8,

X = V if dimX = d− 1 > 0. This is impossible, so such a nontrivial f does not exist.

Suppose that we have a flat integral covering space Ũ/U whose image contains x0 on which the

action of T extends. If f ◦ ρ̂(α) = λαf with a constant λα ∈ Fp for all α ∈ T for f ∈ Fp(Ũ),

we consider the image X◦ ⊂ U of {u ∈ Ũ |f(u) = 0} and its Zariski closure X. By the same

argument, we have X = V if d− 1 > 0. Thus even in Fp(Ũ), such an f 6= 0 does not exist. Thus if

0 6= f ∈ ÔV,x0 satisfies this property, f is transcendental over OV,x0 if [F : Q] ≥ 2. We will not use
this transcendence result in the rest of the paper.

4. Eigen coordinates

Let V be the geometrically irreducible component of Sh
(Ξ)
/WΞ

as in Theorem 2.1 containing the

point x ∈ V (WΞ), and take a neat open compact subgroup K of G(A(Ξ),∞). As before, let x0 be the
image of x in V (Fp) (assuming p ∈ Ξ). Recall VK defined in Section 3 which is the geometrically

irreducible component of Sh
(Ξ)
K containing the projection of x. Let O be the stalk OVK/WΞ

,x ⊂
OV/WΞ

,x = OSh(Ξ) ,x at the WΞ-point x ∈ V (WΞ). The WΞ-algebra O is semi-local (of finite type),

and its maximal ideal ml,x over (l) ⊂ WΞ for l ∈ Ξ is unique. Since V/VK is étale, we may identify
the P -adic localization-completion of O and that of OV,x for any prime ideal P of OV,x. We consider
the prime P = Px given by the kernel of O → WΞ induced by evaluation at x. Then P is a prime
ideal inside the Jacobson radical of O (i.e., the intersection of all the maximal ideals {ml,x}l∈Ξ of
O indexed by the residual characteristic l ∈ Ξ of ml,x). Let K be the field of fraction of WΞ, and

consider the localization completion ÔP ∼= K[[T1, . . . , Td]] for d variables Tj . We can extend scalar to

Cv for v = l,∞ by K ⊂ Q
iv−→ Cv and consider Ov = O ⊗WΞ Cv. Then the evaluation at x ∈ V (Cv)

gives rise to a Cv-algebra homomorphism Ov → Cv whose kernel, we denote by Pv; so, P = Pv ∩O.
Then we localize Ov at Pv and write the localization as Ov,Pv . We then complete it Pv-adically,
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getting Ôv,Pv = lim←−nOv,Pv/P
n
v Ov,Pv . We then have a commutative diagram of inclusions

O −−−−→
⊂

ÔP = K[[T1, . . . , Td]]

∩

y iv

y∩

Ôv,Pv Cv[[T1, . . . , Td]].

As described above, we study coordinates around a point on Ŝord . The coordinate can be a

formal function on Ŝord or a rigid analytic function defined on a rigid open neighborhood of the

point in the associated p-adic rigid analytic space denoted by (Ŝord)p-an. Here is what we mean

by the rigid analytic space associated to Ŝord . A functor associating to a formal scheme Spf(A)
a rigid analytic space is studied by Raynaud and Berthelot. The theory of Raynaud is explained
in [BL], and one can find a good account of that of Berthelot in [dJ] Section 7. As a special case
of his theory, Berthelot associates, to Spf(Wp[[(T )]]/(f1(T ), . . . , fm(T ))) for a finite set of variable
(T ) = (T1, . . . , Tn) and a finite set of power series fj(T ) ∈ W [[(T )]] := W [[T1, T2, . . . , Tn]], the rigid
analytic space Xrig given by the zero set of {fj}j in the open unit disk Dn in the n-dimensional
affine space over the field of fraction Frac(W ) of W . Here we take the base-change of Xrig to Cp
(see [NAA] §9.3.6), and write it as Xp-an

/Cp
. This construction appears very naive, but as exposed

in [dJ], this functor has intrinsic meaning and functorial construction, and it extends naturally
the results of Raynaud to formal schemes not necessarily of finite type over W . For pϕ ∈ Σord

associated to ip ◦ ϕ : F → Cp, we extend ip ◦ ϕ to a projection Wp ⊗Z O = W I
p → Cp (which is

still denoted by ip ◦ ϕ), and we put τϕ = τϕ,p = logp ◦ip ◦ ϕ ◦ tpϕ for the Serre–Tate coordinate

tpϕ on Ŝordpϕ
= Ĝm ⊗Zp Opϕ . Then a convergent power series in Cp{{τϕ}}ϕ∈Σord is a rigid analytic

function well defined on (Ŝord)p-an, where Cp{{τϕ}} is made up of power series
∑

n=(nϕ)≥0 anτ
n

in Cp[[τϕ]]ϕ∈Σord with lim|n|→∞ |an|p = 0 for |n| = ∑
ϕ nϕ. The GAGA type theorems associating

an analytic sheaf Fp-an (again Fp-an is the base change to Cp of Frig in [dJ]) to a formal coherent
sheaf F are given in this setting in [dJ] §7.1.11, and the analytic/formal sheaf of Kähler differential
is discussed in [dJ] §7.1.12. In particular, for a rigid point x ∈ Xp-an coming from a smooth formal
point x ∈ X(W ) in the generic fiber, the formal cotangent space ΩX/W (x)⊗W Cp and the analytic
cotangent space ΩXp-an/Cp(x) at x are identical.

For an l-adic Barsotti–Tate O-module B defined over a ring C, we write EndO(B/C) for the ring

of O-linear endomorphisms of B defined over a ring C and put End0
F (B/C) = EndO(B/C )⊗Z Q. For

a finite extension k of Q in Q with integer ring O, put Wk =WΞ ∩ k.

Lemma 4.1. Let l ∈ Ξ be a prime. Let E/F be a quadratic extension with TE = ResE/QGm.

Suppose that (A, λ, θ, η(Ξ)) is the test object sitting over x ∈ V (WΞ) such that the image of x in
VK (for a neat open compact subgroup K of G(A(Ξ),∞)) falls in VK(Wk) for a finite extension k/Q.

For L = Wk ∩ ml,x, let (AL, λL, θL, η
(Ξ)
L ) be its reduction modulo ml,x sitting over xL ∈ V (Fl) (so

AL is defined over FL = O/L). Suppose that we have a level l-structure ηl : (µl∞ ⊗Zl Ol) ∼= A[l∞]◦

defined over Wl for a prime l ∈ Σordl such that ηl ⊕ tη−1
l : (µl∞ ⊗Zl Ol)⊕ (Fl/Ol) ∼= A[l∞] over Wl

as Barsotti–Tate O-modules, where A[l∞]◦ is the connected component of the Barsotti–Tate group
A[l∞]/Wl

and tη−1
l is the dual inverse of ηl under the Cartier duality induced by the polarization λ.

If we have embeddings ρ̂ : TE(Q)→ G(A(Ξ),∞) and E 3 α 7→ αq ∈ End0
F (AL[q∞]/FL

) for all primes

q outside Ξ satisfying η
(Ξ)
L,q ◦ ρ̂(α) = αq ◦ η(Ξ)

L,q for all q 6∈ Ξ for the q-component η
(Ξ)
q of the level

structure η(Ξ), then

(1) E is a CM field isomorphic to End0
F (AL/Fl

),

(2) ρ̂(r×(Ξ)) (r(Ξ) = r⊗Z Z(Ξ)) fixes xL ∈ V (Fl) for an order r of E maximal at l,

(3) we have an F -linear embedding θ̃L : E ↪→ End0
F (AL/Fl

) such that θ̃L(α) induces αq in the

endomorphism algebra End0
F (AL[q∞]) for all q 6∈ Ξ,

(4) there exist an extension of σ : F ↪→ Q to E (still denoted by σ) and a l-adic rigid analytic

σ-coordinate τσ = τσ,l of the rigid analytic space associated to Ŝordl centered at x in Ŝ(Wl)
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such that τσ(x) = 0 and τσ ◦ ρ̂(α) = il(α
σ(1−c))τσ for each σ inducing the place l on F after

composing il.

Moreover the coordinate τσ as in (4) above is unique up to scalar multiples.

We call a σ-coordinate satisfying (4) above a ρ̂-eigen σ-coordinate.

Proof. The test object (AL, λL, θL) is defined over the finite field FL = O/L. Let R′ = EndO(AL/FL
).

Since Σordl 6= ∅, by a theorem of Tate (see [ABV] Appendix I, Theorem 3), R′ is an order of a semi-
simple quadratic extension M ′ of F (generated by the Frobenius endomorphism over FL) whose
simple components are all CM fields; so, M ′ must be a CM quadratic extension (as it cannot be
isomorphic to F × F ). By another theorem of Tate ([ABV] Appendix I, Theorem 2), we have

EndO(AL[q∞]/FL
) = EndO[Gal(Fl/FL)](TqAL) = R′ ⊗Z Zq =: R′

q.

Since E ↪→ End0
F (AL[q∞]/FL

) by α 7→ αq, we have Eq = E ⊗Z Qq
∼= M ′

q for all primes q outside Ξ,

and we conclude to have θ̃L : E ∼= M ′; so, E is a CM field. Put r = θ̃−1
L (R′) ⊂ E, which is an order

of E maximal at l by Lemma 2.2 applied to l. Note that El
∼= Fl × Fl. Since θ̃L(α) for α ∈ r×(Ξ) is a

prime-to-Ξ isogeny sending (AL, λL, η
(Ξ)
L )/Fl

to (AL, λL, θ̃L(α) ◦ η(Ξ)
L )/Fl

= (AL, λL, η
(Ξ)
L ◦ ρ̂(α))/Fl

,

ρ̂(α) fixes xL by the universality of Sh
(Ξ)

/Fl
.

By Serre–Tate theory, we have the Serre–Tate coordinate t := tl of the l-component Ĝm ⊗Zl Ol

of Ŝordl such that an O-linear automorphism a ∈ AutO(Ĝm ⊗ Ol/Wl
) = O×

l acts by t 7→ ta. As

seen in [H10] Lemma 3.3, α ∈ End0
F (AL) = E acts on Ŝordl by universality, and this action induces

a homomorphism : r×(Ξ) → AutO(Ĝm ⊗Ol/Wl
) = O×

l sending α ∈ E× to ασ(1−c) ∈ Fl under an

extension σ : E ↪→ Q of σ : F ↪→ Q inducing l and the projection of El to one of its simple
components isomorphic to Fl. Though the proof of [H10] Lemma 3.3 is given for ordinary AL, the
same argument applied to AL[l∞] (in place of AL[l∞] there) works equally well.

Let logl : 1+lWl →Wl be the l-adic logarithm map. Write σl for the projection of Wl⊗ZO ⊂W I
l

to Wl induced by σ : O ↪→ Q. Then we get a standard σ-coordinate τσ as the following composition:

Ĝm ⊗Zl Ol(Wl) = (1 + lWl)⊗Zl Ol
logl ⊗1−−−−→Wl ⊗Zl Ol

σl−→Wl.

We can perform the same procedure for other primes lϕ ∈ Σordl , and get a coordinate τϕ for ϕ ∈ I
associated to lϕ satisfying the same property above replacing σ by ϕ. The associated rigid analytic

space (Ŝordl )l-an has by definition the coordinates {τϕ}ϕ∈Σordl
(here Σordl is regarded as a set of

field embeddings of F into Cl). Note here tσ(x) = 1 and τσ(x) = 0 (by the splitting A[l∞] ∼=
(µl∞ ⊗ZlOl)⊕(Fl/Ol) over Wl) but for ϕ not associated to l, τϕ(x) may not be equal to 0. Then any
other rigid analytic coordinate f centered at x (i.e., f(x) = 0) is anyway a power series convergent

on an open subset of the rigid analytic space (Ŝordl )l-an associated to Ŝordl . Therefore it has power

series expansion f(τ ) =
∑

ν aντ
ν for τν =

∏
ϕ∈Σordl

τ
νϕ
ϕ . If f ◦ ρ̂(α) = il(α

σ(1−c))f , by equating the

power series expansion, we find that f is a constant multiple of τσ . �

If v = ∞, we put G∞ = AutF (HI) (the complex analytic automorphism group inducing O-
linear map on ΩHI/C); so, G∞ = PSL2(FR) =

∏
ϕ∈I PSL2(R) according to the decomposition

FR = F ⊗Q R =
∏
ϕ∈I R for which the projection to the ϕ-factor induces i∞ ◦ϕ : F → R (e.g., [DLS]

Chapter IV). As is well known, the stabilizer of x ∈ V (WΞ) in G∞ is given by an anisotropic torus
in G∞. Write the torus as T∞,x = Tx =

∏
ϕ∈I Tϕ,x for Tϕ,x ∼= C×/R×. We put Σord∞ := I.

If v = p and Σordp 6= ∅, we write Gp = AutF (Ŝord) (the group of formal automorphisms over Wp

compatible with O×
(Ξ)-action on ΩbSord/Wp

). Note that Ŝord ∼= Ĝm ⊗Zp OΣord as seen in Section 1.

We fix once and for all the identification Ŝord = Ĝm ⊗Zp OΣord . This is tantamount to fixing an

isomorphism µp∞ ⊗Zp Op
∼= A0[p

∞]◦ for each p ∈ Σordp ; so, as before, we write tp for the Serre–

Tate (multiplicative) coordinate of Ŝordp . We have AutSCH(Gm) = AutSCH(Spec(Wp[t, t
−1])) =

Gm(W [t, t−1]) = W [t, t−1]× (the scheme automorphism group). Similarly, writing t = 1 + T , we

have Aut(Ĝm) = Aut(Spf(Wp[[T ]])) = Ĝm(W [[T ]]) = 1 + mW [[T ]] for the maximal ideal mW [[T ]] of
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W [[T ]]. Here Aut(Ĝm) stands for the automorphism group of the formal scheme Ĝm. Note that

Ĝm ⊗Zp OΣord = Spf(W [[OΣord]]) = Spf(W [[Tϕ]]ϕ∈Σord), where Tϕ = tϕ − 1 for the Serre–Tate

ϕ-coordinate tϕ. If φ ∈ Gp, then φ(T ) = (φϕ(T ))ϕ∈Σord ; so, we have φ∗dTϕ =
∑

ψ
∂φϕ
∂Tψ

dTψ. Then

having φ∗(dTϕ) ∈ WpdTϕ implies
∂φϕ
∂Tψ

= 0 if ϕ 6= ψ. Thus φϕ only involves the parameter Tϕ; so,

Gp = Ĝm(W [[T ]])Σ
ord

by sending φ to (φϕ(Tϕ))ϕ∈Σord . Let 1 ∈ Ŝord be the Wp-point given by

tϕ = 1 for all ϕ ∈ Σord (i.e., the origin). The point x ∈ V (WΞ) gives rise to x ∈ Ŝord(Wp) and

x ∈ (Ŝord)p-an(Cp). The group of O-linear automorphisms T1 = Tp,1 := AutO-lin(Ŝord) is in the

stabilizer of 1. The translation automorphism Tx : y 7→ xy ∈ Ŝord is an element in Gp. Thus we
can translate the group structure via Tx so that x becomes the identity element. Then we have
Tp,x = Tx := TxT1T−1

x ⊂ Gp fix x. We have again Tp,x =
∏

p∈Σordp
Tp,x with Tp,x

∼= O×
p which

preserve the p-component Ŝordp := Ĝm ⊗Zp Op ⊂ Ŝord .

Lemma 4.2. Suppose that p ∈ Ξ is unramified in F . If g ∈ G(A(Ξ),∞) leaves stable Ŝordp inducing

an automorphism of formal schemes and fixes the p-component xp ∈ Ŝordp of x, then the action of g

on Ŝordp belongs to Tp,x.

Proof. The action of g on each test object (As, η
(Ξ)
s ) at s is given by

(As, η
(Ξ)
s ) 7→ (Asg, η

(Ξ)
sg )

α←−
∼

(As, η
(Ξ)
s ◦ g)

with an O-linear prime to Ξ-isogeny α. Thus it brings the O-linear group structure on the deforma-

tion space Ŝordx (of (Ax, η
(Ξ)
x )) with identity x to the O-linear group structure on Ŝordxg with identity

xg just by the construction of the Serre–Tate coordinate; in other words, we have the commutative
diagram of the extensions

Ax[p
∞]◦

↪→−−−−→ Ax[p
∞]

�−−−−→ Ax[p
∞]et

o

yα o

yα o

yα

Axg[p
∞]◦

↪→−−−−→ Axg [p
∞]

�−−−−→ Axg[p
∞]et.

The vertical arrows are O-linear isomorphisms as α is prime to Ξ-isogeny. Thus if g leaves Ŝordp

stable and fixes xp, it must preserve the O-linear group structure of Ŝordp with identity xp. This

shows the action of g on Ŝordp belongs to Tp,x. �

Since the stabilizer of the ϕ-component xϕ of x in HI is Tϕ,x, we have immediately

Lemma 4.3. If g ∈ G(A(Ξ)) leaves stable the ϕ-component Hϕ = H of HI and fixes the ϕ-component
xϕ ∈ Hϕ, then the action of g on Hϕ belongs to Tϕ,x.
Lemma 4.4. Let x ∈ V (WΞ), and suppose that v ∈ Ξ ∪ {∞} is unramified in F . Then for each
ϕ ∈ Σordv , there always exists a ϕ-coordinate τϕ = τϕ,v with τϕ(x) = 0 convergent on an open rigid

affinoid neighborhood Dx(τϕ) of x satisfying τϕ ◦ a = aϕv τϕ for a = (av)v∈Σordv
∈ Tv,x = O×

Σordv
if

v <∞ and τϕ ◦ a = aϕτϕ for a ∈ T∞,x = (C×/R×)I if v =∞, where v is the place of F induced by
iv ◦ ϕ : F ↪→ Cp. The coordinate τϕ,v is unique up to scalar multiple.

If xp 6= 1p ∈ Ŝordp , the automorphism φ ∈ Tp,x ∩ Aut(Ŝordp ) may not extend to the global V
as the translation Txp

6= 1 is possibly a transcendental action only defined on the formal scheme

Ŝordp = Ĝm ⊗Zp Op. Therefore, τσ,p in the lemma may not be a ρ̂-eigen coordinate for any choice of
ρ̂.

Proof. The result for v = ∞ is well known (see the argument towards the end of the proof of
Theorem 4.5). If v < ∞, by Serre–Tate deformation theory, we have tv centered at 1 such that
tv ◦a = tav for a ∈ T1. Then τϕ,v := logp ◦ϕv ◦ tv ◦T−1

x does the job, where ϕv : Wv⊗ZO = W I
v → Cv

is the ϕ-projection. Uniqueness up to scalar multiple is clear from τϕ ◦ a = aϕv

v τϕ. �
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Since (A, λ, θ, η(Ξ)) gives the point x ∈ V (WΞ), we may think of its p-fiber

(A0, λ0, θ0, η
(Ξ)
0 )/Fp

= (A, λ, θ, η(Ξ)) ×WΞ Fp.

Let M = End0(A0/Fp
), which is a CM quadratic extension of F in which p splits by Lemma 2.2. As

before,we define ρ̂ : TM (Z(Ξ))→ G(A(Ξ),∞) by θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α).

Theorem 4.5. Let the notation be as above. Let ip ◦σ (resp. il ◦σ) induce p ∈ Σordp (resp. l ∈ Σordl )

for p, l ∈ Ξ for (A, λ, θ, η(Ξ)) sitting over x ∈ V (WΞ). Assume that p and l are unramified in F/Q,
and suppose that we have a p-analytic ρ̂-eigen σ-coordinate τp = τσ,p of the form τp = logp ◦σp ◦ tp
with τp(x) = 0 around x ∈ V (WΞ) ⊂ V (Cp), where σp : Wp ⊗Z O = W I

p → Cp is the σ-projection.
Then for v ∈ {p, l,∞} =: Ξ0, we have a v-analytic ρ̂-eigen σ-coordinate coordinate τv = τσ,v with
τv(x) = 0. Identifying Cp = Cl = C (as in the introduction), in the formal completion of OV/Cv ,x

along the Cv-point x ∈ V (Cv), the coordinates {τv}v∈Ξ0 are proportional (i.e, they are non-zero
constant multiple each other).

Write (ω2σ)v-an for the v-analytic line bundle on (Ŝord)v-an coming from ω2σ by a v-analytic
version of GAGA theorems (e.g., [dJ] §7.1.11 and [C] Example 2.4.6). We write v for l and p

according to v = l and p, and Σordv for the set of all embeddings σ : F → Q such that iv ◦ σ induces

v. To avoid confusion, if necessary, we write the v-adic deformation space Ŝ of A⊗Wv Fv as Ŝv.

Proof. Since Ŝp = Ŝordp ×Ŝllp (see Proposition 1.2), the co-tangent space Ω(bS)p-an/Cp
(x) at x of (Ŝ)p-an

is a direct sum of Ω(bSord)p-an/Cp
(xord) and Ω(bSll)p-an/Cp

(xll) for the projection x? of x to (Ŝ?)p-an.

Then we can further decompose:

Ω
(bSord)p-an/Cp

(xord) =
⊕

pϕ∈Σord

Ω
(bSordpϕ

)p-an/Cp
(xpϕ ) and Ω

(bSordpϕ
)p-an/Cp

(xpϕ ) =
⊕

ϕ∼pϕ

(ω2ϕ)p-an(x),

where xpϕ is the projection of x to Ŝordpϕ
and in the second identity, ϕ runs over ϕ ∈ I such that

ip ◦ ϕ induces the p-adic place pϕ.
Since τp(x) = 0, the Serre–Tate p-coordinate tp is equal to 1 at x; so,

A[p∞] ∼= (µp∞ ⊗Zp Op)⊕ (Fp/Op)

as Barsotti–Tate O-modules over Wp. Then the group TM (Z(Ξ)) acts via ρ̂ on the p-component

Ŝordp , and TM (Z(Ξ)) fixes the p-component xp (this fact of TM (Z(Ξ)) fixing xp might not be true for

pϕ 6= p). Here (ω2σ)p-an(x) is the σ-eigenspace as O-modules in Ω(bSordp )p-an/Cp
(xp). Since TM (Z(Ξ))

fixes xp, (ω2σ)p-an(x) ⊂ Ω(bSordp )p-an/Cp
(xp) for any σ associated with p is the ip(α

σ(1−c))-eigenspace

of ρ̂(α) (α ∈ TM (Z(Ξ))) in Ω(bSordp )p-an/Cp
(xp) for an extension σ : M ↪→ Q of σ : F ↪→ Q. Taking the

canonical lift A1/WΞ
of A0/Fp sitting over x1 ∈ V (WΞ), the extension σ is determined by complex

multiplication by M on ωσ(x1)/WΞ
which is the σ-eigenspace (under real multiplication by F ) of

H0(A1,ΩA1/WΞ
) canonically isomorphic to ωσ(x) after extending scalars to Wp. Thus for σ with

p = pσ, TM (Z(Ξ)) acts on (ω2σ)p-an(x) via the algebraic character ip ◦ σ(1 − c) ∈ X∗(TM ). Since

(ω2σ)p-an(x) = ω2σ(x)⊗WΞ Cp for the algebraic co-tangent space ω2σ(x)/WΞ
and the action of ρ̂ on

the rigid analytic line bundle (ω2σ)p-an is induced by its action on the algebraic line bundle ω2σ over
WΞ, the action via ρ̂ must preserve the algebraic ω2σ(x). Therefore it preserves also

(ω2σ)v-an(x) = ω2σ(x)⊗WΞ Cv

for every v ∈ {p, l,∞}. Since the action of ρ̂(TM (Z(Ξ))) on the v-analytic σ-co-tangent bundle

(ω2σ)v-an over V (Cv) preserves its fiber over x, ρ̂(TM (Z(Ξ))) fixes xv reversing our argument.
We see this fact of ρ̂(TM (Z(Ξ))) fixing xv group-theoretically now. Because of the v-adic Lie group

structure on Ŝordv for v = p, l, the tangent space of Ŝordv at the origin

Tanv :=
⊕

ϕ∼v

Tanϕ,v for Tanϕ,v = HomWv (ω
2ϕ(x)⊗WΞ Wv,Wv)
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is a Lie algebra over Wv, and we have the v-adic Lie algebra Lv := Lie(Ŝordv ) over Zv canonically
inside the tangent space Tanv; i.e., we have

Lv ⊗Zv Wv = Tanv.

Since Ŝordv = Ĝm ⊗Zv Ov, the Lie algebra Lv is isomorphic to the formal co-character group

X∗(Ŝ
ord
v ) := Homformal group(Ŝ

ord
v , Ĝm) ∼= Ov

and hence the action via ρ̂ preserves Lv, and the action via ρ̂ on Tanv is the scalar extension

of the action on Lv to Tanv. We have the v-adic exponential map expv : Lv → Ŝordv (from the
v-adic formal Lie algebra into the v-adic formal Lie group) which is equivariant under the action

of ρ̂. Thus the v-component Ŝordv is stable under the action of TM via ρ̂, and the fixed point in

Ŝordv of the action is the v-component xv of x. The action of α ∈ TM (Z(Ξ)) on Tanσ,v is via

multiplication by iv(α
σ(1−c)) for a suitable extension of σ to M (still denoted by σ). Thus its

action on Lv is via multiplication by α1−c = lim←−n(α1−c mod vn) ∈ Ov; so, we can find a linear

coordinate Tσ,v of Tanσ,v with Tσ,v ◦ ρ̂(α) = ασ(1−c)Tσ,v. Its image under exponential map gives

rise to the coordinate tσ on Ŝordv (with tσ ◦ ρ̂(α) = tα
σ(1−c)

σ and tσ(x) = 1), whose v-adic logarithm is
proportional to the v-adic logarithm of the Serre–Tate σ-coordinate. Then τv = τσ,v := logv ◦tσ is the

desired ρ̂-eigen σ-coordinate, and xv is the fixed point of ρ̂ on Ŝordv , which induces a homomorphism

ρv : TM (Z(Ξ)) → AutO-lin(Ŝordv ) = Tv,x. To see τv(x) = 0 in more down-to-earth terms, note that

Tv,x = O×
v and ρv(α) = ασ(1−c) ∈ O×

v . Since the image of ρv is v-adically dense, by the continuity

of the action, we have τσ,v ◦ a = aτσ,v for all a ∈ O×
v = Tv,x. Then by Lemma 4.4, τσ,p and τσ,l are

proportional each other as formal functions on the formal completion of VK/Cv along x ∈ VK(Cv)
identifying Cv = Cl = Cp. In particular τσ,v(x) = 0, and this re-confirms that the coordinate
τv := τσ,v is the desired one (up to scalar multiple).

The proof for v = ∞ is almost identical to the above proof for finite places. Here it is. We can
bring HI isomorphically onto DI for the unit open disk D in C by a linear fractional transformation
by a matrix in SL2(C)I so that x is sent to the origin 0, and the action of the torus T∞,x/R in

PSL2(R)I/R fixing x (isomorphic to (C×/R×)I ) on the coordinate wσ of D at σ ∈ I is given by

wϕ ◦ α = α1−c
ϕ wϕ for α = (αϕ)ϕ∈I ∈ (C×)I (under the identification Tx(C) = (C×/R×)I ). Here

D is the symmetric domain of SU(1, 1) (the signature (1, 1) special unitary group) isomorphic to
SL2(R), and T1(C) ⊂ SL2(R)I is identified with the diagonal torus in SU(1, 1)I). To explain this in
down-to-earth terms, write z for the standard coordinate of HI ⊂ CI . If ξ = zϕ(x), the holomorphic

isomorphism: H 3 z = (zϕ)ϕ 7→ w = (wϕ)ϕ =
(
zϕ−ξ

zϕ−ξ

)

ϕ
∈ D does the job. Though D is not a Lie

group, it is an open neighborhood of the identity of the Lie group C× = Gm(C), and it is a Lie
semi-group. Then the argument using the tangent space at x as above (identifying it with the Lie
algebra of T∞,x) done for finite places v = p, l is valid also for v =∞ without any change. Thus we
can take wσ to be τσ,∞ = τ∞. Again it is proportional to τv over the formal completion. �

Corollary 4.6. Let the notation and the assumption be as in Theorem 4.5. Let l ∈ Σordl for a prime

l ∈ Ξ different from p. If the prime l in F is induced by il ◦ σ, we have End0
F (A ⊗WΞ Fl) ∼= M ∼=

End0
F (A⊗WΞ Fp) as F -algebras (via θ).

Proof. Let AL = A ⊗WΞ Fl, and write M ′ = End0
F (AL) with R′ = EndO(AL) and M = End0

F (A0)
with R = EndO(A0). Fix a level l-structure ηl : µl∞ ⊗Zl Ol

∼= A[l∞]◦. By Theorem 4.5, we
have τl(x) = 0; so, tl(x) = 1, which implies that we get an O-linear isomorphism of Barsotti–Tate
O-modules over Wl:

ηl ⊕ tη−1
l : (µl∞ ⊗Zl Ol) ⊕ (Fl/Ol) ∼= A[l∞].

Again by Theorem 4.5, we have τl ◦ ρ̂(α) = il(α
σ(1−c))τl for α ∈ R×

(Ξ) = TM (Z(Ξ)), and ρ̂(R×
(Ξ)) leaves

stable Ŝordl and fixes xl ∈ Ŝordl . Thus the image of ρ̂ : TM ↪→ G(A(Ξ∞)) is the unique torus (over

A(Ξ∞)) in G such that its image in E(Ξ)
is made of automorphisms of Sh(Ξ) preserving Ŝordl and

fixing xl by Lemma 4.2 (in short, ρ̂(TM (Z(Ξ)))“⊂”Tl,x ∩E (Ξ)
under a slight abuse of notation). This
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implies by universality of Sh(Ξ) that we have an endo-isogeny θ̃L(α) ∈ End0
F (AL) for each α ∈ R×

(Ξ)

such that θ̃L(α) ◦ η(Ξ)
L = η

(Ξ)
L ◦ ρ̂(α) and the isogeny action of θ̃L(α) is given by tσ,l 7→ tα

σ(1−c)

σ,l for

l-adic Serre–Tate σ-coordinate tσ,l. In other words, the triple (E = M,αq = θ̃L(α)|AL[q∞], ρ̂) satisfies

the assumption of Lemma 4.1 (3), and hence, by the O-linear embedding θ̃L : M ↪→ End0
F (AL/FL

),

we have M ↪→ M ′, which implies θ̃L : M ∼= M ′, since M ′ = End0
F (AL) is a quadratic extension of

F . �

5. Local indecomposability of an AVRM

Let (A, λ, θ)/Wp
be an AVRM by multiplication by O with good reduction. Thus the triple

(A, λ, θ) is defined over a number field k in which p is unramified. We suppose that Σord := Σordp
is non-empty (so, A0 = A ⊗W Fp is at least partially ordinary). By Serre–Tate theory, we have

Ŝord ∼= Ĝm ⊗Zp OΣord . We fix an isomorphism ηp : µp∞ ⊗Zp Op
∼= A[p∞] to fix the identification

Ŝordp
∼= Ĝm ⊗Zp Op for p ∈ Σordp . For a finite set of primes Ξ including p (which will be specified

later), we will choose suitably an isomorphism η(Ξ) : (F
(Ξ),∞
A )2 ∼= T (Ξ)A ⊗Z Z(Ξ) defined over WΞ

in the proof of the following theorem. Since p is unramified in k and p ∈ Ξ, by extending scalars
to a finite extension of k in the fraction field of WΞ if necessary, for a neat open compact subgroup
K ⊂ G(A(Ξ),∞), we may assume that (A, λ, η(Ξ)) (resp. (A, λ, η(Ξ))) gives rise to a point x ∈ V (WΞ)

(resp. x ∈ VK(Wk)) for a geometrically irreducible component V of Sh(Ξ). Let M = End0
F (A0)

which is a CM field (see Lemma 2.2). Define ρ̂ : TM (Z(Ξ))→ G(A(Ξ),∞) by θ̃P(α)◦η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α),

where (A0, λ0, θ0, η
(Ξ)
0 ) = (A, λ, θ, η(Ξ))×Wp Fp and θ̃P is an extension of θ0 to M . Then ρ̂(α) acts

on Ŝord by tp 7→ t
α1−c

p

p for an embedding M 3 α 7→ αp ∈ Fp and on V through E (Ξ)
, where c is

the generator of Gal(M/F ). The embedding α 7→ αp induces MP = Fp for a prime P of M over
p, and A0[P] is connected. We write σp : Fp → Cp for the embedding induced by the σ-projection
of Wp ⊗Z O = W I

p to Wp ⊂ Cp. If the place p is associated to ip ◦ σ, we write tσ = σp ◦ tp and

τ = τσ,p = logp ◦tσ; so, τ ◦ ρ̂(α) = ip(α
σ(1−c))τ . By definition, if ip ◦ σ gives rise to p-adic place

p ∈ Σordp , tσ(A) = 1 (⇔ τ (A) = 0) is equivalent to semi-simplicity of the p-adic Tate module TpA as

an Ip-module for the inertia group Ip in Gal(Q/Q) corresponding to ip ◦ σ. We want to prove

Theorem 5.1. Let the notation be as above. Suppose that O is unramified at p and that the place
of k induced by ip is unramified over Q. If A/Q = A ×W Q does not have complex multiplication,

TpA is indecomposable as an Ip-module for each p ∈ Σordp .

Proof. On the contrary to the conclusion of the theorem, we assume that TpA for p ∈ Σordp is a

semi-simple Ip-module (so, tp(A) = 1). As before, ip ◦ σ induces the place p for σ ∈ I. Note that

A is defined over a number field k ⊂ Q unramified at p as A is defined over unramified W and A is
projective. If p is inert in F , then tσ(A) = 1 implies tp(A) = 1; so, A is the canonical lift of A0; so,
A has complex multiplication, a contradiction. Thus we may assume that F has at least two primes
over p, though we do not use this fact in the rest of the proof.

We write primes of F by lower case Gothic letters and primes of k by upper case Gothic letters.
The corresponding roman character is the rational prime below. Pick a prime q of O. Identify
TqA ∼= O2

q and write rq : Gal(Q/k)→ GL2(Oq) for the Galois representation realized on TqA.
Since A is isotypic as is well known (i.e., A is isogenous to a product of copies of an absolutely

simple AVRM over a finite extension of k; see [GME] §5.3.1), we may assume that A is absolutely

simple. Then D := End0(A/k) is a (possibly commutative) division central simple algebra over a

totally real field or a CM field Z with integer ring r (as A⊗kQ does not have complex multiplication;
see [GME] Lemma 5.3.2). Since F is totally real, Z ⊂ F has to be totally real. If D is commutative,
D = F = Z is a totally real field, and if D is not commutative, it is a division quaternion algebra
over Z. By a theorem of Faltings (solution of Tate’s conjecture; see [ARG] II), for End0

Zq
(TqA) :=

Endrq
(TqA) ⊗rq

Zq, the algebra Zq[rq(Gal(Q/k′))] ⊂ End0
Zq

(TqA) generated by rq(Gal(Q/k′)) over

Zq is the commutant of End(A/k) ⊗Z Zq for any finite extension k′/k, where TqA = lim←−nA[q]n and

Zq is the q-adic completion of Z ⊂ F (i.e., the closure of Z in Fq). Let Cq := Zq[rq(Gal(Q/k′))] ⊂
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End0
Zq

(TqA). Then Cq is the commutant of Dq = D⊗Z Zq in End0
Zq

(TqA). Hence Cq has center Zq

and is independent of the choice of k′. In particular, Cq ⊗Zq
Dq
∼= End0

Zq
(TqA) ∼= Mn(Zq) (n × n

matrix algebra) for a suitable n (cf. [BAL] VIII.10.2). This implies that the Brauer classes over Zq

of Cq and Dq are inverse each other (cf. [BAL] VIII.10.4). Since D is either a quaternion algebra
over Z or D = F = Z, the Brauer class of Dq has order at most 2 in the Brauer group over Zq.
Thus Cq is either isomorphic to a division quaternion algebra over Zq or M2(Fq) = M2(Zq).

Set r = rp (so q = p). Since M 3 α 7→ ασ(1−c) ∈ Fp implies Mp = Fp ⊕ Fp ↪→ Cp (i.e., p splits
in M); so, Cp

∼= M2(Fp). Thus Im(r) contains an open subgroup of SL2(Zq) ⊂ C×
q . This open

image property follows from Ribet’s argument in [Ri] IV. Indeed, assuming that End0(A⊗k Q) = F
(absolutely simple AVRM but non CM) and that A has a place of multiplicative reduction, Ribet
computed the Lie algebra of Im(r) and showed the Lie algebra contains sl2(Zp) (which implies the
open image property by exponentiating the Lie algebra). His assumptions are used to show that
Cp = M2(Fp), and, using Faltings’ result, Ribet’s argument still works, and we get the open image
property (see [BGK] Theorem C for more details of this point).

Since there are at least two non-isomorphic ramified semi-simple quadratic extensions of Qp, we
have at least four non-isomorphic maximal tori in SL(2)/Qp defined over Qp having non-isomorphic
projection to PGL(2). Thus we can find a torus T ⊂ GL(2) defined over Op such that

(p1) T (Op) ∩ SL2(Zp) is an anisotropic maximal torus (i.e., T (Op) is isomorphic to the norm 1
subgroup of the multiplicative group of a field extension of Fp),

(p2) T (Op) remains an anisotropic maximal torus (i.e., for example, if T (Op) ∩ SL2(Zp) comes
from a ramified quadratic extension of Qp, T (Op) remains anisotropic as Fp/Qp is unrami-
fied).

We pick α ∈ T (Op)∩ Im(r)∩SL2(Zp) so that T is the centralizer of α (i.e., α has two distinct eigen-
values in Cp). Since the isomorphism class of the centralizer of α (as tori over Op) is determined by
α mod pj for sufficiently large j, by Chebotarev density, changing T in its isomorphism/conjugacy
class if necessary, we may choose a prime L outside p so that

• A has good reduction at L,
• r(FrobL) commutes with α (i.e. r(FrobL) ∈ T (Fp)).

For the eigenvalues λ of r(FrobL), the quadratic extensions M ′ = F [λ] is non-isomorphic to M =

End0
F (A0/Fp

) over F (i.e., p is non split in M ′ but p splits in M). Since A has Σordl 6= ∅ for primes

L of k of Dirichlet density 1 (after replacing k by its finite extension if necessary; see Section 7 in
the text and [O] 2.7 and [N] Introduction), we may assume that Σordl contains a prime induced by

il ◦ σ (i.e., we may assume that l splits in M ′); so, we have End0
F (A ⊗Wl Fl) = M ′.

Let Ξ = {p, l} for the residual characteristic l of l. Then A0 has complex multiplication by a CM
field M/F . Thus A0[q

∞] ∼= (Fq/Oq)
2 over Fp for any prime q 6∈ Ξ. Since A0 is defined over FP,

it has the Frobenius endomorphism φ over FP and M = F [φ] = End0
F (A0/FP

) is a CM quadratic

extension of F (by Lemma 2.2). Thus we can find an R-linear isomorphism η
(Ξ)
0 : R̂(Ξ) ∼= T (Ξ)A0

for R = O[φ], where R̂ =
∏
q Rq and R̂(Ξ) =

∏
q 6∈ΞRq. Thus, identifying R̂(Ξ) ⊗Z Q = (F

(Ξ),∞
A )2,

we may define an embedding ρ̂ : M× ↪→ G(A(Ξ),∞) by θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α). Since A[q∞] for

q 6∈ Ξ is étale over WΞ, this level structure η
(Ξ)
0 lifts uniquely to a level structure η(Ξ) of A. Then

the point x0 ∈ Sh(Ξ)(Fp) carrying (A0, λ0, η
(Ξ)
0 ) is fixed by ρ̂(TM (Z(Ξ))) by Lemma 4.1.

Suppose that rp|Ip is semi-simple for p ∈ Σord for p induced by σ : F → Qp. Thus by semi-
simplicity, the following connected-étale exact sequence

0→ A[p∞]◦(Qp)→ A[p∞](Qp)→ A[p∞]et(Qp)→ 0

of Ip-modules splits, and hence the connected -étale sequence of Barsotti–Tate O-modules

0→ A[p∞]◦/Wp
→ A[p∞]/Wp

→ A[p∞]et/Wp
→ 0

also splits (cf. [T]). In particular, we have p = PP for prime ideals P 6= P in R = EndO(A0/Fp
) ⊂M

so that A0[p
∞]◦ = A0[P∞] and A0[p

∞]et = A0[P
∞

]. The isomorphism ηp : µp∞ ⊗Zp Op
∼= A[p∞]◦ is

defined over Wp. Recall M× 3 α 7→ αp ∈ Fp given by θ̃P(α) ◦ ηp = ηp ◦ αp. By definition, we also
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have tp(A) = 1; so, τ = logp ◦σ ◦ tp satisfies τ ◦ ρ̂(α) = ip(α
σ(1−c))τ for an extension σ : M ↪→ Qp

of σ. Thus by Theorem 4.5, the corresponding coordinate τl = τσ,l on the l-adic deformation space
satisfies the same invariance property (i.e., they are ρ̂-eigen coordinate and τl(A) = 0). By our

choice, M ′ = End0
F (A⊗Wl Fl) with M 6∼= M ′, which is a contradiction as M ′ = End0

F (A ⊗Wl Fl) ∼=
End0

F (A0/Fp
) = M (as F -algebras) by Corollary 4.6. �

6. CM periods and proportionality constants

In the proof of the indecomposability in the previous section, proportionality of τp and τl proven
in Theorem 4.5 played an important role. We study the proportionality constant of our ρ̂-eigen
ϕ-coordinate at each v ∈ Ξ in terms of CM periods of Katz and Shimura, starting with a CM
abelian variety (not with the non-CM abelian variety we did so far). We show that the constant
is the ratio of the square of v-adic CM periods. This section is independent of the proof of the
local indecomposability (and the reader with interest only in local indecomposability may skip this
section).

Let x0 ∈ Sh(Ξ)(Fp) be in the ordinary locus. The Serre–Tate deformation space of x0 is then

isomorphic to Ŝp = Ŝordp = Ĝm⊗ZO (as p is assumed to be unramified in F/Q) embedded into Sh
(Ξ)
/Wp

.

Let x1 ∈ Sh(Ξ) be the origin 1 ∈ Ŝp ↪→ Sh
(Ξ)
/Wp

, and let (A1, λ1, θ1, η
(Ξ)
1 )/Wk

be the CM abelian variety

(the canonical lift) sitting over x1 (which is originally defined over Wp but it descends to Wk for

a number field k by the theory of complex multiplication [ACM]), where θ1 : M ∼= End0
F (A1/WΞ

).

This is the CM point we study. Suppose that A1 ×Wk Fl is also ordinary for l ∈ Ξ different from p.
So we may assume that Ξ = {p, l}, and we suppose that l is unramified in F/Q.

At v = p, l, we fix ηv : µv∞ ⊗Z O ↪→ A1[v
∞] defined over Wv. This is possible as Wv is a strict

henselization of Z(v). This level structure (together with η
(Ξ)
1 ) gives rise to a point on the v-adic

Igusa tower Igv,∞ := IsomWv (µv∞ ⊗Z O/Shord
∞
,A/Shord

∞
[v∞]◦) for the universal abelian scheme A

over the ordinary locus Shord∞ of Sh(v). We write simply again x1 for this point on Igv,∞. By fixing

ηv, we have a unique identification of Ŝv with Ĝm ⊗Z O. Define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞) by

θ1(α) ◦ η(Ξ)
1 = η

(Ξ)
1 ◦ ρ̂(α). Then write τv,ϕ for the ρ̂-eigen ϕ-coordinate of (Ŝv)

v-an if v = p, l. In
other words, if v = p, for the ϕ-projection ϕp : Wp ⊗Z O � Wp, we have τp,ϕ = logp ◦ϕp ◦ tpϕ for

the Serre–Tate coordinate tpϕ of Ŝordpϕ
= Ĝm ⊗Zp Opϕ .

By ordinarity, any prime factor v|v (for v = p, l) in O splits in M ; in particular, v is unramified

in M/Q. Write Φ for the CM type of A1; so, Φ is a collection of a half of embeddings of M into Q

such that
∑

φ∈Φ φ as a representation of M is isomorphic to ΩA1/k ⊗k Q. Supposing that k is large

containing all conjugates of M in Q, we decompose H0(A1,ΩA1/Wk
) =

⊕
φ∈ΦWkωφ with nowhere

vanishing differentials ωφ having an eigen-property θ1(α)∗ωφ = φ(α)ωφ for α ∈ M = End0
F (A1). As

is well known, R := θ−1
1 (EndO(A1/Wk

)) is an O-order of M , in which any prime v|v of R splits (see
Lemma 2.2).

Fixing complex uniformization L ↪→ CΦ
� A1(C) for a proper R-ideal L ⊂ R. Writing the

variable of CΦ as u = (uφ), ω∞,φ := duφ ∈ H0(A1,ΩA1/C) satisfies θ1(α)∗ω∞,φ = φ(α)ω∞,φ for
α ∈ M . Thus ωφ and ω∞,φ are proportional, getting Shimura’s CM period Ω∞,φ ∈ C× by ωφ =
Ω∞,φω∞,φ. Since

∫
γ
ω∞,φ ∈ φ(L) ⊂ Wk for all γ ∈ π1(A1(C), 0) for the origin 0 ∈ A1, we have the

classical algebraic period identity
∫
γ
ωφ ∈ W ·Ω∞,φ. We put Ω∞ = (Ω∞,φ)φ∈Φ ∈ (C×)Φ.

For v = p, l, the level structure ηv induces η̂v : Ĝm⊗ZO = lim←−n(µvn⊗ZO) ∼= Â1 defined overWv for

the formal completion Â1 of A1 along the origin 0 ∈ A1(Fv). Thus, writing Gm = Spec(W [t, t−1]),
the push forward η̂v,∗(

dt
t ⊗ 1) can be written as a unique sum η̂v,∗(

dt
t ⊗ 1) =

∑
φ∈Φ ωv,φ satisfying

θ1(α)∗ωv,φ = φ(α)ωv,φ for α ∈ M = End0
F (A1). We then define Katz’s v-adic period Ωv,φ by

ωφ = Ωv,φωv,φ. We put Ωv = (Ωv,φ)φ∈Φ ∈WΦ
v (see [K1]). Thus we get

Proposition 6.1. Under our identification Cp = C, the proportionality constant of ωp,φ and ω∞,φ

both in H0(A1,ΩA1/C) = H0(A1,ΩA1/Cp) is given by Ω∞,φ/Ωp,φ for each φ ∈ Φ; in other words, we
have

Ωp,φωp,φ = ωφ = Ω∞,φω∞,φ = Ω∞,φduφ
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for ωφ ∈ H0(A1,ΩA1/WΞ
).

Assuming that A1 is also ordinary at l ∈ Ξ, applying the above proposition to {p,∞} and then
to {l,∞}, we get

Corollary 6.2. Under our identification Cp = Cl, the proportionality constant of ωp,φ and ωl,φ both
in H0(A1,ΩA1/Cp) = H0(A1,ΩA1/Cl) is given by Ωl,φ/Ωp,φ for each φ ∈ Φ; in other words, we have

Ωp,φωp,φ = ωφ = Ωl,φωl,φ

for ωφ ∈ H0(A1,ΩA1/WΞ
).

We have three Kodaira–Spencer maps:

(6.1) (π∗ΩA/Sh
(p)

/Wk

[ϕ])⊗2 = ω2ϕ
/Wk

∼= ΩSh(p)/Wk
[ϕ], (π∗ΩA/bSord

p/Wp

[ϕ])⊗2 = ω2ϕ
/Wp

∼= ΩbSp/Wp
[ϕ],

and (π∗ΩA/bSord
l/Wl

[ϕ])⊗2 = ω2ϕ
/Wl

∼= ΩbSl/Wl
[ϕ].

Here A denotes the universal abelian scheme corresponding to the bases Shord∞ , Ŝordp and Ŝordl whose
origin corresponding to x1. As before, “[ϕ]” indicates the ϕ-eigenspace under the natural action of
O. Taking the fiber at x1 of (6.1), we get

(H0(A1,ΩA1/Wk
[ϕ]))⊗2 = ω2ϕ(x1)/Wk

∼= ΩSh(p)/Wk
[ϕ](x1),

(H0(A1,ΩA1/Wp
[ϕ]))⊗2 = ω2ϕ(x1)/Wp

∼= ΩbSp/Wp
[ϕ](x1),

(H0(A1,ΩA1/Wl
[ϕ]))⊗2 = ω2ϕ(x1)/Wl

∼= ΩbSl/Wl
[ϕ](x1).

(6.2)

We can identify Φ with I by φ 7→ φ|F =: ϕ. Then ϕ-eigenspace under the action of O is identical to
the φ-eigenspace under the action of R. The data

{ωφ ∈ H0(A1,ΩA1/Wk
[ϕ]), ωp,φ ∈ H0(A1,ΩA1/Wp

[ϕ]), ωl,φ ∈ H0(A1,ΩA1/Wl
[ϕ])}

give rise to the corresponding differentials

{ω⊗2
φ = ωφ ⊗ ωφ ∈ Ω

A/Sh
(p)

/Wk

[ϕ](x1), ω
⊗2
p,φ ∈ Ω

A/bSp/Wp
[ϕ](x1), ω

⊗2
l,φ ∈ Ω

A/bSl/Wl
[ϕ](x1)}.

Define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞) by θ1(α) ◦ η(Ξ)
1 = η

(Ξ)
1 ◦ ρ̂(α). Write τv,ϕ for the additive Serre–

Tate ρ̂-eigen ϕ-coordinate of (Ŝp)
v-an for v = l, p. Then we define the proportionality constant

Cv,wϕ to be τv,ϕ = Cv,wϕ · τw,ϕ. The constant 0 6= Cv,wϕ is determined by comparing dτv,ϕ and

dτw,ϕ in ΩSh(p)/Cv [ϕ](x1) = ΩSh(p)/Cw [ϕ](x1), in which we have algebraic ω⊗2
φ . Note that, by our

construction and [K] Main Theorem 3.7.1, we have dτv,ϕ =
dtv,ϕ
tv,ϕ

= ω⊗2
v,φ with tv,ϕ = ϕ ◦ tvϕ for the

unique continuous extension ϕ : Fvϕ ↪→ Cv of the original ϕ : F ↪→ Q. Thus from Corollary 6.2, we
get

Theorem 6.3. Under our identification Cp = Cl, the proportionality constant Cp,lϕ of τp,ϕ and τl,ϕ
is given by Ω2

l,φ/Ω
2
p,φ for each ϕ ∈ I, where φ ∈ Φ corresponds to ϕ by φ|F = ϕ; in other words, we

have
Ω2
p,φdτp,ϕ = ω⊗2

φ = Ω2
l,φdτl,ϕ in ΩSh(Ξ)/Cp(x1) = ΩSh(Ξ)/Cl(x1)

for ω⊗2
φ ∈ ω2ϕ.

Question 6.4. If we start with non-CM AVRM (A, λ, θ)/k, we can associate two p-adic “periods”

τp,ϕ(A) for each ϕ ∈ Σordp and Ω(A)p,ϕ given by Ω(A)p,ϕωp,ϕ = ωϕ choosing a generator ωϕ of

H0(A,ΩA/Wk
[ϕ]) over Wk. It is an interesting question if these periods are related to some p-adic

L-values coming out of the abelian scheme A/k.

If A is an ordinary abelian variety with CM, we have τp,ϕ(A) = 0 (as tp(A) = 1). Thus, we get
only one nontrivial period, the Katz CM period Ω(A)p,ϕ. By a result of Shimura, the value of an
algebraic modular form f at the CM abelian variety “A” with complex invariant differentials {duφ}φ
is equal to a monomial of {Ω(A)∞,ϕ}ϕ up to an algebraic number which is the value of f at (A, ωφ)φ.
Similarly, by a result of Katz, the value of f at the CM abelian variety “A” with p-adic invariant
differentials {ωp,φ} of an algebraic modular form is equal to the same monomial of {Ω(A)p,ϕ}ϕ times
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f((A, ωφ)φ). An elementary treatment of the theory of Katz and Shimura can be found in [EAI]
Section 1.3. If A is non CM and has ordinary good reduction, τp,ϕ(A) plays a role similar to the
Tate period of an abelian variety with multiplicative reduction, though we do not know much about
its arithmetic meaning yet.

7. Density of partially ordinary primes

For the reader’s convenience, we give a sketch of a simple proof of the density result for partially
ordinary primes used in the proof of Theorem 5.1. We consider the set Sord of prime ideals of k
unramified over Q at which A has partially ordinary good reduction for a given non CM absolutely
simple AVRM (A, λ, θ). Here (A, λ, θ) is defined over the number field k ⊂ Q, and A has partially

ordinary good reduction at P if A extends to an abelian scheme over OP and A[p](Fp) 6= 0 for

an algebraic closure Fp of O/P. First suppose that k/Q is a Galois extension. Then the set of
primes of k split over Q has Dirichlet density 1. Let Sordf ⊂ Sord be the set of all primes in Sord
with residual degree f . We have Sord =

⊔[k:Q]
f=1 Sordf . If a prime P in O has residual degree 1,

the reduction AP = A ⊗OP
O/P has the p-power Frobenius endomorphism φ whose eigenvalues α

satisfies |αϕ| = √p for all ϕ ∈ Gal(Q/Q). Since a = α + αc for the complex conjugation c (i.e., the
Rosati involution of EndO(AP) with respect to λ) is in O (as AP is defined over O/P = Fp). Thus

we get |aϕ| ≤ 2
√
p. Taking the norm to Q, we have |NF/Q(a)| ≤ 2dpd/2. Thus if p|(a) in O, we have

pd|NF/Q(a); so, pd ≤ |NF/Q(a)| ≤ 2dpd/2 as long as a 6= 0. Thus if a 6= 0, we have a prime p - a in

O above p for p ≥ 5. Then as is well known, this implies that A[p](Fp) 6= 0 (i.e., p ∈ Σordp ). For any

p-adic Galois representation ρ : Gal(Q/k) → GLm(Qp), fix a Haar measure on Im(ρ) with volume
1. By Chebotarev density (e.g., [ALR] I-8, Corollary 2 combined with Exercise there and [Se] §2.1),
the density of primes of k whose Frobenius falling in a closed set of volume 0 is equal to 0. Applying
this to the Galois representation ρl on the l-adic Tate module of A/k taking a prime l of F . By the
result of [BGK] Theorem C, the set of P whose Frobenius has trace 0 has volume 0. Thus for non
CM AVRM A, the set of primes P with a = 0 has Dirichlet density 0 by the quantitative Chebotarev
density theorem (though Serre works over Q, his argument generalizes to a number field k without
any modification). If k/Q is not a Galois extension, we just replace k by its Galois closure and apply

the above argument. Since as in Theorem 5.1, we say that A does not have CM if A×k Q does not
have CM (i.e., End0

F (A×k Q/Q) = F ), being non CM is insensitive to any base change finite over k;

in particular, the abelian variety A over the Galois closure of k does not have CM. Thus we have

Proposition 7.1. Let (A, λ, θ) be a non CM AVRM defined over k ⊂ Q. Replacing k by its finite
extension if necessary, the set Sord1 for a given AVRM has Dirichlet density equal to 1.

It is interesting to know the Dirichlet density of the set {l|L ∈ Sordf } of rational primes if f > 1

(this question is not about the density over k but over Q). The result [O] 2.7 tells us something
about Sord2 .
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