

\mathcal{L} -INVARIANTS OF ADJOINT SQUARE GALOIS REPRESENTATIONS

HARUZO HIDA

1. ADJOINT SQUARE SELMER GROUP

Let p be an odd prime. We start with a totally real field F inside a fixed algebraic closure $\overline{\mathbb{Q}}$ and a Galois representation $\rho = \rho_F : \mathfrak{G}_F = \text{Gal}(\overline{\mathbb{Q}}/F) \rightarrow GL_2(A)$, where A is a local p -profinite Noetherian normal integral domain flat over \mathbb{Z}_p with maximal ideal \mathfrak{m}_A (A could be regular rings \mathbb{Z}_p and $\mathbb{Z}_p[[x_1, \dots, x_r]]$) and $F^{(p)}/F$ is the maximal extension unramified outside p and ∞ . We write W for the coefficient ring of A ; so, W is the integral closure of \mathbb{Z}_p in A and is a discrete valuation ring. We indicate by ρ also the representation space $\rho \cong A^2$ with the action given by ρ . We assume

- (unr) F is unramified at p ;
- (det) $\det(\rho_F) = \psi\chi$ for the p -adic cyclotomic character χ and a totally even character $\psi : \mathfrak{G}_F \rightarrow W^\times$;
- (ord) For each prime $\mathfrak{p} \mid p$ of F , the representation space ρ_F has an exact sequence $0 \rightarrow \varepsilon_{\mathfrak{p}} \rightarrow \rho \rightarrow \delta_{\mathfrak{p}} \rightarrow 0$ with $\delta_{\mathfrak{p}} \cong A$ stable under the decomposition group $D_{\mathfrak{p}} \subset \text{Gal}(\overline{\mathbb{Q}}/F)$ of \mathfrak{p} (Near ordinary). Assume $\delta_{\mathfrak{p}} \not\equiv \varepsilon_{\mathfrak{p}} \pmod{\mathfrak{m}_A}$;
- (lcy) The restriction of $\delta_{\mathfrak{p}}$ and $\varepsilon_{\mathfrak{p}}$ to the inertia subgroup $I_{\mathfrak{p}}$ factors through the cyclotomic Galois group $\text{Gal}(F_{\mathfrak{p}}[\mu_{p^\infty}]/F_{\mathfrak{p}})$;
- (ai_F) $\rho_F \pmod{\mathfrak{m}_A}$ is absolutely irreducible on $\text{Gal}(\overline{\mathbb{Q}}/F)$.

By (lcy), we have a Galois character $\delta_{\mathfrak{p}} : \text{Gal}(F_{\mathfrak{p}}[\mu_{p^\infty}]/F_{\mathfrak{p}}) \rightarrow A^\times$; so, for the Galois group $\Gamma_{\mathfrak{p}}$ of the cyclotomic \mathbb{Z}_p -extension of $F_{\mathfrak{p}}$, $\delta_{\mathfrak{p}}$ induces an algebra structure of A over $W[[\Gamma_{\mathfrak{p}}]]$. Fix a generator γ of $\Gamma_{\mathfrak{p}}$, we identify $W[[\Gamma_{\mathfrak{p}}]]$ with a power series ring $W[[x_{\mathfrak{p}}]]$ via $\gamma \mapsto 1 + x_{\mathfrak{p}}$.

The character $\delta_{\mathfrak{p}} : D_{\mathfrak{p}} \rightarrow A^\times$ is called the nearly ordinary character of ρ at \mathfrak{p} .

We define the adjoint square $Ad(\rho_F)$ by the action $Ad(\rho_F)(\sigma)(T) = \rho(\sigma)T\rho(\sigma)^{-1}$ on $\{T \in \text{End}_A(\rho) \mid \text{Tr}(T) = 0\}$. Then $Ad(\rho)$ has a three step filtration

$$\begin{array}{ccccccc} Ad(\rho) & \supset & Z_{\mathfrak{p}}(\rho) & \supset & Ad_{\mathfrak{p}}^+(\rho) = \varepsilon_{\mathfrak{p}} \delta_{\mathfrak{p}}^{-1} \\ \cap & & \parallel & & \parallel \\ M_2(A) & \supset & \left\{ \begin{pmatrix} a & * \\ 0 & -a \end{pmatrix} \mid a \in A \right\} & \supset & \left\{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \mid a \in A \right\} \end{array}$$

stable under $D_{\mathfrak{p}}$. The decomposition group $D_{\mathfrak{p}}$ acts trivially on $Z_{\mathfrak{p}}(\rho)/Ad_{\mathfrak{p}}^+(\rho)$. Writing A^* for the Pontryagin dual of A and taking an extension L/F inside $\overline{\mathbb{Q}}$, we define the Galois cohomologic Selmer group

$$\text{Sel}_L(Ad(\rho)) = \text{Ker} \left(H^1(\mathfrak{G}_L, Ad(\rho) \otimes_A A^*) \xrightarrow{\text{Res}} \prod_{\mathfrak{P} \mid p} H^1(I_{\mathfrak{P}}, \frac{Ad(\rho) \otimes_A A^*}{Ad_{\mathfrak{p}}^+(\rho) \otimes_A A^*}) \right).$$

AMS special session talk at USC on 4/3/2004. The author is partially supported by an NSF grant. DMS 0244401.

Here \mathfrak{G}_L is the Galois group over L of the maximal extension unramified outside p and ∞ , \mathfrak{P} runs over prime factors of p in L , and $I_{\mathfrak{P}} \subset D_{\mathfrak{P}}$ is the inertia group at \mathfrak{P} . We equip with $\text{Sel}_L(\text{Ad}(\rho))$ the discrete topology; so, its Pontryagin dual $\text{Sel}_L^*(\text{Ad}(\rho))$ is a compact A -module. In particular, for the cyclotomic \mathbb{Z}_p -extension F_{∞}/F , $\text{Sel}_{F_{\infty}}^*(\text{Ad}(\rho))$ is a $A[[\Gamma]]$ -module of finite type, where $\Gamma = \text{Gal}(F_{\infty}/F)$. Then $\text{Sel}_{F_{\infty}}^*(\text{Ad}(\rho))$ has the characteristic power series $\mathcal{F}_{\rho}(x) = \text{char}_{A[[x]]}(\text{Sel}_{F_{\infty}}^*(\text{Ad}(\rho)))$. Here we fix a generator $\gamma \in \Gamma$, and identify $A[[\Gamma]]$ with a power series ring $A[[x]]$ by $\gamma \mapsto 1+x$.

Since $D_{\mathfrak{p}}$ acts trivially on $Z_{\mathfrak{p}}(\rho)/\text{Ad}_{\mathfrak{p}}^+(\rho)$, $\mathcal{F}_{\rho}(x)$ has trivial zero: $x|\mathcal{F}_{\rho}(x) \Leftrightarrow \mathcal{F}_{\rho}(0) = 0$. Here is a conjecture (basically due to R. Greenberg) in which all the identities are up to units in A :

Conjecture-Definition *Let g be the number of prime factors of p in F . Suppose that for a prime $P \in \text{Spec}(A)(W)$, $\rho_P = \rho_F \bmod P$ is associated to a pure critical rank two motive with coefficients in T defined over F (so, W is a local factor of the integer ring of $T \otimes_{\mathbb{Q}} \mathbb{Q}_p$). Then $\mathcal{F}_{\rho}(x) = x^g \Phi_{\rho}(x)$ with $\Phi_{\rho}(0) = \frac{\mathcal{L}(\text{Ad}(\rho))}{\log_p(\gamma)^g} \text{char}_A(\text{Sel}_F(\text{Ad}(\rho))) \neq 0$ for an element $\mathcal{L}(\text{Ad}(\rho)) \in A$ (in particular, $\mathcal{F}_{\rho}(x) \neq 0$).*

2. CYCLOTOMIC DERIVATIVES

In order to attack this conjecture, we relate the \mathcal{L} -invariant $\mathcal{L}(\text{Ad}(\rho))$ to a local derivative of an element in the Galois deformation ring of ρ . We consider all nearly ordinary deformations $\tilde{\rho} : \mathfrak{G}_F \rightarrow GL_2(\tilde{A})$ (for a local profinite W -algebra \tilde{A} with $W/\mathfrak{m}_W = \tilde{A}/\mathfrak{m}_{\tilde{A}}$) of $\bar{\rho}_F = \rho_F \bmod \mathfrak{m}_A$ satisfying (lcy) (such deformations are called locally cyclotomic). Thus the deformation functor is given by

$$\tilde{A} \mapsto \{\tilde{\rho} : \mathfrak{G}_F \rightarrow GL_2(\tilde{A}) \text{ with (lcy), (ord) and (det)}|\tilde{\rho} \bmod \mathfrak{m}_{\tilde{A}} \cong \bar{\rho}\} / \cong.$$

We insist here that the reduction modulo \mathfrak{m}_W of the nearly ordinary character of $\tilde{\rho}$ is given by $\bar{\delta}_{\mathfrak{p}} = \delta_{\mathfrak{p}} \bmod \mathfrak{m}_W$ for all $\mathfrak{p}|p$. Among them, we have a universal couple (R_F, ρ_F) ; thus, we have a unique W -algebra homomorphism $\varphi_{\tilde{\rho}} : R_F \rightarrow \tilde{A}$ for each $\tilde{\rho}$ so that $\varphi_{\tilde{\rho}} \circ \rho_F \cong \tilde{\rho}$. Again R_F is canonically an algebra over $W[[x_{\mathfrak{p}}]]_{\mathfrak{p}|p}$. Then we have the derivative $\frac{\partial \mathbf{a}(\mathfrak{p})}{\partial x_{\mathfrak{p}}}$ in R_F for $\mathbf{a}(\mathfrak{p}) = \delta_{\mathfrak{p}}([p, F_{\mathfrak{p}}])$ and the nearly ordinary character $\delta_{\mathfrak{p}} : \Gamma_{\mathfrak{p}} \rightarrow R_F^{\times}$.

If L/F is an extension in $\overline{\mathbb{Q}}$, then we have a base-change map $\varphi_{L/F} : R_L \rightarrow R_F$ given by $\varphi_{L/F} \circ \rho_L \cong \rho_F|_{\mathfrak{G}_L}$. For each $\sigma \in \text{Aut}(L/F)$, $\rho_L^{\sigma}(g) = \rho_L(\tilde{\sigma}g\tilde{\sigma}^{-1})$ is a locally cyclotomic nearly ordinary deformation; so, we have a unique automorphism $[\sigma] : R_L \rightarrow R_L$ with $[\sigma] \circ \rho_L \cong \rho_L^{\sigma}$; so, $\text{Aut}(L/F)$ acts on R_L , where $\tilde{\sigma}$ is an extension of σ to $\overline{\mathbb{Q}}/F$. Define $J_{L/F} \subset R_L$ be the ideal generated by $[\sigma](r) - r$ ($r \in R_L$). Then, under (ai_F), if L/F is a Galois extension of p -power degree,

$$(BC) \quad R_L/J_{L/F} \cong R_F \text{ via } \varphi_{L/F}.$$

By a standard argument due to Mazur, writing $\Gamma_L = \prod_{\mathfrak{P}|p} \Gamma_{\mathfrak{P}}$, we have a canonical isomorphism

$$\text{Sel}_L^*(\text{Ad}(\rho)) \cong \Omega_{R_L/W[[\Gamma_L]]} \widehat{\otimes}_{R_L, \varphi_{\rho_L}} A$$

of $A[\text{Gal}(L/F)]$ -modules. Here for a closed subring B of R_L , $\Omega_{R_L/B}$ is the module of continuous (under the profinite topology) differentials over B . Note that $W[[\Gamma_L]] \cong W[[x_{\mathfrak{p}}]]_{\mathfrak{p}|p}$ if L/F is finite and $W[[\Gamma_{F_{\infty}}]] = W$.

3. RESULTS

Here are some results due to myself and the work by Taylor-Wiles for $F = \mathbb{Q}$ and Fujiwara for general F :

Theorem 3.1. *Let the assumption be as in the conjecture. Suppose $(\text{ai}_{F[\mu_p]})$ and that ρ_P is associated to a Hilbert modular form of level p . Let L/F be a totally real finite p -extension.*

- (1) *Every nearly p -ordinary deformation of $\bar{\rho}_F$ is p -adically modular with respect to $GL(2)_L$, and R_L is a local complete intersection free of finite rank over $W[[x_{\mathfrak{p}}]]_{\mathfrak{p}|p}$.*
- (2) *We have $\text{char}_A(\text{Sel}_L(\text{Ad}(\rho))) \neq 0$ and $\text{char}_{A[[x]]}(\text{Sel}_{F_\infty}(\text{Ad}(\rho))) \neq 0$.*
- (3) *We have*

$$\frac{\mathcal{L}(\text{Ad}(\rho))}{\log_p(\gamma)^g} = a(p)^{-1} \det \left(\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}} \right)_{\mathfrak{p}, \mathfrak{p}'|p},$$

where $a(\mathfrak{p}) = \delta_{\mathfrak{p}}([p, F_{\mathfrak{p}}])$, $a(p) = \prod_{\mathfrak{p}|p} a(\mathfrak{p})$ and $\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}} = \varphi_\rho(\frac{\partial \mathbf{a}(\mathfrak{p})}{\partial x_{\mathfrak{p}'}})$. If further A is regular and $\det \left(\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}} \right)_{\mathfrak{p}, \mathfrak{p}'|p} \neq 0$, the conjecture holds.

- (4) *If ρ_P is associated to an abelian variety (with real multiplication) having multiplicative reduction at m prime factors $\mathfrak{p}|p$ with $m \geq g-1$ and $\text{Spec}(A)$ is an irreducible component of $\text{Spec}(R_F)$, we have $\det \left(\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}} \right)_{\mathfrak{p}, \mathfrak{p}'|p} \neq 0$; so, for almost all specializations ρ_Q ($Q \in \text{Spec}(A)(W)$) of ρ , $\mathcal{L}(\text{Ad}(\rho_Q)) \neq 0$.*
- (5) *If $A = W$ and ρ is associated to an elliptic curve E over F with split multiplicative reduction at all $\mathfrak{p}|p$, we have $\mathcal{L}(\text{Ad}(\rho)) = \prod_{\mathfrak{p}|p} \frac{\log_p(N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(q_{\mathfrak{p}}))}{\text{ord}_p(N_{F_{\mathfrak{p}}/\mathbb{Q}_p}(q_{\mathfrak{p}}))}$, where $q_{\mathfrak{p}}$ is the Tate period of E at \mathfrak{p} ($E(F_{\mathfrak{p}}) = F_{\mathfrak{p}}^\times/q_{\mathfrak{p}}^\mathbb{Z}$). In particular, if p splits completely in F/\mathbb{Q} , $\mathcal{L}(\text{Ad}(\rho)) \neq 0$.*
- (6) *Let $\mu(L)$ be the μ -invariant of $\text{char}_A(\Omega_{R_L/W} \otimes_{R_L} A)$. Then $\mathcal{L}(\text{Ad}(\rho)) \neq 0$ if the invariant $\mu(L)$ is bounded for any finite intermediate extension inside F_∞/F .*

Let us describe briefly why $\mathcal{L}(\text{Ad}(\rho))$ is related to the derivative determinant $\det \left(\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}} \right)$. For simplicity, we assume that $R_0 = W[[x_{\mathfrak{p}}]]_{\mathfrak{p}|p}$. Then $\Omega_{R_0/W} = \bigoplus_{\mathfrak{p}|p} R_0 dx_{\mathfrak{p}} \cong R_0^g$. Let F_n/F be the fixed field of Γ^{p^n} . Write (R_n, ρ_n) for (R_{F_n}, ρ_{F_n}) . By a slightly nontrivial argument, we have $(R_\infty, \rho_\infty) = \varprojlim_n (R_n, \rho_n)$.

Write $J_n = J_{F_n/F}$ for the kernel of the projection $R_n \rightarrow R_0$. We have a standard exact sequence of $A[[\Gamma]]$ -modules (with a splitting section of A -modules)

$$0 \rightarrow \frac{J_n}{J_n^2} \otimes_{R_0} A \rightarrow \Omega_{R_n/W} \otimes_{R_n} A \xrightarrow{\pi_n} \Omega_{R_0/W} \otimes_{R_0} A (\cong A^g) \rightarrow 0.$$

To make notation simple, we write S_n for $\Omega_{R_n/W} \otimes_{R_n} A$ and T_n for $J_n/J_n^2 \otimes_{R_n} A$. By the above A -split exact sequence, we have

$$S_n = A^g \oplus T_n \text{ as } A\text{-modules.}$$

By (BC), we have $J_n = R_n([\gamma] - 1)R_n$ and the following formula of the coinvariants:

$$H_0(\Gamma, S_n) = S_0 \cong A^g.$$

Thus if $S_n \cong A^g \oplus T_n$ up to A -torsion as $A[[\Gamma]]$ -modules, we get $\Phi_\rho(0) \neq 0$.

We try to construct an $A[[\Gamma]]$ -linear section of $T_n \hookrightarrow S_n$. Since $\frac{J_n}{J_n^2}$ is an R_0 -module and R_0 is fixed by the Γ -action, $\frac{J_n}{J_n^2}$ is an $A[[\Gamma]]$ -module. Define $\delta : R_n \rightarrow \frac{J_n}{J_n^2}$ by $\delta(a) = [\gamma](a) - a$, which is an R_n^Γ -derivation, because

$$\delta(ab) = [\gamma](ab) - [\gamma](a)b + [\gamma](a)b - ab = [\gamma](a)\delta(b) - \delta(a)b$$

with $[\gamma](a)\delta(b) \equiv a\delta(b) \pmod{J_n^2}$. This induces a surjective map $\varphi_n : \Omega_{R_n/W} \rightarrow \frac{J_n}{J_n^2}$ with $\delta = \varphi_n \circ d$, because $\frac{J_n}{J_n^2}$ is generated by $[\gamma](y) - y$ for $y \in R_n$. We put $\varphi_n^A = \varphi_n \otimes \text{id} : S_n = \Omega_{R_n/W} \otimes_{R_n} A \rightarrow T_n$. Put $X_n = \text{Ker}(\varphi_n^A)$, and we have an exact sequence of $A[[\Gamma]]$ -modules:

$$0 \rightarrow X_n \rightarrow S_n \rightarrow T_n \rightarrow 0.$$

The natural map $\bigoplus_{\mathfrak{p}} Ad\mathbf{a}(\mathfrak{p}) \cong \Omega_{W[[\mathbf{a}(\mathfrak{p})]]_{\mathfrak{p}}/W} \otimes_{W[[\mathbf{a}(\mathfrak{p})]]} A \rightarrow X_\infty$ composed with π_∞ has matrix $\left(\frac{\partial a(\mathfrak{p})}{\partial x_{\mathfrak{p}'}}\right)_{\mathfrak{p}, \mathfrak{p}'|p}$, and if the determinant does not vanish, the sequence $T_\infty \hookrightarrow S_\infty \rightarrow A^g$ splits up to A -torsion; so, we get basically (3).

As for (6), the extension $T_n \hookrightarrow S_n \rightarrow A^g$ in $\text{Ext}_{A[[\Gamma]]}^1(A^g, T_n) = H^1(\Gamma/\Gamma^{p^n}, T_n)^g$ is killed by p^n , and the obstruction of splitting the sequence is in the p -torsion of S_n which is bounded by the assumption; so, after tensoring \mathbb{Q}_p , $T_\infty \hookrightarrow S_\infty \rightarrow A^g$ splits as $A[[\Gamma]]$ -modules, and hence the result.

The identity (5) then follows from (3) and a result of Greenberg. It is known by an analytic argument, $\log_p(q_{\mathfrak{p}}) \neq 0$ (the so-called theorem of St. Etienne).

There are still many open questions to ask; for example,

- Is R_∞ Noetherian? Or equivalently, $\mu(\Omega_{R_\infty/W} \otimes_{R_\infty} W) = 0$? Therefore, this is just asking when $\mu(\text{char}(\text{Sel}_{F_\infty}^*(Ad(\rho_P)))) = 0$.
- By the assertion (2), the P -adic localization-completion R_P is Noetherian. What is the structure of R_P ? For example, what is $\dim R_P$? Actually we know that R_n under the assumption of the theorem is a local complete intersection for all finite n .
- The module X_∞ contains $\Omega_{W[[\mathbf{a}(\mathfrak{p})]]/W} \otimes_{W[[\mathbf{a}(\mathfrak{p})]]} A$. Are they equal?