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As quoted by Ghate–Vatsal in [GV], Question 1 (and answered there affirmatively
to a good extent), it is a fundamental problem posed by R. Greenberg to decide
indecomposability of an elliptic modular p-adic Galois representation restricted to
the decomposition group at p in the ordinary case (as long as the representation
is not of CM type). Jointly with B. Balasubramanyam, they have generalized the
result to the cases of Hilbert modular forms for primes p splitting completely in
the totally real base field (see [GV1]). There are some good applications of their
results (see for example [E] and [G]). We can ask the same question for p-adic
Galois representations arising from the Tate module of an abelian variety A with
real multiplication defined over a number field k; so, End(A/k) contains the integer
ring O of a totally real field of degree dimA. This concerns the p-adic Tate module
TpA for a prime p|(p) of O as a module over the decomposition group Dp at a
place P over p of k. Suppose that A has good reduction modulo P. If the finite
flat group scheme A[p] of p-torsion points is local-local at P, as is well known, the
Dp-module A[p](Qp) or TpA⊗Op

Fp is often irreducible (as proven in [ALR], IV-38,
§A.2.2 for elliptic curves; see also the generalization of Serre’s modulo p modularity
conjecture for totally real k; in particular, §3.1 of [BDJ]). In this paper, we limit
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ourselves to the case where A[p](Fp) �= {0}. This assumption does not necessarily
mean that A has ordinary good reduction at p.

We answer this question affirmatively in Theorem 5.1 for an abelian variety with
sufficiently many real multiplications but without complex multiplication (over Q)
if the endomorphism totally real field F and the field k of definition are unramified
at p over Q. Since simple factors of the jacobian of a Shimura curve are often of
this type, we should be able to answer the original question by Greenberg. Indeed,
Bin Zhao [Z] has just removed our assumption of the unramifiedness of p in the
base field k and in the multiplication field F and has proved unconditionally the
indecomposability for the nearly ordinary Galois representation of each weight 2
Hilbert cusp form at least over an odd degree totally real base field. If the base
field has even degree, he had to assume square-integrability at a finite place or the
existence of an abelian variety associated to the cusp form.

Since a CM abelian variety with ordinary good reduction at p has semi-simple
Tate module over Dp, we may regard the p-local indecomposability of the p-adic
Tate module as a characterization of non-CM/CM abelian varieties via local p-
inertia action. The importance of such characterization is emphasized in [H11a],
and other examples of characterization are listed there.

Throughout this paper, we fix an algebraic closure Q in C and an algebraic
closure Qv of Qv (the v-adic field or R for v = ∞) for each rational place v. We
write Cv for the completion of Qv under v. Therefore, for each v, we fix a field
embedding iv : Q ↪→ Cv (here i∞ coincides with the original inclusion Q ⊂ C) and
identify all Cv with C so that we have the following commutative diagram for each
v:

Q Q

iv

⏐⏐�∩ ∩
⏐⏐�i∞

Cv C.

Here is a sketch of our proof of indecomposability (and an outline of the paper),
assuming for simplicity that the abelian variety A over a number field k ⊂ Q has
multiplication by the integer ring O of a real quadratic field F ; so, 2 = [F : Q] =
dimA and End0F (A/Q) = End0F (A/k ×k Q/Q) = F (this means that A does not

have complex multiplication), where “End0F (?)” denotes the total quotient ring of
the O-linear endomorphism algebra EndO(?) of the object “?” inside. Such abelian
varieties are parameterized by Hilbert modular varieties whose theory we recall in
Section 2 to the extent we need (explicitly or implicitly).

Let O denote the integer ring of k. We denote primes of k by uppercase Gothic
letters and those of F by lowercase Gothic letters, and the corresponding Roman
(lowercase) character is the residual characteristic of a prime denoted by a Gothic
character. Suppose further for simplicity that A has ordinary good reduction at
primes P and L with p �= l. Contrary to what we want to prove, suppose that A[p∞]
for a prime p above p has a semi-simple Tate module over Dp = Gal(Qp/kP). Then
the p-adic Serre–Tate coordinate tp(A) of A is equal to 1. If p is a unique prime
over (p) in O, this identity tp(A) = 1 forces A to be a canonical lift having complex
multiplication. Thus we assume (p) = pp′ in F with p �= p′. By the Serre–Tate
theory, for the Witt vector ring Wp with coefficients in an algebraic closure Fp

of Fp, the deformation space of the reduction AP = A ⊗OP
Fp (for FP := O/P
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regarded as sitting in Fp) is isomorphic to Ŝ/Wp
= Ŝp/Wp

:= Ĝm⊗Zp
Op = Ŝp× Ŝp′

with Ŝp := Ĝm ⊗Zp
Op, and tp is the coordinate of the multiplicative formal group

Ĝm⊗Zp
Op = Ĝm (as Op = Zp). In other words, Ĝm/Wp

is the formal completion of

Gm = Spec(Wp[tp, t
−1
p ]) along the origin (i.e., the identity) of its reduction modulo

p. We recall in Section 1 some details of the construction of Serre–Tate coordinates.
The field M = End0F (AP/Fp

) is a CM quadratic extension of F . We have two

Serre–Tate coordinates, tp and tp′ . Since A does not have CM, we must have

tp′(A) �= 1 (as the origin of Ŝ corresponds to the canonical lift of AP which has

complex multiplication by the CM field M). By the universality of Ŝ, M× acts

on Ŝ naturally by an isogeny action. Then by the reciprocity law of Ŝ in [H10],

§3.3, we have tp ◦ α = tα
σ(1−c)

p for an embedding σ : M ↪→ Q inducing the place
p of F after composing with ip. Here c denotes the generator of Gal(M/F ). For
the l-adic place l induced by il ◦ σ, we have the Serre–Tate coordinate tl of the

deformation space Ŝl = Ĝm ⊗Zp
Ol of AL. Now the abelian variety A gives rise to

a k-point x of the Hilbert modular Shimura variety Sh/Q for GL(2)/F . Looking
at the k-tangent space Tanx at x ∈ ShK(k) (for a neat open compact subgroup

K ⊂ GL2(F
(∞)
A ) maximal at p and l), the Lie algebras Lie(Ŝp) and Lie(Ŝl) are

related to (the σ-part of) Tanx via appropriate scalar extension; therefore, the

action of M× on Lie(Ŝp) can be transferred to Lie(Ŝl) via Tanx. We will see in
Section 4 that tp (resp. tl) is the exponential of the corresponding linear coordinate

τp (resp. τl) of Lie(Ŝp) (resp. Lie(Ŝl)). From this, we conclude in Theorem 4.5 that

tl also satisfies tl ◦ α = tα
σ(1−c)

l for α ∈ M×, so, End0F (AL/Fl
) must be isomorphic

to M . In Section 3, we describe the canonical O-action on ΩSh/k, Tanx and on

Lie(Ŝ), and in Section 4, we study the M -action (extending the O-action) on the
Serre–Tate coordinates (and its linear version).

Because of x ∈ Sh(k) ⊂ Sh(Cp) = Sh(Cl) (under our identification: Cp = Cl),

the formal completion ÔSh,x along the points x ∈ Sh(Cp) = Sh(Cl) canonically

contains O
̂Sp

and O
̂Sl
. Thus in ÔSh,x we can compare τp = logp ◦tp and τl = logl ◦tl

for the v-adic logarithm logv. Since they both satisfy τ? ◦ α = ασ(1−c)τ?, they are
proportional; so, τl(A) = 0 and hence tl(A) = 1, which implies that the Tate
module TlA of A[l∞] is also semi-simple under Dl. As is well known (cf. [O],
2.7 and Section 7 in this text), split ordinary primes for an abelian surface have
Dirichlet density 1 for k (replacing k by its finite extension if necessary), and using
the non-CM property of the p-adic Galois representation on the Tate module TpA

(combined with Chebotarev density), we can find l such that M �∼= End0F (AL/Fl
),

obtaining a contradiction (whose details will be given in Section 5). In the text,
we fill details of this argument and generalize this to totally real fields F with
[F : Q] ≥ 2, to primes p with residual degree ≥ 1, and to abelian varieties A which
may not be ordinary at P (i.e., only partially ordinary at P).

As a byproduct of our proof, we get (in Theorem 4.5) the proportionality of τp
and τl. Though it is irrelevant to the proof of the main theorem, in Section 6 we
will explicitly compute the proportionality constant as the ratio of the square of
the Katz p-adic and l-adic CM periods. In the above sketch of the proof, we heavily
used the existence of many primes of k at which the given abelian variety A/k has
good (partially) ordinary reduction. We give a brief account of the fact that such
primes have density 1 among primes of (the Galois closure of) k in Section 7.
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As is clear from this sketch, there is much room for a generalization of our
argument to abelian varieties with less multiplication. We hope to come back to
the study of local indecomposability for general abelian varieties in the near future.

1. Deformation space of an AVRM

Pick a rational prime p. Let F be a totally real field with integer ring O in
which p is unramified. Write d = [F : Q]. Let (A, λ, θ)/k be an abelian variety with

real multiplication by O (for short an AVRM by O) over a number field k ⊂ Q
with integer ring O in which p is unramified. Here θ : O ↪→ End(A/k) is a ring
homomorphism sending the identity to the identity making Lie(A) a free O ⊗Z k-
module of rank 1, and λ : A → tA for the dual abelian scheme tA = Pic0A/k is an
O-linear polarization of degree prime to p. Thus the p-adic Tate module TpA is free
of rank 2 over Op = O⊗Z Zp, and dimA = [F : Q]. Let P = {x ∈ O : |ip(x)|p < 1}
be the prime of k induced by ip : Q ↪→ Cp. Let Fp = FP be an algebraic closure
of FP = O/P, and write W = Wp for the ring of Witt vectors with coefficients in

Fp. We identify W with the subring of Cp which is the p-adic completion of the

ring of integers in the maximal unramified extension of Qp in Qp ⊂ Cp. Thus ip
embeds O in W , and we regard OP ⊂ W . We put W = Wp = i−1

p (Wp) ⊂ Q, which

is a discrete valuation ring with residue field Fp (and is a strict henselization of
Z(p) = Q ∩ Zp).

Let OP be the P-adic completion of O, and suppose that (A, λ, θ)/k extends
to the triple (A, λ, θ)/OP

for an abelian scheme A/OP
. Thus we can think of the

special fiber (A0, λ0, θ0)/Fp
= (A, λ, θ) ×Op

Fp. Let CLW denote the category of

complete local W -algebras with residue field Fp. We consider the fiber category
D/W (over CLW ) of deformations of (A0, λ0, θ0)/Fp

over R ∈ CLW . Objects of

D/W are triples (A′, λ′, θ′)/R satisfying ιA′ : (A′, λ′, θ′) ×R Fp
∼= (A0, λ0, θ0)/Fp

. A

morphism φ : (A′, λ′, θ′)/R → (A′′, λ′′, θ′′)/R is a morphism of AVRM’s φ : A′ → A′′

such that

(1) the special fiber φ0 of φ satisfies ιA′′ ◦ φ0 ◦ ι−1
A′ = idA0

for the identity map
idA0

of A0;
(2) λ′ = tφ ◦ λ′′ ◦ φ;
(3) φ ◦ θ′(a) = θ′′(a) ◦ φ for all a ∈ O.

We suppose that

(NLL) the reduction A0 := AP = A⊗OP
Fp has non-trivial p-torsion Fp-points.

So, we have a prime ideal p|p of O such that the p-adic Barsotti–Tate group A[p∞] is
ordinary, fitting into the following connected-étale exact sequence of Barsotti–Tate
Op-modules over W :

0 → μp∞ ⊗Zp
Op → A[p∞]/W → Fp/Op → 0.

Let Σord = Σord
p be the set of primes p in O over p such that A[p∞]/W is not

connected. Then we put Σll = Σll
p =

{
p|p : p �∈ Σord

}
. We may regard Σ? as a set of

field embeddings σ : F ↪→ Q made up of σ with {α ∈ O : |ip(σ(α))|p < 1} = p ∈ Σ?.
We now want to relate D/W with the following fiber category DEF over CLW of

quadruples (A0, D,Λ, ε)/R, where D is a Barsotti–Tate O-module over R, Λ : D →
tD is an O-linear isomorphism of Barsotti–Tate groups into the Cartier dual tD of
D, and ε : D0

∼= A0[p
∞] is an O-linear isomorphism of Barsotti–Tate O-modules for
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the special fiber D0 = D ⊗Spec(W ) Spec(Fp). We require ε to satisfy the following
commutativity:

D0
ε−−−−→ A0[p

∞]

Λ0

⏐⏐� ⏐⏐�λ0

tD0 ←−−−−
tε

tA0[p
∞],

where Λ0 is the special fiber of Λ. A morphism

φ : (A0, D,Λ, ε) → (A′
0, D

′,Λ′, ε′)

of DEF is a pair of O-linear morphisms φBT : D → D′ in HomBT/W
(D,D′)

and φD : A0 → A′
0 in HomGSCH/Fp

(A0, A
′
0) making the following two diagrams

commutative:

A0[p
∞]

φD−−−−→ A′
0[p

∞]

ε

�⏐⏐ �⏐⏐ε′

D0 −−−−→
φBT

D′
0

and

D0
φBT−−−−→ D′

0

Λ

⏐⏐� ⏐⏐�Λ′

tD0 ←−−−−
tφBT

tD′
0.

Here GSCH (resp. BT ) stands for the fiber category of group schemes (resp.
Barsotti–Tate groups) over CLW . We have a natural functor: D/W → DEF given
by

A 
→ (A0 = A⊗W Fp, A[p∞], λ|A[p∞], ι)

for the canonical isomorphism ι : A[p∞]⊗W Fp
∼= A0[p

∞].

Theorem 1.1 (Serre–Tate). The above functor: D/W → DEF is a canonical
equivalence of categories.

A proof of this is given in [K], though the input of θ and λ is not there (see
[K1], Lemma 1.11.6 or [Ra], §1.7 on how to modify the argument incorporating
endomorphisms and a polarization).

We can split DEF into the fibered product of the following fiber categories:
DEF ord and DEF ll over CLW . Here “ord” stands for ordinary Barsotti–Tate
groups and “ll ” stands for local-local Barsotti–Tate groups. The objects of DEF ?

are given by (A0, D
?,Λ?, ε?)/R such that D? is a Barsotti-Tate O-module deform-

ing A0[p
∞]? =

∏
p∈Σ? A0[p

∞] for ? = ord, ll and Λ? : D? ∼= tD? is an O-linear

isomorphism and ε? : D?
0
∼= A0[p

∞]?. Thus Dll is local-local (i.e., Dll and tDll are
both connected). The quadruple (A0, D

?,Λ?, ε?) is supposed to satisfy the same
compatibility of diagrams defining DEF . Since by O-linearity we have a canonical
decomposition D = Dord×Dll for an object (A0, D,Λ, ε)/R of DEF with the max-

imal ordinary Barsotti–Tate O-module Dord in D and the local-local complement
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Dll of Dord in D so that D = Dord ×Dll, we get a decomposition

DEF � (A0, D,Λ, ε) 
→ {(A0, D
ord,Λ|Dord , ε|Dord), (A0, D

ll,Λ|Dll , εll)}
∈ DEF ord ×DEF ll

which induces the equivalence between DEF and DEF ord ×DEF ll.

We consider the deformation functor D̂ : CL/W → SETS given by

D̂(R) = {(A, λ, θ)/R|(A, λ, θ)/R ∈ D}/ ∼= .

To describe the deformation space representing D̂, we write OΞ =
∏

l∈Ξ Ol for the
Ξ-adic completion of O for any finite set of prime ideals Ξ of O. Then we put
FΞ = OΞ ⊗O F and O(Ξ) = F ∩OΞ in FΞ.

Proposition 1.2. Let the notation be as above. Suppose that p is unramified

in F/Q and in k/Q. Then the deformation functor D̂ is representable by the

smooth formal scheme Ŝ/W which is a product of two smooth formal schemes:

Ŝord isomorphic to Ĝm ⊗Zp
OΣord =

∏
p∈Σord Ĝm ⊗Zp

Op and Ŝll, where Ŝll ∼=
Spf(W [[T1, . . . , Tm]]) (non-canonically) for m = rankZp

OΣll , and each factor Ŝ?

represents the formal stack DEF ?.

Proof. As is well known, the formal stack DEF over W is represented by a for-

mal scheme Ŝ smooth over W of relative dimension equal to rankZp
Op. Indeed,

adding an O-linear prime-to-p adelic level structure η(p) : (Ô(p))2 ∼= T (p)A =
lim←−p�N

A0[N ](Fp) to (A0, λ0, θ0), the quadruple (A0, λ0, θ0, η
(p)) (called a test ob-

ject) gives rise to an Fp-point x0 of the Hilbert modular Shimura variety Sh
(p)
/W =

Sh
(p)
/Z(p)

×W of prime-to-p level. In Section 2 we recall the definition of the Shimura

variety. Then Ŝ/W can be identified with the formal completion of Sh
(p)
/W along

x0 (and the Shimura variety is smooth over Z(p) of relative dimension equal to

rankZp
Op = [F : Q]). For the part DEF ord, by the theory of Serre–Tate, once we

identify A0[p
∞]ord with (μp∞ ⊗Zp

OΣord)× (FΣord/OΣord) by a level p-structure

ηp : (μp∞ ⊗Zp
OΣord)× (FΣord/OΣord) ∼= A0[p

∞]ord,

the space Ŝord is isomorphic to Ĝm⊗Zp
OΣord whose origin corresponds to the unique

canonical lift of A0[p
∞]ord with complex multiplication (which may be different

from the starting A[p∞]ord). Since DEF ≈ DEF ord ×DEF ll (the equivalence of

categories), we have a product decomposition Ŝ = Ŝord× Ŝll. Since Ŝ and Ŝord are

formally smooth, Ŝll must be formally smooth. Then by dimension computation,

we have dimW Ŝll = m as above. �
We have Ŝord

p
∼= Ĝm ⊗Zp

OΣord =
∏

p∈Σord Ŝord
p for Ŝord

p = Ĝm ⊗Zp
Op. Thus

Ŝord
p is the Op-factor of the formal completion of Gm⊗ZO = Spec(W [tξ]ξ∈O) along

the origin corresponding to the maximal ideal (p, t− 1). Here we used the fact that
for the cocharacter group L of a split torus T/W , we have a canonical isomorphism:

T ∼= Spec(W [tl]l∈L) = Gm ⊗Z L for the group algebra W [L] ∼= W [tl]l∈L with the

canonical variable t of Gm. Since Ĝm ⊗Z O = Ĝm ⊗Z Op (Op = lim←−n
O/pnO),

Ĝm ⊗Zp
Op has variable tp = t⊗ 1p for the idempotent 1p of Op in Op =

∏
p′|p Op′ .

We call tp the Serre–Tate (multiplicative) coordinate of Ŝord
p .
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2. Hilbert modular Shimura variety

Here is a more detailed definition of AVRM by O. Write O∗ = HomZ(O,Z) (the
Z-linear dual), which can be identified with the different inverse of F/Q by the trace
pairing. A triple (A, λ, θ)/S with an abelian scheme A over a scheme S with real
multiplication is called an AVRM by O if it satisfies the following four conditions:

(rm1) θ = θA : O ↪→ End(A/S) is an embedding of algebras taking the identity to
the identity.

(rm2) λ is an O-linear symmetric isogeny λ : A → tA induced by an ample line
bundle fiber-by-fiber geometrically (see [GIT], 6.2). Identifying tA with
A ⊗O c for a fractional ideal c of F , λ is called a c-polarization of A. Here
λ is called symmetric if λ = tλ.

(rm3) The image of θA is stable under the Rosati involution on the endomorphism

algebra End0(A): α 
→ α∗ = λ−1 ◦ tα ◦ λ.
(rm4) As O ⊗Z OS-modules, we have an isomorphism: Lie(A) ∼= O ⊗Z OS (⇔

π∗(ΩA/S) ∼= O∗ ⊗Z OS for π : A → S) locally under the Zariski topology
of S, where the sheaf Lie(A) of Lie algebras of A (i.e., the pull-back of the
tangent bundle over A/S by the 0-section) is an O-module by the action
induced from θ.

An AVRM A defined over a field κ (potentially) has complex multiplication
(or has CM) if the algebra End0F (A ×κ κ) = EndO(A ×κ κ) ⊗O Q (of F -linear
endomorphisms of A ×κ κ defined over κ) for an algebraic closure κ of κ is not
equal to F (and if κ ⊂ Q and A has CM, End0F (A ×κ κ) is a quadratic extension
of F ). An AVRM A over an integral domain r has CM if A ×r κ has CM for the
quotient field κ of r. An AVRM A/r is said to be non-CM if End0F (A×r κ) = F .

In the rest of the paper, we denote by Ξ a finite set of rational primes unramified
in F containing the fixed prime p, and we put Z(Ξ) =

⋂
l∈Ξ(Q ∩ Zl) ⊂ Q (the

localization at Ξ of Z). We write O(Ξ) for the ring O ⊗Z Z(Ξ) ⊂ F and let O×
(Ξ)+

be the group of totally positive units in O(Ξ). Let A(Ξ) be the fiber category over
Z(Ξ)-schemes made of abelian schemes with real multiplication by O up to prime-

to-Ξ isogenies. Thus the objects of A(Ξ) are triples (A, λ, θA)/S over a Z(Ξ)-scheme

S, and λ is the set {aλ := λ◦θA(a)}a∈O×
(Ξ)+

for a polarization λ with a polarization

ideal prime to Ξ. The morphisms (A, λ, θA)/S → (A′, λ
′
, θ′A)/S of A(Ξ) are given

by the elements φ : A → A′ in HomGSCH/Z(Ξ)
(A,A′) ⊗Z Z(Ξ) compatible with the

data (λ, θA) and (λ
′
, θA′). Here GSCH/R stands for the category of group schemes

over a ring R. We consider the Hilbert modular Shimura variety Sh
(Ξ)
/Z(Ξ)

which is

known to represent the stack made out of (A, λ, θA, η
(Ξ)) for a prime-to-Ξ O-linear

level structure η(Ξ) : (F
(Ξ,∞)
A )2 ∼= T (Ξ)A ⊗Z Z(Ξ) sending the determinant pairing

(a, b) 
→ det(a, b) for a, b ∈ (F
(Ξ,∞)
A )2 to the pairing on T (Ξ)A induced by the

polarization up to similitude factors in (F
(Ξ,∞)
A )×, where T (Ξ)A is the prime-to-Ξ

Tate module of A, FA is the adele ring of F and F
(Ξ,∞)
A is its prime-to-Ξ part given

by {x ∈ FA|xl = x∞ = 0 for all l ∈ Ξ}. Strictly speaking, to get Sh
(Ξ)
Z(l)

(l ∈ Ξ) for

Ξ(l) := Ξ \ {l}, we need to actually identify the Ξ(l)-part of the Tate module TΞ(l)A
with O2

Ξ(l) (without specifying an isomorphism; see [H06], §1 for more details).
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Then the schemes {Sh/Z(l)
}l∈Ξ glue into Sh

(Ξ)
/Z(Ξ)

. The pro-scheme Sh(Ξ) is smooth

over Z(Ξ) (cf. [PAF], Section 4.2).

Let G = ResF/QGL(2) with center Z/Q. Under the action η(Ξ) 
→ η(Ξ) ◦ g, each
g ∈ G(A(Ξ),∞) acts on Sh(Ξ) as an automorphism. Let WΞ =

⋂
l∈Ξ Wl (inside Q),

which is a henselian semi-local Dedekind domain with localization at each maximal
ideal ml of residual characteristic l equal to Wl. We fix a non-CM test object
(A, λ, θ, η(Ξ))/WΞ

satisfying (NLL). Let x ∈ Sh(Ξ)(WΞ) be the point representing
this test object.

Suppose p ∈ Ξ. By a theorem of Tate (cf. [ABV], Appendix I), the reduction

(A0, λ0, θ0, η
(Ξ)
0 )/Fp

= (A, λ, θ, η(Ξ))/WΞ
×WΞ

Fp has complex multiplication by a

field M = End0F (A0/Fp
) (an F -linear endomorphism algebra). Regarding M ⊂

Q as an F -algebra, we write θ̃P : M ∼= End0F (A0/Fp
) for the identification (so,

θ̃P|F = θ0). Let R = EndO(A0/Fp
), which is an order of M . The quadruple

(A0, λ0, θ0, η
(Ξ)
0 )/F gives rise to a point x0 ∈ Sh(Ξ)(Fp). Let V be the geometrically

irreducible component of Sh
(Ξ)
/WΞ

containing x, so V/Fp
= V ×WΞ

Fp is geometrically

irreducible and contains x0. By the smoothness of Sh(Ξ) over Z(Ξ) and the existence

of the smooth projective toroidal compactification of Sh(Ξ), V/Fp
is geometrically

connected.
By the global reciprocity law of Shimura (cf. [Sh], II), we know

Theorem 2.1. Let the notation and the assumption be as above. Suppose p ∈ Ξ,
which is unramified in F/Q. Let κ = Fp or Q. For the geometrically connected

component V/κ ⊂ Sh
(Ξ)
/Z(Ξ)

×Z(Ξ)
κ, the scheme automorphism group Aut(V/κ) ⊂

G(A(Ξ),∞) is given by the semi-direct product of the field automorphism group
Aut(F/Q) and

E(Ξ)
=

{g ∈ G(A(Ξ))| det(g) ∈ O×
(Ξ)+F

×
∞+}

Z(Z(Ξ))G(R)+
=

{g ∈ G(A(Ξ),∞)| det(g) ∈ O×
(Ξ)+}

Z(Z(Ξ))
,

where G(R)+ is the identity connected component of G(R) and “ · · ·” indicates

closure under adelic topology. Here Aut(F/Q) acts on E(Ξ)
through its action on

G(A). For the above point x0 ∈ Sh(Ξ)(Fp), the stabilizer of x0 in E(Ξ)
is the image

of the morphism ρ̂ : R×
(Ξ) → G(A(Ξ),∞) given by θ̃P(α) ◦ η

(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α) for

α ∈ R×
(Ξ) = (R⊗Z Z(Ξ))

× ⊂ M×.

By this theorem, the stabilizer T in E = Aut(V/Fp
) of x0 is the image of R×

(Ξ) for

the orderR in the integer ring o ofM under the morphism ρ̂ : TM = ResR/ZGm → G

of group schemes defined over A(Ξ),∞ (so, it is a conjugate of an anisotropic torus
in G under an element in G(A(Ξ),∞)). It would appear later that we do not use
this theorem, but it will be implicitly used to assure that our action of TM (Z(Ξ))

preserves each geometrically irreducible component of Sh(Ξ) as its action factors

through E(Ξ)
.

Proof. The first assertion is proven by T. Miyake in [M] for κ = Q (following
the method of Shimura in [Sh], II) via the well-known identification of the au-
tomorphism group of a bounded symmetric domain with the corresponding Lie
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group (e.g., [DLS], Chapter IV); in our Hilbert modular case, Aut(HI) (H = {z ∈
C| Im(z) > 0}) has an identity connected component isomorphic to PSL2(R)

I for
I = Homfield(F,Q). See [PAF], Theorem 4.14 for another algebraic proof for κ = Q,

and the case where κ = Fp is treated in [H06]. If g ∈ E(Ξ)
stabilizes x0, by univer-

sality, we have a prime-to-Ξ F -linear endo-isogeny

α : (A0, λ0, θ0, η
(Ξ)
0 )/Fp

∼= (A0, λ0, θ0, η
(Ξ)
0 ◦ g)/Fp

.

In other words, α can be regarded as an element of R×
(Ξ). Since θ̃P(α) ◦ η(Ξ) =

η(Ξ) ◦ ρ̂(α), the matrix ρ̂(α) coincides with g in the quotient E(Ξ)
. �

Lemma 2.2. Suppose that the AVRM (A0, λ)/Fp
is defined over a finite field Fq ⊂

Fp and p ∈ Σord. Then the algebra M = End0F (A0/Fp
) is a CM quadratic extension

M over F generated by the Frobenius endomorphism over Fq. In particular, the

prime p in F splits into PP in R for primes P �= P.

By this lemma, we have Rp = op = RP × RP
∼= Op × Op for the integer ring o

of M .

Proof. By definition, Mp is isomorphic to the F -linear endomorphism algebra

End0F (A0[p
∞]/Fq

), which is therefore a semi-simple quadratic extension of Fp. Thus
M is commutative, and the embedding restricted to M ⊂ Mp factors through

End0F (A0/Fq
) and its image contains the q-th power Frobenius map φ. Since F [φ]/F

is a CM field because of the positivity and non-triviality of the Rosati involution c
of λ0, we must have M = F [φ], which is a CM quadratic extension of F .

Note that φ and its dual φc = λ−1 ◦ tφ ◦ λ satisfy φφc = φcφ = q. Since φ is
invertible on A0(Fp) ⊃ A0[p

∞] �= 0, a = φ+φc ∈ O is prime to p. Thus the minimal
polynomial X2 − aX + q of φ over F satisfies X2 − aX + q ≡ X(X − a)mod p with
(amod p) �= 0; so, p must split in R ⊃ O[φ]. �

We often choose P so that P contains φ; therefore, A0[P] is connected.

3. Eigendifferentials

We keep the notation introduced in Theorem 2.1 in the rest of the paper. For
an open compact subgroup K of G(A(Ξ),∞), we write VK for the image of V under

V ⊂ Sh(Ξ) � Sh
(Ξ)
K for the geometric quotient Sh

(Ξ)
K := Sh(Ξ)/K (thus V is the

pro-variety V = lim←−K
VK in the sense of Grothendieck [EGA], IV.8 or [EAI], §5.1.4).

We take K sufficiently small so that K is neat; i.e.,

ΓgKg−1 = {α ∈ gKg−1 ∩G(Q)|det(α) is totally positive}
does not have torsion modulo its center (this holds true if K is inside the principal
congruence subgroup of level N ≥ 3). Under neatness, VK is smooth over WΞ.

Let π : (A, θA) → VK be the universal AVRM over VK . Then ω = π∗ΩA/VK
has

an O-action via θA and by (rm4) is locally free of rank 1 over O ⊗Z OVK
(which

is a module over O ⊗Z WΞ). Since O ⊗Z WΞ = WI
Ξ by sending a ⊗ b to ϕ(a)b for

ϕ ∈ I = Homfield(F,Q) (as primes in Ξ are unramified in O), we can accordingly
split ω =

⊕
ϕ∈I ω

ϕ for a line bundle ωϕ on which the O-action factors through

ϕ. By the Kodaira-Spencer map (see [K], §3.6), ΩVK/WΞ
is canonically isomorphic

to
⊕

ϕ ω2ϕ for ω2ϕ = ωϕ ⊗OVK
ωϕ (see [K1], 1.0.21). Thus the cotangent space
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ΩVK/W has a canonical O×
(Ξ)-action. A section T of the structure sheaf of a Zariski

(resp. complex analytic, p-adic rigid analytic) neighborhood Dx (of x) is called
“belonging to ϕ” if dT ∈ H0(Dx, (ω

2ϕ)∗) for the line bundle (ω2ϕ)∗ corresponding
to the algebraic bundle ω2ϕ (by GAGA theorems; see Example 2.4.6 in [C]). Here
we use ∗ = an in the complex analytic case and in the rigid analytic case (and
we place nothing in the algebraic case; if we need to specify the place v, we write
∗ = v-an). If T is a part of the coordinate system belonging to ϕ (at v ∈ Ξ∪{∞}),
we call T a ϕ-coordinate (at v).

Recall M = End0F (A0) ⊃ EndO(A0) = R. The field M is a CM quadratic
extension of F , and let TM = ResR/ZGm. Recall the morphism ρ̂ : TM → G(A(Ξ),∞)

of algebraic groups over A(Ξ),∞ given by θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α). The point x0 ∈

V (Fp) is a fixed point of ρ̂(TM (Z(Ξ))), and let U be a Zariski open neighborhood

of x0. Suppose that we have a non-constant f ∈ Fp(V ) vanishing at x0 and a
p-adically open subgroup T of TM (Z(Ξ)) such that f ◦ ρ̂(α) = λαf with a constant

λα ∈ Fp for all α ∈ T . Let X◦ = {u ∈ U |f(u) = 0} and X be the Zariski closure
of X◦. Since f is non-constant, dimX = d − 1. Then, by definition, X is stable

under the action of the image T ⊂ E(Ξ)
of ρ̂(TM (Z(Ξ))). Supposing that x0 is in

the ordinary locus, by [H10], Proposition 3.8, X = V if dimX = d− 1 > 0. This is
impossible, so such a non-trivial f does not exist.

Suppose that we have a flat integral covering space Ũ/U whose image contains
x0 on which the action of T extends. If f ◦ ρ̂(α) = λαf with a constant λα ∈ Fp

for all α ∈ T for f ∈ Fp(Ũ), we consider the image X◦ ⊂ U of {u ∈ Ũ |f(u) = 0}
and its Zariski closure X. By the same argument, we have X = V if d − 1 > 0.

Thus even in Fp(Ũ), such an f �= 0 does not exist. Thus if 0 �= f ∈ ÔV,x0
satisfies

this property, f is transcendental over OV,x0
if [F : Q] ≥ 2. We will not use this

transcendence result in the rest of the paper.

4. Eigencoordinates

Let V be the geometrically irreducible component of Sh
(Ξ)
/WΞ

as in Theorem 2.1

containing the point x ∈ V (WΞ), and take a neat open compact subgroup K of
G(A(Ξ),∞). As before, let x0 be the image of x in V (Fp) (assuming p ∈ Ξ). Recall

VK defined in Section 3 which is the geometrically irreducible component of Sh
(Ξ)
K

containing the projection of x. Let O be the stalk OVK/WΞ
,x ⊂ OV/WΞ

,x = OSh(Ξ),x

at the WΞ-point x ∈ V (WΞ). The WΞ-algebra O is semi-local (of finite type), and
its maximal ideal ml,x over (l) ⊂ WΞ for l ∈ Ξ is unique. Since V/VK is étale,
we may identify the P -adic localization-completion of O and that of OV,x for any
prime ideal P of OV,x. We consider the prime P = Px given by the kernel of
O → WΞ induced by evaluation at x. Then P is a prime ideal inside the Jacobson
radical of O (i.e., the intersection of all the maximal ideals {ml,x}l∈Ξ of O indexed
by the residual characteristic l ∈ Ξ of ml,x). Let K be the field of fraction of

WΞ, and consider the localization completion ÔP
∼= K[[T1, . . . , Td]] for d variables

Tj . We can extend scalars to Cv for v = l,∞ by K ⊂ Q
iv−→ Cv and consider

Ov = O ⊗WΞ
Cv. Then the evaluation at x ∈ V (Cv) gives rise to a Cv-algebra

homomorphism Ov → Cv whose kernel we denote by Pv; thus, P = Pv ∩ O. Then
we localize Ov at Pv and write the localization as Ov,Pv

. We then complete it

Pv-adically, getting Ôv,Pv
= lim←−n

Ov,Pv
/Pn

v Ov,Pv
. We then have a commutative
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diagram of inclusions

O −−−−→
⊂

ÔP = K[[T1, . . . , Td]]

∩
⏐⏐� iv

⏐⏐�∩

Ôv,Pv
Cv[[T1, . . . , Td]].

As described above, we study coordinates around a point on Ŝord. The coor-

dinate can be a formal function on Ŝord or a rigid analytic function defined on a
rigid open neighborhood of the point in the associated p-adic rigid analytic space

denoted by (Ŝord)p-an. Here is what we mean by the rigid analytic space associated

to Ŝord. A functor associating to a formal scheme Spf(A) a rigid analytic space is
studied by Raynaud and Berthelot. The theory of Raynaud is explained in [BL],
and one can find a good account of that by Berthelot in [dJ], Section 7. As a spe-
cial case of his theory, Berthelot associates to Spf(Wp[[(T )]]/(f1(T ), . . . , fm(T )))
for a finite set of variable (T ) = (T1, . . . , Tn) and a finite set of power series
fj(T ) ∈ W [[(T )]] := W [[T1, T2, . . . , Tn]] the rigid analytic space Xrig given by
the zero set of {fj}j in the open unit disk Dn in the n-dimensional affine space
over the field of fraction Frac(W ) of W . Here we take the base-change of Xrig

to Cp (see [NAA], §9.3.6), and write it as Xp-an
/Cp

. This construction appears very

naive, but as exposed in [dJ], this functor has intrinsic meaning and functorial con-
struction, and it extends naturally the results of Raynaud to formal schemes not
necessarily of finite type over W . For pϕ ∈ Σord associated to ip ◦ ϕ : F → Cp,
we extend ip ◦ ϕ to a projection Wp ⊗Z O = W I

p → Cp (which is still denoted by
ip◦ϕ), and we put τϕ = τϕ,p = logp ◦ip◦ϕ◦tpϕ

for the Serre–Tate coordinate tpϕ
on

Ŝord
pϕ

= Ĝm ⊗Zp
Opϕ

. Then a convergent power series in Cp{{τϕ}}ϕ∈Σord is a rigid

analytic function well defined on (Ŝord)p-an, where Cp{{τϕ}} is made up of power
series

∑
n=(nϕ)≥0 anτ

n in Cp[[τϕ]]ϕ∈Σord with lim|n|→∞ |an|p = 0 for |n| =
∑

ϕ nϕ.

The GAGA type theorems associating an analytic sheaf Fp-an (again Fp-an is the
base change to Cp of Frig in [dJ]) to a formal coherent sheaf F are given in this
setting in [dJ], §7.1.11, and the analytic/formal sheaf of a Kähler differential is
discussed in [dJ], §7.1.12. In particular, for a rigid point x ∈ Xp-an coming from
a smooth formal point x ∈ X(W ) in the generic fiber, the formal cotangent space
ΩX/W (x)⊗W Cp and the analytic cotangent space ΩXp-an/Cp

(x) at x are identical.
For an l-adic Barsotti–Tate O-module B defined over a ring C, we write

EndO(B/C) for the ring of O-linear endomorphisms of B defined over a ring C

and put End0F (B/C) = EndO(B/C) ⊗Z Q. For a finite extension k of Q in Q with
integer ring O, put Wk = WΞ ∩ k.

Lemma 4.1. Let l ∈ Ξ be a prime. Let E/F be a quadratic extension with TE =

ResE/QGm. Suppose that (A, λ, θ, η(Ξ)) is the test object sitting over x ∈ V (WΞ)

such that the image of x in VK (for a neat open compact subgroup K of G(A(Ξ),∞))

falls in VK(Wk) for a finite extension k/Q. For L = Wk∩ml,x, let (AL, λL, θL, η
(Ξ)
L

)

be its reduction modulo ml,x sitting over xL ∈ V (Fl) (so AL is defined over FL =
O/L). Suppose that we have a level l-structure ηl : (μl∞ ⊗Zl

Ol) ∼= A[l∞]◦ defined
over Wl for a prime l ∈ Σord

l such that ηl ⊕ tη−1
l

: (μl∞ ⊗Zl
Ol)⊕ (Fl/Ol) ∼= A[l∞]

over Wl as Barsotti–Tate O-modules, where A[l∞]◦ is the connected component
of the Barsotti–Tate group A[l∞]/Wl

and tη−1
l

is the dual inverse of ηl under the
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Cartier duality induced by the polarization λ. If we have embeddings ρ̂ : TE(Q) →
G(A(Ξ),∞) and E � α 
→ αq ∈ End0F (AL[q

∞]/FL
) for all primes q outside Ξ sat-

isfying η
(Ξ)
L,q ◦ ρ̂(α) = αq ◦ η

(Ξ)
L,q for all q �∈ Ξ for the q-component η

(Ξ)
q of the level

structure η(Ξ), then

(1) E is a CM field isomorphic to End0F (AL/Fl
),

(2) ρ̂(r×(Ξ)) (r(Ξ) = r⊗Z Z(Ξ)) fixes xL ∈ V (Fl) for an order r of E maximal at

l,

(3) we have an F -linear embedding θ̃L : E ↪→ End0F (AL/Fl
) such that θ̃L(α)

induces αq in the endomorphism algebra End0F (AL[q
∞]) for all q �∈ Ξ,

(4) there exist an extension of σ : F ↪→ Q to E (still denoted by σ) and a
l-adic rigid analytic σ-coordinate τσ = τσ,l of the rigid analytic space asso-

ciated to Ŝord
l centered at x in Ŝ(Wl) such that τσ(x) = 0 and τσ ◦ ρ̂(α) =

il(α
σ(1−c))τσ for each σ inducing the place l on F after composing il.

Moreover the coordinate τσ as in (4) above is unique up to scalar multiples.

We call a σ-coordinate satisfying (4) above a ρ̂-eigen σ-coordinate.

Proof. The test object (AL, λL, θL) is defined over the finite field FL = O/L. Let
R′ = EndO(AL/FL

). Since Σord
l �= ∅, by a theorem of Tate (see [ABV], Appendix I,

Theorem 3), R′ is an order of a semi-simple quadratic extension M ′ of F (generated
by the Frobenius endomorphism over FL) whose simple components are all CM
fields; thus, M ′ must be a CM quadratic extension (as it cannot be isomorphic to
F × F ). By another theorem of Tate ([ABV], Appendix I, Theorem 2), we have

EndO(AL[q
∞]/FL

) = EndO[Gal(Fl/FL)](TqAL) = R′ ⊗Z Zq =: R′
q.

Since E ↪→ End0F (AL[q
∞]/FL

) by α 
→ αq, we have Eq = E ⊗Z Qq
∼= M ′

q for all

primes q outside Ξ, and we conclude to have θ̃L : E ∼= M ′; so, E is a CM field. Put

r = θ̃−1
L

(R′) ⊂ E, which is an order of E maximal at l by Lemma 2.2 applied to l.

Note that El
∼= Fl × Fl. Since θ̃L(α) for α ∈ r

×
(Ξ) is a prime-to-Ξ isogeny sending

(AL, λL, η
(Ξ)
L

)/Fl
to (AL, λL, θ̃L(α) ◦ η

(Ξ)
L

)/Fl
= (AL, λL, η

(Ξ)
L

◦ ρ̂(α))/Fl
, ρ̂(α) fixes

xL by the universality of Sh
(Ξ)

/Fl
.

By Serre–Tate theory, we have the Serre–Tate coordinate t := tl of the l-

component Ĝm ⊗Zl
Ol of Ŝord

l such that an O-linear automorphism a ∈
AutO(Ĝm ⊗Ol/Wl

) = O×
l

acts by t 
→ ta. As seen in [H10], Lemma 3.3, α ∈
End0F (AL) = E acts on Ŝord

l by universality, and this action induces a homomor-

phism : r×(Ξ) → AutO(Ĝm ⊗Ol/Wl
) = O×

l
sending α ∈ E× to ασ(1−c) ∈ Fl under

an extension σ : E ↪→ Q of σ : F ↪→ Q inducing l and the projection of El to one
of its simple components isomorphic to Fl. Though the proof of [H10], Lemma 3.3
is given for ordinary AL, the same argument applied to AL[l

∞] (in place of AL[l
∞]

there) works equally well.
Let logl : 1+ lWl → Wl be the l-adic logarithm map. Write σl for the projection

of Wl ⊗Z O ⊂ W I
l to Wl induced by σ : O ↪→ Q. Then we get a standard σ-

coordinate τσ as the following composition:

Ĝm ⊗Zl
Ol(Wl) = (1 + lWl)⊗Zl

Ol

logl ⊗1−−−−→ Wl ⊗Zl
Ol

σl−→ Wl.
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We can perform the same procedure for other primes lϕ ∈ Σord
l and get a coordinate

τϕ for ϕ ∈ I associated to lϕ satisfying the same property above by replacing

σ with ϕ. The associated rigid analytic space (Ŝord
l )l-an has by definition the

coordinates {τϕ}ϕ∈Σord
l

(here Σord
l is regarded as a set of field embeddings of F

into Cl). Note here that tσ(x) = 1 and τσ(x) = 0 (by the splitting A[l∞] ∼=
(μl∞ ⊗Zl

Ol) ⊕ (Fl/Ol) over Wl), but for ϕ not associated to l, τϕ(x) may not
be equal to 0. Then any other rigid analytic coordinate f centered at x (i.e.,
f(x) = 0) is anyway a power series convergent on an open subset of the rigid

analytic space (Ŝord
l )l-an associated to Ŝord

l . Therefore it has power series expansion

f(τ ) =
∑

ν aντ
ν for τν =

∏
ϕ∈Σord

l
τ
νϕ
ϕ . If f ◦ ρ̂(α) = il(α

σ(1−c))f , by equating the

power series expansion, we find that f is a constant multiple of τσ. �

If v = ∞, we put G∞ = AutF (H
I) (the complex analytic automorphism group

inducing an O-linear map on ΩHI/C); thus, G∞ = PSL2(FR) =
∏

ϕ∈I PSL2(R)

according to the decomposition FR = F ⊗Q R =
∏

ϕ∈I R for which the projection

to the ϕ-factor induces i∞ ◦ϕ : F → R (e.g., [DLS], Chapter IV). As is well known,
the stabilizer of x ∈ V (WΞ) in G∞ is given by an anisotropic torus in G∞. Write
the torus as T∞,x = Tx =

∏
ϕ∈I Tϕ,x for Tϕ,x ∼= C×/R×. We put Σord

∞ := I.

If v = p and Σord
p �= ∅, we write Gp = AutF (Ŝ

ord) (the group of formal

automorphisms over Wp compatible with O×
(Ξ)-action on Ω

̂Sord/Wp
). Note that

Ŝord ∼= Ĝm⊗Zp
OΣord as seen in Section 1. We fix once and for all the identification

Ŝord = Ĝm ⊗Zp
OΣord . This is tantamount to fixing an isomorphism μp∞ ⊗Zp

Op
∼=

A0[p
∞]◦ for each p ∈ Σord

p , so, as before, we write tp for the Serre–Tate (multiplica-

tive) coordinate of Ŝord
p . We have AutSCH(Gm) = AutSCH(Spec(Wp[t, t

−1])) =

Gm(W [t, t−1]) = W [t, t−1]× (the scheme automorphism group). Similarly, writing

t = 1+ T , we have Aut(Ĝm) = Aut(Spf(Wp[[T ]])) = Ĝm(W [[T ]]) = 1+mW [[T ]] for

the maximal ideal mW [[T ]] of W [[T ]]. Here Aut(Ĝm) stands for the automorphism

group of the formal scheme Ĝm. Note that Ĝm ⊗Zp
OΣord = Spf(W [[OΣord ]]) =

Spf(W [[Tϕ]]ϕ∈Σord), where Tϕ = tϕ − 1 for the Serre–Tate ϕ-coordinate tϕ. If

φ ∈ Gp, then φ(T ) = (φϕ(T ))ϕ∈Σord ; so, we have φ∗dTϕ =
∑

ψ
∂φϕ

∂Tψ
dTψ. Then

having φ∗(dTϕ) ∈ O
̂SdTϕ implies

∂φϕ

∂Tψ
= 0 if ϕ �= ψ. Thus φϕ only involves the

parameter Tϕ, so, Gp = Ĝm(W [[T ]])Σ
ord

by sending φ to (φϕ(Tϕ))ϕ∈Σord . Let

1 ∈ Ŝord be the Wp-point given by tϕ = 1 for all ϕ ∈ Σord (i.e., the origin). The

point x ∈ V (WΞ) gives rise to x ∈ Ŝord(Wp) and x ∈ (Ŝord)p-an(Cp). The group of

O-linear automorphisms T1 = Tp,1 := AutO-lin(Ŝ
ord) is in the stabilizer of 1. The

translation automorphism Tx : y 
→ xy ∈ Ŝord is an element in Gp. Thus we can
translate the group structure via Tx so that x becomes the identity element. Then
we have Tp,x = Tx := TxT1T−1

x ⊂ Gp fix x. We again have Tp,x =
∏

p∈Σord
p

Tp,x
with Tp,x ∼= O×

p which preserve the p-component Ŝord
p := Ĝm ⊗Zp

Op ⊂ Ŝord.

Lemma 4.2. Suppose that p ∈ Ξ is unramified in F . If g ∈ G(A(Ξ),∞) leaves

stable Ŝord
p inducing an automorphism of formal schemes and fixes the p-component

xp ∈ Ŝord
p of x, then the action of g on Ŝord

p belongs to Tp,x.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

866 HARUZO HIDA

Proof. The action of g on each test object (As, η
(Ξ)
s ) at s is given by

(As, η
(Ξ)
s ) 
→ (Asg, η

(Ξ)
sg )

α←−
∼

(As, η
(Ξ)
s ◦ g)

with an O-linear prime to Ξ-isogeny α. Thus it brings the O-linear group struc-

ture on the deformation space Ŝord
x (of (Ax, η

(Ξ)
x )) with identity x to the O-linear

group structure on Ŝord
xg with identity xg just by the construction of the Serre–Tate

coordinate; in other words, we have the commutative diagram of the extensions

Ax[p
∞]◦

↪→−−−−→ Ax[p
∞]

�−−−−→ Ax[p
∞]et



⏐⏐�α 


⏐⏐�α 

⏐⏐�α

Axg[p
∞]◦

↪→−−−−→ Axg[p
∞]

�−−−−→ Axg[p
∞]et.

The vertical arrows are O-linear isomorphisms as α is prime to Ξ-isogeny. Thus if

g leaves Ŝord
p stable and fixes xp, it must preserve the O-linear group structure of

Ŝord
p with identity xp. This shows that the action of g on Ŝord

p belongs to Tp,x. �

Since the stabilizer of the ϕ-component xϕ of x in HI is Tϕ,x, we have immediately

Lemma 4.3. If g ∈ G(A(Ξ)) leaves stable the ϕ-component Hϕ = H of HI and fixes
the ϕ-component xϕ ∈ Hϕ, then the action of g on Hϕ belongs to Tϕ,x.
Lemma 4.4. Let x ∈ V (WΞ), and suppose that v ∈ Ξ ∪ {∞} is unramified in
F . Then for each ϕ ∈ Σord

v , there always exists a ϕ-coordinate τϕ = τϕ,v with
τϕ(x) = 0 convergent on an open rigid affinoid neighborhood Dx(τϕ) of x satisfying
τϕ ◦ a = aϕv τϕ for a = (av)v∈Σord

v
∈ Tv,x = O×

Σord
v

if v < ∞ and τϕ ◦ a = aϕτϕ for

a ∈ T∞,x = (C×/R×)I if v = ∞, where v is the place of F induced by iv ◦ ϕ : F ↪→
Cp. The coordinate τϕ,v is unique up to scalar multiple.

If xp �= 1p ∈ Ŝord
p , the automorphism φ ∈ Tp,x ∩ Aut(Ŝord

p ) may not extend to
the global V as the translation Txp

�= 1 is possibly a transcendental action only

defined on the formal scheme Ŝord
p = Ĝm⊗Zp

Op. Therefore, τσ,p in the lemma may
not be a ρ̂-eigen coordinate for any choice of ρ̂.

Proof. The result for v = ∞ is well known (see the argument towards the end of
the proof of Theorem 4.5). If v < ∞, by Serre–Tate deformation theory, we have
tv centered at 1 such that tv ◦ a = tav for a ∈ T1. Then τϕ,v := logp ◦ϕv ◦ tv ◦ T−1

x

does the job, where ϕv : Wv ⊗Z O = W I
v → Cv is the ϕ-projection. Uniqueness up

to scalar multiple is clear from τϕ ◦ a = aϕv

v τϕ. �

Since (A, λ, θ, η(Ξ)) gives the point x ∈ V (WΞ), we may think of its p-fiber

(A0, λ0, θ0, η
(Ξ)
0 )/Fp

= (A, λ, θ, η(Ξ))×WΞ
Fp.

Let M = End0(A0/Fp
), which is a CM quadratic extension of F in which p splits

by Lemma 2.2. As before, we define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞) by θ̃P(α) ◦ η(Ξ)
0 =

η
(Ξ)
0 ◦ ρ̂(α).
Theorem 4.5. Let the notation be as above. Let ip ◦ σ (resp. il ◦ σ) induce

p ∈ Σord
p (resp. l ∈ Σord

l ) for p, l ∈ Ξ for (A, λ, θ, η(Ξ)) sitting over x ∈ V (WΞ).
Assume that p and l are unramified in F/Q, and suppose that we have a p-analytic
ρ̂-eigen σ-coordinate τp = τσ,p of the form τp = logp ◦σp ◦ tp with τp(x) = 0 around
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x ∈ V (WΞ) ⊂ V (Cp), where σp : Wp⊗ZO = W I
p → Cp is the σ-projection. Then for

v ∈ {p, l,∞} =: Ξ0, we have a v-analytic ρ̂-eigen σ-coordinate coordinate τv = τσ,v
with τv(x) = 0. Identifying Cp = Cl = C (as in the introduction), in the formal
completion of OV/Cv ,x

along the Cv-point x ∈ V (Cv), the coordinates {τv}v∈Ξ0
are

proportional (i.e., they are a non-zero constant multiple of each other).

Write (ω2σ)v-an for the v-analytic line bundle on (Ŝord)v-an coming from ω2σ

by a v-analytic version of GAGA theorems (e.g., [dJ], §7.1.11 and [C], Example
2.4.6). We write v for l and p according to v = l and p, and Σord

v for the set of all
embeddings σ : F → Q such that iv ◦ σ induces v. To avoid confusion, if necessary,

we write the v-adic deformation space Ŝ of A⊗Wv
Fv as Ŝv.

Proof. Since Ŝp= Ŝord
p ×Ŝll

p (see Proposition 1.2), the co-tangent space Ω(̂S)p-an/Cp
(x)

at x of (Ŝ)p-an is a direct sum of Ω(̂Sord)p-an/Cp
(xord) and Ω(̂Sll)p-an/Cp

(xll) for the

projection x? of x to (Ŝ?)p-an. Then we can further decompose

Ω(̂Sord)p-an/Cp
(xord) =

⊕
pϕ∈Σord

Ω(̂Sord
pϕ

)p-an/Cp
(xpϕ

)

and

Ω(̂Sord
pϕ

)p-an/Cp
(xpϕ

) =
⊕
ϕ∼pϕ

(ω2ϕ)p-an(x),

where xpϕ
is the projection of x to Ŝord

pϕ
and where in the second identity ϕ runs

over ϕ ∈ I such that ip ◦ ϕ induces the p-adic place pϕ.
Since τp(x) = 0, the Serre–Tate p-coordinate tp is equal to 1 at x. Thus,

A[p∞] ∼= (μp∞ ⊗Zp
Op)⊕ (Fp/Op)

as Barsotti–Tate O-modules over Wp. Then the group TM (Z(Ξ)) acts via ρ̂ on the

p-component Ŝord
p , and TM (Z(Ξ)) fixes the p-component xp (this fact of TM (Z(Ξ))

fixing xp might not be true for pϕ �= p). Here (ω2σ)p-an(x) is the σ-eigenspace as
O-modules in Ω(̂Sord

p )p-an/Cp
(xp). Since TM (Z(Ξ)) fixes xp, (ω2σ)p-an(x) ⊂

Ω(̂Sord
p )p-an/Cp

(xp) for any σ associated with p is the ip(α
σ(1−c))-eigenspace of ρ̂(α)

(α ∈ TM (Z(Ξ))) in Ω(̂Sord
p )p-an/Cp

(xp) for an extension σ : M ↪→ Q of σ : F ↪→ Q.

Taking the canonical lift A1/WΞ
of A0/Fp

sitting over x1 ∈ V (WΞ), the exten-
sion σ is determined by complex multiplication by M on ωσ(x1)/WΞ

which is the

σ-eigenspace (under real multiplication by F ) of H0(A1,ΩA1/WΞ
) canonically iso-

morphic to ωσ(x) after extending scalars to Wp. Thus for σ with p = pσ, TM (Z(Ξ))

acts on (ω2σ)p-an(x) via the algebraic character ip ◦ σ(1 − c) ∈ X∗(TM ). Since
(ω2σ)p-an(x) = ω2σ(x) ⊗WΞ

Cp for the algebraic co-tangent space ω2σ(x)/WΞ
and

the action of ρ̂ on the rigid analytic line bundle (ω2σ)p-an is induced by its action on
the algebraic line bundle ω2σ over WΞ, the action via ρ̂ must preserve the algebraic
ω2σ(x). Therefore it also preserves

(ω2σ)v-an(x) = ω2σ(x)⊗WΞ
Cv

for every v ∈ {p, l,∞}. Since the action of ρ̂(TM (Z(Ξ))) on the v-analytic σ-co-

tangent bundle (ω2σ)v-an over V (Cv) preserves its fiber over x, ρ̂(TM (Z(Ξ))) fixes
xv, reversing our argument.
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We now see this fact of ρ̂(TM (Z(Ξ))) fixing xv group-theoretically. Because of

the v-adic Lie group structure on Ŝord
v for v = p, l, the tangent space of Ŝord

v at the
origin

Tanv :=
⊕
ϕ∼v

Tanϕ,v for Tanϕ,v = HomWv
(ω2ϕ(x)⊗WΞ

Wv,Wv)

is a Lie algebra over Wv, and we have the v-adic Lie algebra Lv := Lie(Ŝord
v ) over

Zv canonically inside the tangent space Tanv; i.e., we have

Lv ⊗Zv
Wv = Tanv.

Since Ŝord
v = Ĝm⊗Zv

Ov, the Lie algebra Lv is isomorphic to the formal co-character
group

X∗(Ŝ
ord
v ) := Homformal group(Ŝ

ord
v , Ĝm) ∼= Ov,

and hence the action via ρ̂ preserves Lv and the action via ρ̂ on Tanv is the scalar
extension of the action on Lv to Tanv. We have the v-adic exponential map expv :

Lv → Ŝord
v (from the v-adic formal Lie algebra into the v-adic formal Lie group),

which is equivariant under the action of ρ̂. Thus the v-component Ŝord
v is stable

under the action of TM via ρ̂, and the fixed point in Ŝord
v of the action is the v-

component xv of x. The action of α ∈ TM (Z(Ξ)) on Tanσ,v is via multiplication by

iv(α
σ(1−c)) for a suitable extension of σ to M (still denoted by σ). Thus its action

on Lv is via multiplication by α1−c = lim←−n
(α1−c mod vn) ∈ Ov, so, we can find a

linear coordinate Tσ,v of Tanσ,v with Tσ,v ◦ ρ̂(α) = ασ(1−c)Tσ,v. Its image under an

exponential map gives rise to the coordinate tσ on Ŝord
v (with tσ ◦ ρ̂(α) = tα

σ(1−c)

σ

and tσ(x) = 1) whose v-adic logarithm is proportional to the v-adic logarithm of
the Serre–Tate σ-coordinate. Then τv = τσ,v := logv ◦tσ is the desired ρ̂-eigen σ-

coordinate and xv is the fixed point of ρ̂ on Ŝord
v , which induces a homomorphism

ρv : TM (Z(Ξ)) → AutO-lin(Ŝ
ord
v ) = Tv,x. To see τv(x) = 0 in more down-to-earth

terms, note that Tv,x = O×
v and ρv(α) = ασ(1−c) ∈ O×

v . Since the image of ρv is
v-adically dense, by the continuity of the action, we have τσ,v ◦ a = aτσ,v for all

a ∈ O×
v = Tv,x. Then by Lemma 4.4, τσ,p and τσ,l are proportional to each other as

formal functions on the formal completion of VK/Cv
along x ∈ VK(Cv) identifying

Cv = Cl = Cp. In particular τσ,v(x) = 0, and this reconfirms that the coordinate
τv := τσ,v is the desired one (up to scalar multiple).

The proof for v = ∞ is almost identical to the above proof for finite places. Here
it is. We can bring HI isomorphically onto DI for the unit open disk D in C by
a linear fractional transformation by a matrix in SL2(C)

I so that x is sent to the
origin 0, and the action of the torus T∞,x/R in PSL2(R)

I
/R fixing x (isomorphic

to (C×/R×)I) on the coordinate wσ of D at σ ∈ I is given by wϕ ◦ α = α1−c
ϕ wϕ

for α = (αϕ)ϕ∈I ∈ (C×)I (under the identification Tx(C) = (C×/R×)I). Here D

is the symmetric domain of SU(1, 1) (the signature (1, 1) special unitary group)
isomorphic to SL2(R), and T1(C) ⊂ SL2(R)

I is identified with the diagonal torus
in SU(1, 1)I . To explain this in down-to-earth terms, write z for the standard
coordinate of HI ⊂ CI . If ξ = zϕ(x), the holomorphic isomorphism H � z =

(zϕ)ϕ 
→ w = (wϕ)ϕ =
(

zϕ−ξ

zϕ−ξ

)
ϕ
∈ D does the job. Though D is not a Lie group,

it is an open neighborhood of the identity of the Lie group C× = Gm(C), and it
is a Lie semi-group. Then the argument using the tangent space at x as above
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(identifying it with the Lie algebra of T∞,x) done for finite places v = p, l is valid
also for v = ∞ without any change. Thus we can take wσ to be τσ,∞ = τ∞. Again
it is proportional to τv over the formal completion. �

Corollary 4.6. Let the notation and the assumption be as in Theorem 4.5. Let
l ∈ Σord

l for a prime l ∈ Ξ different from p. If the prime l in F is induced by il ◦ σ,
we have End0F (A⊗WΞ

Fl) ∼= M ∼= End0F (A⊗WΞ
Fp) as F -algebras (via θ).

Proof. Let AL = A⊗WΞ
Fl, and write M ′ = End0F (AL) with R′ = EndO(AL) and

M = End0F (A0) with R = EndO(A0). Fix a level l-structure ηl : μl∞ ⊗Zl
Ol

∼=
A[l∞]◦. By Theorem 4.5, we have τl(x) = 0; thus, tl(x) = 1, which implies that we
get an O-linear isomorphism of Barsotti–Tate O-modules over Wl:

ηl ⊕ tη−1
l

: (μl∞ ⊗Zl
Ol)⊕ (Fl/Ol) ∼= A[l∞].

Again by Theorem 4.5 we have τl ◦ ρ̂(α) = il(α
σ(1−c))τl for α ∈ R×

(Ξ) = TM (Z(Ξ)),

and ρ̂(R×
(Ξ)) leaves stable Ŝord

l and fixes xl ∈ Ŝord
l . This implies by universality

of Sh(Ξ) that we have an endo-isogeny θ̃L(α) ∈ End0F (AL) for each α ∈ R×
(Ξ)

such that θ̃L(α) ◦ η
(Ξ)
L

= η
(Ξ)
L

◦ ρ̂(α) and the isogeny action of θ̃L(α) is given by

tσ,l 
→ tα
σ(1−c)

σ,l for the l-adic Serre–Tate σ-coordinate tσ,l. In other words, the triple

(E = M,αq = θ̃L(α)|AL[q∞], ρ̂) satisfies the assumption of Lemma 4.1 (3), and

hence, by the O-linear embedding θ̃L : M ↪→ End0F (AL/FL
), we have M ↪→ M ′,

which implies θ̃L : M ∼= M ′, since M ′ = End0F (AL) is a quadratic extension of
F . �

5. Local indecomposability of an AVRM

Let (A, λ, θ)/Wp
be an AVRM by multiplication by O with good reduction. Thus

the triple (A, λ, θ) is defined over a number field k in which p is unramified. We
suppose that Σord := Σord

p is non-empty (so, A0 = A ⊗W Fp is at least partially

ordinary). By the Serre–Tate theory, we have Ŝord ∼= Ĝm ⊗Zp
OΣord . We fix an

isomorphism ηp : μp∞ ⊗Zp
Op

∼= A[p∞] to fix the identification Ŝord
p

∼= Ĝm ⊗Zp
Op

for p ∈ Σord
p . For a finite set of primes Ξ including p (which will be specified

later), we will suitably choose an isomorphism η(Ξ) : (F
(Ξ),∞
A )2 ∼= T (Ξ)A ⊗Z Z(Ξ)

defined over WΞ in the proof of the following theorem. Since p is unramified in
k and p ∈ Ξ, by extending scalars to a finite extension of k in the fraction field
of WΞ if necessary, for a neat open compact subgroup K ⊂ G(A(Ξ),∞), we may

assume that (A, λ, η(Ξ)) (resp. (A, λ, η(Ξ))) gives rise to a point x ∈ V (WΞ) (resp.
x ∈ VK(Wk)) for a geometrically irreducible component V of Sh(Ξ). Let M =
End0F (A0), which is a CM field (see Lemma 2.2). Define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞)

by θ̃P(α)◦η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α), where (A0, λ0, θ0, η

(Ξ)
0 ) = (A, λ, θ, η(Ξ))×Wp

Fp and θ̃P

is an extension of θ0 to M . Then ρ̂(α) acts on Ŝord by tp 
→ t
α1−c

p

p for an embedding

M � α 
→ αp ∈ Fp and on V through E(Ξ)
, where c is the generator of Gal(M/F ).

The embedding α 
→ αp induces MP = Fp for a prime P of M over p, and A0[P] is
connected. We write σp : Fp → Cp for the embedding induced by the σ-projection
of Wp ⊗Z O = W I

p to Wp ⊂ Cp. If the place p is associated to ip ◦ σ, we write

tσ = σp ◦ tp and τ = τσ,p = logp ◦tσ; thus, τ ◦ ρ̂(α) = ip(α
σ(1−c))τ . By definition, if
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ip ◦ σ gives rise to the p-adic place p ∈ Σord
p , tσ(A) = 1 (⇔ τ (A) = 0) is equivalent

to semi-simplicity of the p-adic Tate module TpA as an Ip-module for the inertia

group Ip in Gal(Q/Q) corresponding to ip ◦ σ. We want to prove

Theorem 5.1. Let the notation be as above. Suppose that O is unramified at p
and that the place of k induced by ip is unramified over Q. If A/Q = A×W Q does

not have complex multiplication, TpA is indecomposable as an Ip-module for each
p ∈ Σord

p .

Proof. Contrary to the conclusion of the theorem, we assume that TpA for p ∈ Σord
p

is a semi-simple Ip-module (so, tp(A) = 1). As before, ip ◦ σ induces the place p

for σ ∈ I. Note that A is defined over a number field k ⊂ Q unramified at p
as A is defined over unramified W and A is projective. If p is inert in F , then
tσ(A) = 1 implies tp(A) = 1; thus, A is the canonical lift of A0 and so has complex
multiplication, a contradiction. Thus we may assume that F has at least two primes
over p, though we do not use this fact in the rest of the proof.

We write primes of F by lowercase Gothic letters and primes of k by uppercase
Gothic letters. The corresponding Roman character is the rational prime below.
Pick a prime q of O. Identify TqA ∼= O2

q and write rq : Gal(Q/k) → GL2(Oq) for
the Galois representation realized on TqA.

Since A is isotypic, as is well known (i.e., A is isogenous to a product of copies
of an absolutely simple AVRM over a finite extension of k; see [GME], §5.3.1),
we may assume that A is absolutely simple. Then D := End0(A/k) is a (possibly
commutative) division central simple algebra over a totally real field or a CM field
Z with integer ring r (as A⊗k Q does not have complex multiplication; see [GME],
Lemma 5.3.2). Since F is totally real, Z ⊂ F has to be totally real. If D is
commutative, D = F = Z is a totally real field, and if D is not commutative,
it is a division quaternion algebra over Z. By a theorem of Faltings (a solution
of Tate’s conjecture; see [ARG], II), for End0Zq

(TqA) := Endrq(TqA) ⊗rq Zq, the

algebra Zq[rq(Gal(Q/k′))] ⊂ End0Zq
(TqA) generated by rq(Gal(Q/k′)) over Zq is

the commutant of End(A/k) ⊗Z Zq for any finite extension k′/k, where TqA =
lim←−n

A[q]n and Zq is the q-adic completion of Z ⊂ F (i.e., the closure of Z in

Fq). Let Cq := Zq[rq(Gal(Q/k′))] ⊂ End0Zq
(TqA). Then Cq is the commutant of

Dq = D ⊗Z Zq in End0Zq
(TqA). Hence Cq has center Zq and is independent of the

choice of k′. In particular, Cq ⊗Zq
Dq

∼= End0Zq
(TqA) ∼= Mn(Zq) (an n× n matrix

algebra) for a suitable n (cf. [BAL], VIII.10.2). This implies that the Brauer classes
over Zq of Cq and Dq are inverses of each other (cf. [BAL], VIII.10.4). Since D is
either a quaternion algebra over Z or D = F = Z, the Brauer class of Dq has order
at most 2 in the Brauer group over Zq. Thus Cq is either isomorphic to a division
quaternion algebra over Zq or M2(Fq) = M2(Zq).

Set r = rp (so q = p). Since M � α 
→ ασ(1−c) ∈ Fp implies Mp = Fp⊕Fp ↪→ Cp

(i.e., p splits in M), so, Cp
∼= M2(Fp). Thus Im(r) contains an open subgroup of

SL2(Zq) ⊂ C×
q . This open image property follows from Ribet’s argument in [Ri],

IV. Indeed, assuming that End0(A⊗k Q) = F (an absolutely simple AVRM but a
non-CM) and that A has a place of multiplicative reduction, Ribet computed the
Lie algebra of Im(r) and showed that the Lie algebra contains sl2(Zp) (which implies
the open image property by exponentiating the Lie algebra). His assumptions are
used to show that Cp = M2(Fp), and, using Faltings’ result, Ribet’s argument still
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works, and we get the open image property (see [BGK], Theorem C for more details
of this point).

Since there are at least two non-isomorphic ramified semi-simple quadratic ex-
tensions of Qp, we have at least four non-isomorphic maximal tori in SL(2)/Qp

defined over Qp having non-isomorphic projection to PGL(2). Thus we can find a
torus T ⊂ GL(2) defined over Op such that

(p1) T (Op)∩SL2(Zp) is an anisotropic maximal torus (i.e., T (Op) is isomorphic
to the norm 1 subgroup of the multiplicative group of a field extension of
Fp),

(p2) T (Op) remains an anisotropic maximal torus (i.e., for example, if T (Op) ∩
SL2(Zp) comes from a ramified quadratic extension of Qp, T (Op) remains
anisotropic as Fp/Qp is unramified).

We pick α ∈ T (Op) ∩ Im(r) ∩ SL2(Zp) so that T is the centralizer of α (i.e., α has
two distinct eigenvalues in Cp). Since the isomorphism class of the centralizer of α
(as a tori over Op) is determined by αmod pj for sufficiently large j, by Chebotarev
density, changing T in its isomorphism/conjugacy class if necessary, we may choose
a prime L outside p so that

• A has good reduction at L,
• r(FrobL) commutes with α (i.e., r(FrobL) ∈ T (Fp)).

For the eigenvalues λ of r(FrobL), the quadratic extension M ′ = F [λ] is non-

isomorphic to M = End0F (A0/Fp
) over F (i.e., p is non-split in M ′, but p splits in

M). Since A has Σord
l �= ∅ for primes L of k of Dirichlet density 1 (after replacing

k by its finite extension if necessary; see Section 7 in the text and [O], 2.7 and [N],
Introduction), we may assume that Σord

l contains a prime induced by il ◦ σ (i.e.,

we may assume that l splits in M ′); thus, we have End0F (A⊗Wl
Fl) = M ′.

Let Ξ = {p, l} for the residual characteristic l of l. Then A0 has complex mul-
tiplication by a CM field M/F . Thus A0[q

∞] ∼= (Fq/Oq)
2 over Fp for any prime

q �∈ Ξ. Since A0 is defined over FP, it has the Frobenius endomorphism φ over FP

and M = F [φ] = End0F (A0/FP
) is a CM quadratic extension of F (by Lemma 2.2).

Thus we can find an R-linear isomorphism η
(Ξ)
0 : R̂(Ξ) ∼= T (Ξ)A0 for R = O[φ],

where R̂ =
∏

q Rq and R̂(Ξ) =
∏

q �∈Ξ Rq. Thus, identifying R̂(Ξ) ⊗Z Q = (F
(Ξ),∞
A )2,

we may define an embedding ρ̂ : M× ↪→ G(A(Ξ),∞) by θ̃P(α) ◦ η(Ξ)
0 = η

(Ξ)
0 ◦ ρ̂(α).

Since A[q∞] for q �∈ Ξ is étale over WΞ, this level structure η
(Ξ)
0 lifts uniquely to a

level structure η(Ξ) of A. Then the point x0 ∈ Sh(Ξ)(Fp) carrying (A0, λ0, η
(Ξ)
0 ) is

fixed by ρ̂(TM (Z(Ξ))) by Lemma 4.1.

Suppose that rp|Ip is semi-simple for p ∈ Σord for p induced by σ : F → Qp.
Thus by semi-simplicity, the following connected-étale exact sequence

0 → A[p∞]◦(Qp) → A[p∞](Qp) → A[p∞]et(Qp) → 0

of Ip-modules splits, and hence the connected-étale sequence of Barsotti–Tate O-
modules

0 → A[p∞]◦/Wp
→ A[p∞]/Wp

→ A[p∞]et/Wp
→ 0

also splits (cf. [T]). In particular, we have p = PP for prime ideals P �= P in

R = EndO(A0/Fp
) ⊂ M so that A0[p

∞]◦ = A0[P∞] and A0[p
∞]et = A0[P

∞
]. The

isomorphism ηp : μp∞ ⊗Zp
Op

∼= A[p∞]◦ is defined over Wp. Recall M
× � α 
→ αp ∈
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Fp given by θ̃P(α) ◦ ηp = ηp ◦ αp. By definition, we also have tp(A) = 1; therefore,

τ = logp ◦σ ◦ tp satisfies τ ◦ ρ̂(α) = ip(α
σ(1−c))τ for an extension σ : M ↪→ Qp

of σ. Thus by Theorem 4.5, the corresponding coordinate τl = τσ,l on the l-adic
deformation space satisfies the same invariance property (i.e., they are a ρ̂-eigen
coordinate and τl(A) = 0). By our choice, M ′ = End0F (A ⊗Wl

Fl) with M �∼= M ′,
which is a contradiction as M ′ = End0F (A ⊗Wl

Fl) ∼= End0F (A0/Fp
) = M (as F -

algebras) by Corollary 4.6. �

6. CM periods and proportionality constants

In the proof of the indecomposability in the previous section, proportionality of
τp and τl proven in Theorem 4.5 played an important role. We study the propor-
tionality constant of our ρ̂-eigen ϕ-coordinate at each v ∈ Ξ in terms of CM periods
of Katz and Shimura, starting with a CM abelian variety (not with the non-CM
abelian variety as we did so far). We show that the constant is the ratio of the
square of v-adic CM periods. This section is independent of the proof of the lo-
cal indecomposability (and the reader with interest only in local indecomposability
may skip this section).

Let x0 ∈ Sh(Ξ)(Fp) be in the ordinary locus. The Serre–Tate deformation space

of x0 is then isomorphic to Ŝp = Ŝord
p = Ĝm⊗ZO (as p is assumed to be unramified

in F/Q) embedded into Sh
(Ξ)
/Wp

. Let x1 ∈ Sh(Ξ) be the origin 1 ∈ Ŝp ↪→ Sh
(Ξ)
/Wp

, and

let (A1, λ1, θ1, η
(Ξ)
1 )/Wk

be the CM abelian variety (the canonical lift) sitting over
x1 (which is originally defined over Wp but it descends to Wk for a number field

k by the theory of complex multiplication [ACM]), where θ1 : M ∼= End0F (A1/WΞ
).

This is the CM point we study. Suppose that A1 ×Wk
Fl is also ordinary for l ∈ Ξ

different from p. So we may assume that Ξ = {p, l}, and we suppose that l is
unramified in F/Q.

At v = p, l, we fix ηv : μv∞ ⊗Z O ↪→ A1[v
∞] defined over Wv. This is possible as

Wv is a strict henselization of Z(v). This level structure (together with η
(Ξ)
1 ) gives

rise to a point on the v-adic Igusa tower

Igv,∞ := IsomWv
(μv∞ ⊗Z O/Shord

∞
,A/Shord

∞
[v∞]◦)

for the universal abelian scheme A over the ordinary locus Shord
∞ of Sh(v). We again

simply write x1 for this point on Igv,∞. By fixing ηv, we have a unique identification

of Ŝv with Ĝm⊗ZO. Define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞) by θ1(α)◦η(Ξ)
1 = η

(Ξ)
1 ◦ ρ̂(α).

Then write τv,ϕ for the ρ̂-eigen ϕ-coordinate of (Ŝv)
v-an if v = p, l. In other words,

if v = p for the ϕ-projection ϕp : Wp ⊗Z O � Wp, we have τp,ϕ = logp ◦ϕp ◦ tpϕ
for

the Serre–Tate coordinate tpϕ
of Ŝord

pϕ
= Ĝm ⊗Zp

Opϕ
.

By ordinarity, any prime factor v|v (for v = p, l) in O splits in M ; in particular,
v is unramified in M/Q. Write Φ for the CM type of A1; thus, Φ is a collection of

half of the embeddings of M into Q such that
∑

φ∈Φ φ as a representation of M is

isomorphic to ΩA1/k⊗kQ. Supposing that k is large containing all conjugates of M

in Q, we decompose H0(A1,ΩA1/Wk
) =

⊕
φ∈Φ Wkωφ with nowhere vanishing dif-

ferentials ωφ having an eigenproperty θ1(α)
∗ωφ = φ(α)ωφ for α ∈ M = End0F (A1).

As is well known, R := θ−1
1 (EndO(A1/Wk

)) is an O-order of M , in which any prime
v|v of R splits (see Lemma 2.2).
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Fixing complex uniformization L ↪→ CΦ � A1(C) for a proper R-ideal L ⊂ R.
Writing the variable of CΦ as u = (uφ), ω∞,φ := duφ ∈ H0(A1,ΩA1/C) satisfies
θ1(α)

∗ω∞,φ = φ(α)ω∞,φ for α ∈ M . Thus ωφ and ω∞,φ are proportional, getting
Shimura’s CM period Ω∞,φ ∈ C× by ωφ = Ω∞,φω∞,φ. Since

∫
γ
ω∞,φ ∈ φ(L) ⊂ Wk

for all γ ∈ π1(A1(C),0) for the origin 0 ∈ A1, we have the classical algebraic period
identity

∫
γ
ωφ ∈ W · Ω∞,φ. We put Ω∞ = (Ω∞,φ)φ∈Φ ∈ (C×)Φ.

For v = p, l, the level structure ηv induces η̂v : Ĝm⊗Z O = lim←−n
(μvn ⊗Z O) ∼= Â1

defined over Wv for the formal completion Â1 of A1 along the origin 0 ∈ A1(Fv).
Thus, writing Gm = Spec(W [t, t−1]), the push forward η̂v,∗(

dt
t ⊗ 1) can be written

as a unique sum η̂v,∗(
dt
t ⊗ 1) =

∑
φ∈Φ ωv,φ satisfying θ1(α)

∗ωv,φ = φ(α)ωv,φ for

α ∈ M = End0F (A1). We then define Katz’s v-adic period Ωv,φ by ωφ = Ωv,φωv,φ.
We put Ωv = (Ωv,φ)φ∈Φ ∈ WΦ

v (see [K1]). Thus we get

Proposition 6.1. Under our identification Cp = C, the proportionality constant
of ωp,φ and ω∞,φ both in H0(A1,ΩA1/C) = H0(A1,ΩA1/Cp

) is given by Ω∞,φ/Ωp,φ

for each φ ∈ Φ. In other words, we have

Ωp,φωp,φ = ωφ = Ω∞,φω∞,φ = Ω∞,φduφ

for ωφ ∈ H0(A1,ΩA1/WΞ
).

Assuming that A1 is also ordinary at l ∈ Ξ, applying the above proposition to
{p,∞} and then to {l,∞}, we get

Corollary 6.2. Under our identification Cp = Cl, the proportionality constant of
ωp,φ and ωl,φ both in H0(A1,ΩA1/Cp

) = H0(A1,ΩA1/Cl
) is given by Ωl,φ/Ωp,φ for

each φ ∈ Φ. In other words, we have

Ωp,φωp,φ = ωφ = Ωl,φωl,φ

for ωφ ∈ H0(A1,ΩA1/WΞ
).

We have three Kodaira–Spencer maps:

(6.1)

(π∗ΩA/Sh
(p)

/Wk

[ϕ])⊗2 = ω2ϕ
/Wk

∼= ΩSh(p)/Wk
[ϕ],

(π∗ΩA/̂Sord
p/Wp

[ϕ])⊗2 = ω2ϕ
/Wp

∼= Ω
̂Sp/Wp

[ϕ],

(π∗ΩA/̂Sord
l/Wl

[ϕ])⊗2 = ω2ϕ
/Wl

∼= Ω
̂Sl/Wl

[ϕ].

Here A denotes the universal abelian scheme corresponding to the bases Shord
∞ ,

Ŝord
p and Ŝord

l whose origin corresponds to x1. As before, “[ϕ]” indicates the ϕ-
eigenspace under the natural action of O. Taking the fiber at x1 of (6.1), we get

(H0(A1,ΩA1/Wk
[ϕ]))⊗2 = ω2ϕ(x1)/Wk

∼= ΩSh(p)/Wk
[ϕ](x1),

(H0(A1,ΩA1/Wp
[ϕ]))⊗2 = ω2ϕ(x1)/Wp

∼= Ω
̂Sp/Wp

[ϕ](x1),

(H0(A1,ΩA1/Wl
[ϕ]))⊗2 = ω2ϕ(x1)/Wl

∼= Ω
̂Sl/Wl

[ϕ](x1).

(6.2)

We can identify Φ with I by φ 
→ φ|F =: ϕ. Then ϕ-eigenspace under the action of
O is identical to the φ-eigenspace under the action of R. The data

{ωφ ∈ H0(A1,ΩA1/Wk
[ϕ]), ωp,φ ∈ H0(A1,ΩA1/Wp

[ϕ]), ωl,φ ∈ H0(A1,ΩA1/Wl
[ϕ])}
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give rise to the corresponding differentials

{ω⊗2
φ = ωφ ⊗ ωφ ∈ Ω

A/Sh
(p)

/Wk

[ϕ](x1), ω⊗2
p,φ ∈ ΩA/̂Sp/Wp

[ϕ](x1),

ω⊗2
l,φ ∈ ΩA/̂Sl/Wl

[ϕ](x1)}.

Define ρ̂ : TM (Z(Ξ)) → G(A(Ξ),∞) by θ1(α) ◦ η(Ξ)
1 = η

(Ξ)
1 ◦ ρ̂(α). Write τv,ϕ for the

additive Serre–Tate ρ̂-eigen ϕ-coordinate of (Ŝp)
v-an for v = l, p. Then we define the

proportionality constant Cv,w
ϕ to be τv,ϕ = Cv,w

ϕ · τw,ϕ. The constant 0 �= Cv,w
ϕ is

determined by comparing dτv,ϕ and dτw,ϕ in ΩSh(p)/Cv
[ϕ](x1) = ΩSh(p)/Cw

[ϕ](x1),

in which we have algebraic ω⊗2
φ . Note that by our construction and [K], Main

Theorem 3.7.1, we have dτv,ϕ =
dtv,ϕ

tv,ϕ
= ω⊗2

v,φ with tv,ϕ = ϕ ◦ tvϕ
for the unique

continuous extension ϕ : Fvϕ
↪→ Cv of the original ϕ : F ↪→ Q. Thus from

Corollary 6.2, we get

Theorem 6.3. Under our identification Cp = Cl, the proportionality constant Cp,l
ϕ

of τp,ϕ and τl,ϕ is given by Ω2
l,φ/Ω

2
p,φ for each ϕ ∈ I, where φ ∈ Φ corresponds to ϕ

by φ|F = ϕ. In other words, we have

Ω2
p,φdτp,ϕ = ω⊗2

φ = Ω2
l,φdτl,ϕ in ΩSh(Ξ)/Cp

(x1) = ΩSh(Ξ)/Cl
(x1)

for ω⊗2
φ ∈ ω2ϕ.

Question 6.4. If we start with the non-CM AVRM (A, λ, θ)/k, we can associate two

p-adic “periods” τp,ϕ(A) for each ϕ ∈ Σord
p and Ω(A)p,ϕ given by Ω(A)p,ϕωp,ϕ = ωϕ

choosing a generator ωϕ of H0(A,ΩA/Wk
[ϕ]) over Wk. It is an interesting question

if these periods are related to some p-adic L-values coming out of the abelian scheme
A/k.

If A is an ordinary abelian variety with CM, we have τp,ϕ(A) = 0 (as tp(A) = 1).
Thus, we get only one non-trivial period, the Katz CM period Ω(A)p,ϕ. By a result
of Shimura, the value of an algebraic modular form f at the CM abelian variety “A”
with complex invariant differentials {duφ}φ is equal to a monomial of {Ω(A)∞,ϕ}ϕ
up to an algebraic number which is the value of f at (A,ωφ)φ. Similarly, by a
result of Katz, the value of f at the CM abelian variety “A” with p-adic invariant
differentials {ωp,φ} of an algebraic modular form is equal to the same monomial
of {Ω(A)p,ϕ}ϕ times f((A,ωφ)φ). An elementary treatment of the theory of Katz
and Shimura can be found in [EAI], Section 1.3. If A is non-CM and has ordinary
good reduction, τp,ϕ(A) plays a role similar to the Tate period of an abelian variety
with multiplicative reduction, though as of yet we do not know much about its
arithmetic meaning.

7. Density of partially ordinary primes

For the reader’s convenience, we give a sketch of a simple proof of the density
result for partially ordinary primes used in the proof of Theorem 5.1. We consider
the set Sord of prime ideals of k unramified over Q at which A has partially ordinary
good reduction for a given non-CM absolutely simple AVRM (A, λ, θ). Here (A, λ, θ)
is defined over the number field k ⊂ Q and A has partially ordinary good reduction
at P if A extends to an abelian scheme over OP and A[p](Fp) �= 0 for an algebraic

closure Fp of O/P. First suppose that k/Q is a Galois extension. Then the set
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of primes of k split over Q has Dirichlet density 1. Let Sord
f ⊂ Sord be the set

of all primes in Sord with residual degree f . We have Sord =
⊔[k:Q]

f=1 Sord
f . If a

prime P in O has residual degree 1, the reduction AP = A ⊗OP
O/P has the

p-power Frobenius endomorphism φ whose eigenvalue α satisfies |αϕ| =
√
p for

all ϕ ∈ Gal(Q/Q). Since a = α + αc is in O, for the complex conjugation c
(i.e., the Rosati involution of EndO(AP) with respect to λ) (as AP is defined over

O/P = Fp), we get |aϕ| ≤ 2
√
p. Taking the norm to Q, we have |NF/Q(a)| ≤ 2dpd/2.

Thus if p|(a) is in O, we have pd|NF/Q(a); therefore, p
d ≤ |NF/Q(a)| ≤ 2dpd/2 as

long as a �= 0. Thus if a �= 0, we have a prime p � a in O above p for p ≥ 5. Then
as is well known, this implies that A[p](Fp) �= 0 (i.e., p ∈ Σord

p ). For any p-adic

Galois representation ρ : Gal(Q/k) → GLm(Qp), fix a Haar measure on Im(ρ) with
volume 1. By Chebotarev density (e.g., [ALR], I-8, Corollary 2 combined with the
Exercise there and [Se], §2.1), the density of primes of k whose Frobenius falling in
a closed set of volume 0 is equal to 0. Apply this to the Galois representation ρl
on the l-adic Tate module of A/k taking a prime l of F . By the result of [BGK],
Theorem C, the set of P whose Frobenius has trace 0 has volume 0. Thus for
non-CM AVRM A, the set of primes P with a = 0 has Dirichlet density 0 by
the quantitative Chebotarev density theorem (although Serre works over Q, his
argument generalizes to a number field k without any modification). If k/Q is not
a Galois extension, we just replace k by its Galois closure and apply the above
argument. Since as in Theorem 5.1 we say that A does not have CM if A×kQ does
not have CM (i.e., End0F (A×k Q/Q) = F ), being non-CM is insensitive to any base

change finite over k. In particular, the abelian variety A over the Galois closure of
k does not have CM. Thus we have

Proposition 7.1. Let (A, λ, θ) be a non-CM AVRM defined over k ⊂ Q. Replacing
k by its finite extension if necessary, the set Sord

1 for a given AVRM has Dirichlet
density equal to 1.

It is interesting to know the Dirichlet density of the set {l|L ∈ Sord
f } of rational

primes if f > 1 (this question is not about the density over k but over Q). The
result [O], 2.7 tells us something about Sord

2 .
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