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Structure of the universal ring when k = 1.

Haruzo Hida

We fix a theta series f =
∑

aϕ(a)q
N(a) of weight k = 1 of a

real quadratic field F . Here ϕ is a character of order a ϕ :

Cl+F (f) → µa(Q) with conductor f∞, where ∞ : F ↪→ R is a fixed

embedding. In Case U+ with ℘ς - f, the universal deformation

ring T is bigger than Λ. We try to determine the algebra as

explicitly as possible. In this case, ρ = ρf = Ind
Q
F ϕ regarding

ϕ as a Galois character by class field theory. Let ϕ = ϕp = (ϕ
mod p) for each prime p of Z[µa] = Z[f ]. If p - a, the order of

ϕp is equal to a and F (ρ) = F (ρ). We write G = Gal(F (p)(ρ)/Q)

and put H = Gal(F (p)(ρ)/F ). Pick ς ∈ G inducing a non-trivial

automorphism of F/Q. Define φς(g) = φ(ς−1gς) for any character

φ : H → A×. By irreducibility of ρ, ϕ 6= ϕς (Mackey’s theorem).

We write ε for the fundamental unit of F .



§4.1. Decomposition of Ad(IndQ
F φ). In the standard form

of % = Ind
Q
F φ in §3.6, %(g) is either diagonal or anti-diagonal;

so, the diagonal subalgebra t := {diag[x,−x]|x ∈ A} ⊂ Ad(%) =

sl2(A) and the subspace a of anti-diagonal matrices in Ad(%)
is stable under G. Thus Ad(%) = t ⊕ a as an A[G]-module.

Plainly G acts on t by α :=

(
F/Q

)
. Since Ad(%)|H acts on

the upper nilpotent matrices n+ by ϕ− := ϕϕ−1
ς , by Shapiro’s

lemma, HomA[H](ϕ
−, Ad(%)) = HomA[G](IndQ

F ϕ
−, Ad(%)), we find

a = Ind
Q
F φ
−. Note that φ−ς = (φ−)−1; so, unless φ− has order

≤ 2, a is irreducible. If φ− is quadratic, φ− = φ−ς extends to a

character φ̃− : G→ A× and Ind
Q
F φ
− = φ̃− ⊕ αφ̃− . In summary,

Ad(IndQ
F φ) =




α⊕ IndQ

F φ
− if (φ−)2 6= 1,

α⊕ φ̃− ⊕ αφ̃− if (φ−)2 = 1.
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§4.2. Action of σ on Sel(Ad(%)).

Let π : Rord → A with ρA = π ◦ ρ
ord. Suppose we have σA ∈

Aut(A) such that σA ◦ π = π ◦ σ. Recall j(ρord · α)j−1 = (ρord)σ

for j :=
(
−1 0
0 1

)
. For each 1-cocycle u : G → Ad(ρA)∗, we define

u[σ](g) = ju(g)σAj−1. From u(gh) = Ad(ρA)(g)u(h) + u(g), we

find

u[σ](gh) = jρ
σA
A (g)jju(h)σAjjρA(g−1)σAj + ju(g)σAj

= Ad(jρ
σA
A j)(g)u[σ](h) + u[σ](g) = Ad(ρA · χ)(g)u[σ](h) + u[σ](g)

= Ad(ρA)(g)u[σ](h) + u[σ](g).

Since the conjugation of j preserves the upper triangular p-

decomposition subgroup and p-inertia subgroup of Gal(F (ρord)/Q),

in this way, σ acts on Sel(Ad(ρA)). In particular, if σA is trivial

(i.e., ρA = Ind
Q
F φ), [σ] is just a conjugate action of j.



§4.3. Decomposition theorem of Sel(Ad(IndQ
F φ)).

Define, for %−φ := Ind
Q
F φ
− and M := F (φ−),

Sel(αA) := Hom(ClF ⊗Z A,A
∨) ∼= (ClF ⊗Z A)∨,

Sel(%−φ ) := Hom(ClM(℘∞)/〈Pς〉P|℘ ⊗Z[H] φ
−, A∨).

Theorem 4.3: We have Sel(Ad(Ind
Q
F φ))

∼= Sel(αA)⊕ Sel(%−φ ).

Proof for the α-factor: Write % := IndQ
F φ. Then H1(G,Ad(%)) is

isomorphic to

H1(G, α∗A)⊕H1(G, (%−φ )∗) = H1(G,α∗A)⊕H1(H, (φ−)∗).

The identity of the second factors is by Shapiro’s lemma. Since

αA is realized on the diagonal matrix, by the definition of Sel(Ad(%)),

it is unramified everywhere; so, it factors through ClF ⊗ZA over

H. Since G/H has order 2, the restriction map to H is an iso-

morphism, and the result follows.



§4.4. Proof for the IndQ
F φ
−-factor. Write ρ−A := IndQ

F φ
−. The

Shapiro’s isomorphism is realized by the restriction map

H1(G, (ρ−A)∗) Res−−→∼ H1(H, (ρ−A)∗)G = (H1(H, (φ−)∗)⊕H1(H, (φ−ς )∗))G,

which is an isomorphism. In the last factor, G acts on cocy-

cles u(g) 7→ uς(g) = ςu(ς−1gς); so, interchanges the two factors.

Therefore H1(G, (ρ−A)∗) ∼= H1(H, (φ−)∗). If U : G → (ρ−A)∗ is a

Selmer cocycle, we have U(h) =
(

0 u
uς 0

)
for a cocycle u : H →

(φ−)∗. Note M = F (Ad(ρA)) = F (φ−). By Selmer condition

that U |D℘ς is lower triangular, we have u|GM factors through

ClM(℘∞)/〈Pς〉P|℘. Note that Hq(H/GM , φ
−) = 0 as φ− 6≡ 1

mod mA. Since it is a Z[H]-morphism into φ−, it actually factors

through ClM(℘∞)/〈Pς〉P|p ⊗Z[H] φ
−. Reversing the argument, it

is an isomorphism.



§4.5. ±-eigenspace of σ in Sel(Ad(ρA)).

Lemma 4.5: The involution σ acts on Sel(IndQ
F φ
−) (resp. Sel(αA))

by −1 (resp. +1). Here αA is the character α regarded to have

values in A×.

Proof: In the decomposition of Theorem 4.3, αA is realized on

the subspace t of diagonal matrices and Ind
Q
F φ
− is realized on

anti-diagonal matrices a ⊂ Ad(ρ). Since j acts by +1 on t and −1

on a and the action of σ on cocycle is conjugation by j as seen

in §4.2, the action of σ on Sel(αA) is by +1 and on Sel(IndQ
F φ
−)

is by −1.



§4.6. Set-up. Hereafter, we write M := F (Ad(ρ)) = F (ϕ−).
Consider the following conditions:

(H0) the local character ϕ−|Dp is non-trivial (irreduciblity of ρ).

(H1) ℘ς - f (ordinarity in Case U+; C = NF/Q(c)D).

(H2) the p-quotient ClM ⊗Z[H] ϕ
− = 0 (this follows if the class

number of M is prime to p), and the local character ϕ−|
Gal(Qp/Qp)

is different from the reduction ω modulo p of the Teichmüller

character ω = ωp acting on µp.

(H3) hF = |ClF | is prime to p (ClM ⊗Z[G] Ad(ρ) = 0⇔ (H2–3)).

Replacing ϕ by the Teichmüller lift of ϕ, we assume the order of

ϕ is prime to p.

In this real induced case, by J. Thorne, Taylor–Wiles condiction

is removed; so, Rordp
∼= Tp under (H0). We put T±p = Rord± .



§4.7. Presentation theorem again. Assume (H0). Let r+ :=

dimF Sel(α) for α = αF and r− = Sel(Ind
Q
F ϕ).

Theorem 4.7: Tp
∼= Λ[X+

1 , . . . , X
+
r+, X

−
1 , · · · , X−r−]/(S1, . . . , Sr)

for r = r+ so that σ fixes the image of X+
j in Tp and acts

by −1 on the image in Tp of X−i .

Proof: Assuming r+ = 0 (⇔ p - hF = |ClF |) and r− = 1, we now

prove this fact. So σ acts on t∗
T/T+ by −1. We can choose a

generator Θ so that σ(Θ) = −Θ. Then x 7→ Θx is a Λ-linear

map of T ∼= Λe. Writing this map as a d× d matrix form L and

define D(X) = det(X1e − L). Then T = Λ[X]/D(X) and T is

a local complete intersection with 2|e as σ acts non-trivially on

T/Λ.

The principal ideal (Θ) is the relative different T(σ−1)T of T/T+.



§4.8. Structure theorem. Assume (H0–3). Write A = Tp or

T+
p . Let e = rankΛ T. Then the following four assertions hold:

(1) If 〈ε〉 − 1 is a prime in Λ, then the ring A is isomorphic to a

power series ring W [[x]] of one variable over W ; hence, A is a

regular local domain and is factorial;

(2) The ring A is an integral domain fully ramified at (〈ε〉 − 1);

(3) If p is prime to e = rankΛA, the ramification locus of A/Λ
is given by Spec(Λε) for Λε := Λ/(〈ε〉 − 1)), the different for A/Λ

is principal and generated by Θa−1 and A is a normal integral

domain of dimension 2 unramified outside (〈ε〉 − 1) over Λ;

(4) If p|e, T⊗ZQ is a Dedekind domain unramified outside (〈ε〉−1)

over Λ⊗ZQ, and the relative different for T⊗ZQ/Λ⊗ZQ is principal

and generated by Θe−1;

(5) If e = 2, T+ = Λ and T = Λ[
√

1− 〈ε〉].
Conjecture: e = 2 under (H0–3)?



§4.9. Wall–Sun–Sun primes. If 〈ε〉−1 is not a prime (⇔ εp−1 ≡
1 mod ℘2), by the existence of ambiguous classes, T cannot be

factorial. Perhaps there is no example known of a prime p ≥ 5

split in F = Q[
√

5] such that 〈ε〉 − 1 is not a prime in Zp[[T ]].

Consider F = Q[
√
d] with square-free 0 < d ∈ Z and describe how

to decide if ℘2|εk−1−1. Since p > 2, ℘2|(εp−1−1)⇔ ℘2|(ε2(p−1)−
1). On the other hand, ε2(p−1) − 1 = ε2(p−1) − εp−1ες(p−1) =

εp−1(εp−1 − ες(p−1)). Define α ∈ Z so that ε2 − αε ± 1 = 0.

Consider the corresponding Fibonacci type recurrence relation

fn = αfn−1 ∓ fn−2. For the solution fn with initial values f0 = 0

and f1 = 1, we have fn = εn−εnς
ε−ες . Thus we have εp−1−ες(p−1)√

d
=

fp−1C for C = ε−ες√
d

. If d = 5, we have C = 1.

〈ε〉 − 1 is not a prime in Λ ⇔ p2|fp−1C. (Wall–Sun–Sun primes)

For F = Q[
√

1], p = 191,643 are such primes. It is conjectured

infinity? of Wall-Sun-Sun primes (perhaps density 0).



§4.10. Proof of (1). Put J = ΘT and J 0 = T. For all

0 6= u ∈ T, [u] : x 7→ ux induces the linear endomorphism gr(u)

of the corresponding graded algebra grJ (T) :=
⊕∞
n=0 J n/J n+1

(with J 0 = T). Then [u] is injective if gr(u) is injective [BCM,

III.2.8, Corollary 1]. We have grJ (T) ∼= Λε[x] for the polyno-

mial ring Λε[x] where the variable x corresponds to the image

Θ of Θ in the first graded piece J /J 2. Take n so that u ∈ J n
but u 6∈ J n+1. Then gr(u) : grJ (T) → grJ (T) is multiplication

by a polynomial of degree n. Assume that 〈ε〉 − 1 is a prime;

so, (〈ε〉 − 1) = (T) in Λ and Λε = W . Then grJ (T) is an in-

tegral domain isomorphic to the polynomial ring W [x]; so, if

u 6= 0, gr(u) is injective, and hence, [u] is injective; so, u is not

a zero divisor. We conclude that T is an integral domain and

T = lim←−nT/J n ∼= W [[x]] by sending Θ to x. A power series ring

over a discrete valuation ring is a unique factorization domain

and is regular; so, we get the assertion (1).



§4.11. Proof of (2–4). (D(0)) = (〈ε〉 − 1) follows from

Λ/(〈ε〉 − 1) ∼= T/(Θ) = Λ[[X]]/(X,D) = Λ/(D(0)) (§3.27),

Thus (D(0)) is square-free. Let P |(〈ε〉−1) be a prime factor; so,

the localization ΛP and its completion Λ̂P = lim←−nΛP/P
nΛP are

discrete valuation rings. Then T̂P = T⊗Λ Λ̂P = Λ̂P [[X]]/(D(X)),

and by Weierstrass preparation theorem D(X) = DP (X)UP (X)

for a distinguished polynomial DP(X) ∈ Λ̂P [X] with respect to P

and a unit UP (X) ∈ Λ̂P [[X]]. Since deg(DP (X)) = rank
Λ̂P

T̂P =

rankΛ T = deg(D(X)), we have D(X) = DP(X); so, D(X) is

an Eisenstein polynomial. Then T̂P (resp. TP ) is a discrete

valuation rings fully ramified over Λ̂P (resp. ΛP ). Since T ↪→ TP ,

T is an integral domain. Writing D(X) = Xe+a1X
e−1+ · · ·+a0,

we have (a0) = (〈ε〉 − 1) and (〈ε〉 − 1)|ai. Thus for D′(X) =
dD
dX = eXe−1 + · · ·+ a1, we find D′(Θ)T = Θe−1T, and for the

relative different d = (D′(Θ)) we have eΘe−1T ⊂ d ⊂ Θe−1T,

which shows (3–4). The proof of (5) is an exercise.



§4.12. Local indecomposability conjecture.

Conjecture G (R. Greenberg): For a p-ordinary Hecke eigen-

form f of weight k ≥ 2, if f has no CM (not induced from a

quadratic field), then ρf,p|Ip is indecomposable.

For a cusp form f =
∑∞
n=1 anq

n ∈ Sk(N,ψ)/W , we define θ := q ddq
as a differential operator on W [[q]]. It is well known that θmf is

a p-adic limit of classical cusp forms (why?). Assume p - N . If

f is a p-ordinary Hecke eigenform with f |T(n) = λ(T(n))f , then

we can distinguish two roots α, β of X2 − λ(T(p))X + χ(p) = 0

so that |α|p = 1 and |β|p = p1−k (i.e., pk−1‖β). We have two

p-stabilizations ford|U(p) = αford and fcrit|U(p) = βfcrit.

Conjecture C (R. Coleman): fcrit = θk−1g for a p-adic limit

g ∈W [[q]] of cusp forms if and only if f has CM.

It is known that G⇔ C by Breuil–Emerton (Asterisque, (331):255–

315, 2010). Try prove “⇐” of Conjecture C.



§4.13. A theorem of Iwasawa. Let k = M℘ with D = Gal(k/Qp),

k∞/k be the unramified Zp-extension and F∞/k be the cyclo-

tomic Zp-extension ⊂ k∞[µp∞] with Γ := Gal(F∞/k) = γZp. Let

L be the maximal abelian p-extension of F∞ := F∞k∞. Set X :=

Gal(L/F∞) and Υ := Gal(k∞F∞/F∞) = υZp. Take γ̃ ∈ Gal(L/k)
with γ̃|F∞ = γ. The commutator τ := [υ, γ̃] acts on X by conju-

gation, and (τ − 1)x := [τ, x] = τxτ−1x−1 for x ∈ X is indepen-

dent of the choice of γ̃ and υ. Define L ⊂ L by the fixed field of

(τ − 1)X . Let X = Gal(L/F∞) = X/(τ − 1)X . Note p - [k : Qp].

Theorem 4.13; For the character η : Gal(k/Qp) → Zp[η]×,
X[η] = X ⊗Zp[D] η is a cyclic Zp[η][[Γ × Υ]]-module, where D
acts on Zp[η] by η.

This is essentially a theorem of Iwasawa; see, Proposition A.4.1

in a paper posted in Hida’s web page ([CWE]: Appendix to a

joint work with Castella and Wang-Erickson).



§4.14. Some notation. Pick φ0 ∈ D℘ so that ρ(φ0) =
(
a 0
0 b

)

with a 6= b. Define φ = limn→∞ φ
qn

0 (q = |F|). We can nor-

malize ρT so that j(ρT · χ)j−1 = ρσT (an exercise [CWE, A.3.1]),

ρH := ρT|H has values in E :=
(

T+ T−
T− T+

)
, which is a T+-subalgebra

of M2(T). Here ρT(φ) is diagonal and by conjugation, it acts on

upper (resp. lower) nilpotent part of E by ab−1 (resp. a−1b).

Let I = I℘ (resp. D = D℘) be the wild ℘-inertia (resp. ℘-

decomposition) subgroup of Gal(F (ρT)/F (ρ)) for ℘.

Note κ([p,Qp]) = det(ρT([p,Qp])) = 1 since κ(g) = tlogp νp(g)/ logp(γ).

Regard υ := [p,Qp]f ∈ D for the residual degree f of P = ℘∩K(ρ),

and recall ϕ′ := ρT([p,Qp]f) =
(
u−f ∗
0 uf

)
with uf ∈ T+. Let W1 be

the subalgebra of Qp generated by the values of ϕ over D℘. Put

Λ0 := Zp[[T ]] ⊂ Λ1 := W1[[T, a]] ⊂ T for a = u2f − 1 ∈ mΛ1
, which

is the image of W1[[Γ×Υ]] for k = M℘. Note Υ = υZp.



§4.15. Inertia theorem:

Suppose (H0) and minimality of T. Then,

(1) after choosing I suitably in its conjugacy class, we have

an exact sequence U ↪→ I � tZp with ρT(U) made of unipotent

matrices,

(2) there exists a non-zero divisor θ ∈ T− satisfying θσ = −θ and

U = Λ1θ; in other words, we have ρT(I) =
{(

a b
0 1

) ∣∣∣a ∈ tZp, b ∈ θΛ1

}
.

We are going to show θ + Θ for Θ in §4.7 after proving this

theorem.



§4.16. Proof of (1): From the definition of Λ-algebra structure

of T and p-ordinarity, we know ρT(I) ⊂M(T)∩E for the mirabolic

subgroup M(T) :=
{(

a b
0 1

) ∣∣∣a ∈ T×, b ∈ T
}
. Since Gal(Qab

p /Qp) =

[p,Qp]Ẑ n Z×p for the maximal abelian extension Qab/Q and the

local Artin symbol [p,Qp], we find

ρT(I) ⊂
{(

a b
0 1

) ∣∣∣a ∈ tZp, b ∈ T−
}
,

and det(ρT(I)) = T := tZp ⊂ Λ×. Thus we have an extension

1 → U → ρT(I) → T → 1. Recall φ0 ∈ D℘ with ρ(φ0) =
(
a 0
0 b

)

(a 6= b) and φ = limn→∞ φ
qn

0 inside Gal(F (ρT)/F ). This extension

is split by the conjugation action of φ0 with U characterized to

be an eigenspace on which φ0 acts by ab−1 for the Teichmüller

lift a, b of a, b; so, we may assume to have a section s : T ↪→ ρT(I)

identifying T with
{(

a 0
0 1

) ∣∣∣a ∈ tZp
}
. Thus U is made of unipotent

matrices. Here we used the assumption (H0).



§4.17. Known facts: non-triviality of U.
Since Λ ↪→ T, Γ ⊂ T×. Two known facts:

(a) For a W -algebra homomorphism λ : T → Qp, if λ|Γ : Γ →
Q
×
p coincides with νp up to a finite order character ε, f :=

∑∞
n=1 λ(T(n))qn is a weight 2 cusp form in S2(Cp

r, ψ2ε) [LFE,

§7.3];

(b) The Galois representation ρλ,p = ρf,p is locally indecompos-

able (Bin Zhao, Ann. L’inst. Fourier 64 (2014), 1521–1560).

By (b) and
⋂
λKer(λ) = 0, U contains non-zero divisor of T−.

Thus it is “highly” non-zero.



§4.18. Proof of (2): We have U ⊂ T− and regard ϕ− as an

abelian irreducible Zp-representation acting on W regarded as a

Zp-module.

Apply Iwasawa’s theorem to the splitting field k of ϕ−|Dp under

the notation in §4.13. Then the Galois group X′[ϕ−] is cyclic over

W1[[Γ×Υ]] (Γ = γZp ∼= tZp) and surjects onto U. Since the action

of W1[[Γ ×Υ]] factors through Λ1, U is cyclic over Λ1; so, we

have U ∼= Λ1. Thus we conclude ρH(I1) = U =
{(

1 a
0 1

) ∣∣∣a ∈ θΛ1

}

inside ρH(H) (for a suitable choice of θ ∈ T−).

By the facts in §4.17, θ is a non-zero divisor.

By (H2), T− = ΘT+. Since θ ∈ T−, we can write θ = uΘ (u ∈ T).



§4.19. Theorem: Θ/θ is a unit under (H0–2).

Proof: We have an exact sequence d ↪→ T � W [Cp] in §3.27.

Taking σ-invariant subspace (indicated superscript “+”), T+/d+ ∼=
W [Cp]. Recall the universal character Φ : Gal(Hp/F )→ W [Cp] =

T+/d+. Write ρH =
(
A B
C D

)
and put a = A mod d+ = Φ, d = D

mod d+ = Φς, b = B mod d+ : H → T−/d+T− and c = C

mod d+ : H → T−/d+T−. If b has image in mT+(T−/d+T−), by

c(g) = ϕ(ς2)b(ς−1gς), c has also. This implies ρH mod mT+d+ is

diagonal; so, ρσH = jρHj
−1 which implies ρσT mod mTd ∼= ρT ⊗ χ,

a contradiction as d is the maximal ideal for which the iden-

tity holds. Thus b is onto. Replacing ρH by ρ′ := ξ−1ρHξ for

ξ :=
(
Θ 0
0 1

)
, ρ′ has values in GL2(T

+) and ρ′ mod mT+ =

(
ϕ b
0 ϕς

)

with b = b/Θ mod mT+ 6= 0. If u is a non-unit, b is unramified

at ℘ (which is unramified also at ℘ς); so, everywhere unramified

over F (ϕ−), contradicting ClF(ϕ−) ⊗Z[H] ϕ
− = 0.



§4.20. Local indecomposability.

Corollary 4.20: If f is a Hecke eigenform belonging to T of

weight k ≥ 2, ρf,p is indecomposable over Ip under (H0–2).

This follows from the fact that (Θ) is exactly over (〈ε〉−1), and

hence for any height 1 prime P outside (〈ε〉−1), Θ mod P 6= 0,

and hence θ mod P 6= 0 by Theorem 4.19.

For the companion form case, the exceptional Artin represen-

tations and induced representations in Cases U− and D, p-local

indecomposability question is still open.



§4.21. Concluding remarks.

• Actually we can prove Λ[θ] ⊂ T is an integral domain fully

ramified over (〈ε〉 − 1) similar to the structure theorem in §4.8

under (H0–1).

• Indecomposability as in Corollary 4.20 also holds under (H0–1)

when F is real. Without assuming (H2), T− is generated more

than one element over T+; so, no single Θ. Obviously, the key

point is to show (θ) ∩ Λ = (〈ε〉 − 1).

• When F is an imaginary quadratic field, in Case U+ in the

imaginary version, under (H0–2), local indecomposability holds

for ρf,p as long as f does not have CM (this is the main result

of [CWE]).

• The inertia theorem is always true unless all f belonging to T

have CM, though θ could be a zero-divisor if ρ is induced from

an imaginary quadratic field.


