Lecture slide No. 4 for Math 207c Structure of the universal ring when $k=1$.

 Haruzo HidaWe fix a theta series $f=\sum_{\mathfrak{a}} \varphi(\mathfrak{a}) q^{N(\mathfrak{a})}$ of weight $k=1$ of a real quadratic field F. Here φ is a character of order $a \varphi$: $C l_{F}^{+}(\mathfrak{f}) \rightarrow \mu_{a}(\overline{\mathbb{Q}})$ with conductor $\mathfrak{f} \infty$, where $\infty: F \hookrightarrow \mathbb{R}$ is a fixed embedding. In Case U_{+}with $\wp^{\varsigma} \nmid \mathfrak{f}$, the universal deformation ring \mathbb{T} is bigger than \wedge. We try to determine the algebra as explicitly as possible. In this case, $\rho=\rho_{f}=\operatorname{Ind}_{F}^{\mathbb{Q}} \varphi$ regarding φ as a Galois character by class field theory. Let $\bar{\varphi}=\bar{\varphi}_{\mathfrak{p}}=(\varphi$ $\bmod \mathfrak{p}$) for each prime \mathfrak{p} of $\mathbb{Z}\left[\mu_{a}\right]=\mathbb{Z}[f]$. If $\mathfrak{p} \nmid a$, the order of $\bar{\varphi}_{\mathfrak{p}}$ is equal to a and $F(\bar{\rho})=F(\rho)$. We write $G=\operatorname{Gal}\left(F^{(p)}(\rho) / \mathbb{Q}\right)$ and put $H=\operatorname{Gal}\left(F^{(p)}(\rho) / F\right)$. Pick $\varsigma \in G$ inducing a non-trivial automorphism of F / \mathbb{Q}. Define $\phi_{\varsigma}(g)=\phi\left(\varsigma^{-1} g \varsigma\right)$ for any character $\phi: H \rightarrow A^{\times}$. By irreducibility of $\rho, \varphi \neq \varphi_{\varsigma}$ (Mackey's theorem). We write ε for the fundamental unit of F.
§4.1. Decomposition of $A d\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \phi\right)$. In the standard form of $\varrho=\operatorname{Ind}_{F}^{\mathbb{Q}} \phi$ in $\S 3.6, \varrho(g)$ is either diagonal or anti-diagonal; so, the diagonal subalgebra $\mathfrak{t}:=\{\operatorname{diag}[x,-x] \mid x \in A\} \subset A d(\varrho)=$ $\mathfrak{s l}_{2}(A)$ and the subspace \mathfrak{a} of anti-diagonal matrices in $\operatorname{Ad}(\varrho)$ is stable under G. Thus $\operatorname{Ad}(\varrho)=\mathfrak{t} \oplus \mathfrak{a}$ as an $A[G]$-module. Plainly G acts on \mathfrak{t} by $\alpha:=\left(\frac{F / \mathbb{Q}}{)}\right.$. Since $\left.A d(\varrho)\right|_{H}$ acts on the upper nilpotent matrices \mathfrak{n}_{+}by $\varphi^{-}:=\varphi \varphi_{\varsigma}^{-1}$, by Shapiro's lemma, $\operatorname{Hom}_{A[H]}\left(\varphi^{-}, A d(\varrho)\right)=\operatorname{Hom}_{A[G]}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \varphi^{-}, \operatorname{Ad}(\varrho)\right)$, we find $\mathfrak{a}=\operatorname{Ind}_{F}^{\mathbb{Q}} \phi^{-}$. Note that $\phi_{\varsigma}^{-}=\left(\phi^{-}\right)^{-1}$; so, unless ϕ^{-}has order $\leq 2, \mathfrak{a}$ is irreducible. If ϕ^{-}is quadratic, $\phi^{-}=\phi_{\varsigma}^{-}$extends to a character $\tilde{\phi}^{-}: G \rightarrow A^{\times}$and $\operatorname{Ind} \mathbb{Q}_{F} \phi^{-}=\tilde{\phi}^{-} \oplus \alpha \widetilde{\phi}^{-}$. In summary,

$$
A d\left(\operatorname{Ind} \mathbb{Q}_{F}^{\mathbb{Q}} \phi\right)= \begin{cases}\alpha \oplus \operatorname{Ind}_{F}^{\mathbb{Q}} \phi^{-} & \text {if }\left(\phi^{-}\right)^{2} \neq 1 \\ \alpha \oplus \widetilde{\phi}^{-} \oplus \alpha \tilde{\phi}^{-} & \text {if }\left(\phi^{-}\right)^{2}=1\end{cases}
$$

§4.2. Action of σ on $\operatorname{Sel}(\operatorname{Ad}(\varrho))$.
Let $\pi: R^{\text {ord }} \rightarrow A$ with $\rho_{A}=\pi \circ \rho^{\text {ord. }}$. Suppose we have $\sigma_{A} \in$ $\operatorname{Aut}(A)$ such that $\sigma_{A} \circ \pi=\pi \circ \sigma$. Recall $j\left(\rho^{\text {ord }} \cdot \alpha\right) j^{-1}=\left(\rho^{\text {ord }}\right)^{\sigma}$ for $j:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$. For each 1-cocycle $u: G \rightarrow A d\left(\rho_{A}\right)^{*}$, we define $u^{[\sigma]}(g)=j u(g)^{\sigma_{A}} j^{-1}$. From $u(g h)=\operatorname{Ad}\left(\rho_{A}\right)(g) u(h)+u(g)$, we find

$$
\begin{aligned}
& u^{[\sigma]}(g h)=j \rho_{A}^{\sigma_{A}}(g) j j u(h)^{\sigma_{A}} j j \rho_{A}\left(g^{-1}\right)^{\sigma_{A}} j+j u(g)^{\sigma_{A} j} \\
& =\operatorname{Ad}\left(j \rho_{A}^{\sigma_{A}} j\right)(g) u^{[\sigma]}(h)+u^{[\sigma]}(g)=A d\left(\rho_{A} \cdot \chi\right)(g) u^{[\sigma]}(h)+u^{[\sigma]}(g) \\
& =\operatorname{Ad}\left(\rho_{A}\right)(g) u^{[\sigma]}(h)+u^{[\sigma]}(g) .
\end{aligned}
$$

Since the conjugation of j preserves the upper triangular p decomposition subgroup and p-inertia subgroup of $\operatorname{Gal}\left(F\left(\rho^{\text {ord }}\right) / \mathbb{Q}\right)$, in this way, σ acts on $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{A}\right)\right)$. In particular, if σ_{A} is trivial (i.e., $\rho_{A}=\operatorname{Ind}_{F}^{\mathbb{Q}} \phi$), $[\sigma]$ is just a conjugate action of j.

§4.3. Decomposition theorem of $\operatorname{Sel}\left(\operatorname{Ad}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \phi\right)\right)$.

Define, for $\varrho_{\phi}^{-}:=\operatorname{Ind}_{F}^{\mathbb{Q}} \phi^{-}$and $M:=F\left(\phi^{-}\right)$,

$$
\begin{aligned}
& \operatorname{Sel}\left(\alpha_{A}\right):=\operatorname{Hom}\left(C l_{F} \otimes_{\mathbb{Z}} A, A^{\vee}\right) \cong\left(C l_{F} \otimes_{\mathbb{Z}} A\right)^{\vee} \\
& \operatorname{Sel}\left(\varrho_{\phi}^{-}\right):=\operatorname{Hom}\left(C l_{M}\left(\wp{ }^{\infty}\right) /\left\langle\mathfrak{P}^{\varsigma}\right\rangle_{\mathfrak{P} \mid \wp} \otimes_{\mathbb{Z}[H]} \phi^{-}, A^{\vee}\right) .
\end{aligned}
$$

Theorem 4.3: We have $\operatorname{Sel}\left(\operatorname{Ad}\left(\operatorname{Ind} \mathbb{Q}_{F}^{\mathbb{Q}}\right)\right) \cong \operatorname{Sel}\left(\alpha_{A}\right) \oplus \operatorname{Sel}\left(\varrho_{\phi}^{-}\right)$.
Proof for the α-factor: Write $\varrho:=\operatorname{Ind}_{F}^{\mathbb{Q}} \phi$. Then $H^{1}(G, A d(\varrho))$ is isomorphic to

$$
H^{1}\left(G, \alpha_{A}^{*}\right) \oplus H^{1}\left(G,\left(\varrho_{\phi}^{-}\right)^{*}\right)=H^{1}\left(G, \alpha_{A}^{*}\right) \oplus H^{1}\left(H,\left(\phi^{-}\right)^{*}\right)
$$

The identity of the second factors is by Shapiro's lemma. Since α_{A} is realized on the diagonal matrix, by the definition of $\operatorname{Sel}(\operatorname{Ad}(\varrho))$, it is unramified everywhere; so, it factors through $C l_{F} \otimes_{\mathbb{Z}} A$ over H. Since G / H has order 2, the restriction map to H is an isomorphism, and the result follows.
§4.4. Proof for the $\operatorname{Ind}{ }_{F}^{\mathbb{Q}} \phi^{-}$-factor. Write $\rho_{A}^{-}:=\operatorname{Ind} \mathbb{C}_{F}^{\mathbb{Q}} \phi^{-}$. The Shapiro's isomorphism is realized by the restriction map
$H^{1}\left(G,\left(\rho_{A}^{-}\right)^{*}\right) \xrightarrow[\sim]{\text { Res }} H^{1}\left(H,\left(\rho_{A}^{-}\right)^{*}\right)^{G}=\left(H^{1}\left(H,\left(\phi^{-}\right)^{*}\right) \oplus H^{1}\left(H,\left(\phi_{\varsigma}^{-}\right)^{*}\right)\right)^{G}$,
which is an isomorphism. In the last factor, G acts on cocycles $u(g) \mapsto u_{\varsigma}(g)=\varsigma u\left(\varsigma^{-1} g \varsigma\right)$; so, interchanges the two factors. Therefore $H^{1}\left(G,\left(\rho_{A}^{-}\right)^{*}\right) \cong H^{1}\left(H,\left(\phi^{-}\right)^{*}\right)$. If $U: G \rightarrow\left(\rho_{A}^{-}\right)^{*}$ is a Selmer cocycle, we have $U(h)=\left(\begin{array}{cc}0 & u \\ u_{\varsigma} & 0\end{array}\right)$ for a cocycle $u: H \rightarrow$ $\left(\phi^{-}\right)^{*}$. Note $M=F\left(\operatorname{Ad}\left(\rho_{A}\right)\right)=F\left(\phi^{-}\right)$. By Selmer condition that $\left.U\right|_{D_{Q^{S}}}$ is lower triangular, we have $\left.u\right|_{G_{M}}$ factors through $C l_{M}\left(\wp^{\infty}\right) /\left\langle\mathfrak{P}^{\varsigma}\right\rangle_{\mathfrak{P} \mid \wp .}$. Note that $H^{q}\left(H / G_{M}, \phi^{-}\right)=0$ as $\phi^{-} \not \equiv 1$ $\bmod \mathfrak{m}_{A}$. Since it is a $\mathbb{Z}[H]$-morphism into ϕ^{-}, it actually factors through $C l_{M}\left(\wp^{\infty}\right) /\left\langle\mathfrak{P}^{\varsigma}\right\rangle_{\mathfrak{W} \mid \mathfrak{p}} \otimes_{\mathbb{Z}[H]} \phi^{-}$. Reversing the argument, it is an isomorphism.
§4.5. \pm-eigenspace of σ in $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{A}\right)\right)$.
Lemma 4.5: The involution σ acts on $\operatorname{Sel}\left(\operatorname{Ind} \mathbb{Q}_{F}^{\mathbb{Q}} \phi^{-}\right)\left(\right.$resp. $\left.\operatorname{Sel}\left(\alpha_{A}\right)\right)$ by $-1($ resp. +1$)$. Here α_{A} is the character α regarded to have values in A^{\times}.

Proof: In the decomposition of Theorem 4.3, α_{A} is realized on the subspace \mathfrak{t} of diagonal matrices and $\operatorname{Ind}_{F}^{\mathbb{Q}} \phi^{-}$is realized on anti-diagonal matrices $\mathfrak{a} \subset \operatorname{Ad}(\bar{\rho})$. Since j acts by +1 on \mathfrak{t} and -1 on \mathfrak{a} and the action of σ on cocycle is conjugation by j as seen in $\S 4.2$, the action of σ on $\operatorname{Sel}\left(\alpha_{A}\right)$ is by +1 and on $\operatorname{Sel}\left(\operatorname{Ind} \mathbb{Q}_{F} \phi^{-}\right)$ is by -1 .
§4.6. Set-up. Hereafter, we write $M:=F(\operatorname{Ad}(\bar{\rho}))=F\left(\bar{\varphi}^{-}\right)$. Consider the following conditions: (HO) the local character $\left.\bar{\varphi}^{-}\right|_{D_{p}}$ is non-trivial (irreduciblity of $\bar{\rho}$). (H1) $\wp^{\varsigma} \nmid f$ (ordinarity in Case $U_{+} ; C=N_{F / \mathbb{Q}}(\mathfrak{c}) D$). (H2) the p-quotient $C l_{M} \otimes_{\mathbb{Z}[H]} \bar{\varphi}^{-}=0$ (this follows if the class number of M is prime to p), and the local character $\left.\bar{\varphi}^{-}\right|_{\text {Gal }}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ is different from the reduction $\bar{\omega}$ modulo p of the Teichmüller character $\omega=\omega_{p}$ acting on μ_{p}.
(H3) $h_{F}=\left|C l_{F}\right|$ is prime to $p\left(C l_{M} \otimes_{\mathbb{Z}[G]} A d(\bar{\rho})=0 \Leftrightarrow(H 2-3)\right)$. Replacing φ by the Teichmüller lift of $\bar{\varphi}$, we assume the order of φ is prime to p.

In this real induced case, by J. Thorne, Taylor-Wiles condiction is removed; so, $R_{\mathfrak{p}}^{\text {ord }} \cong \mathbb{T}_{\mathfrak{p}}$ under (H0). We put $\mathbb{T}_{\mathfrak{p}}^{ \pm}=R_{ \pm}^{\text {ord }}$.
§4.7. Presentation theorem again. Assume (H0). Let $r_{+}:=$ $\operatorname{dim}_{\mathbb{F}} \operatorname{Sel}(\bar{\alpha})$ for $\bar{\alpha}=\alpha_{\mathbb{F}}$ and $r_{-}=\operatorname{Sel}\left(\operatorname{Ind}_{F}^{\mathbb{Q}} \bar{\varphi}\right)$.
Theorem 4.7: $\mathbb{T}_{\mathfrak{p}} \cong \wedge\left[X_{1}^{+}, \ldots, X_{r_{+}}^{+}, X_{1}^{-}, \cdots, X_{r_{-}}^{-}\right] /\left(S_{1}, \ldots, S_{r}\right)$
for $r=r_{+}$so that σ fixes the image of X_{j}^{+}in $\mathbb{T}_{\mathfrak{p}}$ and acts by -1 on the image in $\mathbb{T}_{\mathfrak{p}}$ of X_{i}^{-}.

Proof: Assuming $r_{+}=0\left(\Leftrightarrow p \nmid h_{F}=\left|C l_{F}\right|\right)$ and $r_{-}=1$, we now prove this fact. So σ acts on $t_{\mathbb{T} / \mathbb{T}^{+}}^{*}$ by -1 . We can choose a generator Θ so that $\sigma(\Theta)=-\Theta$. Then $x \mapsto \Theta x$ is a \wedge-linear map of $\mathbb{T} \cong \Lambda^{e}$. Writing this map as a $d \times d$ matrix form L and define $D(X)=\operatorname{det}\left(X 1_{e}-L\right)$. Then $\mathbb{T}=\wedge[X] / D(X)$ and \mathbb{T} is a local complete intersection with $2 \mid e$ as σ acts non-trivially on $\mathbb{T}_{/ \wedge}$.

The principal ideal (Θ) is the relative different $\mathbb{T}(\sigma-1) T$ of $\mathbb{T} / \mathbb{T}^{+}$.
§4.8. Structure theorem. Assume (H0-3). Write $A=\mathbb{T}_{\mathfrak{p}}$ or $\mathbb{T}_{\mathfrak{p}}^{+}$. Let $e=$ rank $_{\wedge} \mathbb{T}$. Then the following four assertions hold:
(1) If $\langle\varepsilon\rangle-1$ is a prime in Λ, then the ring A is isomorphic to a power series ring $W[[x]]$ of one variable over W; hence, A is a regular local domain and is factorial;
(2) The ring A is an integral domain fully ramified at $(\langle\varepsilon\rangle-1)$;
(3) If p is prime to $e=$ rank $_{\wedge} A$, the ramification locus of $A_{/ \wedge}$ is given by $\operatorname{Spec}\left(\Lambda_{\varepsilon}\right)$ for $\left.\Lambda_{\varepsilon}:=\Lambda /(\langle\varepsilon\rangle-1)\right)$, the different for A / Λ is principal and generated by Θ^{a-1} and A is a normal integral domain of dimension 2 unramified outside $(\langle\varepsilon\rangle-1)$ over \wedge;
(4) If $p \mid e, \mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a Dedekind domain unramified outside $(\langle\varepsilon\rangle-1)$ over $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$, and the relative different for $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q} / \Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ is principal and generated by Θ^{e-1};
(5) If $e=2, \mathbb{T}^{+}=\wedge$ and $\mathbb{T}=\wedge[\sqrt{1-\langle\varepsilon\rangle}]$.

Conjecture: $e=2$ under ($\mathrm{HO}-3$)?
§4.9. Wall-Sun-Sun primes. If $\langle\varepsilon\rangle-1$ is not a prime ($\Leftrightarrow \varepsilon^{p-1} \equiv$ $1 \bmod \wp^{2}$), by the existence of ambiguous classes, \mathbb{T} cannot be factorial. Perhaps there is no example known of a prime $p \geq 5$ split in $F=\mathbb{Q}[\sqrt{5}]$ such that $\langle\varepsilon\rangle-1$ is not a prime in $\mathbb{Z}_{p}[[T]]$. Consider $F=\mathbb{Q}[\sqrt{d}]$ with square-free $0<d \in \mathbb{Z}$ and describe how to decide if $\wp^{2} \mid \varepsilon^{k-1}-1$. Since $p>2, \wp^{2}\left|\left(\varepsilon^{p-1}-1\right) \Leftrightarrow \wp^{2}\right|\left(\varepsilon^{2(p-1)}-\right.$ 1). On the other hand, $\varepsilon^{2(p-1)}-1=\varepsilon^{2(p-1)}-\varepsilon^{p-1} \varepsilon^{\varsigma(p-1)}=$ $\varepsilon^{p-1}\left(\varepsilon^{p-1}-\varepsilon^{\varsigma(p-1)}\right)$. Define $\alpha \in \mathbb{Z}$ so that $\varepsilon^{2}-\alpha \varepsilon \pm 1=0$. Consider the corresponding Fibonacci type recurrence relation $f_{n}=\alpha f_{n-1} \mp f_{n-2}$. For the solution f_{n} with initial values $f_{0}=0$ and $f_{1}=1$, we have $f_{n}=\frac{\varepsilon^{n}-\varepsilon^{n \varsigma}}{\varepsilon-\varepsilon^{\varsigma}}$. Thus we have $\frac{\varepsilon^{p-1}-\varepsilon^{\varsigma}(p-1)}{\sqrt{d}}=$ $f_{p-1} C$ for $C=\frac{\varepsilon-\varepsilon^{\varsigma}}{\sqrt{d}}$. If $d=5$, we have $C=1$. $\langle\varepsilon\rangle-1$ is not a prime in $\wedge \Leftrightarrow p^{2} \mid f_{p-1} C$. (Wall-Sun-Sun primes) For $F=\mathbb{Q}[\sqrt{1}], p=191,643$ are such primes. It is conjectured infinity? of Wall-Sun-Sun primes (perhaps density 0).
§4.10. Proof of (1). Put $\mathcal{J}=\Theta \mathbb{T}$ and $\mathcal{J}^{0}=\mathbb{T}$. For all $0 \neq u \in \mathbb{T},[u]: x \mapsto u x$ induces the linear endomorphism $\operatorname{gr}(u)$ of the corresponding graded algebra $\operatorname{gr}_{\mathcal{J}}(\mathbb{T}):=\oplus_{n=0}^{\infty} \mathcal{J}^{n} / \mathcal{J}^{n+1}$ (with $\mathcal{J}^{0}=\mathbb{T}$). Then $[u]$ is injective if $\operatorname{gr}(u)$ is injective $[B C M$, III.2.8, Corollary 1]. We have $\operatorname{gr}_{\mathcal{J}}(\mathbb{T}) \cong \Lambda_{\varepsilon}[x]$ for the polynomial ring $\wedge_{\varepsilon}[x]$ where the variable x corresponds to the image $\bar{\Theta}$ of Θ in the first graded piece $\mathcal{J} / \mathcal{J}^{2}$. Take n so that $u \in \mathcal{J}^{n}$ but $u \notin \mathcal{J}^{n+1}$. Then $\operatorname{gr}(u): \operatorname{gr}_{\mathcal{J}}(\mathbb{T}) \rightarrow \operatorname{gr}_{\mathcal{J}}(\mathbb{T})$ is multiplication by a polynomial of degree n. Assume that $\langle\varepsilon\rangle-1$ is a prime; so, $(\langle\varepsilon\rangle-1)=(T)$ in \wedge and $\Lambda_{\varepsilon}=W$. Then $\operatorname{gr}_{\mathcal{J}}(\mathbb{T})$ is an integral domain isomorphic to the polynomial ring $W[x]$; so, if $u \neq 0, \operatorname{gr}(u)$ is injective, and hence, $[u]$ is injective; so, u is not a zero divisor. We conclude that \mathbb{T} is an integral domain and $\mathbb{T}=\varliminf_{n} \mathbb{T} / \mathcal{J}^{n} \cong W[[x]]$ by sending Θ to x. A power series ring over a discrete valuation ring is a unique factorization domain and is regular; so, we get the assertion (1).
§4.11. Proof of (2-4). $(D(0))=(\langle\varepsilon\rangle-1)$ follows from

$$
\wedge /(\langle\varepsilon\rangle-1) \cong \mathbb{T} /(\Theta)=\wedge[[X]] /(X, D)=\wedge /(D(0))(\S 3.27),
$$

Thus $(D(0))$ is square-free. Let $P \mid(\langle\varepsilon\rangle-1)$ be a prime factor; so, the localization Λ_{P} and its completion $\widehat{\Lambda}_{P}=\varliminf_{\widehat{\Lambda}_{n}} \Lambda_{P} / P^{n} \Lambda_{P}$ are discrete valuation rings. Then $\widehat{\mathbb{T}}_{P}=\mathbb{T} \otimes_{\Lambda} \hat{\Lambda}_{P}=\hat{\wedge}_{P}[[X]] /(D(X))$, and by Weierstrass preparation theorem $D(X)=D_{P}(X) U_{P}(X)$ for a distinguished polynomial $D_{P}(X) \in \hat{\Lambda}_{P}[X]$ with respect to P and a unit $U_{P}(X) \in \hat{\Lambda}_{P}[[X]]$. Since $\operatorname{deg}\left(D_{P}(X)\right)=\operatorname{rank}_{\widehat{\Lambda}_{P}} \widehat{\mathbb{T}}_{P}=$ rank $_{\wedge} \mathbb{T}=\operatorname{deg}(D(X))$, we have $D(X)=D_{P}(X)$; so, $D(X)$ is an Eisenstein polynomial. Then $\widehat{\mathbb{T}}_{P}$ (resp. \mathbb{T}_{P}) is a discrete valuation rings fully ramified over $\hat{\Lambda}_{P}$ (resp. \wedge_{P}). Since $\mathbb{T} \hookrightarrow \mathbb{T}_{P}$, \mathbb{T} is an integral domain. Writing $D(X)=X^{e}+a_{1} X^{e-1}+\cdots+a_{0}$, we have $\left(a_{0}\right)=(\langle\varepsilon\rangle-1)$ and $(\langle\varepsilon\rangle-1) \mid a_{i}$. Thus for $D^{\prime}(X)=$ $\frac{d D}{d X}=e X^{e-1}+\cdots+a_{1}$, we find $D^{\prime}(\Theta) \mathbb{T}=\Theta^{e-1} \mathbb{T}$, and for the relative different $\mathfrak{d}=\left(D^{\prime}(\Theta)\right)$ we have $e \Theta^{e-1} \mathbb{T} \subset \mathfrak{d} \subset \Theta^{e-1} \mathbb{T}$, which shows (3-4). The proof of (5) is an exercise.

§4.12. Local indecomposability conjecture.

Conjecture G (R. Greenberg): For a p-ordinary Hecke eigenform f of weight $k \geq 2$, if f has no CM (not induced from a quadratic field), then $\left.\rho_{f, p}\right|_{I_{p}}$ is indecomposable.
For a cusp form $f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}(N, \psi)_{/ W}$, we define $\theta:=q \frac{d}{d q}$ as a differential operator on $W[[q]]$. It is well known that $\theta^{m} f$ is a p-adic limit of classical cusp forms (why?). Assume $p \nmid N$. If f is a \mathfrak{p}-ordinary Hecke eigenform with $f \mid T(n)=\lambda(T(n)) f$, then we can distinguish two roots α, β of $X^{2}-\lambda(T(p)) X+\chi(p)=0$ so that $|\alpha|_{p}=1$ and $|\beta|_{p}=p^{1-k}$ (i.e., $p^{k-1} \| \beta$). We have two p-stabilizations $f^{\text {ord }} \mid U(p)=\alpha f^{\text {ord }}$ and $f^{c r i t} \mid U(p)=\beta f^{c r i t}$.
Conjecture C (R. Coleman): $f^{c r i t}=\theta^{k-1} g$ for a p-adic limit $g \in W[[q]]$ of cusp forms if and only if f has CM.
It is known that $\mathrm{G} \Leftrightarrow \mathrm{C}$ by Breuil-Emerton (Asterisque, (331):255315,2010). Try prove " \Leftarrow " of Conjecture C.
§4.13. A theorem of Iwasawa. Let $k=M_{\wp}$ with $\bar{D}=\operatorname{Gal}\left(k / \mathbb{Q}_{p}\right)$, k_{∞} / k be the unramified \mathbb{Z}_{p}-extension and F_{∞} / k be the cyclotomic \mathbb{Z}_{p}-extension $\subset k_{\infty}\left[\mu_{p} \infty\right]$ with $\Gamma:=\operatorname{Gal}\left(F_{\infty} / k\right)=\gamma^{\mathbb{Z}_{p}}$. Let \mathcal{L} be the maximal abelian p-extension of $\mathcal{F}_{\infty}:=F_{\infty} k_{\infty}$. Set $\mathcal{X}:=$ $\operatorname{Gal}\left(\mathcal{L} / \mathcal{F}_{\infty}\right)$ and $\Upsilon:=\operatorname{Gal}\left(k_{\infty} F_{\infty} / F_{\infty}\right)=v^{\mathbb{Z}_{p}}$. Take $\tilde{\gamma} \in \operatorname{Gal}(\mathcal{L} / k)$ with $\left.\widetilde{\gamma}\right|_{F_{\infty}}=\gamma$. The commutator $\tau:=[v, \widetilde{\gamma}]$ acts on \mathcal{X} by conjugation, and $(\tau-1) x:=[\tau, x]=\tau x \tau^{-1} x^{-1}$ for $x \in \mathcal{X}$ is independent of the choice of $\tilde{\gamma}$ and v. Define $L \subset \mathcal{L}$ by the fixed field of $(\tau-1) \mathcal{X}$. Let $X=\operatorname{Gal}\left(L / \mathcal{F}_{\infty}\right)=\mathcal{X} /(\tau-1) \mathcal{X}$. Note $p \nmid\left[k: \mathbb{Q}_{p}\right]$.

Theorem 4.13; For the character $\eta: \operatorname{Gal}\left(k / \mathbb{Q}_{p}\right) \rightarrow \mathbb{Z}_{p}[\eta]^{\times}$, $X[\eta]=X \otimes_{\mathbb{Z}_{p}[\bar{D}]} \eta$ is a cyclic $\mathbb{Z}_{p}[\eta][[\Gamma \times \Upsilon]]$-module, where \bar{D} acts on $\mathbb{Z}_{p}[\eta]$ by η.

This is essentially a theorem of Iwasawa; see, Proposition A.4.1 in a paper posted in Hida's web page ([CWE]: Appendix to a joint work with Castella and Wang-Erickson).
§4.14. Some notation. Pick $\phi_{0} \in D_{\wp}$ so that $\bar{\rho}\left(\phi_{0}\right)=\left(\begin{array}{cc}\bar{a} & 0 \\ 0 & b\end{array}\right)$ with $\bar{a} \neq \bar{b}$. Define $\phi=\lim _{n \rightarrow \infty} \phi_{0}^{q^{n}}(q=|\mathbb{F}|)$. We can normalize $\rho_{\mathbb{T}}$ so that $j\left(\rho_{\mathbb{T}} \cdot \chi\right) j^{-1}=\rho_{\mathbb{T}}^{\sigma}$ (an exercise [CWE, A.3.1]), $\rho_{H}:=\left.\rho_{\mathbb{T}}\right|_{H}$ has values in $E:=\binom{\mathbb{T}^{+}}{\mathbb{T}^{-}-\mathbb{T}^{+}}$, which is a \mathbb{T}^{+}-subalgebra of $M_{2}(\mathbb{T})$. Here $\rho_{\mathbb{T}}(\phi)$ is diagonal and by conjugation, it acts on upper (resp. lower) nilpotent part of E by $a b^{-1}$ (resp. $a^{-1} b$). Let $I=\bar{I}_{\wp}$ (resp. $D=\bar{D}_{\wp}$) be the wild \wp-inertia (resp. $\wp-$ decomposition) subgroup of $\operatorname{Gal}\left(F\left(\rho_{\mathbb{T}}\right) / F(\bar{\rho})\right)$ for \wp.

Note $\boldsymbol{\kappa}\left(\left[p, \mathbb{Q}_{p}\right]\right)=\operatorname{det}\left(\rho_{\mathbb{T}}\left(\left[p, \mathbb{Q}_{p}\right]\right)\right)=1$ since $\boldsymbol{\kappa}(g)=t^{\log _{p} \nu_{p}(g) / \log _{p}(\gamma)}$. Regard $v:=\left[p, \mathbb{Q}_{p}\right]^{f} \in D$ for the residual degree f of $\mathfrak{P}=\wp \cap K(\bar{\rho})$, and recall $\varphi^{\prime}:=\rho_{\mathbb{T}}\left(\left[p, \mathbb{Q}_{p}\right]^{f}\right)=\left(\begin{array}{cc}u^{-f} & * \\ 0 & u^{f}\end{array}\right)$ with $u^{f} \in \mathbb{T}_{+}$. Let W_{1} be the subalgebra of $\overline{\mathbb{Q}}_{p}$ generated by the values of φ over D_{\wp}. Put $\wedge_{0}:=\mathbb{Z}_{p}[[T]] \subset \wedge_{1}:=W_{1}[[T, a]] \subset \mathbb{T}$ for $a=u^{2 f}-1 \in \mathfrak{m}_{\wedge_{1}}$, which is the image of $W_{1}[[\Gamma \times \Upsilon]]$ for $k=M_{\wp}$. Note $\Upsilon=v^{\mathbb{Z}_{p}}$.

§4.15. Inertia theorem:

Suppose (H0) and minimality of \mathbb{T}. Then,
(1) after choosing I suitably in its conjugacy class, we have an exact sequence $\mathcal{U} \hookrightarrow I \rightarrow t^{\mathbb{Z}_{p}}$ with $\rho_{\mathbb{T}}(\mathcal{U})$ made of unipotent matrices,
(2) there exists a non-zero divisor $\theta \in \mathbb{T}^{-}$satisfying $\theta^{\sigma}=-\theta$ and $\mathcal{U}=\wedge_{1} \theta$; in other words, we have $\rho_{\mathbb{T}}(I)=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in t^{\mathbb{Z}_{p}}, b \in \theta \wedge_{1}\right\}$.

We are going to show $\theta \doteqdot \Theta$ for Θ in $\S 4.7$ after proving this theorem.
§4.16. Proof of (1): From the definition of \wedge-algebra structure of \mathbb{T} and p-ordinarity, we know $\rho_{\mathbb{T}}(I) \subset M(\mathbb{T}) \cap E$ for the mirabolic subgroup $M(\mathbb{T}):=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{T}^{\times}, b \in \mathbb{T}\right\}$. Since $\operatorname{Gal}\left(\mathbb{Q}_{p}^{a b} / \mathbb{Q}_{p}\right)=$ $\left[p, \mathbb{Q}_{p}\right]^{\widehat{\mathbb{Z}}} \ltimes \mathbb{Z}_{p}^{\times}$for the maximal abelian extension $\mathbb{Q}^{a b} / \mathbb{Q}$ and the local Artin symbol $\left[p, \mathbb{Q}_{p}\right.$], we find

$$
\rho_{\mathbb{T}}(I) \subset\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in t^{\mathbb{Z}_{p}}, b \in \mathbb{T}_{-}\right\},
$$

and $\operatorname{det}\left(\rho_{\mathbb{T}}(I)\right)=\mathcal{T}:=t^{\mathbb{Z}_{p}} \subset \wedge^{\times}$. Thus we have an extension $1 \rightarrow \mathcal{U} \rightarrow \rho_{\mathbb{T}}(I) \rightarrow \mathcal{T} \rightarrow 1$. Recall $\phi_{0} \in D_{\wp}$ with $\bar{\rho}\left(\phi_{0}\right)=\left(\begin{array}{cc}\bar{a} & 0 \\ 0 & \bar{b}\end{array}\right)$ $(\bar{a} \neq \bar{b})$ and $\phi=\lim _{n \rightarrow \infty} \phi_{0}^{q^{n}}$ inside $\operatorname{GaI}\left(F\left(\rho_{\mathbb{T}}\right) / F\right)$. This extension is split by the conjugation action of ϕ_{0} with \mathcal{U} characterized to be an eigenspace on which ϕ_{0} acts by $a b^{-1}$ for the Teichmüller lift a, b of \bar{a}, \bar{b}; so, we may assume to have a section $s: \mathcal{T} \hookrightarrow \rho_{\mathbb{T}}(I)$ identifying \mathcal{T} with $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \right\rvert\, a \in t^{\mathbb{Z}_{p}}\right\}$. Thus \mathcal{U} is made of unipotent matrices. Here we used the assumption (HO).
§4.17. Known facts: non-triviality of \mathcal{U}.
Since $\wedge \hookrightarrow \mathbb{T},\left\ulcorner\subset \mathbb{T}^{\times}\right.$. Two known facts:
(a) For a W-algebra homomorphism $\lambda: \mathbb{T} \rightarrow \overline{\mathbb{Q}}_{p}$, if $\left.\lambda\right|_{\Gamma}: \Gamma \rightarrow$ $\overline{\mathbb{Q}}_{p}^{\times}$coincides with ν_{p} up to a finite order character $\epsilon, f:=$ $\sum_{n=1}^{\infty} \lambda(T(n)) q^{n}$ is a weight 2 cusp form in $S_{2}\left(C p^{r}, \psi_{2} \epsilon\right.$) [LFE, §7.3];
(b) The Galois representation $\rho_{\lambda, \mathfrak{p}}=\rho_{f, \mathfrak{p}}$ is locally indecomposable (Bin Zhao, Ann. L'inst. Fourier 64 (2014), 1521-1560).

By (b) and $\bigcap_{\lambda} \operatorname{Ker}(\lambda)=0, \mathcal{U}$ contains non-zero divisor of \mathbb{T}^{-}. Thus it is "highly" non-zero.
§4.18. Proof of (2): We have $\mathcal{U} \subset \mathbb{T}_{-}$and regard φ^{-}as an abelian irreducible \mathbb{Z}_{p}-representation acting on W regarded as a \mathbb{Z}_{p}-module.

Apply Iwasawa's theorem to the splitting field k of $\left.\varphi^{-}\right|_{D_{p}}$ under the notation in $\S 4.13$. Then the Galois group $X^{\prime}\left[\varphi^{-}\right]$is cyclic over $W_{1}[[\Gamma \times \Upsilon]]\left(\Gamma=\gamma^{\mathbb{Z}_{p}} \cong t^{\mathbb{Z}_{p}}\right)$ and surjects onto \mathcal{U}. Since the action of $W_{1}[[\Gamma \times \Upsilon]]$ factors through Λ_{1}, \mathcal{U} is cyclic over Λ_{1}; so, we have $\mathcal{U} \cong \wedge_{1}$. Thus we conclude $\rho_{H}\left(I_{1}\right)=\mathcal{U}=\left\{\left.\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in \theta \wedge_{1}\right\}$ inside $\rho_{H}(H)$ (for a suitable choice of $\theta \in \mathbb{T}_{-}$).

By the facts in $\S 4.17, \theta$ is a non-zero divisor.

By (H2), $\mathbb{T}_{-}=\Theta \mathbb{T}^{+}$. Since $\theta \in \mathbb{T}^{-}$, we can write $\theta=u \Theta(u \in \mathbb{T})$.
$\S 4.19$. Theorem: Θ / θ is a unit under ($\mathrm{HO}-2$).
Proof: We have an exact sequence $\mathfrak{d} \hookrightarrow \mathbb{T} \rightarrow W\left[C_{p}\right]$ in §3.27. Taking σ-invariant subspace (indicated superscript " $+^{\prime \prime}$), $\mathbb{T}^{+} / \mathfrak{d}^{+} \cong$ $W\left[C_{p}\right]$. Recall the universal character $\Phi: \operatorname{Gal}\left(H_{p} / F\right) \rightarrow W\left[C_{p}\right]=$ $\mathbb{T}^{+} / \mathfrak{d}^{+}$. Write $\rho_{H}=\left(\begin{array}{ll}A & B \\ C\end{array}\right)$ and put $a=A \bmod \mathfrak{d}^{+}=\Phi, d=D$ $\bmod \mathfrak{d}^{+}=\Phi_{\varsigma}, b=B \bmod \mathfrak{d}^{+}: H \rightarrow \mathbb{T}^{-} / \mathfrak{d}^{+} \mathbb{T}^{-}$and $c=C$ $\bmod \mathfrak{d}^{+}: H \rightarrow \mathbb{T}^{-} / \mathfrak{d}^{+} \mathbb{T}^{-}$. If b has image in $\mathfrak{m}_{\mathbb{T}^{+}}\left(\mathbb{T}^{-} / \mathfrak{d}^{+} \mathbb{T}^{-}\right)$, by $c(g)=\varphi\left(\varsigma^{2}\right) b\left(\varsigma^{-1} g \varsigma\right), c$ has also. This implies $\rho_{H} \bmod \mathfrak{m}_{\mathbb{T}^{+}} \mathfrak{d}^{+}$is diagonal; so, $\rho_{H}^{\sigma}=j \rho_{H} j^{-1}$ which implies $\rho_{\mathbb{T}}^{\sigma} \bmod \mathfrak{m}_{\mathbb{T}} \mathfrak{d} \cong \rho_{\mathbb{T}} \otimes \chi$, a contradiction as \mathfrak{d} is the maximal ideal for which the identity holds. Thus b is onto. Replacing ρ_{H} by $\rho^{\prime}:=\xi^{-1} \rho_{H} \xi$ for $\xi:=\left(\begin{array}{cc}\Theta & 0 \\ 0 & 1\end{array}\right), \rho^{\prime}$ has values in $\mathrm{GL}_{2}\left(\mathbb{T}^{+}\right)$and $\rho^{\prime} \bmod \mathfrak{m}_{\mathbb{T}^{+}}=\left(\begin{array}{ll}\bar{\phi} & \bar{b} \\ \bar{\varphi}_{\varsigma}\end{array}\right)$ with $\bar{b}=b / \Theta \bmod \mathfrak{m}_{\mathbb{T}^{+}} \neq 0$. If u is a non-unit, b is unramified at \wp (which is unramified also at \wp^{ς}); so, everywhere unramified over $F\left(\bar{\varphi}^{-}\right)$, contradicting $C l_{F\left(\bar{\varphi}^{-}\right)} \otimes_{\mathbb{Z}[H]} \bar{\varphi}^{-}=0$.

§4.20. Local indecomposability.

Corollary 4.20: If f is a Hecke eigenform belonging to \mathbb{T} of weight $k \geq 2, \rho_{f, p}$ is indecomposable over I_{p} under ($\mathrm{HO}-2$).

This follows from the fact that (Θ) is exactly over $(\langle\varepsilon\rangle-1)$, and hence for any height 1 prime P outside $(\langle\varepsilon\rangle-1), \Theta \bmod P \neq 0$, and hence $\theta \bmod P \neq 0$ by Theorem 4.19.

For the companion form case, the exceptional Artin representations and induced representations in Cases U_{-}and D, p-local indecomposability question is still open.

§4.21. Concluding remarks.

- Actually we can prove $\wedge[\theta] \subset \mathbb{T}$ is an integral domain fully ramified over $(\langle\varepsilon\rangle-1)$ similar to the structure theorem in $\S 4.8$ under (H0-1).
- Indecomposability as in Corollary 4.20 also holds under ($\mathrm{HO}-1$) when F is real. Without assuming (H 2), \mathbb{T}^{-}is generated more than one element over \mathbb{T}_{+}; so, no single Θ. Obviously, the key point is to show $(\theta) \cap \wedge=(\langle\varepsilon\rangle-1)$.
- When F is an imaginary quadratic field, in Case U_{+}in the imaginary version, under ($\mathrm{HO}-2$), local indecomposability holds for $\rho_{f, \mathfrak{p}}$ as long as f does not have CM (this is the main result of [CWE]).
- The inertia theorem is always true unless all f belonging to \mathbb{T} have CM, though θ could be a zero-divisor if $\bar{\rho}$ is induced from an imaginary quadratic field.

