Lecture slide No.4 for Math 207c Structure of the universal ring when k = 1. Haruzo Hida

We fix a theta series $f = \sum_{\mathfrak{a}} \varphi(\mathfrak{a}) q^{N(\mathfrak{a})}$ of weight k = 1 of a real quadratic field F. Here φ is a character of order $a \varphi$: $Cl_{F}^{+}(\mathfrak{f}) \to \mu_{a}(\overline{\mathbb{Q}})$ with conductor \mathfrak{f}_{∞} , where $\infty : F \hookrightarrow \mathbb{R}$ is a fixed embedding. In Case U₊ with $\wp^{\varsigma} \nmid \mathfrak{f}$, the universal deformation ring \mathbb{T} is bigger than Λ . We try to determine the algebra as explicitly as possible. In this case, $\rho = \rho_f = \operatorname{Ind}_F^{\mathbb{Q}} \varphi$ regarding φ as a Galois character by class field theory. Let $\overline{\varphi} = \overline{\varphi}_{\mathfrak{p}} = (\varphi)$ mod \mathfrak{p}) for each prime \mathfrak{p} of $\mathbb{Z}[\mu_a] = \mathbb{Z}[f]$. If $\mathfrak{p} \nmid a$, the order of $\overline{\varphi}_{\mathfrak{p}}$ is equal to a and $F(\overline{\rho}) = F(\rho)$. We write $G = \operatorname{Gal}(F^{(p)}(\rho)/\mathbb{Q})$ and put $H = \text{Gal}(F^{(p)}(\rho)/F)$. Pick $\varsigma \in G$ inducing a non-trivial automorphism of $F_{\mathbb{O}}$. Define $\phi_{\varsigma}(g) = \phi(\varsigma^{-1}g\varsigma)$ for any character $\phi: H \to A^{\times}$. By irreducibility of $\rho, \varphi \neq \varphi_{\varsigma}$ (Mackey's theorem). We write ε for the fundamental unit of F.

§4.1. Decomposition of $Ad(\operatorname{Ind}_{F}^{\mathbb{Q}}\phi)$. In the standard form of $\rho = \operatorname{Ind}_{F}^{\mathbb{Q}} \phi$ in §3.6, $\rho(g)$ is either diagonal or anti-diagonal; so, the diagonal subalgebra $\mathfrak{t} := \{ \operatorname{diag}[x, -x] | x \in A \} \subset Ad(\varrho) =$ $\mathfrak{sl}_2(A)$ and the subspace \mathfrak{a} of anti-diagonal matrices in $Ad(\varrho)$ is stable under G. Thus $Ad(\varrho) = \mathfrak{t} \oplus \mathfrak{a}$ as an A[G]-module. Plainly G acts on t by $\alpha := \left(\frac{F/\mathbb{Q}}{2}\right)$. Since $Ad(\varrho)|_H$ acts on the upper nilpotent matrices \mathfrak{n}_+ by $\varphi^- := \varphi \varphi_{\varsigma}^{-1}$, by Shapiro's lemma, $\operatorname{Hom}_{A[H]}(\varphi^{-}, Ad(\varrho)) = \operatorname{Hom}_{A[G]}(\operatorname{Ind}_{F}^{\mathbb{Q}}\varphi^{-}, Ad(\varrho))$, we find $\mathfrak{a} = \operatorname{Ind}_{F}^{\mathbb{Q}} \phi^{-}$. Note that $\phi_{\varsigma}^{-} = (\phi^{-})^{-1}$; so, unless ϕ^{-} has order \leq 2, \mathfrak{a} is irreducible. If ϕ^{-} is quadratic, $\phi^{-} = \phi_{\varsigma}^{-}$ extends to a character $\tilde{\phi}^-: G \to A^{\times}$ and $\left| \operatorname{Ind}_F^{\mathbb{Q}} \phi^- = \tilde{\phi}^- \oplus \alpha \tilde{\phi}^- \right|$. In summary, $Ad(\operatorname{Ind}_{F}^{\mathbb{Q}}\phi) = \begin{cases} \alpha \oplus \operatorname{Ind}_{F}^{\mathbb{Q}}\phi^{-} & \text{if } (\phi^{-})^{2} \neq 1, \\ \alpha \oplus \widetilde{\phi}^{-} \oplus \alpha \widetilde{\phi}^{-} & \text{if } (\phi^{-})^{2} = 1. \end{cases}$

1

§4.2. Action of σ on Sel($Ad(\varrho)$).

Let $\pi : R^{ord} \to A$ with $\rho_A = \pi \circ \rho^{ord}$. Suppose we have $\sigma_A \in$ Aut(A) such that $\sigma_A \circ \pi = \pi \circ \sigma$. Recall $j(\rho^{ord} \cdot \alpha)j^{-1} = (\rho^{ord})^{\sigma}$ for $j := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. For each 1-cocycle $u : G \to Ad(\rho_A)^*$, we define $u^{[\sigma]}(g) = ju(g)^{\sigma_A}j^{-1}$. From $u(gh) = Ad(\rho_A)(g)u(h) + u(g)$, we find

$$u^{[\sigma]}(gh) = j\rho_A^{\sigma_A}(g)jju(h)^{\sigma_A}jj\rho_A(g^{-1})^{\sigma_A}j + ju(g)^{\sigma_A}j$$

= $Ad(j\rho_A^{\sigma_A}j)(g)u^{[\sigma]}(h) + u^{[\sigma]}(g) = Ad(\rho_A \cdot \chi)(g)u^{[\sigma]}(h) + u^{[\sigma]}(g)$
= $Ad(\rho_A)(g)u^{[\sigma]}(h) + u^{[\sigma]}(g).$

Since the conjugation of j preserves the upper triangular p-decomposition subgroup and p-inertia subgroup of $\text{Gal}(F(\rho^{ord})/\mathbb{Q})$, in this way, σ acts on $\text{Sel}(Ad(\rho_A))$. In particular, if σ_A is trivial (i.e., $\rho_A = \text{Ind}_F^{\mathbb{Q}}\phi$), $[\sigma]$ is just a conjugate action of j.

§4.3. Decomposition theorem of $Sel(Ad(Ind_F^{\mathbb{Q}}\phi))$. Define, for $\varrho_{\phi}^{-} := Ind_F^{\mathbb{Q}}\phi^{-}$ and $M := F(\phi^{-})$,

> $\operatorname{Sel}(\alpha_A) := \operatorname{Hom}(Cl_F \otimes_{\mathbb{Z}} A, A^{\vee}) \cong (Cl_F \otimes_{\mathbb{Z}} A)^{\vee},$ $\operatorname{Sel}(\varrho_{\phi}^{-}) := \operatorname{Hom}(Cl_M(\wp^{\infty})/\langle \mathfrak{P}^{\varsigma} \rangle_{\mathfrak{P}|\wp} \otimes_{\mathbb{Z}[H]} \phi^{-}, A^{\vee}).$

Theorem 4.3: We have $\operatorname{Sel}(\operatorname{Ad}(\operatorname{Ind}_{F}^{\mathbb{Q}}\phi)) \cong \operatorname{Sel}(\alpha_{A}) \oplus \operatorname{Sel}(\varrho_{\phi}^{-})$. Proof for the α -factor: Write $\varrho := \operatorname{Ind}_{F}^{\mathbb{Q}}\phi$. Then $H^{1}(G, \operatorname{Ad}(\varrho))$ is isomorphic to

$$H^1(G,\alpha_A^*) \oplus H^1(G,(\varrho_\phi^-)^*) = H^1(G,\alpha_A^*) \oplus H^1(H,(\phi^-)^*).$$

The identity of the second factors is by Shapiro's lemma. Since α_A is realized on the diagonal matrix, by the definition of Sel $(Ad(\varrho))$, it is unramified everywhere; so, it factors through $Cl_F \otimes_{\mathbb{Z}} A$ over H. Since G/H has order 2, the restriction map to H is an isomorphism, and the result follows.

§4.4. Proof for the $\operatorname{Ind}_{F}^{\mathbb{Q}}\phi^{-}$ -factor. Write $\rho_{A}^{-} := \operatorname{Ind}_{F}^{\mathbb{Q}}\phi^{-}$. The Shapiro's isomorphism is realized by the restriction map

 $H^{1}(G, (\rho_{\Lambda}^{-})^{*}) \xrightarrow{\mathsf{Res}} H^{1}(H, (\rho_{\Lambda}^{-})^{*})^{G} = (H^{1}(H, (\phi^{-})^{*}) \oplus H^{1}(H, (\phi_{\varsigma}^{-})^{*}))^{G},$ which is an isomorphism. In the last factor, G acts on cocycles $u(g) \mapsto u_{\varsigma}(g) = \varsigma u(\varsigma^{-1}g\varsigma)$; so, interchanges the two factors. Therefore $H^1(G, (\rho_A^-)^*) \cong H^1(H, (\phi^-)^*)$. If $U : G \to (\rho_A^-)^*$ is a Selmer cocycle, we have $U(h) = \begin{pmatrix} 0 & u \\ u_{\varsigma} & 0 \end{pmatrix}$ for a cocycle $u : H \to$ $(\phi^{-})^{*}$. Note $M = F(Ad(\rho_{A})) = F(\phi^{-})$. By Selmer condition that $U|_{D_{\omega^{\varsigma}}}$ is lower triangular, we have $u|_{G_M}$ factors through $Cl_M(\wp^{\infty})/\langle \mathfrak{P}^{\varsigma} \rangle_{\mathfrak{P}|\wp}$. Note that $H^q(H/G_M, \phi^-) = 0$ as $\phi^- \not\equiv 1$ mod \mathfrak{m}_A . Since it is a $\mathbb{Z}[H]$ -morphism into ϕ^- , it actually factors through $Cl_M(\wp^{\infty})/\langle \mathfrak{P}^{\varsigma} \rangle_{\mathfrak{P}|\mathfrak{p}} \otimes_{\mathbb{Z}[H]} \phi^-$. Reversing the argument, it is an isomorphism.

§4.5. \pm -eigenspace of σ in Sel($Ad(\rho_A)$).

Lemma 4.5: The involution σ acts on Sel(Ind^{$\mathbb{Q}}_F \phi^-)$ (resp. Sel(α_A)) by -1 (resp. +1). Here α_A is the character α regarded to have values in A^{\times} .</sup>

Proof: In the decomposition of Theorem 4.3, α_A is realized on the subspace t of diagonal matrices and $\operatorname{Ind}_F^{\mathbb{Q}}\phi^-$ is realized on anti-diagonal matrices $\mathfrak{a} \subset \operatorname{Ad}(\overline{\rho})$. Since j acts by +1 on t and -1 on \mathfrak{a} and the action of σ on cocycle is conjugation by j as seen in §4.2, the action of σ on $\operatorname{Sel}(\alpha_A)$ is by +1 and on $\operatorname{Sel}(\operatorname{Ind}_F^{\mathbb{Q}}\phi^-)$ is by -1.

§4.6. Set-up. Hereafter, we write $M := F(Ad(\overline{\rho})) = F(\overline{\varphi}^{-})$. Consider the following conditions:

(H0) the local character $\overline{\varphi}^-|_{D_p}$ is non-trivial (irreduciblity of $\overline{\rho}$). (H1) $\wp^{\varsigma} \nmid \mathfrak{f}$ (ordinarity in Case U₊; $C = N_{F/\mathbb{Q}}(\mathfrak{c})D$). (H2) the *p*-quotient $Cl_M \otimes_{\mathbb{Z}[H]} \overline{\varphi}^- = 0$ (this follows if the class number of *M* is prime to *p*), and the local character $\overline{\varphi}^-|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}$ is different from the reduction $\overline{\omega}$ modulo *p* of the Teichmüller character $\omega = \omega_p$ acting on μ_p . (H3) $h_F = |Cl_F|$ is prime to *p* ($Cl_M \otimes_{\mathbb{Z}[G]} Ad(\overline{\rho}) = 0 \Leftrightarrow (H2-3)$).

Replacing φ by the Teichmüller lift of $\overline{\varphi}$, we assume the order of φ is prime to p.

In this real induced case, by J. Thorne, Taylor–Wiles condiction is removed; so, $R_{\mathfrak{p}}^{ord} \cong \mathbb{T}_{\mathfrak{p}}$ under (H0). We put $\mathbb{T}_{\mathfrak{p}}^{\pm} = R_{\pm}^{ord}$.

§4.7. Presentation theorem again. Assume (H0). Let $r_+ := \dim_{\mathbb{F}} \operatorname{Sel}(\overline{\alpha})$ for $\overline{\alpha} = \alpha_{\mathbb{F}}$ and $r_- = \operatorname{Sel}(\operatorname{Ind}_F^{\mathbb{Q}}\overline{\varphi})$. Theorem 4.7: $\mathbb{T}_{\mathfrak{p}} \cong \Lambda[X_1^+, \dots, X_{r_+}^+, X_1^-, \dots, X_{r_-}^-]/(S_1, \dots, S_r)$

for $r = r_+$ so that σ fixes the image of X_j^+ in \mathbb{T}_p and acts by -1 on the image in \mathbb{T}_p of X_i^- .

Proof: Assuming $r_{+} = 0$ ($\Leftrightarrow p \nmid h_{F} = |Cl_{F}|$) and $r_{-} = 1$, we now prove this fact. So σ acts on $t^{*}_{\mathbb{T}/\mathbb{T}^{+}}$ by -1. We can choose a generator Θ so that $\sigma(\Theta) = -\Theta$. Then $x \mapsto \Theta x$ is a Λ -linear map of $\mathbb{T} \cong \Lambda^{e}$. Writing this map as a $d \times d$ matrix form L and define $D(X) = \det(X1_{e} - L)$. Then $\mathbb{T} = \Lambda[X]/D(X)$ and \mathbb{T} is a local complete intersection with 2|e as σ acts non-trivially on $\mathbb{T}_{/\Lambda}$.

The principal ideal (Θ) is the relative different $\mathbb{T}(\sigma-1)T$ of \mathbb{T}/\mathbb{T}^+ .

§4.8. Structure theorem. Assume (H0–3). Write $A = \mathbb{T}_{\mathfrak{p}}$ or $\mathbb{T}_{\mathfrak{p}}^+$. Let $e = \operatorname{rank}_{\Lambda} \mathbb{T}$. Then the following four assertions hold: (1) If $\langle \varepsilon \rangle - 1$ is a prime in Λ , then the ring A is isomorphic to a power series ring W[[x]] of one variable over W; hence, A is a regular local domain and is factorial;

(2) The ring *A* is an integral domain fully ramified at $(\langle \varepsilon \rangle - 1)$; (3) If *p* is prime to $e = \operatorname{rank}_{\Lambda} A$, the ramification locus of $A_{/\Lambda}$ is given by $\operatorname{Spec}(\Lambda_{\varepsilon})$ for $\Lambda_{\varepsilon} := \Lambda/(\langle \varepsilon \rangle - 1)$, the different for A/Λ is principal and generated by Θ^{a-1} and *A* is a normal integral domain of dimension 2 unramified outside $(\langle \varepsilon \rangle - 1)$ over Λ ; (4) If p|e, $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a Dedekind domain unramified outside $(\langle \varepsilon \rangle - 1)$ over Λ ; (4) If p|e, $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q}$, and the relative different for $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q}/\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ is principal and generated by Θ^{e-1} ; (5) If e = 2, $\mathbb{T}^+ = \Lambda$ and $\mathbb{T} = \Lambda[\sqrt{1 - \langle \varepsilon \rangle}]$.

Conjecture: e = 2 under (H0-3)?

§4.9. Wall–Sun–Sun primes. If $\langle \varepsilon \rangle - 1$ is not a prime ($\Leftrightarrow \varepsilon^{p-1} \equiv$ 1 mod \wp^2), by the existence of ambiguous classes, \mathbb{T} cannot be factorial. Perhaps there is no example known of a prime $p \geq 5$ split in $F = \mathbb{Q}[\sqrt{5}]$ such that $\langle \varepsilon \rangle - 1$ is not a prime in $\mathbb{Z}_p[[T]]$. Consider $F = \mathbb{Q}[\sqrt{d}]$ with square-free $0 < d \in \mathbb{Z}$ and describe how to decide if $\wp^2 | \varepsilon^{k-1} - 1$. Since p > 2, $\wp^2 | (\varepsilon^{p-1} - 1) \Leftrightarrow \wp^2 | (\varepsilon^{2(p-1)} - 1) \otimes \wp^2 | (\varepsilon^{2(p-1)} - 1)$ 1). On the other hand, $\varepsilon^{2(p-1)} - 1 = \varepsilon^{2(p-1)} - \varepsilon^{p-1}\varepsilon^{\varsigma(p-1)} = \varepsilon^{p-1}\varepsilon^{\rho$ $\varepsilon^{p-1}(\varepsilon^{p-1}-\varepsilon^{\varsigma(p-1)})$. Define $\alpha \in \mathbb{Z}$ so that $\varepsilon^2-\alpha\varepsilon\pm 1=0$. Consider the corresponding Fibonacci type recurrence relation $f_n = \alpha f_{n-1} \mp f_{n-2}$. For the solution f_n with initial values $f_0 = 0$ and $f_1 = 1$, we have $f_n = \frac{\varepsilon^n - \varepsilon^{n\varsigma}}{\varepsilon - \varepsilon^{\varsigma}}$. Thus we have $\frac{\varepsilon^{p-1} - \varepsilon^{\varsigma(p-1)}}{\varepsilon - \varepsilon^{\varsigma}} = \frac{\varepsilon^n - \varepsilon^{n\varsigma}}{\varepsilon - \varepsilon^{\varsigma}}$. $f_{p-1}C$ for $C = \frac{\varepsilon - \varepsilon^{\varsigma}}{\sqrt{d}}$. If d = 5, we have C = 1. $\langle \varepsilon \rangle - 1$ is not a prime in $\Lambda \Leftrightarrow p^2 | f_{p-1}C$. (Wall–Sun–Sun primes) For $F = \mathbb{Q}[\sqrt{1}]$, p = 191,643 are such primes. It is conjectured infinity? of Wall-Sun-Sun primes (perhaps density 0).

§4.10. Proof of (1). Put $\mathcal{J} = \Theta \mathbb{T}$ and $\mathcal{J}^0 = \mathbb{T}$. For all $0 \neq u \in \mathbb{T}$, $[u] : x \mapsto ux$ induces the linear endomorphism gr(u)of the corresponding graded algebra $\operatorname{gr}_{\mathcal{J}}(\mathbb{T}) := \bigoplus_{n=0}^{\infty} \mathcal{J}^n / \mathcal{J}^{n+1}$ (with $\mathcal{J}^0 = \mathbb{T}$). Then [u] is injective if gr(u) is injective [BCM, III.2.8, Corollary 1]. We have $\operatorname{gr}_{\mathcal{T}}(\mathbb{T}) \cong \Lambda_{\varepsilon}[x]$ for the polynomial ring $\Lambda_{\varepsilon}[x]$ where the variable x corresponds to the image $\overline{\Theta}$ of Θ in the first graded piece $\mathcal{J}/\mathcal{J}^2$. Take n so that $u \in \mathcal{J}^n$ but $u \notin \mathcal{J}^{n+1}$. Then $gr(u) : gr_{\mathcal{J}}(\mathbb{T}) \to gr_{\mathcal{J}}(\mathbb{T})$ is multiplication by a polynomial of degree n. Assume that $\langle \varepsilon \rangle - 1$ is a prime; so, $(\langle \varepsilon \rangle - 1) = (T)$ in Λ and $\Lambda_{\varepsilon} = W$. Then $gr_{\mathcal{T}}(\mathbb{T})$ is an integral domain isomorphic to the polynomial ring W[x]; so, if $u \neq 0$, gr(u) is injective, and hence, [u] is injective; so, u is not a zero divisor. We conclude that \mathbb{T} is an integral domain and $\mathbb{T} = \lim_{n \to \infty} \mathbb{T}/\mathcal{J}^n \cong W[[x]]$ by sending Θ to x. A power series ring over a discrete valuation ring is a unique factorization domain and is regular; so, we get the assertion (1).

§4.11. Proof of (2–4). $(D(0)) = (\langle \varepsilon \rangle - 1)$ follows from

 $\Lambda/(\langle \varepsilon \rangle - 1) \cong \mathbb{T}/(\Theta) = \Lambda[[X]]/(X, D) = \Lambda/(D(0))$ (§3.27), Thus (D(0)) is square-free. Let $P|(\langle \varepsilon \rangle - 1)$ be a prime factor; so, the localization Λ_P and its completion $\widehat{\Lambda}_P = \varprojlim_n \Lambda_P / P^n \Lambda_P$ are discrete valuation rings. Then $\widehat{\mathbb{T}}_P = \mathbb{T} \otimes_{\Lambda} \widehat{\Lambda}_P = \widehat{\Lambda}_P[[X]]/(D(X))$, and by Weierstrass preparation theorem $D(X) = D_P(X)U_P(X)$ for a distinguished polynomial $D_P(X) \in \widehat{\Lambda}_P[X]$ with respect to P and a unit $U_P(X) \in \widehat{\Lambda}_P[[X]]$. Since $\deg(D_P(X)) = \operatorname{rank}_{\widehat{\Lambda}_P} \widehat{\mathbb{T}}_P =$ $\operatorname{rank}_{\Lambda} \mathbb{T} = \operatorname{deg}(D(X))$, we have $D(X) = D_P(X)$; so, D(X) is an Eisenstein polynomial. Then $\hat{\mathbb{T}}_P$ (resp. \mathbb{T}_P) is a discrete valuation rings fully ramified over $\widehat{\Lambda}_P$ (resp. Λ_P). Since $\mathbb{T} \hookrightarrow \mathbb{T}_P$, T is an integral domain. Writing $D(X) = X^e + a_1 X^{e-1} + \dots + a_0$, we have $(a_0) = (\langle \varepsilon \rangle - 1)$ and $(\langle \varepsilon \rangle - 1) |a_i$. Thus for D'(X) = $\frac{dD}{dX} = eX^{e-1} + \cdots + a_1$, we find $D'(\Theta)\mathbb{T} = \Theta^{e-1}\mathbb{T}$, and for the relative different $\mathfrak{d} = (D'(\Theta))$ we have $e \Theta^{e-1} \mathbb{T} \subset \mathfrak{d} \subset \Theta^{e-1} \mathbb{T}$, which shows (3-4). The proof of (5) is an exercise.

§4.12. Local indecomposability conjecture.

Conjecture G (R. Greenberg): For a *p*-ordinary Hecke eigenform f of weight $k \ge 2$, if f has no CM (not induced from a quadratic field), then $\rho_{f,\mathfrak{p}}|_{I_p}$ is indecomposable.

For a cusp form $f = \sum_{n=1}^{\infty} a_n q^n \in S_k(N, \psi)_{/W}$, we define $\theta := q \frac{d}{dq}$ as a differential operator on W[[q]]. It is well known that $\theta^m f$ is a *p*-adic limit of classical cusp forms (why?). Assume $p \nmid N$. If *f* is a *p*-ordinary Hecke eigenform with $f|T(n) = \lambda(T(n))f$, then we can distinguish two roots α, β of $X^2 - \lambda(T(p))X + \chi(p) = 0$ so that $|\alpha|_p = 1$ and $|\beta|_p = p^{1-k}$ (i.e., $p^{k-1}||\beta)$. We have two *p*-stabilizations $f^{ord}|U(p) = \alpha f^{ord}$ and $f^{crit}|U(p) = \beta f^{crit}$. **Conjecture C (R. Coleman):** $f^{crit} = \theta^{k-1}g$ for a *p*-adic limit $g \in W[[q]]$ of cusp forms if and only if *f* has CM. It is known that $G \Leftrightarrow C$ by Breuil–Emerton (Asterisque, (331):255– 315, 2010). Try prove " \Leftarrow " of Conjecture C. §4.13. A theorem of Iwasawa. Let $k = M_{\wp}$ with $\overline{D} = \operatorname{Gal}(k/\mathbb{Q}_p)$, k_{∞}/k be the unramified \mathbb{Z}_p -extension and F_{∞}/k be the cyclotomic \mathbb{Z}_p -extension $\subset k_{\infty}[\mu_{p^{\infty}}]$ with $\Gamma := \operatorname{Gal}(F_{\infty}/k) = \gamma^{\mathbb{Z}_p}$. Let \mathcal{L} be the maximal abelian p-extension of $\mathcal{F}_{\infty} := F_{\infty}k_{\infty}$. Set $\mathcal{X} := \operatorname{Gal}(\mathcal{L}/\mathcal{F}_{\infty})$ and $\Upsilon := \operatorname{Gal}(k_{\infty}F_{\infty}/F_{\infty}) = v^{\mathbb{Z}_p}$. Take $\tilde{\gamma} \in \operatorname{Gal}(\mathcal{L}/k)$ with $\tilde{\gamma}|_{F_{\infty}} = \gamma$. The commutator $\tau := [v, \tilde{\gamma}]$ acts on \mathcal{X} by conjugation, and $(\tau - 1)x := [\tau, x] = \tau x \tau^{-1} x^{-1}$ for $x \in \mathcal{X}$ is independent of the choice of $\tilde{\gamma}$ and v. Define $L \subset \mathcal{L}$ by the fixed field of $(\tau - 1)\mathcal{X}$. Let $X = \operatorname{Gal}(\mathcal{L}/\mathcal{F}_{\infty}) = \mathcal{X}/(\tau - 1)\mathcal{X}$. Note $p \nmid [k : \mathbb{Q}_p]$.

Theorem 4.13; For the character η : $Gal(k/\mathbb{Q}_p) \to \mathbb{Z}_p[\eta]^{\times}$, $X[\eta] = X \otimes_{\mathbb{Z}_p[\overline{D}]} \eta$ is a cyclic $\mathbb{Z}_p[\eta][[\Gamma \times \Upsilon]]$ -module, where \overline{D} acts on $\mathbb{Z}_p[\eta]$ by η .

This is essentially a theorem of Iwasawa; see, Proposition A.4.1 in a paper posted in Hida's web page ([CWE]: Appendix to a joint work with Castella and Wang-Erickson).

§4.14. Some notation. Pick $\phi_0 \in D_{\wp}$ so that $\overline{\rho}(\phi_0) = \begin{pmatrix} \overline{a} & 0 \\ 0 & \overline{b} \end{pmatrix}$ with $\overline{a} \neq \overline{b}$. Define $\phi = \lim_{n \to \infty} \phi_0^{q^n}$ $(q = |\mathbb{F}|)$. We can normalize $\rho_{\mathbb{T}}$ so that $j(\rho_{\mathbb{T}} \cdot \chi)j^{-1} = \rho_{\mathbb{T}}^{\sigma}$ (an exercise [CWE, A.3.1]), $\rho_H := \rho_{\mathbb{T}}|_H$ has values in $E := \begin{pmatrix} \mathbb{T}^+ & \mathbb{T}^- \\ \mathbb{T}^- & \mathbb{T}^+ \end{pmatrix}$, which is a \mathbb{T}^+ -subalgebra of $M_2(\mathbb{T})$. Here $\rho_{\mathbb{T}}(\phi)$ is diagonal and by conjugation, it acts on upper (resp. lower) nilpotent part of E by ab^{-1} (resp. $a^{-1}b$). Let $I = \overline{I}_{\wp}$ (resp. $D = \overline{D}_{\wp}$) be the wild \wp -inertia (resp. \wp decomposition) subgroup of $\operatorname{Gal}(F(\rho_{\mathbb{T}})/F(\overline{\rho}))$ for \wp .

Note $\kappa([p, \mathbb{Q}_p]) = \det(\rho_{\mathbb{T}}([p, \mathbb{Q}_p])) = 1$ since $\kappa(g) = t^{\log_p \nu_p(g)/\log_p(\gamma)}$. Regard $v := [p, \mathbb{Q}_p]^f \in D$ for the residual degree f of $\mathfrak{P} = \wp \cap K(\overline{\rho})$, and recall $\varphi' := \rho_{\mathbb{T}}([p, \mathbb{Q}_p]^f) = \begin{pmatrix} u^{-f} & * \\ 0 & u^f \end{pmatrix}$ with $u^f \in \mathbb{T}_+$. Let W_1 be the subalgebra of $\overline{\mathbb{Q}}_p$ generated by the values of φ over D_{\wp} . Put $\Lambda_0 := \mathbb{Z}_p[[T]] \subset \Lambda_1 := W_1[[T, a]] \subset \mathbb{T}$ for $a = u^{2f} - 1 \in \mathfrak{m}_{\Lambda_1}$, which is the image of $W_1[[\Gamma \times \Upsilon]]$ for $k = M_{\wp}$. Note $\Upsilon = v^{\mathbb{Z}_p}$.

§4.15. Inertia theorem:

Suppose (H0) and minimality of \mathbb{T} . Then,

(1) after choosing I suitably in its conjugacy class, we have an exact sequence $\mathcal{U} \hookrightarrow I \twoheadrightarrow t^{\mathbb{Z}_p}$ with $\rho_{\mathbb{T}}(\mathcal{U})$ made of unipotent matrices,

(2) there exists a non-zero divisor $\theta \in \mathbb{T}^-$ satisfying $\theta^{\sigma} = -\theta$ and $\mathcal{U} = \Lambda_1 \theta$; in other words, we have $\rho_{\mathbb{T}}(I) = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in t^{\mathbb{Z}_p}, b \in \theta \Lambda_1 \right\}.$

We are going to show $\theta \doteq \Theta$ for Θ in §4.7 after proving this theorem.

§4.16. Proof of (1): From the definition of Λ-algebra structure of \mathbb{T} and *p*-ordinarity, we know $\rho_{\mathbb{T}}(I) \subset M(\mathbb{T}) \cap E$ for the mirabolic subgroup $M(\mathbb{T}) := \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{T}^{\times}, b \in \mathbb{T} \right\}$. Since $\text{Gal}(\mathbb{Q}_p^{ab}/\mathbb{Q}_p) = [p, \mathbb{Q}_p]^{\widehat{\mathbb{Z}}} \ltimes \mathbb{Z}_p^{\times}$ for the maximal abelian extension $\mathbb{Q}^{ab}/\mathbb{Q}$ and the local Artin symbol $[p, \mathbb{Q}_p]$, we find

 $\rho_{\mathbb{T}}(I) \subset \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \middle| a \in t^{\mathbb{Z}_p}, b \in \mathbb{T}_- \right\},$

and $\det(\rho_{\mathbb{T}}(I)) = \mathcal{T} := t^{\mathbb{Z}_p} \subset \Lambda^{\times}$. Thus we have an extension $1 \to \mathcal{U} \to \rho_{\mathbb{T}}(I) \to \mathcal{T} \to 1$. Recall $\phi_0 \in D_{\wp}$ with $\overline{\rho}(\phi_0) = \begin{pmatrix} \overline{a} & 0 \\ 0 & \overline{b} \end{pmatrix}$ $(\overline{a} \neq \overline{b})$ and $\phi = \lim_{n \to \infty} \phi_0^{q^n}$ inside $\operatorname{Gal}(F(\rho_{\mathbb{T}})/F)$. This extension is split by the conjugation action of ϕ_0 with \mathcal{U} characterized to be an eigenspace on which ϕ_0 acts by ab^{-1} for the Teichmüller lift a, b of $\overline{a}, \overline{b}$; so, we may assume to have a section $s : \mathcal{T} \hookrightarrow \rho_{\mathbb{T}}(I)$ identifying \mathcal{T} with $\left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} | a \in t^{\mathbb{Z}_p} \right\}$. Thus \mathcal{U} is made of unipotent matrices. Here we used the assumption (H0).

§4.17. Known facts: non-triviality of \mathcal{U} . Since $\Lambda \hookrightarrow \mathbb{T}$, $\Gamma \subset \mathbb{T}^{\times}$. Two known facts:

(a) For a *W*-algebra homomorphism $\lambda : \mathbb{T} \to \overline{\mathbb{Q}}_p$, if $\lambda|_{\Gamma} : \Gamma \to \overline{\mathbb{Q}}_p^{\times}$ coincides with ν_p up to a finite order character ϵ , $f := \sum_{n=1}^{\infty} \lambda(T(n))q^n$ is a weight 2 cusp form in $S_2(Cp^r, \psi_2\epsilon)$ [LFE, §7.3];

(b) The Galois representation $\rho_{\lambda,\mathfrak{p}} = \rho_{f,\mathfrak{p}}$ is locally indecomposable (Bin Zhao, Ann. L'inst. Fourier **64** (2014), 1521–1560).

By (b) and $\bigcap_{\lambda} \text{Ker}(\lambda) = 0$, \mathcal{U} contains non-zero divisor of \mathbb{T}^- . Thus it is "highly" non-zero. §4.18. Proof of (2): We have $\mathcal{U} \subset \mathbb{T}_{-}$ and regard φ^{-} as an abelian irreducible \mathbb{Z}_{p} -representation acting on W regarded as a \mathbb{Z}_{p} -module.

Apply Iwasawa's theorem to the splitting field k of $\varphi^{-}|_{D_{p}}$ under the notation in §4.13. Then the Galois group $X'[\varphi^{-}]$ is cyclic over $W_{1}[[\Gamma \times \Upsilon]]$ ($\Gamma = \gamma^{\mathbb{Z}_{p}} \cong t^{\mathbb{Z}_{p}}$) and surjects onto \mathcal{U} . Since the action of $W_{1}[[\Gamma \times \Upsilon]]$ factors through Λ_{1} , \mathcal{U} is cyclic over Λ_{1} ; so, we have $\mathcal{U} \cong \Lambda_{1}$. Thus we conclude $\rho_{H}(I_{1}) = \mathcal{U} = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \theta \Lambda_{1} \right\}$ inside $\rho_{H}(H)$ (for a suitable choice of $\theta \in \mathbb{T}_{-}$).

By the facts in §4.17, θ is a non-zero divisor. \Box By (H2), $\mathbb{T}_{-} = \Theta \mathbb{T}^{+}$. Since $\theta \in \mathbb{T}^{-}$, we can write $\theta = u \Theta$ ($u \in \mathbb{T}$).

§4.19. Theorem: Θ/θ is a unit under (H0–2).

Proof: We have an exact sequence $\mathfrak{d} \hookrightarrow \mathbb{T} \twoheadrightarrow W[C_p]$ in §3.27. Taking σ -invariant subspace (indicated superscript "+"), $\mathbb{T}^+/\mathfrak{d}^+ \cong$ $W[C_p]$. Recall the universal character Φ : $Gal(H_p/F) \rightarrow W[C_p] =$ $\mathbb{T}^+/\mathfrak{d}^+$. Write $\rho_H = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and put $a = A \mod \mathfrak{d}^+ = \Phi$, d = Dmod $\mathfrak{d}^+ = \Phi_{\varsigma}$, $b = B \mod \mathfrak{d}^+ : H \to \mathbb{T}^-/\mathfrak{d}^+\mathbb{T}^-$ and c = Cmod \mathfrak{d}^+ : $H \to \mathbb{T}^-/\mathfrak{d}^+\mathbb{T}^-$. If b has image in $\mathfrak{m}_{\mathbb{T}^+}(\mathbb{T}^-/\mathfrak{d}^+\mathbb{T}^-)$, by $c(g) = \varphi(\varsigma^2)b(\varsigma^{-1}g\varsigma)$, c has also. This implies $\rho_H \mod \mathfrak{m}_{\mathbb{T}^+}\mathfrak{d}^+$ is diagonal; so, $\rho_H^{\sigma} = j\rho_H j^{-1}$ which implies $\rho_{\mathbb{T}}^{\sigma}$ mod $\mathfrak{m}_{\mathbb{T}}\mathfrak{d} \cong \rho_{\mathbb{T}} \otimes \chi$, a contradiction as a is the maximal ideal for which the identity holds. Thus b is onto. Replacing ρ_H by $\rho' := \xi^{-1} \rho_H \xi$ for $\xi := \begin{pmatrix} \Theta & 0 \\ 0 & 1 \end{pmatrix}$, ρ' has values in $\operatorname{GL}_2(\mathbb{T}^+)$ and $\rho' \mod \mathfrak{m}_{\mathbb{T}^+} = \begin{pmatrix} \overline{\varphi} & \overline{b} \\ 0 & \overline{\varphi}_c \end{pmatrix}$ with $\overline{b} = b/\Theta \mod \mathfrak{m}_{\mathbb{T}^+} \neq 0$. If u is a non-unit, b is unramified at \wp (which is unramified also at \wp^{ς}); so, everywhere unramified over $F(\overline{\varphi}^{-})$, contradicting $Cl_{F(\overline{\varphi}^{-})} \otimes_{\mathbb{Z}[H]} \overline{\varphi}^{-} = 0$.

$\S4.20$. Local indecomposability.

Corollary 4.20: If f is a Hecke eigenform belonging to \mathbb{T} of weight $k \ge 2$, $\rho_{f,\mathfrak{p}}$ is indecomposable over $I_{\mathfrak{p}}$ under (H0-2).

This follows from the fact that (Θ) is exactly over ($\langle \varepsilon \rangle - 1$), and hence for any height 1 prime P outside ($\langle \varepsilon \rangle - 1$), $\Theta \mod P \neq 0$, and hence $\theta \mod P \neq 0$ by Theorem 4.19.

For the companion form case, the exceptional Artin representations and induced representations in Cases U₋ and D, *p*-local indecomposability question is still open.

$\S4.21.$ Concluding remarks.

• Actually we can prove $\Lambda[\theta] \subset \mathbb{T}$ is an integral domain fully ramified over $(\langle \varepsilon \rangle - 1)$ similar to the structure theorem in §4.8 under (H0-1).

• Indecomposability as in Corollary 4.20 also holds under (H0–1) when F is real. Without assuming (H2), \mathbb{T}^- is generated more than one element over \mathbb{T}_+ ; so, no single Θ . Obviously, the key point is to show $(\theta) \cap \Lambda = (\langle \varepsilon \rangle - 1)$.

• When F is an imaginary quadratic field, in Case U₊ in the imaginary version, under (H0-2), local indecomposability holds for $\rho_{f,\mathfrak{p}}$ as long as f does not have CM (this is the main result of [CWE]).

• The inertia theorem is always true unless all f belonging to \mathbb{T} have CM, though θ could be a zero-divisor if $\overline{\rho}$ is induced from an imaginary quadratic field.