Lecture slide No.4 for Math 207c
Structure of the universal ring when k£ = 1.
Haruzo Hida

We fix a theta series f = Zago(a)qN(a) of weight £ = 1 of a
real quadratic field F. Here ¢ is a character of order a ¢ :

l"’(f) — 1q(Q) with conductor foo where o : F' — R is a fixed
embedding. In Case U with p° 1 f, the universal deformation
ring T is bigger than A. We try to determine the algebra as
explicitly as possible. In this case, p = pr = Ind@ regarding
¢ as a Galois character by class field theory. Let ¥ = p, = (¢
mod p) for each prime p of Z[us]l = Z[f]. If p 1 a, the order of
®p is equal to a and F(p) F(p). We write G = GaI(F(p)(p)/Q)
and put H = GaI(F p) (p)/F). Pick ¢ € G mducmg a non-trivial
automorphism of F/@. Define ¢c(g) = ¢(s1gs) for any character
¢ . H— A*. By irreducibility of p, ¢ = ¢ (Mackey’'s theorem).
We write € for the fundamental unit of F.



84.1. Decomposition of Ad(Ind%gb). In the standard form

of p = Ind%qﬁ in §3.6, o(g) is either diagonal or anti-diagonal;
so, the diagonal subalgebra t := {diag[z, —z]|x € A} C Ad(p) =
slo(A) and the subspace a of anti-diagonal matrices in Ad(p)
is stable under G. Thus Ad(p) = t® a as an A[G]-module.

Plainly G acts on t by o = (F/—@> Since Ad(p)|g acts on
the upper nilpotent matrices np by ¢~ = gogog_l, by Shapiro’s
lemma, HomA[H](go_,Ad(g)) = HomA[G](Ind% 0, Ad(p)), we find

a= Ind% ¢~ . Note that ¢ = (6~)~1: so, unless ¢~ has order
< 2, a is irreducible. If ¢~ is quadratic, ¢= = ¢_ extends to a

character cZ‘ G — A* and Indgqb_ = qg_ D Oz(/;_ . In summary,

a@IndP ¢~ if (p7)2 1,

Q .y —
Ad(Indy ¢) = {a Bo- Bap-  if (p7)2=1.



§4.2. Action of o on Sel(Ad(p)).

Let 7 : R™® — A with py = 7o p°@. Suppose we have o €
Aut(A) such that c4om = moo. Recall j(po?.a)j—1 = (pord)e
for j := <—01 ?) For each 1-cocycle u : G — Ad(pa)*, we define

ul?l(g) = ju(g)74571. From u(gh) = Ad(pa)(g)u(h) + u(g), we
find

ul?l(gh) = jp%A(9)iu(h)74jipalg™ ) 45 + julg)4g
= Ad(jp%'5) (@)ulV(h) + ul?l (g) = Ad(pa - x) (9)ul”) (n) + ul)(g)
= Ad(p4)(9)ul” (h) + L7 ().
Since the conjugation of 3 preserves the upper triangular p-
decomposition subgroup and p-inertia subgroup of GaI(F(pOTd)/Q),

in this way, o acts on Sel(Ad(p4)). In particular, if o4 is trivial
(i.e., pgy = Ind% ®), [o] is just a conjugate action of j.



84.3. Decomposition theorem of Sel(Ad(Ind% ?D)).
Define, for 0p = Ind% o~ and M = F(¢™),

Sel(ay) := Hom(Clp ®7 A, AY) 2 (Clp @7 A)",
Sel(o,) := Hom(Cly (™) /(B )pip @z @AY

Theorem 4.3: We have SeI(Ad(Indgqb)) = Sel(ay) ® Sel(g(g).

Proof for the a-factor: Write g := Ind%qﬁ. Then HY(G, Ad(p)) is
Isomorphic to

HY(G, o) ® H'(G, (05)") = HY (G, o) & H'(H, (¢7)*).
The identity of the second factors is by Shapiro’s lemma. Since
a 4 is realized on the diagonal matrix, by the definition of Sel(Ad(p)),
it is unramified everywhere; so, it factors through Clip ®7 A over

H. Since G/H has order 2, the restriction map to H is an iso-
morphism, and the result follows. [ ]



54.4. Proof for the Ind¥ ¢—-factor. Write p; :=Ind%¢~. The
Shapiro’s isomorphism is realized by the restriction map

HY(G, (p3)*) ~= HY(H, (p)")C = (HY(H, ($7)*) @ HY(H, (67))C,

which is an isomorphism. In the last factor, G acts on cocy-
cles u(g) — uc(g) = su(c1g¢); so, interchanges the two factors.
Therefore HY(G, (p)*) = HY(H,(¢7)"). If U : G — (pA)* is a
Selmer cocycle, we have U(h) = <0 “) for a cocycle v : H —
(67)*. Note M = F(Ad(py)) = F(¢~). By Selmer condition
that U|ng is lower triangular, we have u|g, factors through
ClM(pOO)/<q3<>q3|p. Note that HY(H/Gp;,¢~) = 0 as ¢— % 1
mod m 4. Since it is a Z[H]-morphism into ¢, it actually factors
through Clp (%) /(B )pp ®zp) ¢~ - Reversing the argument, it
is an isomorphism. [ ]



84.5. +-eigenspace of o In Sel(Ad(py4)).

Lemma 4.5: The involution o acts on SeI(Indgqb_) (resp. Sel(ay))
by —1 (resp. +1). Here a4 is the character o« regarded to have
values in A*.

Proof: In the decomposition of Theorem 4.3, a4 is realized on
the subspace t of diagonal matrices and Ind% ¢~ IS realized on
anti-diagonal matrices a C Ad(p). Since j actsby +1ontand —1
on a and the action of ¢ on cocycle is conjugation by 5 as seen
in §4.2, the action of o on Sel(ay) is by +1 and on Sel(Ind% b )
is by —1. [ ]



§4.6. Set-up. Hereafter, we write M := F(Ad(p)) = F(p ).
Consider the following conditions:

(HO) the local character ¢_|Dp is non-trivial (irreduciblity of p).
(H1) e°1f (ordinarity in Case Uy,; C = NF/@(c)D).

(H2) the p-quotient Cly; ®z1y1 @~ = 0 (this follows if the class
number of M is prime to p), and the local character @ |Ga|@p/@p)

is different from the reduction w modulo p of the Teichmiuller
Character w = wp acting on puyp.

(H3) hp = [Clp| is prime to p (Cly ®zg) Ad(p) = 0 & (H2-3)).
Replacing ¢ by the Teichmuller lift of i, we assume the order of
@ IS prime to p.

In this real induced case, by J. Thorne, Taylor—Wiles condiction
is removed; so, Rgf'“d = Ty under (HO). We put Tg: = Rﬂd.



84.7. Presentation theorem again. Assume (HO). Let ry =

dimg Sel(a) for @ = ap and r— = Sel(Ind%@).

Theorem 4.7: T, = AlX{ ... X5 X7, X, 1/(S1,....5)

for r = r4 so that o fixes the image of X}L in Tp and acts
by —1 on the image in Ty of X, .

Proof: Assuming r4 =0 (& pthp =|Clp|) and r— =1, we now
prove this fact. So o acts on t%}/TJF by —1. We can choose a
generator © so that ¢(©) = —©. Then z — Oz is a A-linear

map of T = A€. Writing this map as a d x d matrix form L and
define D(X) = det(X1le — L). Then T = A[X]/D(X) and T is
a local complete intersection with 2|e as o acts non-trivially on
T/a. O]

The principal ideal (©) is the relative different T(c—1)T of T/TT.



§4.8. Structure theorem. Assume (HO-3). Write A = Ty or
T;". Let e =rankp T. Then the following four assertions hold:
(1) If (¢) — 1 is a prime in A, then the ring A is isomorphic to a
power series ring W{[x]] of one variable over W; hence, A is a
regular local domain and is factorial;

(2) The ring A is an integral domain fully ramified at ({¢) — 1);
(3) If p is prime to e = rankp A, the ramification locus of A/n
is given by Spec(A¢) for Ae := AN\/({e) — 1)), the different for A/A
IS principal and generated by ©%~1 and A is a normal integral
domain of dimension 2 unramified outside ({(¢) — 1) over A;

(4) If ple, T®;Q is a Dedekind domain unramified outside ({(¢)—1)
over A®7zQ, and the relative different for T®;Q/A®7zQ is principal
and generated by ©@¢—1:

(B)Ife=2, Tt =A and T = A[/1 — (&)].

Conjecture: (¢ = 2| under (H0O—3)7




§4.9. Wall-Sun—Sun primes. If (¢)—1 is not a prime (& ¢~ 1 =
1 mod pz), by the existence of ambiguous classes, T cannot be
factorial. Perhaps there is no example known of a prime p > 5
split in F = Q[v/5] such that (¢) — 1 is not a prime in Zp[[T]].
Consider F = Q[v/d] with square-free 0 < d € Z and describe how
to decide if p2|eF~1—1. Since p > 2, p2?|(eP 1 —1) & p2|(e2(P~1) _
1). On the other hand, £2(—1) _ 1 = 2(p—1) _ cp—1(p-1) =
ep—1(ep—1 _ eg(p_l)). Define @ € Z so that é2 —ae+1 = 0.
Consider the corresponding Fibonacci type recurrence relation
fn=af,—1F fn—o. For the solution f, with initial values fo =0

n__-n — -1
and f{ = 1, we have f, = % Thus we have & 1—\2@ ) —
_ =S
fp—1C forCzs\/%. If d =15, we have C = 1.

(e) — 1 is not a prime in A < p?|f,_1C. (Wall=Sun—=Sun primes)
For FF = Q[v1], p = 191,643 are such primes. It is conjectured
infinity? of Wall-Sun-Sun primes (perhaps density 0).



§4.10. Proof of (1). Put J = ©OT and J° = T. For all
O#wueT, [u] :2x+— ux induces the linear endomorphism gr(u)
of the corresponding graded algebra gr7(T) := @52, j”/j”+1
(with 79 = T). Then [u] is injective if gr(u) is injective [BCM,
II1.2.8, Corollary 1]. We have gr7(T) = Ac[z] for the polyno-
mial ring Ags[x] where the variable = corresponds to the image
© of © in the first graded piece j/jz. Take n so that w e J"
but u ¢ J7T1. Then gr(u) : gr7(T) — gr7(T) is multiplication
by a polynomial of degree n. Assume that (¢) — 1 is a prime;
so, ((¢) —1) = (T) in A and Ac = W. Then gr;(T) is an in-
tegral domain isomorphic to the polynomial ring Wlxz]; so, if
u 7= 0, gr(u) is injective, and hence, [u] is injective; so, u is not
a zero divisor. We conclude that T is an integral domain and
T=lim T/J" = W/[[z]] by sending © to . A power series ring
over a discrete valuation ring is a unique factorization domain
and is regular; so, we get the assertion (1).



84.11. Proof of (2—4). (D(0)) = ({e) — 1) follows from

A ((e) — 1) 2 T/(©) = A[[X]]/(X, D) = A/(D(0)) (§3.27),
Thus (D(0)) is square-free. Let P|({(¢) —1) be a prime factor; so,
the localization Ap and its completion Ap = lim Ap/P"Ap are

discrete valuation rings. Then Tp = T@x Ap = Ap[[X]]/(D(X)),
and by Weierstrass preparation theorem D(X) = Dp(X)Up(X)
for a distinguished polynomial Dp(X) € Ap[X] with respect to P
and a unit Up(X) € Ap[[X]]. Since deg(Dp(X)) = ranKAPTP =
ranka T = deg(D(X)), we have D(X) = Dp(X); so, D(X) is
an Eisenstein polynomial. Then ’[AFP (resp. Tp) is a discrete
valuation rings fully ramified over 7\p (resp. Ap). Since T — Tp,
T is an integral domain. Writing D(X) = X€+a1X€_1—|—---+a0,
we have (ag) = ((e) — 1) and ({(¢) — 1)|a;. Thus for D/(X) =
4B = ex°~1 4 ... + a1, we find D'(©)T = ©°71T, and for the
relative different » = (D/(©®)) we have e®¢ 1T ¢ v ¢ ©¢ 1T,

which shows (3—4). The proof of (5) is an exercise.



84.12. Local indecomposability conjecture.

Conjecture G (R. Greenberg): For a p-ordinary Hecke eigen-
form f of weight k£ > 2, if f has no CM (not induced from a
quadratic field), then pf7p|[p IS indecomposable.

For a cusp form f =372 1 anq" € Sk(N,zp)/W, we define 0 .= qd%
as a differential operator on W/{[q]]. It is well known that 6™ f is
a p-adic limit of classical cusp forms (why?). Assume pt N. If
f is a p-ordinary Hecke eigenform with f|T'(n) = A(T'(n))f, then
we can distinguish two roots «, 3 of X2 — MT(p))X + x(p) = 0
so that |a|, = 1 and |3|, = p'=F (i.e., p*1||8). We have two
p-stabilizations 7% U (p) = af°"% and fHU(p) = Bt
Conjecture C (R. Coleman): [t = ¢k—14 for a p-adic limit
g € W/{[q]] of cusp forms if and only if f has CM.

It is known that G < C by Breuil-Emerton (Asterisque, (331):255—
315, 2010). Try prove ‘<" of Conjecture C.



§4.13. A theorem of Iwasawa. Let k = M, with D = Gal(k/Qy),
kso/k be the unramified Zj,-extension and Fs/k be the cyclo-
tomic Zp-extension C keo[upx] with I := Gal(Fuo/k) = v%r. Let
L be the maximal abelian p-extension of F := Foockoo. Set X 1=
Gal(L£/Foo) and T := Gal(keoFo/Fno) = vr. Take 7 € Gal(L/k)
with ¥|p_ =~. The commutator 7 := [v,7] acts on X by conju-
gation, and (r — Dz := [r,2] = 7er— 121 for z € X is indepen-
dent of the choice of v and v. Define L C L by the fixed field of
(r—1)X. Let X = Gal(L/Fx) =X/(7—1)X. Note p1[k: Qp).

Theorem 4.13; For the character n : Gal(k/Qp) — Zpnl™,
X[ = X ®, D) M IS a cyclic Zpn) [T x T]]-module, where D
acts on Zp[n] by n.

This is essentially a theorem of Iwasawa; see, Proposition A.4.1
in a paper posted in Hida's web page ([CWE]: Appendix to a
joint work with Castella and Wang-Erickson).



§4.14. Some notation. Pick ¢g € D, so that p(¢g) = (g %)
with @ # b. Define ¢ = limp—oo qﬁ%n (¢ = |F|]). We can nor-
malize pp so that j(pr-x)j~1 = pG (an exercise [CWE, A.3.1]),
pr = pr|y has values in £ = (%EJ_F %jr), which is a TT-subalgebra
of M>(T). Here pt(¢) is diagonal and by conjugation, it acts on
upper (resp. lower) nilpotent part of E by ab~1 (resp. a—1b).
Let I =1, (resp. D = Dg) be the wild g-inertia (resp. -
decomposition) subgroup of Gal(F(pt)/F(p)) for p.

Note r([p, @p)) = det(pr([p, Qp])) = 1 since k(g) = t'°%¥»(9)/109,(7),
Regard v := [p, Qp]f € D for the residual degree f of B = pNK (p),
and recall ¢’ := pp([p, Qp]’) = <ugf ;f) with u/ € Ty. Let Wy be
the subalgebra of Qp generated by the values of ¢ over D,. Put
Ao = Zp[[T]] C A1 := W1[[T,a]] C T for a =u2/ —1 ¢ mp,, which
is the image of W1[[l" x Y]] for k = M,. Note T = v%».



34.15. Inertia theorem:
Suppose (HO) and minimality of T. Then,

(1) after choosing I suitably in its conjugacy class, we have

an exact sequence U — I — tZ» with pyp(U) made of unipotent
matrices,

(2) there exists a non-zero divisor § € T~ satisfying 0° = —6 and
U = N\10; in other words, we have p1(1) = {(8 119) )a e tlo b e 9/\1}.

We are going to show 0 = © for © in §4.7 after proving this
theorem.



84.16. Proof of (1): From the definition of A-algebra structure
of T and p-ordinarity, we know pr(I) C M(T)NE for the mirabolic
subgroup M(T) := {(§%)]a€T*,beT}. Since Gal(QE/Qy) =

[p, Qp]% x ZX for the maximal abelian extension Q%/Q and the
local Artin symbol [p, Qp], we find

pr(D) c{(g%)|act beT }.

and det(pr(l)) = 7 = tZ» — AX. Thus we have an extension
1 - U — pp(I) — T — 1. Recall ¢g € D, with p(¢g) = (g %)
(@# b) and ¢ = limp—oo ¢} inside Gal(F(pr)/F). This extension
is split by the conjugation action of ¢g with U characterized to
be an eigenspace on which ¢g acts by ab—1 for the Teichmiiller
lift a,b of @, b; SO, we may assume to have a section s : 7 — p1 (1)
identifying 7 with {(8 9) |a S th}. Thus U4 is made of unipotent

matrices. Here we used the assumption (HO). [ ]



34.17. Known facts: non-triviality of /.
Since AN— T, I Cc T*. Two known facts:

(a) For a W-algebra homomorphism X : T — Q,, if A[r : T —

@; coincides with vp up to a finite order character ¢, f =
o1 A(T'(n))g"™ is a weight 2 cusp form in Sy(Cp”,yoe) [LFE,

§7.3];

(b) The Galois representation Prp = Pfyp IS loCally indecompos-

able (Bin Zhao, Ann. L'inst. Fourier 64 (2014), 1521-1560).

By (b) and Ny, Ker(\) = 0, U contains non-zero divisor of T—.
Thus it is “highly” non-zero.



§4.18. Proof of (2): We have U C T_ and regard ¢~ as an
abelian irreducible Zy,-representation acting on W regarded as a
Zp-module.

Apply Iwasawa’'s theorem to the splitting field k of g0_|Dp under
the notation in §4.13. Then the Galois group X'[¢ ] is cyclic over
W1[[FxT]] (I = ~%r = ¢Zp) and surjects onto Y. Since the action
of W1[[l x T]] factors through Ay, U is cyclic over Aq; SO, we
have U 2 A1. Thus we conclude py(I1) =U = {(§¢)]a € 0A1}
inside py(H) (for a suitable choice of § € T_).

By the facts in §4.17, 0 is a non-zero divisor. [ ]
By (H2), T_ = ©Tt. Since § € T—, we can write § = u® (u € T).



§4.19. Theorem: ©/0 is a unit under (HO—-2).

Proof: We have an exact sequence o — T — W|[Cp] in §3.27.
Taking o-invariant subspace (indicated superscript “+" ), T"‘/O"’ =
W[Cp]. Recall the universal character ® : Gal(Hp/F) — W[Cp] =
T+ /oF. Write py = <é g) and puta=A modoT =, d=D
mod ot = &, b = B modot : H — T=/oTT~ and ¢ = C
mod 0T : H — T—/oTT~. If b has image in mT+(T_/D+T_), by
c(g) = o(¢?)b(c1g¢), ¢ has also. This implies piy mod mT_|_D+ is
diagonal; so, p% = jpyj~ ! which implies p% mod mrd £ p1 ® X,
a contradiction as 0 is the maximal ideal for which the iden-
tity holds. Thus b is onto. Replacing pg by p/ := ¢ 1pyg for

£ = <C6> 9) ¢’ has values in GLo(TT) and p/ mod Mpy = (ggg)
with b = b/© mod mypq # 0. If w is a non-unit, b is unramified
at p (which is unramified also at ¢°); so, everywhere unramified

over F(p~), contradicting Clp -y ®zm @ = 0. L



§4.20. Local indecomposability.

Corollary 4.20: If f is a Hecke eigenform belonging to T of
weight k > 2, psy IS iIndecomposable over Ip under (HO—2).

This follows from the fact that (©) is exactly over ({¢) —1), and
hence for any height 1 prime P outside ({(¢) — 1), © mod P # 0,
and hence 86 mod P #+= 0 by Theorem 4.19.

For the companion form case, the exceptional Artin represen-
tations and induced representations in Cases U_ and D, p-local
iIndecomposability question is still open.



§4.21. Concluding remarks.

e Actually we can prove A[f] C T is an integral domain fully
ramified over ({¢) — 1) similar to the structure theorem in 4.8
under (HO-1).

e Indecomposability as in Corollary 4.20 also holds under (HO-1)
when F' is real. Without assuming (H2), T~ is generated more
than one element over T_I_; SO, no single ©. Obviously, the key
point is to show () NA = ({e) — 1).

e When F' is an imaginary quadratic field, in Case U in the
imaginary version, under (HO—2), local indecomposability holds
for ps, as long as f does not have CM (this is the main result
of [CWE]).

e T he inertia theorem is always true unless all f belonging to T
have CM, though 6 could be a zero-divisor if p is induced from
an imaginary quadratic field.



