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What happens if k = 1?

Haruzo Hida

A Hecke eigenform f of weight k = 1 is associated to a 2-

dimensional Artin representation ρ = ρf : G → GL2(Z[f ]) with

finite image (by Deligne–Serre). Thus the system {ρf,p = ρf}p
is a singleton, but still we can vary p and regard ρf as having

values in GL2(Wp).

The situation is totally different from the case of k ≥ 2. We

explore dependence on p of the universal rings Rordp and Rχ,p
representing the deformation functors D = Dp,Dχ = Dχ,p : C →
SETS of ρp defined in §0.22 (if k = 1, ρp satisfies (ordp) for

almost all p as |ρ(Dp)| is bounded by ρ(G) independent of p).

Write C for the Artin conductor of ρf .



§3.1. Representability of Dχ by a Hecke algebra. If k = 1,

we have χ = ψ. We already mentioned, the following identity

Rordp /(t− ψ(γ)) ∼= Rψ,p.

We can define Tψ,p := Tp/(t− ψ(γ))Tp. Under the Taylor–Wiles

condition: ρ 6∼= Ind
Q

Q[
√
p∗]
ϕ (for whichever choice of ϕ), we have

Rp
∼= Tp and hence Rψ,p

∼= Tψ,p. However T1 ⊂ h1(Cp,ψ)/W is far

smaller than Tψ,p, and therefore, Rψ,p does not have a canonical

Z[ψ]-integral structure. The reason for this is that the existence

of the Eichler–Shimura isomorphism is only for k ≥ 2:

H1
! (Γ0(Cp),Sym

k−2 ⊗ ψ) ∼= Sk(Cp, ψ)2

as Hecke modules which is used to prove the rank theorem in

§2.16 which is also only valid for k ≥ 2. Here Symn is the sym-

metric n-th tensor representation of Γ0(Cp) ↪→ GL2(C) and we

regard ψ as character of Γ0(Cp) by
(
a b
c d

)
7→ ψ(d) naturally.
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§3.2. Some remarks.

Since ρf is the deformation of ρf,p, we have a natural surjection

Tψ,p � T1. It is the case to have rationality of L-values with

respect to the period (which is independent of the choice of the

place), we need to have three cohomological interpretation of

modular/automorphic forms.

(1) Automorphic form as an analytic function;

(2) Automorphic form giving rise to topological (Betti) coho-

mology class of locally constant sheaf (Eichler–Shimura);

(3) Automorphic form giving rise to de Rham cohomology class

(analytic cohomology).

All these requirements are fulfilled, an automorphic form is called

algebraic (or cohomological). Weight 1 forms miss Betti prop-

erty. It is also a reflection of non-criticality of L(1, Ad(f)) for f

of weight 1. Artin L-value is non-critical if its splitting field has

complex places.



§3.3. Selmer group over a number field.

For a subfield M of F (p)(ρ), writing GM for the subgroup of G

fixing M and D℘ ⊂ GM for the decomposition subgroup of a

prime ℘|p of M , we define the Selmer group Sel(Ad(ρ)) for any

ρ ∈ D(A) by

SelM(Ad(ρA)) := Ker(H1(GM , Ad(ρA)∗)→
∏

℘|p

H1(D℘, Ad(ρA)∗

F+
−,℘H1(D℘, Ad(ρA)∗)

),

where ℘ runs over all prime factors of p in M , and choosing

a℘ ∈ GL2(A) so that a℘ρAa
−1
℘ |D℘ =

( ε℘ ∗
0 δ℘

)
with δ℘ unramified

and δ℘ mod mA = δ, a℘F
+
−,℘H

1(D℘, Ad(ρ)∗)a−1
℘ is made of co-

homology classes upper triangular over D℘ and upper nilpotent

over the inertia subgroup I℘ of D℘.

For a while, the weight k of f is an integer ≥ 1. Let ρ = ρp and

T = Tp.



§3.4. One generator theorem.

Theorem 3.4: Suppose ρ|Dp = ε ⊕ δ (p tamely ramified). As-

sume that ClM ⊗Z[G] Ad(ρ) = 0 for M = F (Ad(ρ)) and that the

Galois module Ad(ρ)|Dp does not contain µp(Qp)⊗FpF as a Galois

subquotient. Then we have T ∼= Λ[X]/(D(X)) for a distinguished

polynomial D(X) with respect to mΛ (i.e., dimF tRord/Λ = 1).

• D(X) is distinguished if D(X) ≡ Xdeg(D) mod mΛ.

• If k = 1, p - | Im(ρf)| ⇒ p is tamely ramified in F (ρ)/Q.

• Suppose p - C. For 2 ≤ k ≤ p, p is tamely ramified if and only if

there exists g ∈ Sp+1−k(C,ψ)/F with na(n, f) ≡ nka(n, g) mod p

for all n (Conjectured by Serre and a theorem of D. Gross and R.

Coleman–J. F. Voloch; see Inventiones 110 (1992), 263–281).

The form g is called a companion form of f . Weight 1 form is a

companion of weight p form.

• Is the p-tameness necessary for the assertion of the theorem?



§3.5. Induced representation. We prepare several facts on

induced representation for the proof of Theorem 3.4. Let A ∈
CLW and G be a profinite group with a closed subgroup H. Put

∆ := G/H. Let H be a character ϕ : G → A. Let A(ϕ) ∼= A

on which H acts by ϕ. Regard the group algebra A[G] as a

left and right A[G]-module by multiplication. Define IndGHϕ/A :=

A[G] ⊗A[H] A(ϕ) (so, ξh⊗ a = ξ ⊗ ha = ξ ⊗ ϕ(h)a = ϕ(a)(ξ ⊗ a))
for h ∈ H. and let G acts on IndGHϕ/A by g(ξ ⊗ a) := (gξ) ⊗ a.
The resulted G-module IndGHϕ/A is the induced module.

Similarly we can think of indGH ϕ/A := HomA[H](A[G], A(ϕ)) (so,

φ(hξ) = hφ(ξ) = ϕ(h)φ(ξ)) on which g ∈ G acts by gφ(ξ) =

φ(ξg). In some books, indGHϕ is written as CoindGHϕ (co-induced

representation), but they are isomorphic if H has finite index in

G (as we will see soon).



§3.6. Matrix form of induced representations. Assuming

(G : H) = 2 for simplicity, we like to describe matrix form of

IndGHϕ. Suppose that ϕ has order prime to p. Then for ς ∈ G
generating G over H, ϕς(h) = ϕ(ς−1hς) is again a character of H.

The module IndGHϕ has a basis 1G ⊗ 1 and ς ⊗ 1 for the identity

element 1G of G and 1 ∈ A ∼= A(ϕ).

We have

g(1G ⊗ 1, ς ⊗ 1) = (g ⊗ 1, gς ⊗ 1)

=





(1G ⊗ g, ς ⊗ ς−1gς) = (1G ⊗ 1, ς ⊗ 1)
(
ϕ(g) 0
0 ϕς(g)

)
if g ∈ H,

(ς ⊗ ς−1g,1G ⊗ gς) = (1G ⊗ 1, ς ⊗ 1)

(
0 ϕ(gς)

ϕ(ς−1g) 0

)
if gς ∈ H,

Thus extending ϕ to G by 0 outside H, we get

IndGHϕ(g) =

(
ϕ(g) ϕ(gς)

ϕ(ς−1g) ϕ(ς−1gς)

)
. (1)



§3.7. IndGHϕ
∼= indGHϕ.

We prove now that the two inductions are equal: IndGHϕ
∼=

indGHϕ. The induction indGHϕ has basis (φ1, φς) over A[H] given

by φ1(ξ + ξ′ς−1) = ϕ(ξ) ∈ A = A(ϕ) and φς(ξ + ξ′ς−1) = ϕ(ξ′) ∈
A = A(ϕ) for ξ ∈ A[H]; so, (∗) φ1(ξ

′ + ξς−1) = φς(ξ + ξ′ς−1).

Then we have

g(φ1(ξ+ ξ′ς−1), φς(ξ+ ξ′ς−1))

= (φ1(ξg+ ξ′ς−1gςς−1), φς(ξg+ ξ′ς−1gςς−1))

=





(φ1(ξ), ϕς(ξ
′))

(
ϕ(g) 0
0 ϕς(g)

)
(g ∈ H),

(φ1(ξ
′ς−1g), φς(ξgς))

(∗)
= (φ1(ξ), φς(ξ

′))
(

0 ϕ(gς)
ϕ(ς−1g) 0

)
(gς ∈ H).

Thus we get

IndGHϕ
∼= indGHϕ. (2)



§3.8. Adjoint formula for Hom.

Let T be an S-algebra (here T and S are possibly non-commutative

rings with identity). Let M be an S-module and N be a T -

module. Regard T as a right S-module by right multiplication,

and consider the scalar extension T ⊗S M which is an T -module

by α(a⊗m) = (αa)⊗m for α, a ∈ T . Let i : M → T⊗SM be the S-

linear map i(m) = 1T⊗m. Since i(bm) = 1⊗Sbm = b⊗Sm = bi(m)

for b ∈ S, indeed, i is S-linear. We have the following universal

propertry

• If N is a T -module, for any S-linear map M
f−→ N , there is a

unique T -morphism g : T ⊗S M → N such that g ◦ i = f .

This follows from the universality of the tensor product applied

to the T -bilinear map T ⊗S M → N given by a ⊗ m 7→ af(m).

Therefore, we get the adjoint formula for the tensor product:

HomT (T ⊗S M,N) ∼= HomS(M,N).



§3.9. Dual and derived category version of adjoint.

By the derived category version of this, we get

Ext
q
T (T ⊗S M,N) ∼= Ext

q
S(M,N) for all q ≥ 0.

There is a dual version. Regard HomS(T,M) as T -module by

αφ(a) = φ(aα) for φ ∈ HomS(T,M). Let π : HomS(T,M) → M

by π(φ) = φ(1T ), which is S-linear. Then by the universality of

HomS, we have

• If N is a T -module, for any S-linear map N
f−→ M , there is a

unique T -morphism g : N → HomS(T,M) such that π ◦ g = f .

From this, we get

HomT (N,HomS(T,M)) ∼= HomS(N,M),

and again

Ext
q
T(N,HomS(T,M)) ∼= Ext

q
S(N,M) for all q ≥ 0.



§3.10. Shapiro’s lemma. Let G be a group and H be a

subgroup of finite index. Take a commutative ring B with

identity. We apply the above argument to the group algebras

T = B[G] and S = B[H]. Then we write IndGHM := T ⊗S M and

indGHM := HomS(A,M) as T -modules. Then we have

Lemma 3.10.1 (A. Shapiro)

Ext
q
B[G](IndGHM,N) ∼= Ext

q
B[H]

(M,N) for all q ≥ 0,

Ext
q
B[G](N, indGHM) ∼= Ext

q
B[H]

(N,M) for all q ≥ 0.

Since the cohomology group Hq(G, N) can be identified with

ExtnB[G](B,N) (see [MFG, §4.3.1]), we can reformulate this as

Corollary 3.10.2:

Hq(G, indGHM) ∼= Hq(H,M) for all q ≥ 0.



§3.11. Proof of One generator theorem, Step 0.

Since T is free of finite rank over Λ, if T is generated by one

element Θ ∈ mT over Λ, the multiplication by Θ on T has its

characteristic polynomial D(X) of degree e = rankΛ T which is

a distinguished polynomial with respect to mΛ satisfying T =

Λ[[X]]/(D(X)). Here a polynomial f(X) ∈ A[X] is distinguished

with respect to a prime A-ideal P if f(X) ≡ Xdeg(f) mod P .

Since T is generated by Tr(ρT), the morphism π : Rord → T with

π ◦ ρ
∼= ρT is surjective. Thus we need to prove that Rord is

generated by one element over Λ. In other words, we prove that

t∗
Rord/Λ

:= mRord/(m
2
Rord

+ mΛ) ∼= Sel(Ad(ρ))∨ has dimension ≤ 1

over F.



§3.12. Step 1: Restriction.

Write G = Gal(F (Ad(ρ))/Q). If p - |G|, plainly H1(G,Ad(ρ)∗) = 0.

Otherwise, by Dickson’s classification §2.12, G is isomorphic to

either PSL2(F
′), PGL2(F

′) for a subfield F′ of F or A5 (when

p = 3), and we know H1(G,Ad(ρ)∗) = 0 (e.g., Wiles’ FLT paper

Proposition 1.11). By restriction, for M = F (Ad(ρ)), we find

Sel(Ad(ρ)) ↪→ HomZ[G](GM , Ad(ρ)
∗).

This map has image in SelM(Ad(ρ)): Sel(Ad(ρ)) ↪→ SelM(Ad(ρ)).

Thus we need to show dimF SelM(Ad(ρ)) ≤ 1 under our assump-

tions.

Some notation: Let O be the integer ring of M , Op = O ⊗Z Zp

and Ô×p = lim←−nO
×
p /(O×p )p

n
(the maximal p-profinite quotient of

O×p ). Similarly set Ô×℘ = lim←−nO
×
℘ /(O×℘ )p

n
for each prime factor

℘|p.



§3.13. Step 2: Selmer sequence. We fix ℘0 and choose the

inertia group I0 at ℘0 of GM so that ρT|I0 has values in upper

triangular subgroup with the trivial quotient. For each ℘|p, we

pick g℘ ∈ G and put I℘ := g℘I0g
−1
℘ ⊂ GM is a inertia subgroup

of ℘. By class field theory, writing GabM for the maximal abelian

quotient of GM , Ô×p → GabM � CM for CM := ClM ⊗Z Zp is exact,

and applying HomZ[G](?, Ad(ρ)),

HomZ[G](CM , Ad(ρ)) ↪→ SelM(Ad(ρ))G
π−→ HomZp[G](Ô

×
p , Ad(ρ))

with Im(π) made of ramified Selmer cocycles at p. Therefore,

identifying the image of I0 in GabM with Ô×℘0 by class field theory,

φ ∈ π(SelM(Ad(ρ))G) has values over Ô×℘0 in the upper nilpotent

subalgebra n ⊂ sl2(F) and in Ad(ρ(g℘))(n) = g℘ng−1
℘ over Ô×℘ .

Let D be the p-decomposition subgroup D ⊂ G of ℘0.



§3.14. Step 3: Use of Shapiro’s lemma. Note p - |D|. Then
the isomorphism class of a p-torsion-free Zp[D]-module L of finite
type is determined by the isomorphism class of Qp[D]-modules
L ⊗Zp Qp. By p-adic logarithm and the normal basis theorem,

Ô×℘ ⊗Zp Qp
∼= IndD1 Qp = Qp[D] as Qp[D]-modules. We conclude

Ô×℘ ∼= µp(M℘)⊕ IndD1 Zp. Up to p-torsion, the p-profinite comple-

tion Ô×p is isomorphic to Zp[G] = IndG1 Zp. If µp(M℘) = {1}, we
get

HomZp[G](Ô
×
p , Ad(ρ)) = HomZp(Zp, Ad(ρ))

∼= Ad(ρ)

from Shapiro’s lemma in which π(SelM(Ad(ρ))G) is sent into n

having dimension 1 over F. Thus the theorem follows from our
assumption: HomZ[G](ClM , Ad(ρ)) = ClM ⊗Z[G] Ad(ρ) = 0; so,

dimF SelM(Ad(ρ))G = dimF π(SelM(Ad(ρ))G) ≤ 1. This finishes
the proof when µp(M℘) = {1}.



§3.15. Final step: µp(M℘0) 6= {1}.

Now assume that µp(M℘0) has order p. By our assumption,

Ad(ρ)|D does not contain ω for ω := νp mod pZp. We have

Ô×p ∼= IndG
D
µp(Q)⊕IndG1 Zp, since Ô×℘0

∼= µp(M℘0)⊕IndD1 Zp. Since

Ad(ρ)|D does not contain ω, by Shapiro’s lemma,

IndG
D
µp(M℘0)⊗Z[G] Ad(ρ) = 0,

and we find

HomZp[G](Ô
×
p , Ad(ρ))

∼= HomZp[G](IndG1 Zp, Ad(ρ)).

Then by the same argument as above, we conclude

dimF SelM(Ad(ρ))G = dimF π(SelM(Ad(ρ))G) ≤ 1

as desired.



§3.16. Weight 1 cyclicity theorem.

Corollary 3.16: Suppose that f has weight 1, p - | Im(ρf)| (or p
is tamely ramified in F (ρf)), T = Rord, Ad(ρ)⊗Z[Dp] µp(M℘0) = 0

and ClM ⊗Z[G] Ad(ρf) = 0 for M := F (Ad(ρ)). Then if A ∈ CLΛ,

Sel(Ad(ρA))∨ ∼= A/LΛ(ϕ)A (LΛ(ϕ) := ϕ(LΛ)) as A-modules for

each ϕ ∈ HomCLΛ
(Rord, A) for LΛ ∈ T in Theorem 2.24.

Proof. By theorem 3.4 and the second fundamental exact se-

quence

T ∼= (D)/(D2)
x7→LΛx−−−−−→ T ∼= TdX → ΩT/Λ→ 0.

Tensoring A, we get Sel(Ad(ρA))∨ ∼= ΩT/Λ ⊗T A
∼= A/LΛ(ϕ)A by

Theorem 1.27 as desired.



§3.17. Open questions:
If f has weight k ≥ 2 which is not a binary theta series of an

imaginary quadratic field, we have Rordp = Tp = Λ for almost
all ordinary primes p of Z[f ]; so, Sel(Ad(ρp)) = 0 for almost
all ordinary p. Note Im(ρp) modulo center is isomorphic to
PGL2(F

′) or PSL2(F
′) (for F′ ⊂ F) by a result of Ribet. For

these classical groups, group theorists proved H1(G,Ad(ρ)) = 0,
but H2(G,Ad(ρ)) is 1-dimensional. Therefore as seen in §3.12,
for M = F (Ad(ρp)), Sel(Ad(ρp)) ⊂ SelM(Ad(ρp))

G, which may
not be surjective. Is this an isomorphism? If so, by the exact
sequence in §3.13, ClM ⊗Z[G]Ad(ρp) = 0. Is this vanishing of the
Ad(ρp)-part of CLM true for almost all p? In the 1-dimensional
case, for ωp = (νp mod pZp), if we fix an integer k > 0,

ClQ[µp] ⊗Z[G] ω
1−2k
p = 0⇔ p - ζ(1− 2k)

by Herbrand-Ribet theorem. Kummer–Vandiver conjecture (true
for p up to 2 billion) tells us ClQ[µp] ⊗Z[G] ω

2k
p = 0? for all p.



§3.18. Induced representation from a real quadratic field.

We now study a very specific case of weight 1 which produces

Tp 6= Λ for all ordinary minimal p. Fix a real quadratic field F =

Q[
√
D] with discriminant D > 0 and integer ring O and a finite

order character ϕ : Gal(Q/F )→ Z[ϕ]×. Write f for the conductor

of ϕ. By class field theory, we may regard ϕ : Cl+F (f) → Z[ϕ]×.
Assume that ϕ(ξ) = −1 for any totally negative ξ ∈ O with ξ ≡ 1

mod f (i.e., ϕ ramifies at one infinite place ∞ of F ). By Hecke,

f =
∑

0 6= a : O-idealsϕ(a)q
N(a) is in S1(C,ϕ|Zα) for α :=

(
D

)
. f is

a primitive form of conductor C = D ·N(f).

The associated Galois representation is given by the Artin rep-

resentation ρf = Ind
Q
F ϕ. Indeed, by the explicit form of induced

representation, Tr(ρf(Frobl)) = 0 = a(l, f) if a prime l is inert in

F and Tr(ρf(Frobl)) = ϕ(l)+ϕ(lς) = a(l, f) if (l) = llς with l 6= lς

for the non-trivial automorphism ς of F .



§3.19. Irreducibility. Let ϕ = ϕp := (ϕ mod p). Thus ρ = ρp =

Ind
Q
F ϕ. Since ϕ has order prime to p, ρp is minimal. Suppose

ϕ 6= ϕς with ϕς(g) = ϕ(ς−1gς) for ς ∈ G inducing non-trivial

automorphism of F . Then for H = Ker(α : G → {±1}), the

normalizer of ρp(G) contains
(
0 ϕ(ς2)
1 0

)
and a diagonal matrix

with distinct diagonal entries; so, the centralizer of ρp is made

of scalar matirx. Thus we have shown the “⇒”-direction of

Lemma 3.19: We have ϕ 6= ϕς if and only if ρp = Ind
Q
F ϕ is

absolutely irreducible.

If ϕ = ϕς, the centralizer of Ind
Q
F ϕ contains also an anti-diagonal

element and hence it is bigger than the center, showing Ind
Q
F ϕ

is reducible. Hereafter we assume ϕ 6= ϕς or equivalently ϕ− :=

ϕϕ−1
ς 6= 1.



§3.20. Criterion for inducedness.

Theorem 3.20 For a representation ρA : G → GL2(A) ∈ D(A)

for A ∈ CLB, suppose ρ mod mA is absolutely irreducible. Then

ρ⊗ α ∼= ρ if and only if ρ = IndGH φ for a character φ : H→ A×.

Proof of ⇐: By the explicit form (G = HtHς):

ρ(g) = IndGH φ(g) =

(
φ(g) φ(gς)

φ(ς−1g) φ(ς−1gς)

)
,

for j = diag[−1,1], we find ρ · α = jρj−1, where ρ · α(g) is the

matrix ρ(g) multiplied by the scalar α(g).



§3.21. Converse.

Conversely, suppose ρ ·α = JρJ−1. Then J2 commutes with ρ as

α2 = 1. Let E ⊂ M2(A) be the subalgebra generated over A by

ρ(g) ∈ G. By absolute irreduciblity of ρ mod mA (Lemma 3.19),

E ⊗A A/mA = M2(F); so, by Nakayama’s lemma, E = M2(A).

Thus J2 is a scalar. Since ρ · α 6= ρ, J is non-scalar.

Since ρp ·α = jρpj
−1, J mod mA = z · j mod mA for z ∈ F×. Lift-

ing z to z ∈ A× and replacing J by z−1j, we may assume that

J ≡ j mod mA. This implies z := J2 ∈ 1 + mA and hence the

scalar z is a square in A by p > 2. Thus replacing J by
√
z−1J,

we may assume that J has eigenvalues ±1. The −1-eigenspace

of J is stable under H giving rise to a character φ : H → A× with φ

mod mA = ϕ. Then by Shapiro’s lemma, we find ρ = Ind
Q
F φ.



§3.22. Minimality and ordinarity of ρ = ρp := Ind
Q
F ϕ.

By minimality, for the conductor f of ϕ, ρ has conductor C :=

N(f)D. We pick a prime ℘|p of F .

(R−) If p|C and α(p) = −1, ϕ and ϕς both ramifies at p; so, no

p-unramified quotient of ρ|Dp (No ordinary case).

(R+) If p|C and α(p) = 1 (so, (p) = ℘℘ς with ℘ 6= ℘ς), to have

p-unramified quotient, we may assume that ℘|f and ℘ς - f. In this

case δ = ϕς (p-distinguished).

(D) If p|C and α(p) = 0 (so, (p) = ℘2). To have p-unramified

quotient, ℘ - f. We need to have δ(Frobp) = ϕ(Frob℘) and

ρ|Dp = diag[αδ, δ] (p-distinguished).

(U±) If α(p) = ±1 and p - C, ρ and ρ is unramified. We choose

a prime factor ℘|p.



§3.23. Choice of δ and δ in Cases D and (U±).
In Case U+, ρ(Frobp) = diag[ϕ(℘), ϕς(℘)] and we take δ :=

(ϕς mod p) (in this case, Dp = Dp) and δ = ϕς.

In Case U−, taking ς = Frobp and choosing a square root δ =

δ(Frobp) of ϕ(Frob2
p), we have ρ(Frobp) =

(
0 δ2
1 0

)
and ρ(Frobp) ∼

diag[δ,−δ] (automatically p-distinguished). We choose an un-

ramified character δ : Dp/Ip = 〈Frobp〉 → Q
×

such that δ2 = ϕ|Dp
and δ(Frobp) = δ. Put δ = (δ mod p).

In Case D, ϕ is unramified at p, and hence ϕ|Dp = ϕς |Dp. Then

ρ|Dp is a direct sum of subspaces on which Ip acts trivially and

by α. The action of Dp on H0(Ip, Ind
Q
F ϕ) gives a character δ :

D → Z[ϕ]× and ρ|Dp = diag[δα, δ] (p-distingulshed).



§3.24. p-stabilization in Case U±.

If g ∈ Sk(N,ψ) is a Hecke eigenform for N prime to p, writing

λg(T(p)) = α+ β and αβ = χ(p), define gα(z) = g(z) − βg(pz).
Then g is a Hecke eigenform of level Np with gα|U(p) = α·gα. The

form gα is called the p-stabilization of g with U(p)-eigenvalues α.

Let β = ϕ(p) if α(p) = 1 and β = −δ(Frobp) if α(p) = −1.

Replacing f by ford := fα (αβ = ψ(p)), we have ford|U(p) =

δ(Frobp)ford. Hereafter we choose the p-stabilized form ford in

place of f (and write it f). Thus δ has values in Z[f ]×, and write

the level of f as N (so, N = C if p|C and N = Cp otherwise). Put

ρp := ρf mod p. If α(p) = 1, p-distinguishedness ⇔ ϕ−|Dp 6= 1

for ϕ− = ϕϕ−1
ς .



§3.25. An involution of D in Case U+.

Take ρ = IndQ
F ϕ in the matrix form in §3.6 (1). Thus

j(ρ · α)j−1 = ρ.

In Case U+, define σ : D(A) → D(A) by σ([ρA]) = [j(ρA · α)j−1]

which is an automorphism of the functor D inducing an involution

σ ∈ Aut(Rord/Λ).

Since det(ρA·α) = det(ρA), this operation does not affect the de-

terminant character and the ordinary character δA; so, σ induces

an involution on Rχ. Define “±”-eigenspaces

R±χ := {x ∈ Rχ|σ(x) = ±x} and Rord± ⊂ Rord.



§3.26. No involution of D in Cases U− and D.

In Cases U− and D, by non-triviality of α|Dp, j(ρ · α)j−1 has

specified ordinary character δχ, which violates ordinarity. So we

assume α(p) = 1 hereafter; i.e., we are in Case U+.

Let d := Rord(σ−1)Rord. Then Rord/d is the maximal quotient of

Rord on which σ acts trivially. This means for ρ := (ρord mod d),

ρ ⊗ α ∼= σ ◦ ρ = ρ ⇔ ρ = IndQ
F Φ for a character Φ : H → Rord/d

for H := Ker(G
α−→ {±}). What is Φ? Next goal is to know Φ.

Define Cp := Cl+F (℘∞) ⊗Z Zp if α(p) = 1. Note that O×℘ /εZ

is finite for the totally positive fundamental unit ε of O and

hence Cp is a finite p-group. If p - hF , then Cp = Ô×℘ /ε(p−1)Zp ∼=
Γ/Γlogp(ε)/ logp(1+p); so, W [Cp] ∼= Λ/(〈ε〉−1) for 〈ε〉= tlogp(ε)/ logp(γ).



§3.27. Φ is a minimal universal character.

Theorem 3.27: Assume IndQ
F ϕ is minimal (i.e., the order of

ϕ is prime to p). We have Rord/d ∼= W [Cp] for Cp and Φ(h) =

ϕ(h)h|H℘ for the ℘ ray class field H℘ with Gal(H℘/F ) ∼= Cp.

Proof: If φ : Gal(H℘/F ) → A× with φ mod mA = ϕ, plainly

IndQ
F φ ∈ D(A). Thus IndQ

F Φ ∈ D(W [Cp]) and we have the uni-

versal map π : Rord � W [Cp] with π ◦ ρ ∼ IndQ
F Φ. Since we have

j(IndQ
F Φ · α)j−1 = IndQ

F Φ, σ acts trivially on Rord/Ker(π) and

hence d ⊂ Ker(π). Since σ acts trivially on Rord/d, ρ
ord mod d ∼

IndQ
F Ψ for character Ψ : H → Rord/d (§3.20). By ordinarity,

Ψςϕ
−1
ζ is unramified over D℘. Since p is split, Ψϕ−1 can ramify

only at ℘. Thus Ψϕ−1 factors through Cp. By the universality of

Φ, we have π′ : W [Cp] � Rord/d such that Ψ = π′ ◦Φ. This map

π′ is onto because Rord is generated by trace of ρ. Then π ◦π′ is
onto, and comparing the W -rank, we get Rord/d ∼= W [Cp].



§3.28. Corollary: Rord 6= Rord+ , Rχ 6= R+
χ and ΩRord/Λ 6= 0.

Proof: If Rord+ = Rord, then d = 0 and hence Rord = W [Cp].

This is impossible as Rord surjects down to Tp which has infinite

rank over W . As we have seen, if ΩA/B = 0, B � A. Thus

Rord+ 6= Rord implies Ω
Rord/Rord

+
6= 0. By the fundamental exact

sequence, ΩRord/Λ surjects down to Ω
Rord/Rord

+
; so, ΩRord/Λ 6= 0.

Recall Rχ = Rord/(t− χ(γ))Rord = Rord ⊗Λ Λ/(t− χ(γ)). Taking

“+”-eigenspace of this identity, we get R+
χ = Rord+ ⊗ΛΛ/(t−χ(γ)).

Tensoring Λ/(t − χ(γ)) over Λ with the exact sequence Rord+ →
Rord → C → 0 with C 6= 0, we find R+

χ → Rχ → C/(t− χ(γ))C →
0. By Nakayama’s lemma, C = 0 ⇔ C/(t − χ(γ))C = 0. Thus

R+
χ 6= Rχ.



§3.29. For which p, Rordp = Tp is regular?

Assuming ρ = IndQ
F ρ is minimal p-ordinary, the next goal is to

specify the single generator Θ of Tp and study the ring structure

of Tp. For example, we ask

when is Tp a regular local ring?

In this setting, writing Θ for a well chosen generator, Tp is a

regular local ring if and only if Tp
∼= Wp[[Θ]] ∼= Wp[[X]] (the one

variable power series ring) by Θ 7→ X, but still Λ = Wp[[T ]] ( Tp.

The distribution of such primes is another question we like to

ask. Are these primes infinitely many? Or even of density 1?

We explore these questions in the next couple of weeks.


