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For a fixed Hecke eigenform f of weight k ≥ 2, we have its p-

adic Galois representation {ρf,p}p for p running over primes of

Z[f ]. Defining ρp = (ρf,p mod p), we study dependence on p of

the universal rings Rordp and Rχ,p representing the deformation

functors D = Dp,Dχ = Dχ,p : C → SETS of ρp defined in §0.22

(assuming ρp satisfies (ordp)).

As before, we write Il for the inertia group of the l-decomposition

subgroup Dl ⊂ G and χ = νk−1
p ψ (f ∈ Sk(N,ψ)). We write S for

the set of ramified primes l 6= p of ρ such that ρ|Il
∼= εl⊕ δl. The

conductor of a local or Dirichlet character ψ is written as C(ψ).



§2.1. Integral modular forms. Let Z[ψ] be the subring of C
generated by the values of ψ. For an algebra Z[ψ] ⊂ A ⊂ C, let

Sk(Γ0(N), ψ;A) := {f ∈ Sk(Γ0(N), ψ)|a(n, f) ∈ A for all n > 0},
where f(z) =

∑∞
n=1 a(n, f)q

n with q = exp(2πiz). Often we write

Sk(N,ψ)/A for Sk(Γ0(N), ψ;A). We then define

hk(N,ψ)/A = A[T(n)|n = 1,2, . . . ] ⊂ EndA(Sk(N,ψ)/A)).

These are A–modules of finite type and (see [MFG, §3.1.8–9])

Sk(N,ψ)/A = Sk(N,ψ)/Z[ψ] ⊗Z[ψ] A,

HomA(Sk(N,ψ)/A, A) ∼= hk(N,ψ)/A,

HomA(hk(N,ψ)/A, A)
i−→∼ Sk(N,ψ)/A.

Here the duality between hk and Sk is given by 〈T, f〉 = a(1, f |T).

By the identity of Hecke: 〈T(n), f〉 = a(n, f), we have i(φ) =
∑∞
n=1 φ(T(n))qn.
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§2.2. Known and unknown facts for hk(N,ψ).

• Define for general Z[ψ]-algebra A,

Sk(N,ψ)/A = Sk(N,ψ)/Z[ψ] ⊗Z[ψ] A, hk(N,ψ)/A = hk(N,ψ)/Z[ψ] ⊗Z[ψ] A.

Then hk(N,ψ)/A = A[T(n)|n = 1, . . . ] ⊂ EndA(Sk(N,ψ)/A)) and

the duality statement holds without any modification.

• If N = C(ψ), hk(N,ψ)/A is reduced for any Z[ψ]-domain A flat

over Z[ψ]. This follows from the theory of new/old forms (see

Miyake’s book “Modular forms” (Springer) §4.6 (in his language,

new form is called primitive form). Actually this is still true if

N = N0C(ψ) with square-free N0|C(ψ) (why?).

Conjecture: Suppose k ≥ 2. If N is cube-free, hk(N,ψ)/A is

reduced for any Z[ψ]-domain A flat over Z[ψ].

This is known if k = 2 (Coleman/Edixhoven) and k = 3 for N
square-free (D. Ulmer). See Coleman/Edixhoven paper Math.

Ann. 310, 119–127 (1998) and Ulmer paper: IMRN No. 7

(1995)



§2.3. Hecke eigenform

A cusp form f ∈ Sk(N,ψ)/C is called a Hecke eigenform if f |T(n) =

λ(T(n))f for all n with the eigenvalues λ(T(n)) and a(1, f) = 1.

This fact is equivalent to f =
∑∞
n=1 λ(T(n))qn (by duality be-

tween Sk and hk). Fix such an eigenform f ∈ Sk(N,ψ). Then

we get an algebra homomorphism λ : h = hk(N,ψ)/Z[f ] → Z[f ].

Pick a prime p|p of Z[f ] and let W = Wp = Zp[f ] = Z[f ]p. Since

hp := hk(N,ψ)/W is free of finite rank over W , for any maximal

ideal m of hk, we have m ∩W = mW . Since hp/mWhp is a finite

ring; so, there is only a finite many maximal ideal of hp; so,

hp =
∏

m hm for the m-adic completion hm which is a local ring.

We pick the unique local ring factor Tχ,p of hp through which λ

factors. First we study how ΩTχ,p/W depends on p. The idea is

to relate ΩTχ,p/W with Ωh/Z[f ] which is independent of p.



§2.4. A summary of general properties of dA : A→ ΩA/B.

Let A Aj, B
′ be B-algebras.

(d1) ΩA1×A2/B
∼= ΩA1/B

⊕ ΩA2/B
(dA1×A2

= dA1
+ dA2

)

as DerB(A1 × A2,M) = DerB(A1,M) ⊕DerB(A2,M).

(d2) ΩS−1A/B
∼= ΩA/B ⊗A S−1A (dS−1A = dA ⊗ 1) for a multi-

plicative set 1 ∈ S ⊂ A.

(d3) ΩA⊗BB′/B′ ∼= ΩA/B ⊗B B′ (dA⊗B′ = dA ⊗ 1).

Suppose that A is a B-module of finite type.

(d4) ΩA/B = 0 if A is a separable extension of a field B.

Indeed, if A is a field, A = B[X]/(f(X)) with θ image of X in A.

Then ΩA/B = (A/f ′(θ)A)dθ = 0 as f ′(θ) 6= 0

(d5) ΩA/B is a torsion B-module if B is an integral domain of

characteristic 0 and A is reduced. This follows from (d1–2) and

(d4) since A⊗B Frac(B) = Frac(A) = K1× · · ·×Kr for separable

extensions Ki. What happens if B has characteristic p > 0.



§2.5. Preliminary lemmas.

Lemma 2.5.1. Suppose that h is reduced. Then Ωh/Z[f ] is a

finite module.

By (d5), Ωh/Z[f ] is a torsion Z[f ]-module of finite type; so, it is

finite.

Lemma 2.5.2. We have ΩTχ,p/Wp
= Ωh/Z[f ] ⊗h Tχ,p.

Note hp = h⊗Z[f ] Wp. Thus by (d3), Ωhp/Wp
= Ωh/Z[f ] ⊗Z[f ] Wp.

Since hp =
∏

m hm and Tχ,p is one of hp; so, Ωhp/Wp
=

⊕

m Ωhm/Wp
.

If Tχ,p = hM, ΩTχ,p/Wp
= ΩhM/Wp

= Ωhp/Wp
⊗hp

hM; so, we get

the desired formula.



§2.6. Consequence of vanishing of differentials.

Let A ∈ CLB.

Lemma 2.6.1. Suppose that A is a torsion-free B-algebra.

Then ΩA/B ⊗A A/a = 0 for a proper A-ideal a if and only if

A = B.

Proof. We need to prove ΩA/B ⊗A A/a = 0 ⇒ A = B. By

Nakayama’s lemma, we have ΩA/B = 0 ⇔ ΩA/B ⊗A F = 0 ⇔
ΩA/B ⊗A A/a = 0. Thus we may assume that a = mA. Thus

we have t∗A/B := mA/(m
2
A+ mB) = ΩA/B ⊗A F = 0, which implies

that iB(mB) = mA, and therefore by the argument in §1.5, we

have a surjective B-algebra homomorphism π : B � A. Thus

torsion-freeness tells us Ker(π) = 0, and hence A = B.



§2.7. Theorem: Tχ,p = Wp for almost all p.

We actually prove

Theorem 2.7: Let Ann(f) be the annihilator of Ωh/Z[f ] in Z[f ].

Then Ann(f) is a non-zero ideal of Z[f ], and if p - Ann(f), then

Tχ,p = Wp.

Proof. By Lemma 2.5.1, Ann(f) is a non-zero ideal of Z[f ] (could

be Z[f ] itself). By Lemma 2.6.1, we need to show that p -
Ann(f), then ΩTχ,p/Wp

= 0. By Lemma 2.5.2,

ΩTχ,p/Wp
= Ωh/Z[f ] ⊗Z[f ] Tχ,p. (*)

If p - Ann(f), then Z[f ] − p contains an element a which kill

Ωh/Z[f ] which is a unit in Tχ,p. Therefore the multiplication by

a kills the right hand side of (∗) and is an automorphism of the

left-hand-side; so, ΩTχ,p/Wp
= 0.



§2.8. Old and new form.

For a modular form g ∈ Sk(M,ϕ)/C, g(mz) = g|[m](z) for 0 <

m ∈ Z is in Sk(Mm,ϕ). A linear combination in Sk(N,ψ) of cusp

forms of the form g|[m] with m > 1 and g of lower level is called

an old form. The orthogonal complement under Peterson inner

product of the subspace of old forms is called the space of new

forms. These spaces are stable under Hecke operators. A Hecke

eigenform in Sk(N,ψ) is called primitive if f is new. Among

cusp forms of varying level with eigenvalues for T(l) given by

λ(T(l)) for almost all l, there exists a unique Hecke eigenform

of minimal level C, and that is the primitive form. The level C

is called the conductor of f . For all these, see Miyake’s book

“Modular forms” Chapter 4 (from Springer). Hereafter the fixed

eigenform f is primitive of conductor C (so, f ∈ Sk(C,ψ)).



§2.9. Modular Galois representation. The cusp form f has a

p-adic Galois representation ρp = ρf,p with values in GL2(Wp) for

each prime p of Z[f ] satisfying (e.g., [GME, §4.2])

(G1) ρp is unramified outside pC (p|p);
(G2) det(1 − ρp(Frobl)X) = 1 − λ(T(l))X + χ(l)X2 for l - Cp;

(G3) If a(p, f) = λ(T(p)) 6∈ p, ρp|Dp ∼=
( εp ∗

0 δp

)

(ordinarity);

Conjecture: a(p, f) 6∈ p for density 1 primes p?

(G4) Writing the l-primary part of an integer N > 0 as Nl, if

Cl = C(ψ)l for a prime l|C (l 6= p), then ρp|Il
∼=

(

ψl 0
0 1

)

;

(G5) If Cl = lCl(ψ) (l 6= p), then ρp|Dl
∼=

( ηνp ∗
0 η

)

for a Galois

character η : Dl →W×
p such that η2νp = χl;

(G6) If l2|(C/C(ψ)) (l 6= p), then λ(T(l)) = 0 and ρ|Dl is either

absolutely irreducible or isomorphic to
(

εl 0
0 δl

)

with C(εl)C(δl) = Cl
with C(εl) > 1 and C(δl) > 0.



§2.10. Modular deformation.

Fix a Z[f ]-prime p|p > 2 and a primitive form f ∈ Sk(C,ψ) of

conductor C. Assume that ρλ = ρf = ρf,p is minimal and satis-

fies (ordp). Let ρ = ρf,p := ρp mod p (p-distinguished is satisfied

by ρ), and consider deformation functors D = Dp,Dχ = Dχ,p
for ρ. Write Rχ = Rχ,p (resp. Rord = Rordp ) for the univer-

sal ring representing Dχ,p (resp. Dp). Consider Tr(ρχ,p) =
∑

λ∈HomWp-alg(Tχ,p,Qp)
Tr(ρλ). By (G2), Tr(ρT,χ,p)(Frobl) = T(l)|Tχ,p

for all primes l - Cp. By Chebotarev density, Tr(ρT,χ,p) has values

in Tχ,p. By the theory of pseudo-character, we have a Galois

representation ρT = ρT,χ,p : G→ GL2(Tχ,p) with Tr(ρT)(Frobl) =

T(l)|Tχ,p. Since trace determines representation (if irreducible)

over a field, we have ρT ∈ Dχ(Tχ,p). Thus we have a universal

map π : Rχ,p → Tχ,p such that π ◦ ρχ ∼ ρT.



§2.11. The R = T theorem. Here is a theorem of Taylor–Wiles

proven in 1995, writing p∗ = (−1)(p−1)/2p (see [MFG, §3.2.4]):

Theorem 2.11: Assume that ρ restricted to Gal(Q/Q[
√

p∗]) is

absolutely irreducible (Taylor–Wiles condition). If k ≥ 2, π in-

duces an isomorphism Rχ,p ∼= Tχ,p identifying ρχ with ρT,χ,p.

Moreover we have a presentation Tχ,p ∼= Wp[[T1,...,Tr]]
(S1,...,Sr)

(a local

complete intersection over Wp) for r = dimF tTχ,p/Wp
.

• By Frobenius reciprocity law, the Taylor–Wiles condition fails

⇔ ρ ∼= IndQ

Q[
√
p∗]
ϕ for a character ϕ : Gal(Q/Q[

√

p∗]) → F×.

• This condition of irreducibility over k is mostly removed by

Khare/Ramakrishna/Thorne/Kalyanswamy. See Kalyanswamy’s

thesis published in Mathematical Research Letters 25(4) (2016).

• It is known that Tχ,p is reduced if the prime-to-p conductor of

ρ match the prime-to-p level of f (e.g., under minimality).



§2.12. Classification of Im(ρ) modulo center. Leonard Eu-

gene Dickson in his book: “Linear groups” (1901) in §260 gave a

classification of subgroups G ⊂ PGL2(F) given by Im(ρ) modulo

center:

(G) If p
∣

∣

∣|G|, G is conjugate to PGL2(k) or PSL2(k) for a subfield

k ⊂ F as long as p > 3 (when p = 3, G can be A5).

Suppose p - |G| (so, p ≥ 5). Then G is given as follows.

(C) G is cyclic (⇒ Im(ρ) is abelian; ρ is reducible).

(D) G is isomorphic to a dihedral group Da of order 2a (so,

ρ = IndQ
K ϕ for a quadratic field K), and F = Fp[ϕ] (the field

generated by the values of ϕ).

(E: Exceptional cases) G is either isomorphic to A4, S4 (F = Fp),

or A5 (F = Fp if p ≡ ±1,0 mod 5 and Fp2 otherwise).

In Cases (G), (D), (E), ρ is absolutely irreducible, and in Cases

(C) and (D) with K = Q[
√

p∗], Taylor–Wiles condition fails.



§2.13. If k ≥ 2, Rχ,p = Wp and r = 0 for most ordinary p.

By a result of Ribet, if f is not a binary theta series (i.e., a theta

series of the norm form of a quadratic field), if k ≥ 2, except for

finitely many p, ρf,p falls in Case G; so, it satisfies Taylor–Wiles

condition. Thus the assertion of the section title follows from

Theorem 2.7 (and the R = T theorem).

If f mod p is a theta series associated to a quadratic field K and

k ≥ 2, unless K = Q[
√

p∗], the same outcome.

If k = 1, under irreducibility, we are either in Case (D) or (E)

and ρ = ρf,p is independent of p (or in short, ρ has finite image

and has values in GL2(Z[f ]) for a finite extension Z[f ] generated

by the values of Tr(ρ) over Z. We do not know the distribution

of primes p with Rχ,p = Wp except when ρ = Ind
Q
K ϕ for real

quadratic K. We study real quadratic case later. Next goal is to

study this question for B = Λ. We ask if Rord = Λ for most p?



§2.14. Definition of “big” Tp. Start with ρ = ρf0,p mod p

given by a primitive form f0 ∈ Sk0(C,ψ0). We have a modular

form H with H ≡ 1 mod p of weight 1 of level p with coeffi-

cients in Zp and character ω−1 for the Teichimüller character ω

modulo p. Then fHn ≡ f mod p, and i : f 7→ fHn gives a q-

expansion preserving F-linear map Sk0(Cp, ψ0)/F ↪→ Sk(Cp, ψk)/F

(k = k0 + n, ψk = ψ0ω
−n). Note that χ = (ν

k0−1
p ψ0 mod p) =

(νk−1
p ω−nψ mod p), and the action of T(n) on Sk(Cp, ψk)/F is

a(m,f |T(n)) =
∑

d|m,d|n,(d,pC)=1

χ(d)a(
mn

d2
, f) (e.g., [MFG, §3.1.7])

and hence i is Hecke equivariant. Thus we have Tk as a factor

of hk(Cp,ψk)/Wp
giving the same ρ. We then define T = Tp to

be the subalgebra of
∏

k≥k0 Tk topologically generated by T(n)

for all n (here T(n) has projection to T(n) in Tk for all k ≥ k0).

Thus Tp is reduced under minimality.



§2.15. Big Galois representation. Consider the product ρTp
=

∏

k≥k0 ρTk
: G → GL2(

∏

k≥k0 Tk). Then Tr(ρTp
(Frobl)) = T(l) ∈

Tp for all primes l - Cp. By Chebotarev, Tr(ρp) has values in

T; so, by means of pseudo characters, if ρ is irreducible, this

representation descent to ρTp
: G → GL2(T) ∈ Dp(Tp). Our base

ring B is Wp but we can descend further to the Witt vector ring

W = W (F). Since det(ρTp
) is a deformation of det(ρ), we have

a canonical algebra structure iTp
: Λ = W [[Gabp ]] → Tp. This is

the representation constructed in 1986 in my paper published

in Inventiones Math. 85 (1986), in which the representation is

constructed only assuming that a(p, f0) = λ(T(p)) 6∈ p.

Theorem 2.15: Suppose that ρf0,p is minimal satisfying (ordp)

with irreducible ρf,p. Then we have a Galois representation ρTp
:

G→ GL2(Tp) in D(Tp) such that Tr(Frobl) = T(l) for all primes

l - Cp.



§2.16. Rank theorem. Define Sordk (Cp, ψ)/A for A ∈ CLW
by the maximal subspace (and hence the maximal quotient) on

which U(p) is invertible. Since Sk0(Cp, ψ0)/F ↪→ Sk(Cp, ψk)/F (by

a T(n)-equivariant map)), we get

rankW Sordk (Cp, ψk)/W ≥ rankW Sordk0
(Cp, ψ0)/W .

Another result in 1986 is (see [GME, §3.2.4] or [LFE, §7.3]).

Theorem 2.16.1: We have, for all k ≥ 2,

r := rankW Sordk (Cp, ψk)/W = rankW Sordk0
(Cp, ψ0)/W .

Corollary 2.16.2: Tp is reduced Λ-free of rank equal to r and

Tp/(t − χ(γ)) ∼= Tχ,p (χ = νk−1
p ψk) for all k ≥ 2. If Taylor–

Wiles condition holds for ρp, we have Rordp
∼= Tp. In particular, if

p - Ann(f), Rordp
∼= Λ.

We prove the corollary assuming that Rχ,p = Tχ,p for all k ≥ 2,

though the first assertion is valid without having R = T theorem.



§2.17. Proof of Corollary. Since ρTχ ∈ D(Tχ), we have the

universal map πχ : Rχ → Tχ with π(Tr(ρχ)) = Tr(ρTχ); so, πχ

is onto. Since Rordp /(t − χ(γ)) = Rχ,p and Tp/(t − χ(γ)) surjects

down to Tχ,p, we have the commutative diagram:

Λr
�−−→
π0

Rordp
�−−→
π1

Tp

onto







y







y

onto

Rordp /(t− χ(γ))Rordp −→∼ Tχ,p.

The map π0 is given as follows: Choose h1, . . . , hr ∈ Rordp giv-

ing a basis of Tχ,p modulo (t − χ(γ)). By Nakayama’s lemma,

π0(a1, . . . , ar) =
∑

i aihi is an onto Λ-linear map. Put π = π1 ◦ π0.
Thus Ker(π) ⊂ ⋂

χ(t−χ(γ))Λr = 0; so, Λr ∼= Rord ∼= Tp. The last

assertion follows from Theorem 2.7.



§2.18. Presentation theorem.

Theorem 2.18: Assume Rordp
∼= Tp and Tχ,p ∼= W [[T 1,...,T r]]

(S1,...,Sr)
for

r = dimF tTχ,p/W for one χ = νk−1
p ψk (k ≥ 2). Then we have

Rordp
∼= Λ[[T1, . . . , Tr]]/(S1, . . . , Sr) with Tj mod (t − χ(γ)) = T j

and Sj mod (t− χ(γ)) = Sj.

Proof. We write ti for the image of T i in Tχ. As remarked

in §1.21 t∗Tχ/W = ΩTχ/W ⊗Tχ F = ΩTp/Λ ⊗Tp
F = t∗Tp/Λ

. Any

lifts {ti}i of {ti}i give rise to a basis of t∗Tp/Λ
. Then we have

a surjective CLΛ-morphism π : Λ[[T1, . . . , Tr]] � Tp with Ti 7→ ti.

Then Ker(π)/(t−χ(γ)) Ker(π) is generated by S1, . . . , Sr, and we

lift Si to Si ∈ Ker(π). So Ker(π) ⊗Λ[[T1,...,Tr]]
F is generated by

the image of Si as F-vector space; so, by Nakayama’s lemma,

we have Ker(π) = (S1, . . . , Sr) as desired.



§2.19. Deformation functor over Λ and Rord. Let κ :=

det(ρord) : G→ Λ×. Then (Λ,κ) represents

A 7→ {ξ : G→ A×|ξ mod mA = det(ρ)}.
Consider a new deformation functor Dκ : CL/Λ → SETS:

Dκ(A) = {ρ ∈ D(A)|det(ρ) = iA ◦ κ}/Γ(mA),

slightly different from the one D, where writing iA : Λ → A for

Λ-algebra structure of A. Dκ is again represented by (Rord,ρord)

regarding Rord as a Λ-algebra by the CLW -morphism induced by

det(ρ) : G→ Rord
×
. Indeed, if ρ ∈ Dκ(A), we have iA◦κ = det(ρ).

Regarding ρ ∈ D(A), we have a unique CLW -morphism Rord
φ−→ A

with φ ◦ ρ ∼ ρ. Taking determinant, we get φ ◦ κ = det(ρ)

showing that φ is compatible with iRord and iA; so, it is a CLΛ-

morphism, showing HomΛ(R,A) ∼= Dκ(A) by φ ↔ ρ. Thus by

§1.27, Sel(Ad(ρ))∨ ∼= ΩRord/Λ ⊗Rord,φ A .



§2.20. Fitting ideals.

Let A ∈ CLB. Let M be an A-module with presentation:

Ar
L−→ As → M → 0

for a matrix L in Ms,r(A). If r ≥ s, the A-ideal FittA(M) gener-

ated by s× s-minors of L is called the Fitting ideal of M , which

is independent of the choice of the presentation (and the choice

of matrix form of L). If r < s, we put FittA(M) = 0.

By definition, FittB(M ⊗A,φ B) = B · φ(FittA(M)) for a CLB-

morphism φ : A→ B. If r = s, FittA(M) is principal.

See Appendix of Mazur–Wiles paper: Inventiones 76 (1984),

179–330 for a summary of the theory of Fitting ideal. Eisen-

bud’s book: “Commutative algebra, with a view toward algebraic

geometry” GTM 150, 1995, Springer has more details in §20.



§2.21. Examples of Fitting ideals and remarks.

• If A = B = W with mW = ($), M ∼= W/$e1W ⊕ · · · ⊕W/$erW .

Choose L = diag[$e1, . . . , $er]. If W = Zp, FittZp = (|M |) and,

FittW(M) = (
∏

i$
ei) = (||M ||

− rankZpW
p ) in general.

• If B = A = Λ and M is a Λ-torsion module, we have a Λ-linear

morphism i : M → Λ/(f1) ⊕ · · · ⊕ Λ/(fr) for fj ∈ mΛ with finite

kernel and finite cokernel. Then we define charΛ(M) := (
∏

i fi)

(the characteristic ideal with characteristic power series
∏

i fi).
• It is known that FittΛ(M) = charΛ(M) if FittΛ(M) is principal

and
⋂

P FittΛ(M)P = charΛ(M), where P runs over all principal

non-zero prime ideals of Λ (i.e., height 1 prime ideal). So for

any normal noetherian domain A, we define

charA(M) :=
⋂

P :height 1 FittA(M)P .

• If we have a good p-adic L-function Lρ of a Galois representa-

tion ρ : G → GLn(A), one expects charA(Sel(ρ)∨) = (Lρ) (Main

conjecture).



§2.22. Tate’s theorem [MFG, §5.3.4].

Theorem 2.22.1: Suppose B is a domain. Let A ∈ CLB be a

reduced B-algebra free of finite rank over B. If A ∼= B[[T1,...,Tr]]
(S1,...,Sr)

,

then for any B-algebra homomorphism λ : A → B,

FittB(C1(λ;B)) = FittB(C0(λ, B)), C0(λ;B) = B/FittB(C0(λ;B)).

We say a Hecke eigenform f ∈ Sk(Cp, ψ)/Wp
belongs to Tp if

λf : hk(Cp, ψ)/Wp
→ Wp given by g|T(n) = λg(T(n))g factors

through Tk′. For an irreducible component Spec(I) ⊂ Spec(Tp),

if λg factors through I is called “belonging to I”. The set of

all g belonging to I is called the p-adic analytic family of Hecke

eigenform of I (or the Hida family of I).

Corollary 2.22.2: Assume that ρp is minimal satisfying (ordp).

Let B = Wp or Λ = Wp[[T ]], and write TB = Tp if B = Λ and

TB = Tk if B = Wp for k ≥ 2. Then FittTB
(ΩTB/B

) is a principal

ideal generated by a non-zero divisor LB ∈ TB.



§2.23. Proof of Corollary.

Recall the second fundamental sequence from [MFG, §5.2.3] for

a surjective morphism π : A � C with J := Ker(π):

J/J2 j 7→dj−−−→ ΩA/B ⊗A C
da⊗17→dπ(a)−−−−−−−−−→ ΩC/B → 0.

Applying this to A = B[[T1, . . . , Tr]] with C = TB and J =

(S1, . . . , Sr), we get the following diagram withe exact rows:

J/J2 −→ ΩB[[T1,...,Tr]]/B
⊗A TB −→ ΩTB/B

−→ 0

onto

x







Si 7→Si mod J2 o
x







x







‖
⊕

iTBSi −→
d

⊕

j TBdTr −→ ΩTB/B
−→ 0.

Thus FittTB
(ΩTB/B

) = (LB) for LB := det(d) ∈ TB. Since

ΩTB/B
is a torsion B-module, LB is a non-zero divisor by §2.4

(d5).



§2.24. Algebraic p-adic L.

We call P ∈ Spec(Tp)(Wp) arithmetic (resp. classical) if λ =

λP : Tp � Wp with P = Ker(λP ) factors through Tk for k ≥ 2

(resp. associated to a Hecke eigenform). Any arithmetic point

P is classical. The cusp form associated to a classical point P is

written as fP =
∑∞
n=1 λP (T(n))qn and ρP := ρfP ,p.

Theorem 2.24: Suppose Rord ∼= Tp and that Tp is a local

complete intersection relative to Λ. Then for arithmetic P ∈
Spec(Tp), we have LΛ(P ) := λP (LΛ) satisfies |LΛ(P )|

− rankZpWp
p =

|Sel(Ad(ρP)| or equivalently

LΛ(P ) = |Sel(Ad(ρP ))|
up to units in Wp.

Therefore it is natural to call LΛ : Spec(Tp) → Qp the algebraic

adjoint p-adic L-function.



§2.25. Proof.

As we have seen in §2.19, by Rord ∼= Tp,

Sel(Ad(ρA))∨ ∼= ΩTp/Λ ⊗Rord,ϕ A

for ϕ : Rord → A with ρA ∼ ϕ ◦ ρ
ord. Since as remarked in §2.20,

FittA(ΩTp
⊗Tp

A) = A · ϕ(FittTp
(ΩTp/Λ))

if ρA = ρP for arithmetic P , taking A = Tp/P = Wp, we have

LΛ(P ) = (LΛ mod P )

is the generator of FittWp(ΩTp/Λ ⊗Tp
Wp) = FittWp(Sel(Ad(ρP )).

Thus again by the computation in §2.20 of Fitting ideal for a

module over W = Wp, we get

LΛ(P ) = |Sel(Ad(ρP ))|
up to units.



§2.26. p-adic analytic L.

It is known [MFG, §5.3] for the two periods Ω±
f ∈ C×:

Theorem 2.26: Suppose Tp is local complete intersection over
Λ. Then we have for all arithmetic P ∈ Spec(Tp)(Qp)

|C0(λP ;Wp)| =

∣

∣

∣

∣

∣

∣

∣

L(1, Ad(fP))

Ω+
fP

Ω−
fP

∣

∣

∣

∣

∣

∣

∣

− rankZpWp

p

.

L(s,Ad(f)) =
∏

l det(1 − Frobρf,q(Frobl)|Ad(ρf,q)Ill
−s)−1. Here we

choose a prime ideal q of Z[f ] prime to l.

If f |T(l) = λ(T(l))f (l - Cp), for two roots α, β of X2−λ(T(l))X+
χ(l) = 0, we have

det(1 − Frobρf,q(Frobl)l
−s) = (1 − αβ−1l−s)(1 − l−s)(1 − βα−1l−s).



§2.27. Adjoint class number formula. By the Ramanujan–

Pettersson conjecture (proven by Deligne), |α| = |β| =
√

pk−1; so,
L(s,Ad(f)) converges absolutely if Re(s) ≥ 1, and by Shimura, it
has analytic continuation to the whole complex plane. Theorem
2.26 combined with Tate’s theorem implies

Corollary 2.27: Suppose Rord ∼= Tp and that Tp is local com-
plete intersection over Λ. Then a generator LΛ of FittTp

(ΩTp/Λ)

satisfies LΛ(P ) = |Sel(Ad(ρP ))| =

∣

∣

∣

∣

∣

∣

L(1,Ad(fP ))

Ω+
fP

Ω−
fP

∣

∣

∣

∣

∣

∣

− rankZpWp

p

up to

unit for all arithmetic points P ∈ Spec(Tp).

For example, if f is associated to an elliptic curve E/Q, then
choosing a generator γ± ∈ H0(E(C),Z)± for the ±-eigenspace of
complex conjugation, Ω±

f =
∫

γ± 2πifdz =
∫

γ±
df
dqdq. We hope to

come back to the analytic theory towards the end of this course.


