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Adjoint Selmer groups

Haruzo Hida

We define Sel(Ad(ρA)) for ordinary deformations ρA ∈ Dχ(A) of

an absolutely irreducible 2-dimensional minimal Galois represen-

tation ρ and show that Sel(Ad(ρ)) = tR/B and Sel(Ad(ρA))∨ ∼=

ΩR/B ⊗R,ϕ A, where ϕ : R → A with ϕ ◦ ρ ∼ ρA for the univer-

sal minimal ordinary Galois representation ρ : G → GL2(R) of ρ.

Here the deformation functors D,Dχ : C → SETS are defined in

§0.22.

As before, we write Il for the inertia group of the l-decomposition

subgroup Dl ⊂ G. We write S for the set of ramified primes l 6= p

of ρ such that ρ|Il
∼= εl ⊕ δl. We set F[ε] := F[X]/(X2) (dual

numbers) with ε↔ X mod (X2).



§1.1. p-Ordinarity condition

Fix ρ : G → GL2(F) with ρ = ρA|Dp
∼=

(
ε ∗
0 δ

)
and ε 6= δ. Let

ρA : G → GL2(A) (A ∈ C) be a deformation of ρ : G → GL2(F)

acting on V (ρA). We say ρ is p-ordinary if

(ordp) ρA|Dp
∼=

( εA ∗
0 δA

)
for two characters εA, δA : Dp → A× dis-

tinct modulo mA with δA unramified with δA mod mA = δ (this

is a requirement called p-distinguishedness).

Since twisting by a character ξ : G → B× induces isomorphism

between the functors deforming ρ and ρ ⊗ ξ, we may assume a

similar condition for l ∈ S (l 6= p):

(ordl) ρ|Il
∼=

(
εl,A 0
0 1

)
with εl,A 6= 1.

We can fix a character χ : G→ B×, we consider

(det) det ρ = ιA ◦ χ for the B-algebra structure ιA : B → A.

The fixed determinant functor is denoted by Dχ : C → SETS.
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§1.2. Deformation functor.

We consider the following functors for a fixed absolutely irre-

ducible representation ρ : G → GL2(F) satisfying (ordp) and

(ordl). Recall D∅,D,Dχ : C → SETS given by

D∅(A) := {ρA : G→ GL2(A)|ρA mod mA = ρ}/Γ(mA),

D(A) = {ρA ∈ D
∅(A)|(min), (ordp) and (ordl)},

Dχ(A) = {ρA ∈ D(A)|det ρ = ιA ◦ χ}.

Then

Theorem 1 (B. Mazur). There exists universal couples (R, ρ),

(Rord, ρord) and (Rχ, ρχ) representing D∅, D and Dχ, respectively,

so that D(A) ∼= HomC(R
ord, A) by ρ 7→ ϕ with ϕ ◦ ρ

ord ∼ ρ (resp.

Dχ(A) ∼= HomC(Rχ, A) by ρ 7→ ϕ with ϕ ◦ ρχ ∼ ρ).

We admit this theorem (see [MFG, §2.3] or Mazur’s paper quoted

there).



§1.3. Fiber products.

Let C = C, SETS. For arrows φ′ : S′→ S and φ′′ : S′′→ S in C,

S′ ×S S′′ = {(a′, a′′) ∈ S′ × S′′|φ′(a′) = φ′′(a′′)}

gives the fiber product of S′ and S′′ over S in C. So

HomC(X, S′ ×S S′′) = HomC(X, S′)×HomC(X,S) HomC(X, S′′)

for any X ∈ C. Let F : C → SETS be a covariant functor. We

assume

|F(F)| = 1 and F(F[ε]×F F[ε]) = F(F[ε])×F(F) F(F[ε])

by two projections.

It is easy to see F ∈ {D∅,D,Dχ} satisfies this condition. Indeed,

noting that F[ε]×F F[ε] ∼= F[ε′]×F F[ε′′] ∼= F[ε′, ε′′], if ρ′ ∈ F(F[ε′])

and ρ′′ ∈ F(F[ε′′]), we have ρ′ × ρ′′ has values in GL2(F[ε′, ε′′]) is

an element in F(F[ε′]×F F[ε′′]).



§1.4. Tangent space of deformation functors.

For A ∈ C and an A-module X, suppose

|F(A)| = 1 and F(A[X] ×A A[X]) = F(A[X]) ×F(A) F(A[X]).

Note A[X] ×A A[X] = A[X ⊕ X]. The addition on X and A-

linear map α : X → X induces in the same way C-morphisms

+∗ : A[X ⊕X]→ A[X] by a+(x⊕ y) 7→ a+x+ y and α∗ : A[X]→
A[X] by a + x 7→ a + α(x). Thus we have by functoriality. the

“addition”

+ : F(A[X])×F(A) F(A[X]) = F(A[X ⊕X])
F(+∗)
−−−−→ F(A[X])

and α-action

α : F(A[X])
F(α∗)
−−−−→ F(A[X]).

With 0 = Im(F(A) → F(A[X]) for the inclusion A ↪→ A[X], this

makes F(A[X]) as an A-module; so, F(F[ε]) is an F-vector space

(called the tangent space of F).



§1.5. Cotangent spaces of local rings

Suppose that B is noetherian and pick R ∈ CLB.

Lemma 1. The ring R is noetherian if and only if t∗R/W =

mR/(m2
R + mB) is a finite dimensional vector space over F.

The space t∗R/B is called the co-tangent space of R at mR = ($) ∈

Spec(R) over Spec(B). If mB = (x1, . . . , xr), then mn
B/m

n+1
B

is generated by degree n monomial of xj; so, B/mn
B is gener-

ated by degree ≤ n polynomial of xj. Thus for W = W (F),
W [X1, . . . , Xr] has dense image in B by sending xj to Xj, and
hence W [[X1, . . . , Xr]] � B.

Since we have an exact sequence: mB/m2
B → mR/m2

R � t∗R/W , we
conclude in the same way that W [[X1, . . . , Xr, Xr+1, . . . , Xr+s]]
surjects onto R sending Xi with i > r to generators of t∗R/B.

Thus the number of generators over B of R is dimF t∗R/B.



§1.6. Adjoint Galois modules

Let M2(A) be the space of 2×2 matrices with coefficients in A.

We let G acts on M2(A) by gv = ρA(g)vρA(g)−1. This action is

called the adjoint action of G, and this G–module will be written

as ad(ρA).

Write Z for the center of M2(A) (scalar matrices) and define

sl2(A) = {X ∈ M2(A)|Tr(X) = 0}. Since Tr(aXa−1) = Tr(X),

sl2(A) is stable under the adjoint action. This Galois module will

be written as Ad(ρA).

Since p > 2, X 7→ 1
2Tr(X)⊕ (X − 1

2Tr(X)) gives rise to M2(A) =

Z ⊕ sl2(A) stable under the adjoint action.

So we have ad(ρA) = 1⊕ Ad(ρA), where 1 is the trivial represen-

tation.



§1.7. Tangent space as cohomology

Lemma 2. Let (R, ρ) be the universal couple representing D∅

over CLW . Then

tR/W := HomF(t
∗
R/W , F) ∼= H1(G, ad(ρ)),

where H1(G, ad(ρ)) is the continuous first cohomology group of

G with coefficients in the discrete G–module V (ad(ρ)).

Proof, Step. 1, dual number.

We claim: HomCLW
(R, F[ε]) ∼= tR/W . Construction of the map.

Start with a W -algebra homomorphism φ : R→ F[ε]. Write

φ(r) = φ0(r) + φε(r)ε with φ0(r), φε(r) ∈ F.

Then the map is φ 7→ `φ = φε|mR.



§1.8. Step. 2, Well defined-ness of `φ

From φ(ab) = φ(a)φ(b), we get

φ0(ab) = φ0(a)φ0(b) and φε(ab) = φ0(a)φε(b) + φ0(b)φε(a).

Thus φε ∈ DerW(R, F) ∼= HomF(ΩR/W ⊗R F, F). Since for any

derivation δ ∈ DerW(R, F), φ′ = φ0 + δε ∈ HomCLW
(R, F[ε]),

HomR(ΩR/W ⊗R F, F) ∼= HomR(ΩR/W , F)
∼= DerW(R, F[ε]) ∼= HomCLW

(R, F[ε]).

Note Ker(φ0) = mR because R is local. Since φ is W–linear,

φ0(a) = a = a mod mR. Thus φ kills m2
R and takes mR W–

linearly into mF[ε] = Fε; so, `φ : t∗R := mR/m2
R → F. For r ∈ W ,

r = rφ(1) = φ(r) = r + φε(r)ε, and hence φε kills W ; so, `φ ∈

tR/W .



§1.9. Step. 3, φ 7→ `φ is an injection.

Since R shares its residue field F with W , any element a ∈ R can

be written as a = r + x with r ∈W and x ∈ mR.

Thus φ is completely determined by the restriction `φ of φε to

mR, which factors through t∗R/W .

Thus φ 7→ `φ induces an injective linear map ` : HomW−alg(R, F[ε]) ↪→

HomF(t
∗
R/W , F).

Note R/(m2
R + mW) = F ⊕ t∗R/W = F[t∗R/W ] with the projection

π : R � t∗R/W to the direct summand t∗R/W . Indeed, writing r = (r

mod mR), for the inclusion ι : F = W/mW ↪→ R/(m2
R + mW),

π(r) = r − ι(r).



§1.10. Step. 4, φ 7→ `φ is a surjection.

For any ` ∈ HomF(t
∗
R/W , F), we extends ` to R by putting `(r) =

`(π(r)). Then we define φ : R → F[ε] by φ(r) = r + `(π(r))ε.
Since ε2 = 0 and π(r)π(s) = 0 in F[t∗R/W ], we have

rs = (r + π(r))(s + π(s)) = rs + sπ(r) + rπ(s)

φ
−→ rs + s`(π(r))ε + r`(π(s))ε = φ(r)φ(s)

is an W–algebra homomorphism. In particular, `(φ) = `, and
hence ` is surjective.

By HomR(ΩR/W ⊗R F, F) ∼= HomCLW
(R, F[ε]), we have

HomR(ΩR/W ⊗R F, F) ∼= HomF(t
∗
R/W , F);

so, if t∗R/W is finite dimensional, we also get

ΩR/W ⊗R F ∼= t∗R/W .



§1.11. Step. 5, use of universality.

By the universality, we have

HomCLB
(R, F[ε]) ∼= {ρ : G→ GL2(F[ε])|ρ mod mF[ε] = ρ}/ ∼ .

Write ρ(g) = ρ(g) + u′φ(g)ε for ρ corresponding to φ : R → F[ε].

From the mutiplicativity, we have

ρ(gh) + u′φ(gh)ε = ρ(gh) = ρ(g)ρ(h)

= ρ(g)ρ(h) + (ρ(g)u′φ(h) + u′φ(g)ρ(h))ε,

Thus as a function u′ : G→Mn(F), we have

u′φ(gh) = ρ(g)u′φ(h) + u′φ(g)ρ(h). (1)



§1.12. Step. 6, Getting 1-cocycle.

Define a map uρ = uφ : G→ ad(ρ) by

uφ(g) = u′φ(g)ρ(g)
−1.

Then by a simple computation, we have

guφ(h) = ρ(g)uφ(h)ρ(g)−1

from the definition of ad(ρ). Then from the above formula (1),

we conclude that

uφ(gh) = guφ(h) + uφ(g).

Thus uφ : G → ad(ρ) is a 1–cocycle. Thus we get an F-linear

map

tR/W
∼= HomCLW

(R, F[ε])→ H1(G, ad(ρ))

by `φ 7→ [uφ]



§1.13. Step. 7, End of proof.

By computation, for x ∈ ad(ρ)

ρ ∼ ρ′ ⇔ ρ(g) + u′ρ(g)ε = (1 + xε)(ρ(g) + u′ρ′(g)ε)(1− xε)

⇔ u′ρ(g) = xρ(g)− ρ(g)x + u′ρ′(g)

⇔ uρ(g) = (1− g)x + uρ′(g).

Thus the cohomology classes of uρ and uρ′ are equal if and only

if ρ ∼ ρ′. This shows:

HomF(t
∗
R/W , F) ∼= HomW−alg(R, F[ε]) ∼=

{ρ : G→ GL2(F[ε])|ρ mod mF[ε] = ρ}/ ∼

∼= H1(G, ad(ρ)).

In this way, we get a bijection between HomF(t
∗
R/W , F) and H1(G, ad(ρ)).



§1.14. Tangent space of rings and deformation functor

Lemma 3. Let F = D∅,D,Dχ and R,Rord or Rχ accordingly.

Then tR/B
∼= F(F[ε]) as F-vetor spaces.

Proof. Let R be the universal ring for D∅. We have got a

canonical bijection in §1.7:

D∅(F[ε])
1-1 onto
−−−−−−→

i1
H1(G, ad(ρ))

∼
−→
i

tR/B

with a vector space isomorphism i. We have constructed a

cocycle uρ from ρ ∈ F(F[ε]) writing ρ = ρ + uρρε. Regard-

ing (ρ, ρ′) ∈ F(F[ε]) × F(F[ε]) = F(F[ε] ×F F[ε]), we see that

+(ρ, ρ′) = ρ+(uρρ +uρ′ρ)ε ∈ F(F[ε]); so, i1 is a homomorphism.

Similarly, one can check that it is F-linear. Same for Rord and

Rχ.



§1.15. Galois deformation ring is noetherian.

Let H = Gal(F (p)(ρ)/F (ρ)). Note that Hab = CF(ρ)(p
∞) =

lim←−n
ClF(ρ)(p

∞)/ClF(ρ)(p
∞)pn

and we have an exact sequence for

the integer ring O of F (ρ):

Ô×p → Hab → CF(ρ) → 1.

Therefore Hab is a Zp-module of finite type, which tells us finite-

ness of Hom(Hab, ad(ρ)). By inflation-restriction sequence,

0→ H1(F (ρ)/Q, ad(ρ))→ H1(G, ad(ρ))→ Hom(Hab, ad(ρ))

is exact. Since [F (ρ) : Q] <∞ and |ad(ρ)| <∞, H1(F (ρ)/Q, ad(ρ))

is finite. Thus H1(G, ad(ρ)) ∼= tR/W is finite. Then by the lemma

in §1.14, R is noetherian. This also tells us that Rord and Rχ are

noetherian.



§1.16 Tangent space with local condition.

We regard F(F[ε]) ⊂ H1(G, ad(ρ)). We may choose by (ordp) a

basis (dependent on l ∈ S ∪ {p}) of V (ρ) for ρ ∈ F(F[ε]) so that

ρ|Dp is upper triangular with quotient character δ congruent to

δ modulo mA. Similarly by (ordl), we choose the basis so that

ρ|Il
= εl ⊕ 1 in this order.

Theorem 2. A 1-cocycle u gives rise to a class in Dχ(F[ε]) if

and only if u|Dp is upper triangular, u|Ip is upper nilpotent and

Tr(u) = 0 over G, where v = v mod (ε).

For primes l 6= p, u(Il) = 0 as p - |Il| (minimality). The descrip-

tion of cocycles u is independent of χ; so, the tangent space

tRχ/B is independent as a cohomology subgroup as long as F

does not change.



§1.17. Proof.

By (det), 1 = det(ρρ−1) = 1 + uρε = 1 + Tr(uρ)ε; so, (det) ⇔

Tr(u) = 0 over G. Thus we tRχ/B ⊂ H1(G, Ad(ρ)).

Choose a generator w ∈ V (ε) over F[ε]. Then (w, v) is a ba-

sis of V (ρ) over F[ε]. Let (w, v) = (w, v) mod ε and iden-

tify V (ad(ρ)) with M2(F) with this basis. Then defining ρ by

(σw, σv) = (w, v)ρ(σ), for σ ∈ Dp, we have ρ(σ) =

(
ε(σ) ∗
0 δ(σ)

)

(upper triangular). If σ ∈ Ip, ρρ−1 = 1 + uρ with lower right cor-

ner of uρ has to vanish as δ = 1 on Ip, we have uρ(σ) ∈ {( ∗ ∗0 0 )} .

The condition (ordp) is equivalent to uρ is of the form ( ∗ ∗0 0 ) but

by Tr(uρ) = 0, it has to be upper nilpotent; i.e.,
(

0 ∗
0 0

)
.



§1.18. Adjoint Selmer group. For F = D or Dχ, we define the

local deformation functor Dχ,p by sending A to

{ρA : Gal(Qp/Qp)→ GL2(A)|ρA mod mA = ρ and (ordp) and (det)}.

By the proof of the theorem in §1.16, Dχ,p(F[ε]) is the space of

cohomology classes in H1(Dp, Ad(ρ)) upper triangular over Dp

and upper nilpotent over Ip. Define Ad(ρA) by the conjugation

action on sl2(A) by ρA, and put Ad(ρA)∗ := Ad(ρA) ⊗A A∨ (dis-

crete), writing A∨ = Hom(A, Qp/Zp) (Pontryagin dual). Define

Sel(Ad(ρA)) := Ker(H1(G, Ad(ρA)∗)→
H1(Dp, Ad(ρA)∗)

F+
− H1(Dp, Ad(ρA)∗)

),

where F+
− H1(Dp, Ad(ρA)∗) ⊂ H1(Dp, Ad(ρA)∗) is made of coho-

mology classes upper triangular over Dp and upper nilpotent over

Ip. Then we have Sel(Ad(ρ)) := tRχ/B.



§1.19. Rord is an algebra over the Iwasawa algebra

The finite order character det(ρ) factors through Gal(Q[µN0
]/Q)

for some positive integer N0. Let N0 be the minimal such integer

(called conductor of det(ρ)). Write N0 = Npν for N prime to p;

so, N is the prime to p-conductor of det(ρ).

If ρA is a minimal deformation of ρ, then ρA(Il)
∼= ρ(Il) and

hence det(ρA)(Il) = det(ρ)(Il). Therefore, det(ρord) is a minimal

deformation of det(ρ).

By universality, for the universal character κ : G → W [[Γ]]×, we

have a (unique) algebra homomorphism i = iRord : W [[Γ]]→ Rord

such that iRord ◦ κ = det(ρ). Therefore

Rord is canonically an algebra over Λ = W [[Γ]].



§1.20. Reinterpretation of D

Consider the following deformation functor Dκ : CL/Λ→ SETS

Dκ(A) = {ρ : G→ GL2(A)|ρ mod mA
∼= ρ,

ρ satisfies (ordp), (ordl) and (detΛ)}/ ∼=,

where writing iA : Λ→ A for Λ-algebra structure of A,

(detΛ) det(ρ) = iA ◦ κ.

Proposition 1.We have Dκ(A) ∼= HomCLΛ
(Rord, A) with univer-

sal representation ρ
ord ∈ D(Rord); so,

Sel(Ad(ρ)) := tRord/Λ = Ker(H1(G, Ad(ρ))→
H1(Dp, Ad(ρ))

F+
− H1(Dp, Ad(ρ))

.



§1.21. Proof. For any ρA ∈ Dκ(A), regard ρA ∈ D(A). Then

we have ϕ ∈ HomC(R
ord, A) such that ϕ ◦ ρ

ord ∼= ρA. Thus ϕ ◦

det(ρord) = det(ρA). Since det(ρA) = ιA ◦ κ and det(ρord) =

ιRord ◦ κ, we find ϕ ◦ ιRord = ιA, and hence ϕ ∈ HomCLΛ
(Rord, A).

This shows that Rord also represents Dκ over Λ.

As we already remarked, Dκ(F[ε]) = tRord/Λ = mRord/m2
Rord + mΛ

is independent as a subgroup of H1(G, Ad(ρ)); so, we get a new

expression of Sel(Ad(ρ)).

By the proof, ΩRord/Λ⊗Rord F ∼= Sel(Ad(ρ)) ∼= ΩRχ/B⊗Rχ F, so the

smallest number of generators of ΩRord/Λ as Rord-modules and

ΩRχ/B as Rχ modules is equal. In the same way, the number of

generators of Rord as Λ-algebras and Rχ as B-algebras is equal.



§1.22. Recall the compatible choice of ρA. By (ordl) for

l ∈ S∪{p}, the universal representation ρχ is equipped with a basis

(vl,wl) so that the matrix representation with respect this basis

satisfies (ordl). By universality, each class c ∈ Dχ(A) has ρ such

that V (ρ) = V (ρχ)⊗Rχ,ϕ A for a unique ϕ ∈ HomCLB
(Rχ, A), we

can choose a unique ρA ∈ c with a basis {(vl = vl⊗1, wl = wl⊗1)}l
satisfying {(ordl):l ∈ S ∪ {p}} compatible with specialization. We

choose such a specific representative ρA for each c ∈ Dχ(A).

Start with ρA as above. Take a finite A-module X and consider

the ring A[X] = A⊕X with X2 = 0. Then A[X] is still p-profinite.

Pick ρ ∈ F(A[X]) such that ρ mod X ∼ ρA. By our choice of

representative ρ and ρA as above, we may (and do) assume

ρ mod X = ρA.



§1.23. General cocycle construction. Here we allow χ = κ

but if χ = κ. Letting B = W if χ has values in W× and Λ if χ = κ,

the functor F = Dχ is defined over CLB. Let ρA act on M2(A)

and sl2(A) = {x ∈ M2(A)|Tr(x) = 0} by conjugation. Write

this representation ad(ρA) and Ad(ρA) as before. Let ad(X) =

ad(ρA) ⊗A X and Ad(X) = Ad(ρA) ⊗A X and regard them as

G-modules by the action on ad(ρA) and Ad(ρA). Then we define

Φ(A[X]) =
{ρ : G→ GL2(A[X])|(ρ mod X) = ρA, [ρ] ∈ F(A[X])}

1 + M2(X)
,

where [ρ] is the isomorphism class in F(A[X]) containing ρ and

ρ is assumed to satisfy the lifting property described in §1.22.



§1.24. Cocycles and deformations.

Take X finite as above. For ρ ∈ Φ(A[X]), we can write ρ = ρA⊕u′ρ
letting ρA acts on M2(X) by matrix multiplication from the right.

Then as before

ρA(gh)⊕ u′ρ(gh) = (ρA(g)⊕ u′ρ(g))(ρA(h)⊕ u′ρ(h))

= ρA(gh)⊕ (u′ρ(g)ρA(h) + ρA(g)u′ρ(h))

produces u′ρ(gh) = u′ρ(g)ρA(h) + ρA(g)u′ρ(h) and multiplying by

ρA(gh)−1 from the right, we get the cocycle relation for uρ(g) =

u′ρ(g)ρA(g)−1:

uρ(gh) = uρ(g) + guρ(h) for guρ(h) = ρ(g)uρ(h)ρA(g)−1,

getting the map Φ(A[X])→ H1(G, ad(X)) which factors through

H1(G, Ad(X)). As before this map is injective A-linear map iden-

tifying Φ(A[X]) with Sel(Ad(X)).



§1.25. General adjoint Selmer group. We see that uρ : G →
Ad(X) is a 1-cocycle, and we get an embedding Φ(A[X]) ↪→
H1(G, Ad(X)) for l ∈ S ∪{p} by ρ 7→ [uρ]. The local version of Φ:

Φp(A[X]) :=
{ρ : Dp→ GL2(A[X])|ρ mod X = ρA, [ρ] ∈ Fp(A[X])}

1 + M2(X)
,

which is identified with F+
− H1(Dp, Ad(X)). Define

Sel(Ad(X)) := Ker(H1(G, Ad(X))→
H1(Dp, Ad(X))

F+
− H1(Dp, Ad(X))

),

If X = lim−→i
Xi for finite A-modules Xi, we just define

Sel(Ad(X)) = lim−→
i

Sel(Ad(Xi)).

Then for finite Xi,

Φ(A[Xi]) = Sel(Ad(Xi)) and lim−→
i

Φ(A[Xi]) = Sel(lim−→
i

Ad(Xi)).



§1.26. Differentials and Selmer group. For each [ρA] ∈ F(A),

choose a representative ρA = ϕ ◦ ρ as in §1.22. Then we have

a map Φ(A[X]) → F(A[X]) for each finite A-module X sending

ρ ∈ Φ(A[X]) chosen as in §1.21 to the class [ρ] ∈ F(A[X]). By

our choice of ρ as in §1.21, this map is injective.

Conversely pick a class c ∈ F(A[X]) over [ρA] ∈ F(A). Then for

ρ ∈ c, we have x ∈ 1+M2(mA[X]) such that xρx−1 mod X = ρA.

By replacing ρ by xρx−1 and choosing the lifted base, we conclude

Φ(A[X]) ∼= {[ρ] ∈ F(A[X])|ρ mod X ∼ ρA}; so, for finite X,

Sel(Ad(X)) = Φ(A[X]) = {φ ∈ HomB-alg(Rχ, A[X]) : φmod X = ϕ}

= DerB(Rχ, X) ∼= HomRχ(ΩRχ/B, X) ∼= HomA(ΩRχ/B⊗Rχ,ϕA, X).

Thus

Sel(Ad(X)) ∼= HomA(ΩRχ/B ⊗Rχ,ϕ A,X).



§1.27. Theorem Sel(Ad(ρA))∨ ∼= ΩRχ/B ⊗Rχ,ϕ A.

Proof. Take the Pontryagin dual

A∨ := HomB(A, B∨) = HomZp
(A⊗B B, Qp/Zp) = Hom(A, Qp/Zp).

Since A = lim←−i
Ai for finite i and Qp/Zp = lim−→j

p−1Z/Z, A∨ =

lim−→i
Hom(Ai, Qp/Zp) = lim−→i

A∨i is a union of the finite modules A∨i .

We define Sel(Ad(ρA)) := lim−→j
Sel(Ad(A∨i )). Defining Φ(A[A∨]) =

lim−→i
Φ(A[A∨i ]), we see from compatibility of cohomology with in-

jective limit

Φ(A[A∨]) = Sel(Ad(ρA)) = lim−→
i

Sel(Ad(A∨i ))

= lim−→
j

Ker(H1(G, Ad(A∨i ))→
H1(Dp, Ad(A∨i ))

F+
− H1(Dp, Ad(A∨i ))

)



§1.28. Proof continues. By the boxed formula in §1.25,

Sel(Ad(ρA)) = lim−→
i

Sel(Ad(A∨i )) = lim−→
i

HomRχ(ΩRχ/B ⊗Rχ A, A∨i )

= HomA(ΩRχ/B⊗RχA, A∨) = HomA(ΩRχ/B⊗RχA,HomZp
(A, Qp/Zp))

= HomZp
(ΩRχ/B ⊗Rχ A, Qp/Zp) = (ΩRχ/B ⊗Rχ A)∨.

Taking Pontryagin dual back, we finally get

Sel(Ad(ρA))∨ ∼= ΩRχ/B ⊗Rχ,ϕ A and Sel(Ad(ρ))∨ ∼= ΩRχ/B ⊗Rχ F

as desired. In particular, Sel(Ad(ρχ))
∨ = ΩRχ/B (with ρκ = ρ

ord

if χ = κ).

This is the generalization of the formula in §0.19

Ck
∼= ΩZp[Ck]/Zp

⊗Zp[Ck]
Zp.



§1.29. p-Local condition. The submodule Φp(A[X]) in the co-

homology group H1(Qp, Ad(X)) is made of classes of 1-cocycles

u with u|Ip is upper nilpotent and u|Dp is upper triangular with

respect to the compatible basis (vp, wp). Suppose we have σ ∈
Ip such that ρA(σ) =

(
α 0
0 β

)
such that α 6≡ β mod mA. Sup-

pose u is upper nilpotent over Ip. Then for τ ∈ Dp, we have

Ad(ρA)(τ)u(τ−1στ) = (Ad(ρA)(σ)−1)u(τ)+u(σ). Writing u(τ) =
(

a b
c −a

)
, we find (Ad(ρA)(σ) − 1)u(τ) =

(
0 (αβ−1−1)b

(α−1β−1)c 0

)
.

Since ρA(τ) is upper triangular and u(τ−1στ) is upper nilpotent,

Ad(ρA)(τ)u(τ−1στ) is still upper nilpotent; so, (α−1β − 1)c = 0

and hence c = 0. Therefore u is forced to be upper triangular

over Dp. Thus we get

Lemma 4. If ρ(σ) for at least one σ ∈ Ip has two distinct eigen-

values, Φp(A[X]) gives rise to the subgroup of H1(Qp, Ad(X))

made of classes containing a 1-cocycle whose restriction to Ip is

upper nilpotent.


