Lecture slide No.1 for Math 207c Adjoint Selmer groups Haruzo Hida

We define $\operatorname{Sel}(Ad(\rho_A))$ for ordinary deformations $\rho_A \in \mathcal{D}_{\chi}(A)$ of an absolutely irreducible 2-dimensional minimal Galois representation $\overline{\rho}$ and show that $\operatorname{Sel}(Ad(\overline{\rho})) = t_{R/B}$ and $\operatorname{Sel}(Ad(\rho_A))^{\vee} \cong$ $\Omega_{R/B} \otimes_{R,\varphi} A$, where $\varphi : R \to A$ with $\varphi \circ \rho \sim \rho_A$ for the universal minimal ordinary Galois representation $\rho : G \to \operatorname{GL}_2(R)$ of $\overline{\rho}$. Here the deformation functors $\mathcal{D}, \mathcal{D}_{\chi} : \mathcal{C} \to SETS$ are defined in $\S 0.22$.

As before, we write I_l for the inertia group of the *l*-decomposition subgroup $D_l \subset G$. We write S for the set of ramified primes $l \neq p$ of $\overline{\rho}$ such that $\overline{\rho}|_{I_l} \cong \overline{\epsilon}_l \oplus \overline{\delta}_l$. We set $\mathbb{F}[\varepsilon] := \mathbb{F}[X]/(X^2)$ (dual numbers) with $\varepsilon \leftrightarrow X \mod (X^2)$.

$\S1.1. p$ -Ordinarity condition

Fix $\overline{\rho} : G \to \operatorname{GL}_2(\mathbb{F})$ with $\overline{\rho} = \rho_A|_{D_p} \cong \begin{pmatrix} \overline{\epsilon} & * \\ 0 & \overline{\delta} \end{pmatrix}$ and $\overline{\epsilon} \neq \overline{\delta}$. Let $\rho_A : G \to \operatorname{GL}_2(A)$ $(A \in \mathcal{C})$ be a deformation of $\overline{\rho} : G \to \operatorname{GL}_2(\mathbb{F})$ acting on $V(\rho_A)$. We say ρ is *p*-ordinary if $(\operatorname{ord}_p) \ \rho_A|_{D_p} \cong \begin{pmatrix} \epsilon_A & * \\ 0 & \delta_A \end{pmatrix}$ for two characters $\epsilon_A, \delta_A : D_p \to A^{\times}$ distinct modulo \mathfrak{m}_A with δ_A unramified with δ_A mod $\mathfrak{m}_A = \overline{\delta}$ (this is a requirement called *p*-distinguishedness).

Since twisting by a character $\xi : G \to B^{\times}$ induces isomorphism between the functors deforming $\overline{\rho}$ and $\overline{\rho} \otimes \xi$, we may assume a similar condition for $l \in S$ $(l \neq p)$: $(\operatorname{ord}_l) \rho|_{I_l} \cong \begin{pmatrix} \epsilon_{l,A} & 0 \\ 0 & 1 \end{pmatrix}$ with $\epsilon_{l,A} \neq 1$.

We can fix a character $\chi : G \to B^{\times}$, we consider (det) det $\rho = \iota_A \circ \chi$ for the *B*-algebra structure $\iota_A : B \to A$. The fixed determinant functor is denoted by $\mathcal{D}_{\chi} : \mathcal{C} \to SETS$.

$\S1.2.$ Deformation functor.

We consider the following functors for a fixed absolutely irreducible representation $\overline{\rho}$: $G \to \operatorname{GL}_2(\mathbb{F})$ satisfying (ord_p) and (ord_l) . Recall $\mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi} : \mathcal{C} \to SETS$ given by

$$\mathcal{D}^{\emptyset}(A) := \{ \rho_A : G \to \operatorname{GL}_2(A) | \rho_A \mod \mathfrak{m}_A = \overline{\rho} \} / \Gamma(\mathfrak{m}_A),$$

$$\mathcal{D}(A) = \{ \rho_A \in \mathcal{D}^{\emptyset}(A) | (\min), (\operatorname{ord}_p) \text{ and } (\operatorname{ord}_l) \},$$

$$\mathcal{D}_{\chi}(A) = \{ \rho_A \in \mathcal{D}(A) | \det \rho = \iota_A \circ \chi \}.$$

Then

Theorem 1 (B. Mazur). There exists universal couples (R, ρ) , (R^{ord}, ρ^{ord}) and (R_{χ}, ρ_{χ}) representing \mathcal{D}^{\emptyset} , \mathcal{D} and \mathcal{D}_{χ} , respectively, so that $\mathcal{D}(A) \cong \operatorname{Hom}_{\mathcal{C}}(R^{ord}, A)$ by $\rho \mapsto \varphi$ with $\varphi \circ \rho^{ord} \sim \rho$ (resp. $\mathcal{D}_{\chi}(A) \cong \operatorname{Hom}_{\mathcal{C}}(R_{\chi}, A)$ by $\rho \mapsto \varphi$ with $\varphi \circ \rho_{\chi} \sim \rho$).

We admit this theorem (see [MFG, $\S2.3$] or Mazur's paper quoted there).

 $\S1.3.$ Fiber products.

Let $C = \mathcal{C}, SETS$. For arrows $\phi' : S' \to S$ and $\phi'' : S'' \to S$ in C,

$$S' \times_S S'' = \{ (a', a'') \in S' \times S'' | \phi'(a') = \phi''(a'') \}$$

gives the fiber product of S' and S'' over S in C. So

 $\operatorname{Hom}_{C}(X, S' \times_{S} S'') = \operatorname{Hom}_{C}(X, S') \times_{\operatorname{Hom}_{C}(X,S)} \operatorname{Hom}_{C}(X, S'')$ for any $X \in C$. Let $\mathcal{F} : C \to SETS$ be a covariant functor. We assume

 $|\mathcal{F}(\mathbb{F})| = 1$ and $\mathcal{F}(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon]) = \mathcal{F}(\mathbb{F}[\varepsilon]) \times_{\mathcal{F}(\mathbb{F})} \mathcal{F}(\mathbb{F}[\varepsilon])$ by two projections.

It is easy to see $\mathcal{F} \in {\mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi}}$ satisfies this condition. Indeed, noting that $\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] \cong \mathbb{F}[\varepsilon'] \times_{\mathbb{F}} \mathbb{F}[\varepsilon''] \cong \mathbb{F}[\varepsilon', \varepsilon'']$, if $\rho' \in \mathcal{F}(\mathbb{F}[\varepsilon'])$ and $\rho'' \in \mathcal{F}(\mathbb{F}[\varepsilon''])$, we have $\rho' \times \rho''$ has values in $GL_2(\mathbb{F}[\varepsilon', \varepsilon''])$ is an element in $\mathcal{F}(\mathbb{F}[\varepsilon'] \times_{\mathbb{F}} \mathbb{F}[\varepsilon''])$.

§1.4. Tangent space of deformation functors. For $A \in C$ and an A-module X, suppose

 $|\mathcal{F}(A)| = 1$ and $\mathcal{F}(A[X] \times_A A[X]) = \mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X])$. Note $A[X] \times_A A[X] = A[X \oplus X]$. The addition on X and A-linear map $\alpha : X \to X$ induces in the same way C-morphisms $+_* : A[X \oplus X] \to A[X]$ by $a + (x \oplus y) \mapsto a + x + y$ and $\alpha_* : A[X] \to A[X]$ by $a + x \mapsto a + \alpha(x)$. Thus we have by functoriality. the "addition"

+: $\mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X]) = \mathcal{F}(A[X \oplus X]) \xrightarrow{\mathcal{F}(+_*)} \mathcal{F}(A[X])$ and α -action

$$\alpha: \mathcal{F}(A[X]) \xrightarrow{\mathcal{F}(\alpha_*)} \mathcal{F}(A[X]).$$

With $0 = \text{Im}(\mathcal{F}(A) \to \mathcal{F}(A[X]))$ for the inclusion $A \hookrightarrow A[X]$, this makes $\mathcal{F}(A[X])$ as an A-module; so, $\mathcal{F}(\mathbb{F}[\varepsilon])$ is an \mathbb{F} -vector space (called the tangent space of \mathcal{F}).

§1.5. Cotangent spaces of local rings

Suppose that B is noetherian and pick $R \in CL_B$.

Lemma 1. The ring R is noetherian if and only if $t_{R/W}^* = \mathfrak{m}_R/(\mathfrak{m}_R^2 + \mathfrak{m}_B)$ is a finite dimensional vector space over \mathbb{F} .

The space $t_{R/B}^*$ is called the co-tangent space of R at $\mathfrak{m}_R = (\varpi) \in$ Spec(R) over Spec(B). If $\mathfrak{m}_B = (x_1, \ldots, x_r)$, then $\mathfrak{m}_B^n/\mathfrak{m}_B^{n+1}$ is generated by degree n monomial of x_j ; so, B/\mathfrak{m}_B^n is generated by degree $\leq n$ polynomial of x_j . Thus for $W = W(\mathbb{F})$, $W[X_1, \ldots, X_r]$ has dense image in B by sending x_j to X_j , and hence $W[[X_1, \ldots, X_r]] \twoheadrightarrow B$.

Since we have an exact sequence: $\mathfrak{m}_B/\mathfrak{m}_B^2 \to \mathfrak{m}_R/\mathfrak{m}_R^2 \twoheadrightarrow t_{R/W}^*$, we conclude in the same way that $W[[X_1, \ldots, X_r, X_{r+1}, \ldots, X_{r+s}]]$ surjects onto R sending X_i with i > r to generators of $t_{R/B}^*$. Thus the number of generators over B of R is $\dim_{\mathbb{F}} t_{R/B}^*$.

$\S1.6.$ Adjoint Galois modules

Let $M_2(A)$ be the space of 2×2 matrices with coefficients in A. We let G acts on $M_2(A)$ by $gv = \rho_A(g)v\rho_A(g)^{-1}$. This action is called the **adjoint** action of G, and this G-module will be written as $ad(\rho_A)$.

Write Z for the center of $M_2(A)$ (scalar matrices) and define $\mathfrak{sl}_2(A) = \{X \in M_2(A) | \operatorname{Tr}(X) = 0\}$. Since $\operatorname{Tr}(aXa^{-1}) = \operatorname{Tr}(X)$, $\mathfrak{sl}_2(A)$ is stable under the adjoint action. This Galois module will be written as $Ad(\rho_A)$.

Since p > 2, $X \mapsto \frac{1}{2} \operatorname{Tr}(X) \oplus (X - \frac{1}{2} \operatorname{Tr}(X))$ gives rise to $M_2(A) = Z \oplus \mathfrak{sl}_2(A)$ stable under the adjoint action.

So we have $ad(\rho_A) = 1 \oplus Ad(\rho_A)$, where 1 is the trivial representation.

§1.7. Tangent space as cohomology

Lemma 2. Let (R, ρ) be the universal couple representing \mathcal{D}^{\emptyset} over CL_W . Then

$$t_{R/W} := \operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F}) \cong H^1(G, ad(\overline{\rho})),$$

where $H^1(G, ad(\overline{\rho}))$ is the continuous first cohomology group of G with coefficients in the discrete G-module $V(ad(\overline{\rho}))$.

Proof, Step. 1, dual number. We claim: $\operatorname{Hom}_{CL_W}(R, \mathbb{F}[\varepsilon]) \cong t_{R/W}$. Construction of the map.

Start with a W-algebra homomorphism $\phi : R \to \mathbb{F}[\varepsilon]$. Write

$$\phi(r) = \phi_0(r) + \phi_{\varepsilon}(r)\varepsilon$$
 with $\phi_0(r), \phi_{\varepsilon}(r) \in \mathbb{F}$.

Then the map is $\phi \mapsto \ell_{\phi} = \phi_{\varepsilon}|_{\mathfrak{m}_{R}}.$

§1.8. Step. 2, Well defined-ness of ℓ_{ϕ}

From $\phi(ab) = \phi(a)\phi(b)$, we get

 $\phi_0(ab) = \phi_0(a)\phi_0(b)$ and $\phi_{\varepsilon}(ab) = \phi_0(a)\phi_{\varepsilon}(b) + \phi_0(b)\phi_{\varepsilon}(a)$.

Thus $\phi_{\varepsilon} \in Der_W(R, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}}(\Omega_{R/W} \otimes_R \mathbb{F}, \mathbb{F})$. Since for any derivation $\delta \in Der_W(R, \mathbb{F})$, $\phi' = \phi_0 + \delta \varepsilon \in \operatorname{Hom}_{CL_W}(R, \mathbb{F}[\varepsilon])$,

$$\operatorname{Hom}_{R}(\Omega_{R/W} \otimes_{R} \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_{R}(\Omega_{R/W}, \mathbb{F})$$
$$\cong \operatorname{Der}_{W}(R, \mathbb{F}[\varepsilon]) \cong \operatorname{Hom}_{CL_{W}}(R, \mathbb{F}[\varepsilon]).$$

Note $\operatorname{Ker}(\phi_0) = \mathfrak{m}_R$ because R is local. Since ϕ is W-linear, $\phi_0(a) = \overline{a} = a \mod \mathfrak{m}_R$. Thus ϕ kills \mathfrak{m}_R^2 and takes $\mathfrak{m}_R W$ linearly into $\mathfrak{m}_{\mathbb{F}[\varepsilon]} = \mathbb{F}\varepsilon$; so, $\ell_{\phi} : t_R^* := \mathfrak{m}_R/\mathfrak{m}_R^2 \to \mathbb{F}$. For $r \in W$, $\overline{r} = r\phi(1) = \phi(r) = \overline{r} + \phi_{\varepsilon}(r)\varepsilon$, and hence ϕ_{ε} kills W; so, $\ell_{\phi} \in t_{R/W}$.

§1.9. Step. 3, $\phi \mapsto \ell_{\phi}$ is an injection.

Since R shares its residue field \mathbb{F} with W, any element $a \in R$ can be written as a = r + x with $r \in W$ and $x \in \mathfrak{m}_R$.

Thus ϕ is completely determined by the restriction ℓ_{ϕ} of ϕ_{ε} to \mathfrak{m}_R , which factors through $t^*_{R/W}$.

Thus $\phi \mapsto \ell_{\phi}$ induces an injective linear map ℓ : Hom_{W-alg}($R, \mathbb{F}[\varepsilon]$) \hookrightarrow Hom_{\mathbb{F}}($t^*_{R/W}, \mathbb{F}$).

Note $R/(\mathfrak{m}_R^2 + \mathfrak{m}_W) = \mathbb{F} \oplus t_{R/W}^* = \mathbb{F}[t_{R/W}^*]$ with the projection $\pi : R \to t_{R/W}^*$ to the direct summand $t_{R/W}^*$. Indeed, writing $\overline{r} = (r \mod \mathfrak{m}_R)$, for the inclusion $\iota : \mathbb{F} = W/\mathfrak{m}_W \hookrightarrow R/(\mathfrak{m}_R^2 + \mathfrak{m}_W)$, $\pi(r) = r - \iota(\overline{r})$.

§1.10. Step. 4, $\phi \mapsto \ell_{\phi}$ is a surjection.

For any $\ell \in \operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$, we extends ℓ to R by putting $\ell(r) = \ell(\pi(r))$. Then we define $\phi : R \to \mathbb{F}[\varepsilon]$ by $\phi(r) = \overline{r} + \ell(\pi(r))\varepsilon$. Since $\varepsilon^2 = 0$ and $\pi(r)\pi(s) = 0$ in $\mathbb{F}[t^*_{R/W}]$, we have

$$rs = (\overline{r} + \pi(r))(\overline{s} + \pi(s)) = \overline{rs} + \overline{s}\pi(r) + \overline{r}\pi(s)$$
$$\xrightarrow{\phi} \overline{rs} + \overline{s}\ell(\pi(r))\varepsilon + \overline{r}\ell(\pi(s))\varepsilon = \phi(r)\phi(s)$$

is an W-algebra homomorphism. In particular, $\ell(\phi) = \ell$, and hence ℓ is surjective.

By $\operatorname{Hom}_R(\Omega_{R/W} \otimes_R \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_{CL_W}(R, \mathbb{F}[\varepsilon])$, we have $\operatorname{Hom}_R(\Omega_{R/W} \otimes_R \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F});$ so, if $t_{R/W}^*$ is finite dimensional, we also get

$$\Omega_{R/W} \otimes_R \mathbb{F} \cong t_{R/W}^*.$$

$\S1.11$. Step. 5, use of universality.

By the universality, we have

$$\begin{split} & \operatorname{Hom}_{CL_B}(R,\mathbb{F}[\varepsilon]) \cong \{\rho: G \to GL_2(\mathbb{F}[\varepsilon]) | \rho \mod \mathfrak{m}_{\mathbb{F}[\varepsilon]} = \overline{\rho}\} / \sim . \\ & \text{Write } \rho(g) = \overline{\rho}(g) + u'_{\phi}(g)\varepsilon \text{ for } \rho \text{ corresponding to } \phi : R \to \mathbb{F}[\varepsilon]. \\ & \text{From the mutiplicativity, we have} \end{split}$$

$$\overline{\rho}(gh) + u'_{\phi}(gh)\varepsilon = \rho(gh) = \rho(g)\rho(h)$$

= $\overline{\rho}(g)\overline{\rho}(h) + (\overline{\rho}(g)u'_{\phi}(h) + u'_{\phi}(g)\overline{\rho}(h))\varepsilon$,

Thus as a function $u' : G \to M_n(\mathbb{F})$, we have

$$u'_{\phi}(gh) = \overline{\rho}(g)u'_{\phi}(h) + u'_{\phi}(g)\overline{\rho}(h).$$
(1)

$\S1.12$. Step. 6, Getting 1-cocycle.

Define a map $u_{\rho} = u_{\phi} : G \to ad(\overline{\rho})$ by

$$u_{\phi}(g) = u'_{\phi}(g)\overline{\rho}(g)^{-1}$$

Then by a simple computation, we have

$$gu_{\phi}(h) = \overline{\rho}(g)u_{\phi}(h)\overline{\rho}(g)^{-1}$$

from the definition of $ad(\overline{\rho})$. Then from the above formula (1), we conclude that

$$u_{\phi}(gh) = gu_{\phi}(h) + u_{\phi}(g).$$

Thus $u_{\phi} : G \to ad(\overline{\rho})$ is a 1-cocycle. Thus we get an \mathbb{F} -linear map

$$t_{R/W} \cong \operatorname{Hom}_{CL_W}(R, \mathbb{F}[\varepsilon]) \to H^1(G, ad(\overline{\rho}))$$
 by $\ell_{\phi} \mapsto [u_{\phi}]$

$\S1.13$. Step. 7, End of proof.

By computation, for $x \in ad(\overline{\rho})$

$$\rho \sim \rho' \Leftrightarrow \overline{\rho}(g) + u'_{\rho}(g)\varepsilon = (1 + x\varepsilon)(\overline{\rho}(g) + u'_{\rho'}(g)\varepsilon)(1 - x\varepsilon)$$

$$\Leftrightarrow u'_{\rho}(g) = x\overline{\rho}(g) - \overline{\rho}(g)x + u'_{\rho'}(g)$$

$$\Leftrightarrow u_{\rho}(g) = (1 - g)x + u_{\rho'}(g).$$

Thus the cohomology classes of u_{ρ} and $u_{\rho'}$ are equal if and only if $\rho \sim \rho'$. This shows:

$$\operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F}) \cong \operatorname{Hom}_{W-alg}(R, \mathbb{F}[\varepsilon]) \cong \{\rho : G \to GL_2(\mathbb{F}[\varepsilon]) | \rho \mod \mathfrak{m}_{\mathbb{F}[\varepsilon]} = \overline{\rho}\} / \sim \cong H^1(G, ad(\overline{\rho})).$$

In this way, we get a bijection between $\operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$ and $H^1(G, ad(\overline{\rho}))$.

§1.14. Tangent space of rings and deformation functor Lemma 3. Let $\mathcal{F} = \mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi}$ and R, R^{ord} or R_{χ} accordingly. Then $t_{R/B} \cong \mathcal{F}(\mathbb{F}[\varepsilon])$ as \mathbb{F} -vetor spaces.

Proof. Let R be the universal ring for \mathcal{D}^{\emptyset} . We have got a canonical bijection in §1.7:

$$\mathcal{D}^{\emptyset}(\mathbb{F}[\varepsilon]) \xrightarrow[i_1]{1-1 \text{ onto}} H^1(G, ad(\overline{\rho})) \xrightarrow[i]{\sim} t_{R/B}$$

with a vector space isomorphism *i*. We have constructed a cocycle u_{ρ} from $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ writing $\rho = \overline{\rho} + u_{\rho}\overline{\rho}\varepsilon$. Regarding $(\rho, \rho') \in \mathcal{F}(\mathbb{F}[\varepsilon]) \times \mathcal{F}(\mathbb{F}[\varepsilon]) = \mathcal{F}(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon])$, we see that $+(\rho, \rho') = \overline{\rho} + (u_{\rho}\overline{\rho} + u_{\rho'}\overline{\rho})\varepsilon \in \mathcal{F}(\mathbb{F}[\varepsilon])$; so, i_1 is a homomorphism. Similarly, one can check that it is \mathbb{F} -linear. Same for R^{ord} and R_{χ} .

§1.15. Galois deformation ring is noetherian.

Let $H = \operatorname{Gal}(F^{(p)}(\overline{\rho})/F(\overline{\rho}))$. Note that $H^{ab} = C_{F(\overline{\rho})}(p^{\infty}) = \lim_{n \to \infty} \frac{Cl_{F(\overline{\rho})}(p^{\infty})}{Cl_{F(\overline{\rho})}(p^{\infty})^{p^{n}}}$ and we have an exact sequence for the integer ring O of $F(\overline{\rho})$:

$$\widehat{O}_p^{\times} \to H^{ab} \to C_{F(\overline{\rho})} \to \mathbf{1}.$$

Therefore H^{ab} is a \mathbb{Z}_p -module of finite type, which tells us finiteness of Hom $(H^{ab}, ad(\overline{p}))$. By inflation-restriction sequence,

 $0 \to H^1(F(\overline{\rho})/\mathbb{Q}, ad(\overline{\rho})) \to H^1(G, ad(\overline{\rho})) \to \mathsf{Hom}(H^{ab}, ad(\overline{\rho}))$

is exact. Since $[F(\overline{\rho}) : \mathbb{Q}] < \infty$ and $|ad(\overline{\rho})| < \infty$, $H^1(F(\overline{\rho})/\mathbb{Q}, ad(\overline{\rho}))$ is finite. Thus $H^1(G, ad(\overline{\rho})) \cong t_{R/W}$ is finite. Then by the lemma in §1.14, R is noetherian. This also tells us that R^{ord} and R_{χ} are noetherian.

§1.16 Tangent space with local condition.

We regard $\mathcal{F}(\mathbb{F}[\varepsilon]) \subset H^1(G, ad(\overline{\rho}))$. We may choose by (ord_p) a basis (dependent on $l \in S \cup \{p\}$) of $V(\rho)$ for $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ so that $\rho|_{D_p}$ is upper triangular with quotient character δ congruent to $\overline{\delta}$ modulo \mathfrak{m}_A . Similarly by (ord_l) , we choose the basis so that $\rho|_{I_l} = \epsilon_l \oplus 1$ in this order.

Theorem 2. A 1-cocycle u gives rise to a class in $\mathcal{D}_{\chi}(\mathbb{F}[\varepsilon])$ if and only if $u|_{D_p}$ is upper triangular, $u|_{I_p}$ is upper nilpotent and $\operatorname{Tr}(u) = 0$ over G, where $\overline{v} = v \mod (\epsilon)$.

For primes $l \neq p$, $u(I_l) = 0$ as $p \nmid |I_l|$ (minimality). The description of cocycles u is independent of χ ; so, the tangent space $t_{R_{\chi}/B}$ is independent as a cohomology subgroup as long as \mathbb{F} does not change.

§1.17. Proof. By (det), $1 = \det(\rho \overline{\rho}^{-1}) = 1 + u_{\rho}\varepsilon = 1 + \operatorname{Tr}(u_{\rho})\varepsilon$; so, (det) \Leftrightarrow $\operatorname{Tr}(u) = 0$ over G. Thus we $t_{R_{\chi}/B} \subset H^{1}(G, Ad(\overline{\rho}))$.

Choose a generator $w \in V(\epsilon)$ over $\mathbb{F}[\varepsilon]$. Then (w, v) is a basis of $V(\rho)$ over $\mathbb{F}[\varepsilon]$. Let $(\overline{w}, \overline{v}) = (w, v) \mod \varepsilon$ and identify $V(ad(\overline{\rho}))$ with $M_2(\mathbb{F})$ with this basis. Then defining $\overline{\rho}$ by $(\sigma \overline{w}, \sigma \overline{v}) = (\overline{w}, \overline{v})\overline{\rho}(\sigma)$, for $\sigma \in D_p$, we have $\overline{\rho}(\sigma) = \begin{pmatrix} \overline{\epsilon}(\sigma) & * \\ 0 & \overline{\delta}(\sigma) \end{pmatrix}$ (upper triangular). If $\sigma \in I_p$, $\rho \overline{\rho}^{-1} = 1 + u_\rho$ with lower right corner of u_ρ has to vanish as $\delta = 1$ on I_p , we have $u_\rho(\sigma) \in \{(\begin{smallmatrix} * & * \\ 0 & 0 \end{pmatrix}\}$.

The condition (ord_p) is equivalent to u_ρ is of the form $\begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$ but by $\operatorname{Tr}(u_\rho) = 0$, it has to be upper nilpotent; i.e., $\begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$.

§1.18. Adjoint Selmer group. For $\mathcal{F} = \mathcal{D}$ or \mathcal{D}_{χ} , we define the local deformation functor $\mathcal{D}_{\chi,p}$ by sending A to

 $\{\rho_A : \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \operatorname{GL}_2(A) | \rho_A \mod \mathfrak{m}_A = \overline{\rho} \text{ and } (\operatorname{ord}_p) \text{ and } (\operatorname{det}) \}.$ By the proof of the theorem in §1.16, $\mathcal{D}_{\chi,p}(\mathbb{F}[\varepsilon])$ is the space of cohomology classes in $H^1(D_p, Ad(\overline{\rho}))$ upper triangular over D_p and upper nilpotent over I_p . Define $Ad(\rho_A)$ by the conjugation action on $\mathfrak{sl}_2(A)$ by ρ_A , and put $Ad(\rho_A)^* := Ad(\rho_A) \otimes_A A^{\vee}$ (discrete), writing $A^{\vee} = \operatorname{Hom}(A, \mathbb{Q}_p/\mathbb{Z}_p)$ (Pontryagin dual). Define

$$\mathsf{Sel}(Ad(\rho_A)) := \mathsf{Ker}(H^1(G, Ad(\rho_A)^*)) \to \frac{H^1(D_p, Ad(\rho_A)^*)}{F_-^+ H^1(D_p, Ad(\rho_A)^*)}),$$

where $F_{-}^{+}H^{1}(D_{p}, Ad(\rho_{A})^{*}) \subset H^{1}(D_{p}, Ad(\rho_{A})^{*})$ is made of cohomology classes upper triangular over D_{p} and upper nilpotent over I_{p} . Then we have $Sel(Ad(\overline{\rho})) := t_{R_{\chi}/B}$.

$\S1.19$. R^{ord} is an algebra over the Iwasawa algebra

The finite order character det($\overline{\rho}$) factors through Gal($\mathbb{Q}[\mu_{N_0}]/\mathbb{Q}$) for some positive integer N_0 . Let N_0 be the minimal such integer (called conductor of det($\overline{\rho}$)). Write $N_0 = N p^{\nu}$ for N prime to p; so, N is the prime to p-conductor of det($\overline{\rho}$).

If ρ_A is a minimal deformation of $\overline{\rho}$, then $\rho_A(I_l) \cong \overline{\rho}(I_l)$ and hence det $(\rho_A)(I_l) = det(\overline{\rho})(I_l)$. Therefore, $det(\rho^{ord})$ is a minimal deformation of $det(\overline{\rho})$.

By universality, for the universal character $\kappa : G \to W[[\Gamma]]^{\times}$, we have a (unique) algebra homomorphism $i = i_{R^{ord}} : W[[\Gamma]] \to R^{ord}$ such that $i_{R^{ord}} \circ \kappa = \det(\rho)$. Therefore

 R^{ord} is canonically an algebra over $\Lambda = W[[\Gamma]]$.

$\S1.20$. Reinterpretation of \mathcal{D}

Consider the following deformation functor $\mathcal{D}_{\kappa}: CL_{/\Lambda} \to SETS$

 $\mathcal{D}_{\kappa}(A) = \{ \rho : G \to \mathsf{GL}_2(A) | \rho \mod \mathfrak{m}_A \cong \overline{\rho}, \\ \rho \text{ satisfies } (\mathsf{ord}_p), \ (\mathsf{ord}_l) \text{ and } (\mathsf{det}_{\Lambda}) \} / \cong,$

where writing $i_A : \Lambda \to A$ for Λ -algebra structure of A, $(\det_{\Lambda}) \det(\rho) = i_A \circ \kappa$.

Proposition 1. We have $\mathcal{D}_{\kappa}(A) \cong \text{Hom}_{CL_{\Lambda}}(R^{ord}, A)$ with universal representation $\rho^{ord} \in \mathcal{D}(R^{ord})$; so,

$$\mathsf{Sel}(Ad(\overline{\rho})) := t_{R^{ord}/\Lambda} = \mathsf{Ker}(H^1(G, Ad(\overline{\rho})) \to \frac{H^1(D_p, Ad(\overline{\rho}))}{F_-^+ H^1(D_p, Ad(\overline{\rho}))}.$$

§1.21. Proof. For any $\rho_A \in \mathcal{D}_{\kappa}(A)$, regard $\rho_A \in \mathcal{D}(A)$. Then we have $\varphi \in \operatorname{Hom}_{\mathcal{C}}(R^{ord}, A)$ such that $\varphi \circ \rho^{ord} \cong \rho_A$. Thus $\varphi \circ \det(\rho^{ord}) = \det(\rho_A)$. Since $\det(\rho_A) = \iota_A \circ \kappa$ and $\det(\rho^{ord}) = \iota_{R^{ord}} \circ \kappa$, we find $\varphi \circ \iota_{R^{ord}} = \iota_A$, and hence $\varphi \in \operatorname{Hom}_{CL_{\Lambda}}(R^{ord}, A)$. This shows that R^{ord} also represents \mathcal{D}_{κ} over Λ .

As we already remarked, $\mathcal{D}_{\kappa}(\mathbb{F}[\varepsilon]) = t_{R^{ord}/\Lambda} = \mathfrak{m}_{R^{ord}}/\mathfrak{m}_{R^{ord}}^2 + \mathfrak{m}_{\Lambda}$ is independent as a subgroup of $H^1(G, Ad(\overline{\rho}))$; so, we get a new expression of $Sel(Ad(\overline{\rho}))$.

By the proof, $\Omega_{R^{ord}/\Lambda} \otimes_{R^{ord}} \mathbb{F} \cong \text{Sel}(Ad(\overline{\rho})) \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi}} \mathbb{F}$, so the smallest number of generators of $\Omega_{R^{ord}/\Lambda}$ as R^{ord} -modules and $\Omega_{R_{\chi}/B}$ as R_{χ} modules is equal. In the same way, the number of generators of R^{ord} as Λ -algebras and R_{χ} as B-algebras is equal.

§1.22. Recall the compatible choice of ρ_A . By (ord_l) for $l \in S \cup \{p\}$, the universal representation ρ_{χ} is equipped with a basis $(\mathbf{v}_l, \mathbf{w}_l)$ so that the matrix representation with respect this basis satisfies (ord_l) . By universality, each class $c \in \mathcal{D}_{\chi}(A)$ has ρ such that $V(\rho) = V(\rho_{\chi}) \otimes_{R_{\chi},\varphi} A$ for a unique $\varphi \in \operatorname{Hom}_{CL_B}(R_{\chi}, A)$, we can choose a unique $\rho_A \in c$ with a basis $\{(v_l = \mathbf{v}_l \otimes 1, w_l = \mathbf{w}_l \otimes 1)\}_l$ satisfying $\{(\operatorname{ord}_l): l \in S \cup \{p\}\}$ compatible with specialization. We choose such a specific representative ρ_A for each $c \in \mathcal{D}_{\chi}(A)$.

Start with ρ_A as above. Take a finite A-module X and consider the ring $A[X] = A \oplus X$ with $X^2 = 0$. Then A[X] is still p-profinite. Pick $\rho \in \mathcal{F}(A[X])$ such that $\rho \mod X \sim \rho_A$. By our choice of representative ρ and ρ_A as above, we may (and do) assume $\rho \mod X = \rho_A$. §1.23. General cocycle construction. Here we allow $\chi = \kappa$ but if $\chi = \kappa$. Letting B = W if χ has values in W^{\times} and Λ if $\chi = \kappa$, the functor $\mathcal{F} = \mathcal{D}_{\chi}$ is defined over CL_B . Let ρ_A act on $M_2(A)$ and $\mathfrak{sl}_2(A) = \{x \in M_2(A) | \operatorname{Tr}(x) = 0\}$ by conjugation. Write this representation $ad(\rho_A)$ and $Ad(\rho_A)$ as before. Let ad(X) = $ad(\rho_A) \otimes_A X$ and $Ad(X) = Ad(\rho_A) \otimes_A X$ and regard them as *G*-modules by the action on $ad(\rho_A)$ and $Ad(\rho_A)$. Then we define

 $\Phi(A[X]) = \frac{\{\rho : G \to \mathsf{GL}_2(A[X]) | (\rho \mod X) = \rho_A, [\rho] \in \mathcal{F}(A[X]) \}}{1 + M_2(X)},$

where $[\rho]$ is the isomorphism class in $\mathcal{F}(A[X])$ containing ρ and ρ is assumed to satisfy the lifting property described in §1.22.

$\S1.24$. Cocycles and deformations.

Take X finite as above. For $\rho \in \Phi(A[X])$, we can write $\rho = \rho_A \oplus u'_{\rho}$ letting ρ_A acts on $M_2(X)$ by matrix multiplication from the right. Then as before

$$\rho_A(gh) \oplus u'_{\rho}(gh) = (\rho_A(g) \oplus u'_{\rho}(g))(\rho_A(h) \oplus u'_{\rho}(h))$$
$$= \rho_A(gh) \oplus (u'_{\rho}(g)\rho_A(h) + \rho_A(g)u'_{\rho}(h))$$

produces $u'_{\rho}(gh) = u'_{\rho}(g)\rho_A(h) + \rho_A(g)u'_{\rho}(h)$ and multiplying by $\rho_A(gh)^{-1}$ from the right, we get the cocycle relation for $u_{\rho}(g) = u'_{\rho}(g)\rho_A(g)^{-1}$:

$$u_{\rho}(gh) = u_{\rho}(g) + gu_{\rho}(h)$$
 for $gu_{\rho}(h) = \rho(g)u_{\rho}(h)\rho_A(g)^{-1}$,

getting the map $\Phi(A[X]) \to H^1(G, ad(X))$ which factors through $H^1(G, Ad(X))$. As before this map is injective A-linear map identifying $\Phi(A[X])$ with Sel(Ad(X)).

§1.25. General adjoint Selmer group. We see that $u_{\rho} : G \to Ad(X)$ is a 1-cocycle, and we get an embedding $\Phi(A[X]) \hookrightarrow H^1(G, Ad(X))$ for $l \in S \cup \{p\}$ by $\rho \mapsto [u_{\rho}]$. The local version of Φ :

$$\Phi_p(A[X]) := \frac{\{\rho : D_p \to \mathsf{GL}_2(A[X]) | \rho \mod X = \rho_A, [\rho] \in \mathcal{F}_p(A[X])\}}{1 + M_2(X)},$$

which is identified with $F_{-}^{+}H^{1}(D_{p}, Ad(X))$. Define

$$\mathsf{Sel}(Ad(X)) := \mathsf{Ker}(H^1(G, Ad(X)) \to \frac{H^1(D_p, Ad(X))}{F_-^+ H^1(D_p, Ad(X))}),$$

If $X = \varinjlim_i X_i$ for finite *A*-modules X_i , we just define $Sel(Ad(X)) = \varinjlim_i Sel(Ad(X_i)).$

Then for finite X_i ,

 $\Phi(A[X_i]) = \operatorname{Sel}(Ad(X_i)) \text{ and } \varinjlim_i \Phi(A[X_i]) = \operatorname{Sel}(\varinjlim_i Ad(X_i)).$

§1.26. Differentials and Selmer group. For each $[\rho_A] \in \mathcal{F}(A)$, choose a representative $\rho_A = \varphi \circ \rho$ as in §1.22. Then we have a map $\Phi(A[X]) \to \mathcal{F}(A[X])$ for each finite *A*-module *X* sending $\rho \in \Phi(A[X])$ chosen as in §1.21 to the class $[\rho] \in \mathcal{F}(A[X])$. By our choice of ρ as in §1.21, this map is injective.

Conversely pick a class $c \in \mathcal{F}(A[X])$ over $[\rho_A] \in \mathcal{F}(A)$. Then for $\rho \in c$, we have $x \in 1 + M_2(\mathfrak{m}_{A[X]})$ such that $x\rho x^{-1} \mod X = \rho_A$. By replacing ρ by $x\rho x^{-1}$ and choosing the lifted base, we conclude $\Phi(A[X]) \cong \{[\rho] \in \mathcal{F}(A[X]) | \rho \mod X \sim \rho_A\}$; so, for finite X,

$$\begin{split} & \mathsf{Sel}(Ad(X)) = \Phi(A[X]) = \{\phi \in \mathsf{Hom}_{B\text{-}\mathsf{alg}}(R_{\chi}, A[X]) : \phi \mathsf{mod} \ X = \varphi \} \\ &= Der_B(R_{\chi}, X) \cong \mathsf{Hom}_{R_{\chi}}(\Omega_{R_{\chi}/B}, X) \cong \mathsf{Hom}_A(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}, \varphi} A, X). \\ & \mathsf{Thus} \end{split}$$

$$\mathsf{Sel}(Ad(X)) \cong \mathsf{Hom}_A(\Omega_{R_\chi/B} \otimes_{R_\chi,\varphi} A, X).$$

§1.27. Theorem $Sel(Ad(\rho_A))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi},\varphi} A$. *Proof.* Take the Pontryagin dual

 $A^{\vee} := \operatorname{Hom}_{B}(A, B^{\vee}) = \operatorname{Hom}_{\mathbb{Z}_{p}}(A \otimes_{B} B, \mathbb{Q}_{p}/\mathbb{Z}_{p}) = \operatorname{Hom}(A, \mathbb{Q}_{p}/\mathbb{Z}_{p}).$ Since $A = \varprojlim_{i} A_{i}$ for finite i and $\mathbb{Q}_{p}/\mathbb{Z}_{p} = \varinjlim_{j} p^{-1}\mathbb{Z}/\mathbb{Z}, A^{\vee} = \lim_{i \to i} \operatorname{Hom}(A_{i}, \mathbb{Q}_{p}/\mathbb{Z}_{p}) = \lim_{i \to i} A_{i}^{\vee}$ is a union of the finite modules A_{i}^{\vee} . We define $\operatorname{Sel}(Ad(\rho_{A})) := \varinjlim_{j} \operatorname{Sel}(Ad(A_{i}^{\vee})).$ Defining $\Phi(A[A^{\vee}]) = \lim_{i \to i} \Phi(A[A_{i}^{\vee}]),$ we see from compatibility of cohomology with injective limit

$$\Phi(A[A^{\vee}]) = \operatorname{Sel}(Ad(\rho_A)) = \varinjlim_i \operatorname{Sel}(Ad(A_i^{\vee}))$$
$$= \varinjlim_j \operatorname{Ker}(H^1(G, Ad(A_i^{\vee})) \to \frac{H^1(D_p, Ad(A_i^{\vee}))}{F_-^+ H^1(D_p, Ad(A_i^{\vee}))})$$

§**1.28. Proof continues.** By the boxed formula in §1.25,

$$Sel(Ad(\rho_{A})) = \varinjlim_{i} Sel(Ad(A_{i}^{\vee})) = \varinjlim_{i} Hom_{R_{\chi}}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, A_{i}^{\vee})$$
$$= Hom_{A}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, A^{\vee}) = Hom_{A}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, Hom_{\mathbb{Z}_{p}}(A, \mathbb{Q}_{p}/\mathbb{Z}_{p}))$$
$$= Hom_{\mathbb{Z}_{p}}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, \mathbb{Q}_{p}/\mathbb{Z}_{p}) = (\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A)^{\vee}.$$

Taking Pontryagin dual back, we finally get

Sel
$$(Ad(\rho_A))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi},\varphi} A$$
 and Sel $(Ad(\overline{\rho}))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi}} \mathbb{F}$
as desired. In particular, Sel $(Ad(\rho_{\chi}))^{\vee} = \Omega_{R_{\chi}/B}$ (with $\rho_{\kappa} = \rho^{ord}$
if $\chi = \kappa$).

This is the generalization of the formula in $\S0.19$

$$C_k \cong \Omega_{\mathbb{Z}_p[C_k]/\mathbb{Z}_p} \otimes_{\mathbb{Z}_p[C_k]} \mathbb{Z}_p.$$

§1.29. *p*-Local condition. The submodule $\Phi_p(A[X])$ in the cohomology group $H^1(\mathbb{Q}_p, Ad(X))$ is made of classes of 1-cocycles u with $u|_{I_p}$ is upper nilpotent and $u|_{D_p}$ is upper triangular with respect to the compatible basis (v_p, w_p) . Suppose we have $\sigma \in$ I_p such that $\rho_A(\sigma) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ such that $\alpha \not\equiv \beta \mod \mathfrak{m}_A$. Suppose u is upper nilpotent over I_p . Then for $\tau \in D_p$, we have $Ad(\rho_A)(\tau)u(\tau^{-1}\sigma\tau) = (Ad(\rho_A)(\sigma)-1)u(\tau)+u(\sigma)$. Writing $u(\tau) =$ $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, we find $(Ad(\rho_A)(\sigma) - 1)u(\tau) = \begin{pmatrix} 0 & (\alpha\beta^{-1}-1)b \\ (\alpha^{-1}\beta-1)c & 0 \end{pmatrix}$. Since $\rho_A(\tau)$ is upper triangular and $u(\tau^{-1}\sigma\tau)$ is upper nilpotent, $Ad(\rho_A)(\tau)u(\tau^{-1}\sigma\tau)$ is still upper nilpotent; so, $(\alpha^{-1}\beta-1)c=0$ and hence c = 0. Therefore u is forced to be upper triangular over D_p . Thus we get

Lemma 4. If $\overline{\rho}(\sigma)$ for at least one $\sigma \in I_p$ has two distinct eigenvalues, $\Phi_p(A[X])$ gives rise to the subgroup of $H^1(\mathbb{Q}_p, Ad(X))$ made of classes containing a 1-cocycle whose restriction to I_p is upper nilpotent.