Lecture slide No. 1 for Math 207c Adjoint Selmer groups

Haruzo Hida

We define $\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{A}\right)\right)$ for ordinary deformations $\rho_{A} \in \mathcal{D}_{\chi}(A)$ of an absolutely irreducible 2-dimensional minimal Galois representation $\bar{\rho}$ and show that $\operatorname{Sel}(A d(\bar{\rho}))=t_{R / B}$ and $\operatorname{Sel}\left(A d\left(\rho_{A}\right)\right)^{\vee} \cong$ $\Omega_{R / B} \otimes_{R, \varphi} A$, where $\varphi: R \rightarrow A$ with $\varphi \circ \rho \sim \rho_{A}$ for the universal minimal ordinary Galois representation $\rho: G \rightarrow \mathrm{GL}_{2}(R)$ of $\bar{\rho}$. Here the deformation functors $\mathcal{D}, \mathcal{D}_{\chi}: \mathcal{C} \rightarrow S E T S$ are defined in §0.22.

As before, we write I_{l} for the inertia group of the l-decomposition subgroup $D_{l} \subset G$. We write S for the set of ramified primes $l \neq p$ of $\bar{\rho}$ such that $\left.\bar{\rho}\right|_{I_{l}} \cong \bar{\epsilon}_{l} \oplus \bar{\delta}_{l}$. We set $\mathbb{F}[\varepsilon]:=\mathbb{F}[X] /\left(X^{2}\right)$ (dual numbers) with $\varepsilon \leftrightarrow X \bmod \left(X^{2}\right)$.

§1.1. p-Ordinarity condition

Fix $\bar{\rho}: G \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ with $\bar{\rho}=\left.\rho_{A}\right|_{D_{p}} \cong\binom{\bar{\epsilon}}{0}$ and $\bar{\delta} \neq \bar{\delta}$. Let $\rho_{A}: G \rightarrow \mathrm{GL}_{2}(A)(A \in \mathcal{C})$ be a deformation of $\bar{\rho}: G \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ acting on $V\left(\rho_{A}\right)$. We say ρ is p-ordinary if $\left.\left(\operatorname{ord}_{p}\right) \rho_{A}\right|_{D_{p}} \cong\left(\begin{array}{cc}\epsilon_{A} & * \\ 0 & \delta_{A}\end{array}\right)$ for two characters $\epsilon_{A}, \delta_{A}: D_{p} \rightarrow A^{\times}$distinct modulo \mathfrak{m}_{A} with δ_{A} unramified with $\delta_{A} \bmod \mathfrak{m}_{A}=\bar{\delta}$ (this is a requirement called p-distinguishedness).

Since twisting by a character $\xi: G \rightarrow B^{\times}$induces isomorphism between the functors deforming $\bar{\rho}$ and $\bar{\rho} \otimes \xi$, we may assume a similar condition for $l \in S(l \neq p)$:
$\left.\left(\operatorname{ord}_{l}\right) \rho\right|_{I_{l}} \cong\left(\begin{array}{cc}\epsilon_{l, A} & 0 \\ 0 & 1\end{array}\right)$ with $\epsilon_{l, A} \neq 1$.
We can fix a character $\chi: G \rightarrow B^{\times}$, we consider (det) det $\rho=\iota_{A} \circ \chi$ for the B-algebra structure $\iota_{A}: B \rightarrow A$.
The fixed determinant functor is denoted by $\mathcal{D}_{\chi}: \mathcal{C} \rightarrow S E T S$.

§1.2. Deformation functor.

We consider the following functors for a fixed absolutely irreducible representation $\bar{\rho}: G \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ satisfying (ord_{p}) and (ord_{l}). Recall $\mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi}: \mathcal{C} \rightarrow S E T S$ given by

$$
\begin{aligned}
& \mathcal{D}^{\emptyset}(A):=\left\{\rho_{A}: G \rightarrow \operatorname{GL} L_{2}(A) \mid \rho_{A} \bmod \mathfrak{m}_{A}=\bar{\rho}\right\} / \Gamma\left(\mathfrak{m}_{A}\right), \\
& \mathcal{D}(A)=\left\{\rho_{A} \in \mathcal{D}^{\emptyset}(A) \mid(\min),\left(\operatorname{ord}_{p}\right) \text { and }\left(\operatorname{ord}_{l}\right)\right\}, \\
& \mathcal{D}_{\chi}(A)=\left\{\rho_{A} \in \mathcal{D}(A) \mid \operatorname{det} \rho=\iota_{A} \circ \chi\right\} .
\end{aligned}
$$

Then
Theorem 1 (B. Mazur). There exists universal couples (R, ρ), ($R^{\text {ord }}, \rho^{\text {ord }}$) and (R_{χ}, ρ_{χ}) representing $\mathcal{D}^{\emptyset}, \mathcal{D}$ and \mathcal{D}_{χ}, respectively, so that $\mathcal{D}(A) \cong \operatorname{Hom}_{\mathcal{C}}\left(R^{\text {ord }}, A\right)$ by $\rho \mapsto \varphi$ with $\varphi \circ \rho^{\text {ord }} \sim \rho$ (resp. $\mathcal{D}_{\chi}(A) \cong \operatorname{Hom}_{\mathcal{C}}\left(R_{\chi}, A\right)$ by $\rho \mapsto \varphi$ with $\left.\varphi \circ \rho_{\chi} \sim \rho\right)$.

We admit this theorem (see [MFG, §2.3] or Mazur's paper quoted there).

§1.3. Fiber products.

Let $C=\mathcal{C}, S E T S$. For arrows $\phi^{\prime}: S^{\prime} \rightarrow S$ and $\phi^{\prime \prime}: S^{\prime \prime} \rightarrow S$ in C,

$$
S^{\prime} \times{ }_{S} S^{\prime \prime}=\left\{\left(a^{\prime}, a^{\prime \prime}\right) \in S^{\prime} \times S^{\prime \prime} \mid \phi^{\prime}\left(a^{\prime}\right)=\phi^{\prime \prime}\left(a^{\prime \prime}\right)\right\}
$$

gives the fiber product of S^{\prime} and $S^{\prime \prime}$ over S in C. So
$\operatorname{Hom}_{C}\left(X, S^{\prime} \times_{S} S^{\prime \prime}\right)=\operatorname{Hom}_{C}\left(X, S^{\prime}\right) \times_{\operatorname{Hom}_{C}(X, S)} \operatorname{Hom}_{C}\left(X, S^{\prime \prime}\right)$ for any $X \in C$. Let $\mathcal{F}: C \rightarrow S E T S$ be a covariant functor. We assume

$$
|\mathcal{F}(\mathbb{F})|=1 \text { and } \mathcal{F}\left(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon]\right)=\mathcal{F}(\mathbb{F}[\varepsilon]) \times_{\mathcal{F}(\mathbb{F})} \mathcal{F}(\mathbb{F}[\varepsilon])
$$

by two projections.
It is easy to see $\mathcal{F} \in\left\{\mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi}\right\}$ satisfies this condition. Indeed, noting that $\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] \cong \mathbb{F}\left[\varepsilon^{\prime}\right] \times_{\mathbb{F}} \mathbb{F}\left[\varepsilon^{\prime \prime}\right] \cong \mathbb{F}\left[\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right]$, if $\rho^{\prime} \in \mathcal{F}\left(\mathbb{F}\left[\varepsilon^{\prime}\right]\right)$ and $\rho^{\prime \prime} \in \mathcal{F}\left(\mathbb{F}\left[\varepsilon^{\prime \prime}\right]\right)$, we have $\rho^{\prime} \times \rho^{\prime \prime}$ has values in $\mathrm{GL}_{2}\left(\mathbb{F}\left[\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right]\right)$ is an element in $\mathcal{F}\left(\mathbb{F}\left[\varepsilon^{\prime}\right] \times_{\mathbb{F}} \mathbb{F}\left[\varepsilon^{\prime \prime}\right]\right)$.

§1.4. Tangent space of deformation functors.

For $A \in \mathcal{C}$ and an A-module X, suppose

$$
|\mathcal{F}(A)|=1 \text { and } \mathcal{F}\left(A[X] \times_{A} A[X]\right)=\mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X]) .
$$

Note $A[X] \times{ }_{A} A[X]=A[X \oplus X]$. The addition on X and A linear map $\alpha: X \rightarrow X$ induces in the same way \mathcal{C}-morphisms $+_{*}: A[X \oplus X] \rightarrow A[X]$ by $a+(x \oplus y) \mapsto a+x+y$ and $\alpha_{*}: A[X] \rightarrow$ $A[X]$ by $a+x \mapsto a+\alpha(x)$. Thus we have by functoriality. the "addition"

$$
+: \mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X])=\mathcal{F}(A[X \oplus X]) \xrightarrow{\mathcal{F}(+*)} \mathcal{F}(A[X])
$$

and α-action

$$
\alpha: \mathcal{F}(A[X]) \xrightarrow{\mathcal{F}\left(\alpha_{*}\right)} \mathcal{F}(A[X]) .
$$

With $\mathbf{0}=\operatorname{Im}(\mathcal{F}(A) \rightarrow \mathcal{F}(A[X])$ for the inclusion $A \hookrightarrow A[X]$, this makes $\mathcal{F}(A[X])$ as an A-module; so, $\mathcal{F}(\mathbb{F}[\varepsilon])$ is an \mathbb{F}-vector space (called the tangent space of \mathcal{F}).

§1.5. Cotangent spaces of local rings

Suppose that B is noetherian and pick $R \in C L_{B}$.
Lemma 1. The ring R is noetherian if and only if $t_{R / W}^{*}=$ $\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{B}\right)$ is a finite dimensional vector space over \mathbb{F}.

The space $t_{R / B}^{*}$ is called the co-tangent space of R at $\mathfrak{m}_{R}=(\varpi) \in$ $\operatorname{Spec}(R)$ over $\operatorname{Spec}(B)$. If $\mathfrak{m}_{B}=\left(x_{1}, \ldots, x_{r}\right)$, then $\mathfrak{m}_{B}^{n} / \mathfrak{m}_{B}^{n+1}$ is generated by degree n monomial of x_{j}; so, B / \mathfrak{m}_{B}^{n} is generated by degree $\leq n$ polynomial of x_{j}. Thus for $W=W(\mathbb{F})$, $W\left[X_{1}, \ldots, X_{r}\right]$ has dense image in B by sending x_{j} to X_{j}, and hence $W\left[\left[X_{1}, \ldots, X_{r}\right]\right] \rightarrow B$.

Since we have an exact sequence: $\mathfrak{m}_{B} / \mathfrak{m}_{B}^{2} \rightarrow \mathfrak{m}_{R} / \mathfrak{m}_{R}^{2} \rightarrow t_{R / W}^{*}$, we conclude in the same way that $W\left[\left[X_{1}, \ldots, X_{r}, X_{r+1}, \ldots, X_{r+s}\right]\right]$ surjects onto R sending X_{i} with $i>r$ to generators of $t_{R / B}^{*}$. Thus the number of generators over B of R is $\operatorname{dim}_{\mathbb{F}} t_{R / B}^{*}$.

§1.6. Adjoint Galois modules

Let $M_{2}(A)$ be the space of 2×2 matrices with coefficients in A. We let G acts on $M_{2}(A)$ by $g v=\rho_{A}(g) v \rho_{A}(g)^{-1}$. This action is called the adjoint action of G, and this G-module will be written as $\operatorname{ad}\left(\rho_{A}\right)$.

Write Z for the center of $M_{2}(A)$ (scalar matrices) and define $\mathfrak{s l}_{2}(A)=\left\{X \in M_{2}(A) \mid \operatorname{Tr}(X)=0\right\}$. Since $\operatorname{Tr}\left(a X a^{-1}\right)=\operatorname{Tr}(X)$, $\mathfrak{s l}_{2}(A)$ is stable under the adjoint action. This Galois module will be written as $\operatorname{Ad}\left(\rho_{A}\right)$.

Since $p>2, X \mapsto \frac{1}{2} \operatorname{Tr}(X) \oplus\left(X-\frac{1}{2} \operatorname{Tr}(X)\right)$ gives rise to $M_{2}(A)=$ $Z \oplus \mathfrak{s l}_{2}(A)$ stable under the adjoint action.

So we have $a d\left(\rho_{A}\right)=1 \oplus \operatorname{Ad}\left(\rho_{A}\right)$, where $\mathbf{1}$ is the trivial representation.

§1.7. Tangent space as cohomology

Lemma 2. Let (R, ρ) be the universal couple representing \mathcal{D}^{\emptyset} over $C L_{W}$. Then

$$
t_{R / W}:=\operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right) \cong H^{1}(G, \operatorname{ad}(\bar{\rho})),
$$

where $H^{1}(G, a d(\bar{\rho}))$ is the continuous first cohomology group of G with coefficients in the discrete G-module $V(a d(\bar{\rho}))$.

Proof, Step. 1, dual number.
We claim: $\operatorname{Hom}_{C L_{W}}(R, \mathbb{F}[\varepsilon]) \cong t_{R / W}$. Construction of the map.
Start with a W-algebra homomorphism $\phi: R \rightarrow \mathbb{F}[\varepsilon]$. Write

$$
\phi(r)=\phi_{0}(r)+\phi_{\varepsilon}(r) \varepsilon \text { with } \phi_{0}(r), \phi_{\varepsilon}(r) \in \mathbb{F} \text {. }
$$

Then the map is $\phi \mapsto \ell_{\phi}=\phi_{\varepsilon} \mid \mathfrak{m}_{R}$.

§1.8. Step. 2, Well defined-ness of ℓ_{ϕ}

From $\phi(a b)=\phi(a) \phi(b)$, we get

$$
\phi_{0}(a b)=\phi_{0}(a) \phi_{0}(b) \text { and } \phi_{\varepsilon}(a b)=\phi_{0}(a) \phi_{\varepsilon}(b)+\phi_{0}(b) \phi_{\varepsilon}(a) \text {. }
$$

Thus $\phi_{\varepsilon} \in \operatorname{Der}_{W}(R, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}}\left(\Omega_{R / W} \otimes_{R} \mathbb{F}, \mathbb{F}\right)$. Since for any derivation $\delta \in \operatorname{Der}_{W}(R, \mathbb{F}), \phi^{\prime}=\phi_{0}+\delta \varepsilon \in \operatorname{Hom}_{C L_{W}}(R, \mathbb{F}[\varepsilon])$,

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(\Omega_{R / W} \otimes_{R} \mathbb{F}, \mathbb{F}\right) \cong & \operatorname{Hom}_{R}\left(\Omega_{R / W}, \mathbb{F}\right) \\
& \cong \operatorname{Der}_{W}(R, \mathbb{F}[\varepsilon]) \cong \operatorname{Hom}_{C L_{W}}(R, \mathbb{F}[\varepsilon]) .
\end{aligned}
$$

Note $\operatorname{Ker}\left(\phi_{0}\right)=\mathfrak{m}_{R}$ because R is local. Since ϕ is W-linear, $\phi_{0}(a)=\bar{a}=a \bmod \mathfrak{m}_{R}$. Thus ϕ kills \mathfrak{m}_{R}^{2} and takes $\mathfrak{m}_{R} W-$ linearly into $\mathfrak{m}_{\mathbb{F}[\varepsilon]}=\mathbb{F} \varepsilon$; so, $\ell_{\phi}: t_{R}^{*}:=\mathfrak{m}_{R} / \mathfrak{m}_{R}^{2} \rightarrow \mathbb{F}$. For $r \in W$, $\bar{r}=r \phi(1)=\phi(r)=\bar{r}+\phi_{\varepsilon}(r) \varepsilon$, and hence ϕ_{ε} kills W; so, $\ell_{\phi} \in$ $t_{R / W}$.

§1.9. Step. 3, $\phi \mapsto \ell_{\phi}$ is an injection.

Since R shares its residue field \mathbb{F} with W, any element $a \in R$ can be written as $a=r+x$ with $r \in W$ and $x \in \mathfrak{m}_{R}$.

Thus ϕ is completely determined by the restriction ℓ_{ϕ} of ϕ_{ε} to \mathfrak{m}_{R}, which factors through $t_{R / W}^{*}$.

Thus $\phi \mapsto \ell_{\phi}$ induces an injective linear map $\ell: \operatorname{Hom}_{W-a l g}(R, \mathbb{F}[\varepsilon]) \hookrightarrow$ $\operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right)$.

Note $R /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{W}\right)=\mathbb{F} \oplus t_{R / W}^{*}=\mathbb{F}\left[t_{R / W}^{*}\right]$ with the projection $\pi: R \rightarrow t_{R / W}^{*}$ to the direct summand $t_{R / W}^{*}$. Indeed, writing $\bar{r}=(r$ $\left.\bmod \mathfrak{m}_{R}\right)$, for the inclusion $\iota: \mathbb{F}=W / \mathfrak{m}_{W} \hookrightarrow R /\left(\mathfrak{m}_{R}^{2}+m_{W}\right)$, $\pi(r)=r-\iota(\bar{r})$.
§1.10. Step. 4, $\phi \mapsto \ell_{\phi}$ is a surjection.
For any $\ell \in \operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right)$, we extends ℓ to R by putting $\ell(r)=$ $\ell(\pi(r))$. Then we define $\phi: R \rightarrow \mathbb{F}[\varepsilon]$ by $\phi(r)=\bar{r}+\ell(\pi(r)) \varepsilon$. Since $\varepsilon^{2}=0$ and $\pi(r) \pi(s)=0$ in $\mathbb{F}\left[t_{R / W}^{*}\right]$, we have

$$
\begin{aligned}
& r s=(\bar{r}+\pi(r))(\bar{s}+\pi(s))=\overline{r s}+\bar{s} \pi(r)+\bar{r} \pi(s) \\
& \xrightarrow{\phi} \overline{r s}+\bar{s} \ell(\pi(r)) \varepsilon+\bar{r} \ell(\pi(s)) \varepsilon=\phi(r) \phi(s)
\end{aligned}
$$

is an W-algebra homomorphism. In particular, $\ell(\phi)=\ell$, and hence ℓ is surjective.

By $\operatorname{Hom}_{R}\left(\Omega_{R / W} \otimes_{R} \mathbb{F}, \mathbb{F}\right) \cong \operatorname{Hom}_{C L_{W}}(R, \mathbb{F}[\varepsilon])$, we have

$$
\operatorname{Hom}_{R}\left(\Omega_{R / W} \otimes_{R} \mathbb{F}, \mathbb{F}\right) \cong \operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right)
$$

so, if $t_{R / W}^{*}$ is finite dimensional, we also get

$$
\Omega_{R / W} \otimes_{R} \mathbb{F} \cong t_{R / W}^{*}
$$

§1.11. Step. 5, use of universality.

By the universality, we have
$\operatorname{Hom}_{C L_{B}}(R, \mathbb{F}[\varepsilon]) \cong\left\{\rho: G \rightarrow G L_{2}(\mathbb{F}[\varepsilon]) \mid \rho \bmod \mathfrak{m}_{\mathbb{F}[\varepsilon]}=\bar{\rho}\right\} / \sim$.
Write $\rho(g)=\bar{\rho}(g)+u_{\phi}^{\prime}(g) \varepsilon$ for ρ corresponding to $\phi: R \rightarrow \mathbb{F}[\varepsilon]$.
From the mutiplicativity, we have

$$
\begin{aligned}
\bar{\rho}(g h)+u_{\phi}^{\prime}(g h) \varepsilon=\rho(g h) & =\rho(g) \rho(h) \\
& =\bar{\rho}(g) \bar{\rho}(h)+\left(\bar{\rho}(g) u_{\phi}^{\prime}(h)+u_{\phi}^{\prime}(g) \bar{\rho}(h)\right) \varepsilon
\end{aligned}
$$

Thus as a function $u^{\prime}: G \rightarrow M_{n}(\mathbb{F})$, we have

$$
\begin{equation*}
u_{\phi}^{\prime}(g h)=\bar{\rho}(g) u_{\phi}^{\prime}(h)+u_{\phi}^{\prime}(g) \bar{\rho}(h) . \tag{1}
\end{equation*}
$$

§1.12. Step. 6, Getting 1-cocycle.

Define a map $u_{\rho}=u_{\phi}: G \rightarrow a d(\bar{\rho})$ by

$$
u_{\phi}(g)=u_{\phi}^{\prime}(g) \bar{\rho}(g)^{-1} .
$$

Then by a simple computation, we have

$$
g u_{\phi}(h)=\bar{\rho}(g) u_{\phi}(h) \bar{\rho}(g)^{-1}
$$

from the definition of $a d(\bar{\rho})$. Then from the above formula (1), we conclude that

$$
u_{\phi}(g h)=g u_{\phi}(h)+u_{\phi}(g)
$$

Thus $u_{\phi}: G \rightarrow a d(\bar{\rho})$ is a 1 -cocycle. Thus we get an \mathbb{F}-linear map

$$
t_{R / W} \cong \operatorname{Hom}_{C L_{W}}(R, \mathbb{F}[\varepsilon]) \rightarrow H^{1}(G, \operatorname{ad}(\bar{\rho}))
$$

by $\ell_{\phi} \mapsto\left[u_{\phi}\right]$

§1.13. Step. 7, End of proof.

By computation, for $x \in \operatorname{ad}(\bar{\rho})$

$$
\begin{aligned}
& \rho \sim \rho^{\prime} \Leftrightarrow \bar{\rho}(g)+u_{\rho}^{\prime}(g) \varepsilon=(1+x \varepsilon)\left(\bar{\rho}(g)+u_{\rho^{\prime}}^{\prime}(g) \varepsilon\right)(1-x \varepsilon) \\
& \Leftrightarrow u_{\rho}^{\prime}(g)=x \bar{\rho}(g)-\bar{\rho}(g) x+u_{\rho^{\prime}}^{\prime}(g) \\
& \Leftrightarrow u_{\rho}(g)=(1-g) x+u_{\rho^{\prime}}(g) .
\end{aligned}
$$

Thus the cohomology classes of u_{ρ} and $u_{\rho^{\prime}}$ are equal if and only if $\rho \sim \rho^{\prime}$. This shows:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right) \cong \operatorname{Hom}_{W-a l g}(R, \mathbb{F}[\varepsilon]) \cong \\
&\left\{\rho: G \rightarrow G L_{2}(\mathbb{F}[\varepsilon]) \mid \rho \bmod \mathfrak{m}_{\mathbb{F}[\varepsilon]}=\right.\bar{\rho}\} / \sim \\
& \cong H^{1}(G, \operatorname{ad}(\bar{\rho}))
\end{aligned}
$$

In this way, we get a bijection between $\operatorname{Hom}_{\mathbb{F}}\left(t_{R / W}^{*}, \mathbb{F}\right)$ and $H^{1}(G, \operatorname{ad}(\bar{\rho}))$.

§1.14. Tangent space of rings and deformation functor

 Lemma 3. Let $\mathcal{F}=\mathcal{D}^{\emptyset}, \mathcal{D}, \mathcal{D}_{\chi}$ and $R, R^{\text {ord }}$ or R_{χ} accordingly. Then $t_{R / B} \cong \mathcal{F}(\mathbb{F}[\varepsilon])$ as \mathbb{F}-vetor spaces.Proof. Let R be the universal ring for \mathcal{D}^{\emptyset}. We have got a canonical bijection in §1.7:

$$
\mathcal{D}^{\emptyset}(\mathbb{F}[\varepsilon]) \xrightarrow[i_{1}]{\text { 1-1 onto }} H^{1}(G, \operatorname{ad}(\bar{\rho})) \underset{i}{\sim} t_{R / B}
$$

with a vector space isomorphism i. We have constructed a cocycle u_{ρ} from $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ writing $\rho=\bar{\rho}+u_{\rho} \bar{\rho} \varepsilon$. Regarding $\left(\rho, \rho^{\prime}\right) \in \mathcal{F}(\mathbb{F}[\varepsilon]) \times \mathcal{F}(\mathbb{F}[\varepsilon])=\mathcal{F}(\mathbb{F}[\varepsilon] \times \mathbb{F} \mathbb{F}[\varepsilon])$, we see that $+\left(\rho, \rho^{\prime}\right)=\bar{\rho}+\left(u_{\rho} \bar{\rho}+u_{\rho^{\prime}} \bar{\rho}\right) \varepsilon \in \mathcal{F}(\mathbb{F}[\varepsilon])$; so, i_{1} is a homomorphism. Similarly, one can check that it is \mathbb{F}-linear. Same for $R^{\text {ord }}$ and R_{χ}.

§1.15. Galois deformation ring is noetherian.

Let $H=\operatorname{Gal}\left(F^{(p)}(\bar{\rho}) / F(\bar{\rho})\right)$. Note that $H^{a b}=C_{F(\bar{\rho})}\left(p^{\infty}\right)=$ $\varliminf_{n} C l_{F(\bar{\rho})}\left(p^{\infty}\right) / C l_{F(\bar{\rho})}\left(p^{\infty}\right)^{p^{n}}$ and we have an exact sequence for the integer ring O of $F(\bar{\rho})$:

$$
\hat{O}_{p}^{\times} \rightarrow H^{a b} \rightarrow C_{F(\bar{\rho})} \rightarrow 1
$$

Therefore $H^{a b}$ is a \mathbb{Z}_{p}-module of finite type, which tells us finiteness of $\operatorname{Hom}\left(H^{a b}, a d(\bar{\rho})\right)$. By inflation-restriction sequence,

$$
0 \rightarrow H^{1}(F(\bar{\rho}) / \mathbb{Q}, a d(\bar{\rho})) \rightarrow H^{1}(G, a d(\bar{\rho})) \rightarrow \operatorname{Hom}\left(H^{a b}, a d(\bar{\rho})\right)
$$

is exact. Since $[F(\bar{\rho}): \mathbb{Q}]<\infty$ and $|\operatorname{ad}(\bar{\rho})|<\infty, H^{1}(F(\bar{\rho}) / \mathbb{Q}, \operatorname{ad}(\bar{\rho}))$ is finite. Thus $H^{1}(G, a d(\bar{\rho})) \cong t_{R / W}$ is finite. Then by the lemma in $\S 1.14, R$ is noetherian. This also tells us that $R^{\text {ord }}$ and R_{χ} are noetherian.

§1.16 Tangent space with local condition.

We regard $\mathcal{F}(\mathbb{F}[\varepsilon]) \subset H^{1}(G, a d(\bar{\rho}))$. We may choose by $\left(\operatorname{ord}_{p}\right)$ a basis (dependent on $l \in S \cup\{p\}$) of $V(\rho)$ for $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ so that $\rho_{D_{p}}$ is upper triangular with quotient character δ congruent to $\bar{\delta}$ modulo \mathfrak{m}_{A}. Similarly by $\left(\operatorname{ord}_{l}\right)$, we choose the basis so that $\left.\rho\right|_{I_{l}}=\epsilon_{l} \oplus 1$ in this order.
Theorem 2. A 1-cocycle u gives rise to a class in $\mathcal{D}_{\chi}(\mathbb{F}[\varepsilon])$ if and only if $\left.u\right|_{D_{p}}$ is upper triangular, $\left.u\right|_{I_{p}}$ is upper nilpotent and $\operatorname{Tr}(u)=0 \operatorname{over} G$, where $\bar{v}=v \bmod (\epsilon)$.

For primes $l \neq p, u\left(I_{l}\right)=0$ as $p \nmid\left|I_{l}\right|$ (minimality). The description of cocycles u is independent of χ; so, the tangent space $t_{R_{\chi} / B}$ is independent as a cohomology subgroup as long as \mathbb{F} does not change.

§1.17. Proof.

By (det), $1=\operatorname{det}\left(\rho \bar{\rho}^{-1}\right)=1+u_{\rho} \varepsilon=1+\operatorname{Tr}\left(u_{\rho}\right) \varepsilon ;$ so, (det) \Leftrightarrow $\operatorname{Tr}(u)=0$ over G. Thus we $t_{R_{\chi} / B} \subset H^{1}(G, A d(\bar{\rho}))$.

Choose a generator $w \in V(\epsilon)$ over $\mathbb{F}[\varepsilon]$. Then (w, v) is a basis of $V(\rho)$ over $\mathbb{F}[\varepsilon]$. Let $(\bar{w}, \bar{v})=(w, v) \bmod \varepsilon$ and identify $V(\operatorname{ad}(\bar{\rho}))$ with $M_{2}(\mathbb{F})$ with this basis. Then defining $\bar{\rho}$ by $(\sigma \bar{w}, \sigma \bar{v})=(\bar{w}, \bar{v}) \bar{\rho}(\sigma)$, for $\sigma \in D_{p}$, we have $\bar{\rho}(\sigma)=\left(\begin{array}{cc}\bar{\epsilon}(\sigma) & * \\ 0 & \bar{\delta}(\sigma)\end{array}\right)$ (upper triangular). If $\sigma \in I_{p}, \rho \bar{\rho}^{-1}=1+u_{\rho}$ with lower right corner of u_{ρ} has to vanish as $\delta=1$ on I_{p}, we have $u_{\rho}(\sigma) \in\left\{\left(\begin{array}{cc}* \\ 0 & 0\end{array}\right)\right\}$.

The condition $\left(\operatorname{ord}_{p}\right)$ is equivalent to u_{ρ} is of the form ((${ }_{0}^{*} \begin{aligned} & \text { o) but }\end{aligned}$ by $\operatorname{Tr}\left(u_{\rho}\right)=0$, it has to be upper nilpotent; i.e., $\left(\begin{array}{cc}0 & * \\ 0 & 0\end{array}\right)$.
\S 1.18. Adjoint Selmer group. For $\mathcal{F}=\mathcal{D}$ or \mathcal{D}_{χ}, we define the local deformation functor $\mathcal{D}_{\chi, p}$ by sending A to
$\left\{\rho_{A}: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow \mathrm{GL}_{2}(A) \mid \rho_{A} \bmod \mathfrak{m}_{A}=\bar{\rho}\right.$ and $\left(\operatorname{ord}_{p}\right)$ and (det) $\}$.
By the proof of the theorem in $\S 1.16, \mathcal{D}_{\chi, p}(\mathbb{F}[\varepsilon])$ is the space of cohomology classes in $H^{1}\left(D_{p}, \operatorname{Ad}(\bar{\rho})\right)$ upper triangular over D_{p} and upper nilpotent over I_{p}. Define $A d\left(\rho_{A}\right)$ by the conjugation action on $\mathfrak{s l}_{2}(A)$ by ρ_{A}, and put $A d\left(\rho_{A}\right)^{*}:=A d\left(\rho_{A}\right) \otimes_{A} A^{\vee}$ (discrete), writing $A^{\vee}=\operatorname{Hom}\left(A, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ (Pontryagin dual). Define

$$
\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{A}\right)\right):=\operatorname{Ker}\left(H^{1}\left(G, \operatorname{Ad}\left(\rho_{A}\right)^{*}\right) \rightarrow \frac{H^{1}\left(D_{p}, \operatorname{Ad}\left(\rho_{A}\right)^{*}\right)}{F_{-}^{+} H^{1}\left(D_{p}, \operatorname{Ad}\left(\rho_{A}\right)^{*}\right)}\right),
$$

where $F_{-}^{+} H^{1}\left(D_{p}, A d\left(\rho_{A}\right)^{*}\right) \subset H^{1}\left(D_{p}, A d\left(\rho_{A}\right)^{*}\right)$ is made of cohomology classes upper triangular over D_{p} and upper nilpotent over I_{p}. Then we have $\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})):=t_{R_{\chi} / B}$.
§1.19. $R^{\text {ord }}$ is an algebra over the Iwasawa algebra
The finite order character $\operatorname{det}(\bar{\rho})$ factors through $\operatorname{Gal}\left(\mathbb{Q}\left[\mu_{N_{0}}\right] / \mathbb{Q}\right)$ for some positive integer N_{0}. Let N_{0} be the minimal such integer (called conductor of $\operatorname{det}(\bar{\rho})$). Write $N_{0}=N p^{\nu}$ for N prime to p; so, N is the prime to p-conductor of $\operatorname{det}(\bar{\rho})$.

If ρ_{A} is a minimal deformation of $\bar{\rho}$, then $\rho_{A}\left(I_{l}\right) \cong \bar{\rho}\left(I_{l}\right)$ and hence $\operatorname{det}\left(\rho_{A}\right)\left(I_{l}\right)=\operatorname{det}(\bar{\rho})\left(I_{l}\right)$. Therefore, $\operatorname{det}\left(\rho^{\text {ord }}\right)$ is a minimal deformation of $\operatorname{det}(\bar{\rho})$.

By universality, for the universal character $\boldsymbol{\kappa}: G \rightarrow W[[\Gamma]]^{\times}$, we have a (unique) algebra homomorphism $i=i_{R^{\text {ord }}}: W[[\Gamma]] \rightarrow R^{\text {ord }}$ such that $i_{R_{\text {ord }}} \circ \boldsymbol{\kappa}=\operatorname{det}(\boldsymbol{\rho})$. Therefore

$$
R^{o r d} \text { is canonically an algebra over } \Lambda=W[[\ulcorner]]
$$

\S 1.20. Reinterpretation of \mathcal{D}

Consider the following deformation functor $\mathcal{D}_{\kappa}: C L_{/ \wedge} \rightarrow S E T S$

$$
\mathcal{D}_{\kappa}(A)=\left\{\rho: G \rightarrow \operatorname{GL}_{2}(A) \mid \rho \quad \bmod \mathfrak{m}_{A} \cong \bar{\rho},\right.
$$

ρ satisfies $\left(\operatorname{ord}_{p}\right),\left(\operatorname{ord}_{l}\right)$ and $\left.\left(\operatorname{det}_{\Lambda}\right)\right\} / \cong$,
where writing $i_{A}: \wedge \rightarrow A$ for \wedge-algebra structure of A, ($\operatorname{det}_{\wedge}$) $\operatorname{det}(\rho)=i_{A} \circ \boldsymbol{\kappa}$.

Proposition 1. We have $\mathcal{D}_{\kappa}(A) \cong \operatorname{Hom}_{C L_{\Lambda}}\left(R^{\text {ord }}, A\right)$ with universal representation $\rho^{\text {ord }} \in \mathcal{D}\left(R^{\text {ord }}\right)$; so,

$$
\operatorname{Sel}(\operatorname{Ad}(\bar{\rho})):=t_{R^{\text {ord }} / \Lambda}=\operatorname{Ker}\left(H^{1}(G, \operatorname{Ad}(\bar{\rho})) \rightarrow \frac{H^{1}\left(D_{p}, \operatorname{Ad}(\bar{\rho})\right)}{F_{-}^{+} H^{1}\left(D_{p}, \operatorname{Ad}(\bar{\rho})\right)} .\right.
$$

\S 1.21. Proof. For any $\rho_{A} \in \mathcal{D}_{\kappa}(A)$, regard $\rho_{A} \in \mathcal{D}(A)$. Then we have $\varphi \in \operatorname{Hom}_{\mathcal{C}}\left(R^{\text {ord }}, A\right)$ such that $\varphi \circ \rho^{\text {ord }} \cong \rho_{A}$. Thus $\varphi \circ$ $\operatorname{det}\left(\rho^{\text {ord }}\right)=\operatorname{det}\left(\rho_{A}\right)$. Since $\operatorname{det}\left(\rho_{A}\right)=\iota_{A} \circ \boldsymbol{\kappa}$ and $\operatorname{det}\left(\rho^{\text {ord }}\right)=$ $\iota_{R^{o r d}} \circ \boldsymbol{\kappa}$, we find $\varphi \circ \iota_{R^{o r d}}=\iota_{A}$, and hence $\varphi \in \operatorname{Hom}_{C L_{\Lambda}}\left(R^{\text {ord }}, A\right)$. This shows that $R^{\text {ord }}$ also represents \mathcal{D}_{κ} over \wedge.

As we already remarked, $\mathcal{D}_{\kappa}(\mathbb{F}[\varepsilon])=t_{R^{\text {ord }} / \Lambda}=\mathfrak{m}_{R^{\text {ord }}} / \mathfrak{m}_{R^{\text {ord }}}^{2}+\mathfrak{m}_{\wedge}$ is independent as a subgroup of $H^{1}(G, \operatorname{Ad}(\bar{\rho}))$; so, we get a new expression of $\operatorname{Sel}(\operatorname{Ad}(\bar{\rho}))$.

By the proof, $\Omega_{R_{\text {ord }} / \wedge} \otimes_{R_{\text {ord }}} \mathbb{F} \cong \operatorname{Sel}(\operatorname{Ad}(\bar{\rho})) \cong \Omega_{R_{\chi} / B} \otimes_{R_{\chi}} \mathbb{F}$, so the smallest number of generators of $\Omega_{R^{\text {ord }} / \Lambda}$ as $R^{\text {ord }}$-modules and $\Omega_{R_{\chi} / B}$ as R_{χ} modules is equal. In the same way, the number of generators of $R^{\text {ord }}$ as Λ-algebras and R_{χ} as B-algebras is equal.
$\S 1.22$. Recall the compatible choice of ρ_{A}. By (ord $_{l}$) for $l \in S \cup\{p\}$, the universal representation ρ_{χ} is equipped with a basis ($\mathrm{v}_{l}, \mathrm{w}_{l}$) so that the matrix representation with respect this basis satisfies $\left(\operatorname{ord}_{l}\right)$. By universality, each class $c \in \mathcal{D}_{\chi}(A)$ has ρ such that $V(\rho)=V\left(\rho_{\chi}\right) \otimes_{R_{\chi}, \varphi} A$ for a unique $\varphi \in \operatorname{Hom}_{C L_{B}}\left(R_{\chi}, A\right)$, we can choose a unique $\rho_{A} \in c$ with a basis $\left\{\left(v_{l}=\mathbf{v}_{l} \otimes 1, w_{l}=\mathbf{w}_{l} \otimes 1\right)\right\}_{l}$ satisfying $\left\{\left(\operatorname{ord}_{l}\right): l \in S \cup\{p\}\right\}$ compatible with specialization. We choose such a specific representative ρ_{A} for each $c \in \mathcal{D}_{\chi}(A)$.

Start with ρ_{A} as above. Take a finite A-module X and consider the ring $A[X]=A \oplus X$ with $X^{2}=0$. Then $A[X]$ is still p-profinite. Pick $\rho \in \mathcal{F}(A[X])$ such that $\rho \bmod X \sim \rho_{A}$. By our choice of representative ρ and ρ_{A} as above, we may (and do) assume $\rho \bmod X=\rho_{A}$.
§1.23. General cocycle construction. Here we allow $\chi=\kappa$ but if $\chi=\kappa$. Letting $B=W$ if χ has values in W^{\times}and \wedge if $\chi=\kappa$, the functor $\mathcal{F}=\mathcal{D}_{\chi}$ is defined over $C L_{B}$. Let ρ_{A} act on $M_{2}(A)$ and $\mathfrak{s l}_{2}(A)=\left\{x \in M_{2}(A) \mid \operatorname{Tr}(x)=0\right\}$ by conjugation. Write this representation $a d\left(\rho_{A}\right)$ and $\operatorname{Ad}\left(\rho_{A}\right)$ as before. Let $a d(X)=$ $a d\left(\rho_{A}\right) \otimes_{A} X$ and $\operatorname{Ad}(X)=\operatorname{Ad}\left(\rho_{A}\right) \otimes_{A} X$ and regard them as G-modules by the action on $a d\left(\rho_{A}\right)$ and $A d\left(\rho_{A}\right)$. Then we define $\Phi(A[X])=\frac{\left\{\rho: G \rightarrow \mathrm{GL}_{2}(A[X]) \mid(\rho \bmod X)=\rho_{A},[\rho] \in \mathcal{F}(A[X])\right\}}{1+M_{2}(X)}$,
where [ρ] is the isomorphism class in $\mathcal{F}(A[X])$ containing ρ and ρ is assumed to satisfy the lifting property described in $\S 1.22$.

§1.24. Cocycles and deformations.

Take X finite as above. For $\rho \in \Phi(A[X])$, we can write $\rho=\rho_{A} \oplus u_{\rho}^{\prime}$ letting ρ_{A} acts on $M_{2}(X)$ by matrix multiplication from the right. Then as before

$$
\begin{aligned}
\rho_{A}(g h) \oplus u_{\rho}^{\prime}(g h)=\left(\rho_{A}(g)\right. & \left.\oplus u_{\rho}^{\prime}(g)\right)\left(\rho_{A}(h) \oplus u_{\rho}^{\prime}(h)\right) \\
& =\rho_{A}(g h) \oplus\left(u_{\rho}^{\prime}(g) \rho_{A}(h)+\rho_{A}(g) u_{\rho}^{\prime}(h)\right)
\end{aligned}
$$

produces $u_{\rho}^{\prime}(g h)=u_{\rho}^{\prime}(g) \rho_{A}(h)+\rho_{A}(g) u_{\rho}^{\prime}(h)$ and multiplying by $\rho_{A}(g h)^{-1}$ from the right, we get the cocycle relation for $u_{\rho}(g)=$ $u_{\rho}^{\prime}(g) \rho_{A}(g)^{-1}:$

$$
u_{\rho}(g h)=u_{\rho}(g)+g u_{\rho}(h) \text { for } g u_{\rho}(h)=\rho(g) u_{\rho}(h) \rho_{A}(g)^{-1},
$$

getting the map $\Phi(A[X]) \rightarrow H^{1}(G, a d(X))$ which factors through $H^{1}(G, \operatorname{Ad}(X))$. As before this map is injective A-linear map identifying $\Phi(A[X])$ with $\operatorname{Sel}(\operatorname{Ad}(X))$.
§1.25. General adjoint Selmer group. We see that $u_{\rho}: G \rightarrow$ $A d(X)$ is a 1-cocycle, and we get an embedding $\Phi(A[X]) \hookrightarrow$ $H^{1}(G, A d(X))$ for $l \in S \cup\{p\}$ by $\rho \mapsto\left[u_{\rho}\right]$. The local version of Φ :
$\Phi_{p}(A[X]):=\frac{\left\{\rho: D_{p} \rightarrow \mathrm{GL}_{2}(A[X]) \mid \rho \bmod X=\rho_{A},[\rho] \in \mathcal{F}_{p}(A[X])\right\}}{1+M_{2}(X)}$,
which is identified with $F_{-}^{+} H^{1}\left(D_{p}, \operatorname{Ad}(X)\right)$. Define

$$
\operatorname{Sel}(A d(X)):=\operatorname{Ker}\left(H^{1}(G, A d(X)) \rightarrow \frac{H^{1}\left(D_{p}, A d(X)\right)}{F_{-}^{+} H^{1}\left(D_{p}, \operatorname{Ad}(X)\right)}\right),
$$

If $X=\xrightarrow{\lim _{i}} X_{i}$ for finite A-modules X_{i}, we just define

$$
\operatorname{Sel}(\operatorname{Ad}(X))=\underset{i}{\lim } \operatorname{Sel}\left(\operatorname{Ad}\left(X_{i}\right)\right) .
$$

Then for finite X_{i},

$$
\Phi\left(A\left[X_{i}\right]\right)=\operatorname{Sel}\left(A d\left(X_{i}\right)\right) \text { and } \underset{i}{\lim } \Phi\left(A\left[X_{i}\right]\right)=\operatorname{Sel}\left(\underset{i}{\left(\lim _{i}\right.} A d\left(X_{i}\right)\right) .
$$

§1.26. Differentials and Selmer group. For each $\left[\rho_{A}\right] \in \mathcal{F}(A)$, choose a representative $\rho_{A}=\varphi \circ \rho$ as in $\S 1.22$. Then we have a map $\Phi(A[X]) \rightarrow \mathcal{F}(A[X])$ for each finite A-module X sending $\rho \in \Phi(A[X])$ chosen as in $\S 1.21$ to the class $[\rho] \in \mathcal{F}(A[X])$. By our choice of ρ as in $\S 1.21$, this map is injective.

Conversely pick a class $c \in \mathcal{F}(A[X])$ over $\left[\rho_{A}\right] \in \mathcal{F}(A)$. Then for $\rho \in c$, we have $x \in 1+M_{2}\left(\mathfrak{m}_{A[X]}\right)$ such that $x \rho x^{-1} \bmod X=\rho_{A}$. By replacing ρ by $x \rho x^{-1}$ and choosing the lifted base, we conclude $\Phi(A[X]) \cong\left\{[\rho] \in \mathcal{F}(A[X]) \mid \rho \bmod X \sim \rho_{A}\right\}$; so, for finite X,
$\operatorname{Sel}(A d(X))=\Phi(A[X])=\left\{\phi \in \operatorname{Hom}_{B \text {-alg }}\left(R_{\chi}, A[X]\right): \phi \bmod X=\varphi\right\}$
$=\operatorname{Der}_{B}\left(R_{\chi}, X\right) \cong \operatorname{Hom}_{R_{\chi}}\left(\Omega_{R_{\chi} / B}, X\right) \cong \operatorname{Hom}_{A}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}, \varphi} A, X\right)$.
Thus

$$
\operatorname{Sel}(A d(X)) \cong \operatorname{Hom}_{A}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}, \varphi} A, X\right) .
$$

§1.27. Theorem $\operatorname{Sel}\left(A d\left(\rho_{A}\right)\right)^{\vee} \cong \Omega_{R_{\chi} / B} \otimes_{R_{\chi}, \varphi} A$.
Proof. Take the Pontryagin dual
$A^{\vee}:=\operatorname{Hom}_{B}\left(A, B^{\vee}\right)=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(A \otimes_{B} B, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\operatorname{Hom}\left(A, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.
Since $A=\varliminf_{i} A_{i}$ for finite i and $\mathbb{Q}_{p} / \mathbb{Z}_{p}=\underline{\lim _{j}} p^{-1} \mathbb{Z} / \mathbb{Z}, A^{\vee}=$ $\underline{\mathrm{lim}}_{i} \operatorname{Hom}\left(A_{i}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\underline{\mathrm{lim}}_{i} A_{i}^{\vee}$ is a union of the finite modules A_{i}^{\vee}. We define $\operatorname{Sel}\left(A d\left(\rho_{A}\right)\right):=\underset{\longrightarrow}{\lim } \operatorname{Sel}\left(A d\left(A_{i}^{\vee}\right)\right)$. Defining $\Phi\left(A\left[A^{\vee}\right]\right)=$ $\mathrm{lim}_{i} \Phi\left(A\left[A_{i}^{\vee}\right]\right)$, we see from compatibility of cohomology with injective limit

$$
\begin{aligned}
\Phi\left(A\left[A^{\vee}\right]\right)= & \operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{A}\right)\right)=\underset{i}{\lim } \operatorname{Sel}\left(\operatorname{Ad}\left(A_{i}^{\vee}\right)\right) \\
& =\underset{\vec{j}}{\lim } \operatorname{Ker}\left(H^{1}\left(G, \operatorname{Ad}\left(A_{i}^{\vee}\right)\right) \rightarrow \frac{H^{1}\left(D_{p}, \operatorname{Ad}\left(A_{i}^{\vee}\right)\right)}{F_{-}^{+} H^{1}\left(D_{p}, \operatorname{Ad}\left(A_{i}^{\vee}\right)\right)}\right)
\end{aligned}
$$

\S 1.28. Proof continues. By the boxed formula in $\S 1.25$,

$$
\begin{gathered}
\operatorname{Sel}\left(A d\left(\rho_{A}\right)\right)=\underset{i}{\lim } \operatorname{Sel}\left(A d\left(A_{i}^{\vee}\right)\right)=\underset{i}{\lim } \operatorname{Hom}_{R_{\chi}}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}} A, A_{i}^{\vee}\right) \\
=\operatorname{Hom}_{A}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}} A, A^{\vee}\right)=\operatorname{Hom}_{A}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}} A, \operatorname{Hom}_{\mathbb{Z}_{p}}\left(A, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right) \\
=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}} A, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\left(\Omega_{R_{\chi} / B} \otimes_{R_{\chi}} A\right)^{\vee} .
\end{gathered}
$$

Taking Pontryagin dual back, we finally get
$\operatorname{Sel}\left(A d\left(\rho_{A}\right)\right)^{\vee} \cong \Omega_{R_{\chi} / B} \otimes_{R_{\chi}, \varphi} A$ and $\operatorname{Sel}(A d(\bar{\rho}))^{\vee} \cong \Omega_{R_{\chi} / B} \otimes_{R_{\chi}} \mathbb{F}$
as desired. In particular, $\operatorname{Sel}\left(A d\left(\rho_{\chi}\right)\right)^{\vee}=\Omega_{R_{\chi} / B}$ (with $\boldsymbol{\rho}_{\boldsymbol{\kappa}}=\boldsymbol{\rho}^{\text {ord }}$ if $\chi=\kappa$).

This is the generalization of the formula in $\S 0.19$

$$
C_{k} \cong \Omega_{\mathbb{Z}_{p}\left[C_{k}\right] / \mathbb{Z}_{p}} \otimes_{\mathbb{Z}_{p}\left[C_{k}\right]} \mathbb{Z}_{p}
$$

§1.29. p-Local condition. The submodule $\Phi_{p}(A[X])$ in the cohomology group $H^{1}\left(\mathbb{Q}_{p}, \operatorname{Ad}(X)\right)$ is made of classes of 1 -cocycles u with $\left.u\right|_{I_{p}}$ is upper nilpotent and $\left.u\right|_{D_{p}}$ is upper triangular with respect to the compatible basis (v_{p}, w_{p}). Suppose we have $\sigma \in$ I_{p} such that $\rho_{A}(\sigma)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ such that $\alpha \not \equiv \beta \bmod \mathfrak{m}_{A}$. Suppose u is upper nilpotent over I_{p}. Then for $\tau \in D_{p}$, we have $A d\left(\rho_{A}\right)(\tau) u\left(\tau^{-1} \sigma \tau\right)=\left(\operatorname{Ad}\left(\rho_{A}\right)(\sigma)-1\right) u(\tau)+u(\sigma)$. Writing $u(\tau)=$
 Since $\rho_{A}(\tau)$ is upper triangular and $u\left(\tau^{-1} \sigma \tau\right)$ is upper nilpotent, $\operatorname{Ad}\left(\rho_{A}\right)(\tau) u\left(\tau^{-1} \sigma \tau\right)$ is still upper nilpotent; so, $\left(\alpha^{-1} \beta-1\right) c=0$ and hence $c=0$. Therefore u is forced to be upper triangular over D_{p}. Thus we get
Lemma 4. If $\bar{\rho}(\sigma)$ for at least one $\sigma \in I_{p}$ has two distinct eigenvalues, $\Phi_{p}(A[X])$ gives rise to the subgroup of $H^{1}\left(\mathbb{Q}_{p}, \operatorname{Ad}(X)\right)$ made of classes containing a 1-cocycle whose restriction to I_{p} is upper nilpotent.

