Lecture slide No.1 for Math 207c
Adjoint Selmer groups
Haruzo Hida

We define Sel(Ad(p4)) for ordinary deformations p4 € Dy(A) of
an absolutely irreducible 2-dimensional minimal Galois represen-
tation p and show that Sel(Ad(p)) = tg/p and Sel(Ad(py))Y =
QR/B ®Rr,p A, where ¢ - R — A with pop ~ py for the univer-
sal minimal ordinary Galois representation p : G — GL>(R) of p.
Here the deformation functors D, D, : C — SETS are defined in
§0.22.

As before, we write I; for the inertia group of the [-decomposition
subgroup D; C G. We write S for the set of ramified primes [ # p
of p such that p|;, = & @ 6. We set Fle] := F[X]/(X?) (dual
numbers) with € < X mod (X?2).



§1.1. p-Ordinarity condition

Fix 5 : G — GLo(F) with 5 = pulp, = (gg) and € # 5. Let
pg . G — GLy(A) (A € C) be a deformation of p : G — GLo(FF)
acting on V(p4). We say p is p-ordinary if

(ordp) pA|Dp = <€5‘ 51) for two characters €4,04 : Dp — A_X dis-
tinct modulo m4 with §4 unramified with 64, mod m4 = 6 (this

is a requirement called p-distinguishedness).

Since twisting by a character £ : G — B* induces isomorphism
between the functors deforming p and p ® £, we may assume a
similar condition for i € S (I # p):

~ 0 :
(ordl) ’0|Il — <€l(’)A 1) with €, A = 1.

We can fix a character y : G — B*, we consider
(det) detp = 14 0o x for the B-algebra structure 14 : B — A.
The fixed determinant functor is denoted by Dy : C — SET'S.
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§1.2. Deformation functor.

We consider the following functors for a fixed absolutely irre-
ducible representation p : G — GL(F) satisfying (ordy) and
(ord;). Recall DY D, D, : ¢ — SETS given by

DP(A) 1= {pa: G — GLo(A)|ps mod my = p}/M(my),

D(A) = {p4 € D’(4)|(min), (ord,) and (ord))},

Dy(A) = {pa € D(A)|detp=140x}.
Then
Theorem 1 (B. Mazur). There exists universal couples (R, p),
(RO pord) and (Ryx, py) representing DY D and D,, respectively,
so that D(A) = Homg (R, A) by p— ¢ with ¢ o p°™® ~ p (resp.

We admit this theorem (see [MFG, §2.3] or Mazur’'s paper quoted
there).



§1.3. Fiber products.
Let C =C,SETS. For arrows ¢ : 8’ — S and ¢" : 8 — S in C,
S/ XS S// — {(CL,,CL”) c S/ X S//|¢/(CL,) — ¢//(a//)}
gives the fiber product of S’ and S” over S in C. So
Homg (X, S" xg8") = Homa(X, S") Xjome(x.s) Home(X, S7)

for any X € C. Let F:C — SETS be a covariant functor. We
assume

[F(EF)| =1 and F(Fle] xp Fle]) = F(Fle]) x 7@y F(Fle])
by two projections.

It is easy to see F € {D@,D,Dx} satisfies this condition. Indeed,
noting that Fle] xg Fle] & Fle'] xp F[e"] £ Fle/, "], if p' € F(F[£])
and o’ € F(F[e"]), we have p’ x p’ has values in GLo(F[¢/,e"]) is
an element in F(F[e'] xg F[e"]).



§1.4. Tangent space of deformation functors.
For A € C and an A-module X, suppose

F(A) = 1 and F(A[X] x 4 A[X]) = F(A[X]) x r(4) FCAIX]).

Note A[X] x4 A[X] = A[X & X]. The addition on X and A-
linear map o : X — X induces in the same way C-morphisms

« A[X D X] - AlX] bya+ (xDy) —a+x+y and ax : A[X] —
A[X] by a4+ 2 — a+ o(xz). Thus we have by functoriality. the
“addition”

+ : FIAIX]D) xzay FALX]) = FALX @ X]) ——5
and a-action

F(+x) FIALX])

o FAIX]) 2 Farx).

With 0 = Im(F(A) — F(A[X]) for the inclusion A — A[X], this
makes F(A[X]) as an A-module; so, F(F[e]) is an F-vector space
(called the tangent space of F).



31.5. Cotangent spaces of local rings
Suppose that B is noetherian and pick R € C'Lp.

Lemma 1. The ring R is noetherian if and only if tE/W =
mR/(m% + mp) is a finite dimensional vector space over IF.

The space t}i_{/B is called the co-tangent space of Rat mp = (w) €
Spec(R) over Spec(B). If mgp = (x1,...,2r), then m”é/m%"’l
IS generated by degree n monomial of T;; SO, B/m”]_}3 IS gener-
ated by degree < n polynomial of ;. Thus for W = W(IF),
WI[X1,...,X;] has dense image in B by sending r; to X;, and
hence W|[[X4,...,X;]] = B.

. . 2 2
Since we have an exact sequence: mp/m% — mp/mp —» tE/W, we

conclude in the same way that W|[[Xq,..., X, X;01,..., X;44]]
surjects onto R sending X; with ¢+ > r to generators of tE/B.
Thus the number of generators over B of R is dimFtE/B.



§1.6. Adjoint Galois modules

Let M>(A) be the space of 2 x 2 matrices with coefficients in A.
We let G acts on Mo(A) by gv = pa(g)vpa(g)~t. This action is
called the adjoint action of &, and this G—module will be written

as ad(py).

Write Z for the center of M»>(A) (scalar matrices) and define
sl5(A) = {X € M(A)|Tr(X) = 0}. Since Tr(aXa™ 1) = Tr(X),
slo(A) is stable under the adjoint action. This Galois module will
be written as Ad(py4).

Sincep>2, X — %Tr(X) ® (X — %Tr(X)) gives rise to M>(A) =
Z @ sl>(A) stable under the adjoint action.

So we have ad(pyg) = 1@ Ad(py), Where 1 is the trivial represen-
tation.



§1.7. Tangent space as cohomology

Lemma 2. Let (R,p) be the universal couple representing DY
over CLy,. Then

tpw = Homp(th yp, F) = H (G, ad(p)),

where H1 (G, ad(p)) is the continuous first cohomology group of
G with coefficients in the discrete G—module V (ad(p)).

Proof, Step. 1, dual nhumber.
We claim: Homg . (R, Fle]) = tr/w- Construction of the map.

Start with a W-algebra homomorphism ¢ : R — F[e]. Write
¢(r) = ¢o(r) + ¢<(r)e with ¢o(r), ¢e(r) € F.

Then the map is ¢ — £y = Gelmp-



§1.8. Step. 2, Well defined-ness of ¢,

From ¢(ab) = ¢(a)p(b), we get

¢o(ab) = ¢o(a)gp(b) and ¢e(ab) = ¢o(a)@e(b) + ¢o(b)de(a).

Thus ¢ € Dery (R, F) = HomF(QR/W ®p F,F). Since for any
derivation § € Deryy(R,F), ¢’ = ¢g + de € Homer,, (R, F[e]),

Hom (2w @R F,F) = Homp(Q2g /v, F)
~ Deryy (R, Fle]) & Homep,, (R, Fle]).
Note Ker(¢pg) = mp because R is local. Since ¢ is W-linear,
¢o(a) = @ = a mod mg. Thus ¢ kills m% and takes mp W-—
linearly into mpp = Fe; so, £y : th = mpg/m% — F. For r € W,
T =rp(l) = ¢(r) =T+ ¢<(r)e, and hence ¢ Kills W; so, £y €

tR/W'



§1.9. Step. 3, ¢ — £, is an injection.

Since R shares its residue field F with W, any element a € R can
be written as a =r 4+ x with r € W and =z € mp.

Thus ¢ is completely determined by the restriction €¢ of ¢ to
mp, Which factors through tE/W.
Thus ¢ — £ induces an injective linear map £ : HomW_alg(R,IF[e]) s

HomF(tE/W, F).

Note R/(m% + my) = F & thw = Flthy] with the projection

T R— tE/W to the direct summand tE/W. Indeed, writing 7 = (r

mod mp), for the inclusion + : F = W/my — R/(m% + myy),

w(r) =r — (7).



$1.10. Step. 4, ¢ — £, is a surjection.

For any ¢ € HomF(t}’i.{/W,F), we extends ¢ to R by putting £4(r) =
6(77(7“)) Then we define ¢ : R — Fle] by o(r) = 7+ £(w(r))e.
Since €2 =10 and #(r)7(s) =0 in F[tR/W] we have

rs =T+ 7(r)(E+n(s)) =754+ s57(r) + 77(s)

2, 75 + 50(x(r))e + 7(n(s))e = p(r)d(s)

is an W-—algebra homomorphism. In particular, ¢(¢) = ¢, and
hence ¢ is surjective.

By Homg(Q2g/yw ®r F,F) = Homgyp, (R, F[e]), we have

HomR(QR/W QpF,F) = HomF(tR/W,IF)
SO, if tE/W is finite dimensional, we also get

Qp/w QrF = th -




§1.11. Step. 5, use of universality.

By the universality, we have

Homey, (R, Fle]) & {p: G — GLo(Fle])|p mod mpp =7}/ ~ .

Write p(g) = p(g) + uib(g)e for p corresponding to ¢ : R — F[e].
From the mutiplicativity, we have

p(gh) + uy(gh)e = p(gh) = p(g)p(h)
= 2()p(h) + (Pla)ly(h) + wly(9)p(h))e,

Thus as a function v’ : G — M,(F), we have

uly(gh) = B(g)uly(h) + uly(9)p(h). (1)



§1.12. Step. 6, Getting 1-cocycle.

Define a map up, = uy : G — ad(p) by

ug(g) = uy(g)p(g) "
Then by a simple computation, we have
gug(h) = p(g)ug(h)p(g) !

from the definition of ad(p). Then from the above formula (1),
we conclude that

ug(gh) = guy(h) + ug(g).

Thus ug : G — ad(p) is a 1—cocycle. Thus we get an F-linear
map

tr/w = Homep, (R, Fle]) — H' (G, ad(p))



§1.13. Step. 7, End of proof.

By computation, for x € ad(p)

p~p = (g) +uy(g9)e = (1 +22)(p(g) + u)y(9)e) (1 — ze)
& u,(g9) = zp(g) — p(g9)z + ujy(g)
< up(g) = (1 —g)z+uy(g).
Thus the cohomology classes of u, and u, are equal if and only
if p~ p. This shows:

Homp(t% yy, F) = Homyy g4 (R, Fle]) =
{p:G— GLx(Fle])|p mod mp), =p}/ ~
= HY(G, ad(p)).

In this way, we get a bijection between HomF(tE/W,IF) and H1(G, ad(p)).



§1.14. Tangent space of rings and deformation functor
Lemma 3. Let F = D@,D,DX and R, R or R, accordingly.
Then tp/p = F(F[e]) as F-vetor spaces.

Proof. Let R be the universal ring for PP  We have got a
canonical bijection in §1.7:

DO(Fle]) 1‘11_‘1)“0/ HY(G,ad(p)) > tg/p

with a vector space isomorphism . We have constructed a
cocycle u, from p € F(F[e]) writing p = p 4+ uppe. Regard-
ing (p,p') € F(Fle]) x F(Fle]) = F(Fle] xp Fle]), we see that
+(p, p') = P+ (upp +uyp)e € F(F[e]); so, i1 is @ homomorphism.
Similarly, one can check that it is F-linear. Same for R°"® and
Ry. ]



§1.15. Galois deformation ring is noetherian.

Let H = Gal(F®P)(p)/F(p)). Note that H® = Cpo(p™®) =
lim Clp) (poo)/ClF(ﬁ) (p>)P" and we have an exact sequence for
the integer ring O of F(p):

2N b
O;; — H* — CF(ﬁ) — 1.

Therefore H® is a Znp-module of finite type, which tells us finite-
ness of Hom(H, ad(p)). By inflation-restriction sequence,

0 — HY(F(5)/Q,ad(p)) — H'(G,ad(p)) — Hom(H™, ad(p))

is exact. Since [F(p) : Q] < co and |ad(p)| < oo, HI(F(p)/Q, ad(p))
is finite. Thus H(G, ad(p)) = tr/w is finite. Then by the lemma

in §1.14, R is noetherian. This also tells us that R°"¢ and R, are
noetherian.



§1.16 Tangent space with local condition.

We regard F(F[e]) ¢ H(G,ad(p)). We may choose by (ordy) a
basis (dependent on [ € SU {p}) of V(p) for p € F(F[e]) so that
,0|Dp IS upper triangular with quotient character § congruent to
0 modulo my4. Similarly by (ord;), we choose the basis so that
plr, = ¢ @1 in this order.

Theorem 2. A 1-cocycle u gives rise to a class in D, (F[e]) if
and only if u|Dp IS upper triangular, u|[p IS upper nilpotent and
Tr(u) = 0 over G, where v = v mod (e).

For primes | # p, u(I;) = 0 as p 1 |[;|] (minimality). The descrip-
tion of cocycles u is independent of x; so, the tangent space
tRX/B is independent as a cohomology subgroup as long as F
does not change.



§1.17. Proof.
By (det), 1 =det(pp 1) =1+ upe =1+ Tr(uy)e; so, (det) <
Tr(u) = 0 over G. Thus we tp /5 C H' (G, Ad(p)).

Choose a generator w € V(e) over Fle]. Then (w,v) is a ba-
sis of V(p) over Fle]. Let (w,v) = (w,v) mod e and iden-
tify V(ad(p)) with M>(F) with this basis. Then defining p by
(6w, 00) = (w,0)p(c), for o € Dy, we have p(o) = (E%’) 35‘;))
(upper triangular). If o € Ip, pp* = 1 + u, with lower right cor-
ner of u, has to vanish as § =1 on I, we have u,(o) € {(§5)}-

The condition (ordp) is equivalent to u, is of the form (§ §) but
by Tr(u,) = 0, it has to be upper nilpotent; i.e., <8 g‘;). [ ]



§1.18. Adjoint Selmer group. For 7 =D or D,, we define the
local deformation functor Dy, by sending A to

{pa : Gal(Q,/Qp) — GL2(A)|ps mod my =p and (ordy) and (det)}.

By the proof of the theorem in §1.16, D, ,(F[e]) is the space of
cohomology classes in H(D,, Ad(p)) upper triangular over D,
and upper nilpotent over I,. Define Ad(p4) by the conjugation
action on sl>(A) by pa, and put Ad(pas)* := Ad(psg) @4 AV (dis-
crete), writing AV = Hom(A,Qp/Zy) (Pontryagin dual). Define

HY(Dp, Ad(p)*)
FTHY(Dp, Ad(pa)*)"

Sel(Ad(p4)) = Ker(HY (G, Ad(pA)*)

where Fj’Hl(Dp,Ad(pA)*) C HY(Dp, Ad(p4)*) is made of coho-
mology classes upper triangular over Dy, and upper nilpotent over
I,. Then we have |Sel(Ad(p)) = tr, /B




§1.19. R°" is an algebra over the Iwasawa algebra

The finite order character det(p) factors through Gal(Q[un,]/Q)
for some positive integer Ng. Let Ng be the minimal such integer
(called conductor of det(p)). Write Ng = NpY for N prime to p;
so, N is the prime to p-conductor of det(p).

If pgq is a minimal deformation of p, then ps(;) = p(I;) and
hence det(p4)(I;) = det(p)(I;). Therefore, det(p®®) is a minimal
deformation of det(p).

By universality, for the universal character & : G — W|[[[]]*, we
have a (unique) algebra homomorphism i = ip..q : WI[[]] — Rord
such that ipeq 0 k = det(p). Therefore

R is canonically an algebra over A = W[[I]].



§1.20. Reinterpretation of D
Consider the following deformation functor Dy : CL/p — SETS

Di(A) = {p: G — GLx(A)|p mod my =7,

p satisfies (ordy), (ord;) and (detp)}/ =,
where writing 74 : A — A for A-algebra structure of A,
(detp) det(p) =iy oK.

Proposition 1. We have Dy(A) = Homey,, (RO, A) with univer-
sal representation p°'¢ ¢ D(R™®); so,

I _ _ H(Dp, Ad(p))
Sel(Ad(p)) 1= tora)p = Ker (H' (G, Ad(p)) — — 1 (2 A



§1.21. Proof. For any py € Dg(A), regard py € D(A). Then
we have ¢ € Homg (R, A) such that po po@ & p,. Thus po
det(p®®) = det(p4). Since det(py) = 14 0 k and det(p”?) =
Lpord © K, We find ¢ 0 tpora = 14, and hence ¢ € Homgyp,, (R4, A).
This shows that R°" also represents Dy, over A.

As we already remarked, Dx(F[e]) = tpora/p = mROTd/m%OTd 4 mp
is independent as a subgroup of H1(G, Ad(p)); so, we get a new
expression of Sel(Ad(p)). [ ]

By the proof, QRord//\®Rm~dF = Sel(Ad(p)) = QRX/B@)RXIF, so the
smallest number of generators of QROTd//\ as R°"¥-modules and
QRX/B as R, modules is equal. In the same way, the number of
generators of ROTd 3s NA-algebras and R, as B-algebras is equal.



§1.22. Recall the compatible choice of p,. By (ord;) for
[ € SU{p}, the universal representation p, is equipped with a basis
(v;,w;) so that the matrix representation with respect this basis
satisfies (ord;). By universality, each class ¢ € D, (A) has p such
that V(p) = V(p,) ® Ry, A for a unique ¢ € Homep ,(Ry, A), we
can choose a unique p4 € c with a basis {(v; = vi®1,w; = w;®1)};
satisfying {(ord;):l € SU {p}} compatible with specialization. We
choose such a specific representative py for each c € Dy (A).

Start with py4 as above. Take a finite A-module X and consider
the ring A[X] = A®X with X2 = 0. Then A[X] is still p-profinite.
Pick p € F(A[X]) such that p mod X ~ py4. By our choice of
representative p and p4 as above, we may (and do) assume

p mod X = py.



§1.23. General cocycle construction. Here we allow x = kK
but if y = k. Letting B = W if x has values in W* and A if y = k,
the functor F = D, is defined over CLp. Let py act on M>(A)
and slo(A) = {x € M(A)|Tr(x) = 0} by conjugation. Write
this representation ad(p4) and Ad(py) as before. Let ad(X) =
ad(pg) ®4 X and Ad(X) = Ad(pyg) ®4 X and regard them as
G-modules by the action on ad(p4) and Ad(p4). Then we define

{p: G — GL2(A[X])[(p mod X) = pay, [p] € F(A[X])}

1 + Mo (X) ’
where [p] is the isomorphism class in F(A[X]) containing p and
p is assumed to satisfy the lifting property described in §1.22.

P(A[X]) =




§1.24. Cocycles and deformations.

Take X finite as above. For p € ®(A[X]), we can write p = p®u),
letting p4 acts on M>(X) by matrix multiplication from the right.
Then as before

pa(gh) & u,(gh) = (palg) & u,(9))(pa(h) & uy(h))
= pa(gh) ® (uy(9)pa(h) + palg)u,y(h))
produces u,(gh) = u,(g)pa(h) + pa(g)u,(h) and multiplying by
pa(gh)~1 from the right, we get the cocycle relation for up(g) =
un(9)palg) ™t

up(gh) = up(g) + gup(h) for gup(h) = p(g)up(h)pa(g) 1,

getting the map ®(A[X]) — HI(G, ad(X)) which factors through
H(G, Ad(X)). As before this map is injective A-linear map iden-
tifying ®(A[X]) with Sel(Ad(X)).



§1.25. General adjoint Selmer group. We see that u, : G —
Ad(X) is a 1-cocycle, and we get an embedding ®(A[X]) —
H(G, Ad(X)) for 1 € SU{p} by p+ [u,]. The local version of ®:

{p: Dp — GLo(A[X])|p mod X = py,[p] € fp(A[X])}
1+ M>(X)

which is identified with Fj’Hl(Dp,Ad(X)). Define

H!(Dp, Ad(X))
FYHY(Dp, Ad(X))"
If X = I'Lnn X, for finite A-modules X;, we just define

Sel(Ad(X)) = lim Sel(Ad(X,)).

()

Pp(A[X]) =

Sel(Ad(X)) := Ker(H (G, Ad(X))

Then for finite Xj,
P(A[X;]) = Sel(Ad(X;)) and Ii_m)dD(A[XZ-]) = Sel(li_m) Ad(X;)).

() ()



§1.26. Differentials and Selmer group. For each [p4] € F(A),
choose a representative pgy = po p as in §1.22. Then we have
a map ®(A[X]) — F(A[X]) for each finite A-module X sending
p € ®(A[X]) chosen as in §1.21 to the class [p] € F(A[X]). By
our choice of p as in §1.21, this map is injective.

Conversely pick a class ¢ € F(A[X]) over [p4] € F(A). Then for
p € c, we have z € 14 Mp(m 4x) such that zpz~! mod X = py.
By replacing p by a:pa:_l and choosing the lifted base, we conclude
P(A[X]) = {lp] € F(A[X])|p mod X ~ py}; so, for finite X,

Sel(Ad(X)) = ®(A[X]) = {¢ € Homp_5¢(Ry, A[X]) : pmod X = ¢}
= Derp(Ry, X) = Homp (g, /g, X) = HOMA(Q2R /p®R, oA, X).
Thus

Sel(Ad(X)) = Hom4(Qp, /5 Or, . A X).




§1.27. Theorem Sel(Ad(p,))Y = QR /B QR A
Proof. Take the Pontryagin dual

AY :=Hompg(A, BY) = Homg, (A®p B, Qp/Zp) = Hom(A, Qp/Zp).
Since A = lim_A; for finite i and Qp/Zp = IiLr;jp—lz/Z, AV =
lim. Hom(A;, Qp/Zp) = lim_  AY is a union of the finite modules A/
We define Sel(Ad(p,y)) = Ii_m)J. Sel(Ad(A})). Defining ®(A[AY]) =
IiLnM; CID(A[A;/]), we see from compatibility of cohomology with in-
jective limit

®(A[AY]) = Sel(Ad(pa)) = lim Sel(Ad(A]))

1

= lim Ker(H (G, Ad(AY)) H (Dp, Ad(4}))

b K HL(D,, Ad(A)

)



§1.28. Proof continues. By the boxed formula in §1.25,

Sel(Ad(pa)) = lim Sel(Ad(A;)) = limHompg, (g /p Or, A, A))

1
= HomA(QRX/B@)RXA,AV) = Hom4(Q2g, /B®R, A, Homy (A, Qp/Zp))
= Homgz, (2p /5 ®r, A, Qp/Zp) = (2 /5 @R, A)".
Taking Pontryagin dual back, we finally get

Sel(Ad(pa))Y = QR /B ®R,,p A and Sel(Ad(p))Y = Qp /B ®R, F

as desired. In particular, Sel(Ad(py))" = Qg /5 (With p, = perd
if x =K). [ ]

This is the generalization of the formula in §0.19

Cr = Qz,0,)/2, ®z,[04] Lo-



§1.29. p-Local condition. The submodule ®,(A[X]) in the co-
homology group H1(Qp, Ad(X)) is made of classes of 1-cocycles
u with u|1p is upper nilpotent and u|Dp is upper triangular with
respect to the compatible basis (vp,wp). Suppose we have o €
I, such that py(o) = (8‘%) such that @ Z 6 mod my. Sup-
pose u is upper nilpotent over I,. Then for 7 € Dy, we have

Ad(pp) (T)u(r~tor) = (Ad(pa)(0)—1)u(r)+u(o). Writing u(r) =

(¢2,), we find (Ad(pa)(0) — Du(r) = ((a_lg_l)c <a5‘;—1>b>_

Since p4(7) is upper triangular and w(7—1o7) is upper nilpotent,
Ad(p4)(Pu(r~ o) is still upper nilpotent; so, (a=18—-1)c =0
and hence ¢ = 0. Therefore u is forced to be upper triangular
over Dp. Thus we get

Lemma 4. If p(o) for at least one o € I, has two distinct eigen-
values, ®,(A[X]) gives rise to the subgroup of H(Qp, Ad(X))
made of classes containing a 1-cocycle whose restriction to I is
upper nilpotent.



