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An expectation: For a given group G,

Knowing all irreducible representations is equivalent to knowing

the group G?

as representations are easier to understand. If G is finite, a

representation embeds G into GLn(A) for a suitable ring A; so,

the question is “a sort of” valid (but hard to describe the image).

But if G is huge?

When G is abelian, the unitary character group Ĝ := Hom(G, S1)

(S1 := {z ∈ C× : |z| = 1}) determines G (as long as G is locally

compact; Pontryagin duality). Taking G to be the Galois group

of the maximal abelian extension kab of a number field k, we get

exact description of Gal(kab/k) (Class field theory).



If G is non-abelian, there is no-character group; though from

the category TanG of all representation of G, we can recover an

algebraic group G as its automorphism group basically fixing one

point and preserving tensor product (Tannakian theory). This is

not very useful as the category is too big if G is big (like Galois

group Gal(Q/Q))? Though the motivic Galois group (far bigger

than Gal(Q/Q)) is made this way (largely conjectural; Theory of

motives).

Therefore we somehow want to fix dimension of representations,

and somehow we want to know the collection of all representa-

tion reducing to a fixed small one (deformation theory), and from

that information, try to see the group?



§0.0. Set-up in abelian case. We describe the universal defor-

mation ring for representations (characters) into GL1 and intro-

duce invariants to compute it.

We fix an odd prime p (and later move p). Fix a finite extension

F/Fp and a local p-profinite noetherian ring B flat over Zp with

residue field F. Let C = CB be either the category of artinian

local B-algebra with residue field F or just p-profinite local B-

algebra with residue field F (this category is denoted by CLB).

Morphisms of C is a local B-algebra homomorphism.

Let k be a base field (a finite extension of Q) with integer ring

O. We take a Galois extension K/k over its Galois group G we

consider deformation. For a representation ρ : G → GLn(A), we

write F (ρ) := KKer(ρ) (splitting field).
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§0.1. Deformation of a character. The smallest (unique)

choice of the base ring B is the discrete valuation ring W = W (F)

unramified over Zp with residue field F (Witt vector ring with

coefficients in F), or you can choose a bigger one W (F)[µpr]

adding pr-th roots of unity or the Iwasawa algebra Λ = W [[T ]].

We fix the origin; i.e., the starting continuous character ρ : G→

GL1(F). A deformation into GL2(A) (A ∈ C) over G is a contin-

uous character ρA : G→ GL1(A) such that ρA mod mA = ρ.

The (full) deformation (covariant) functor D : G→ GL1(A)

D(A) = {ρA : G→ GL1(A)|ρA mod mA = ρ}.

If φ ∈ HomC(A,A
′), ρA 7→ φ ◦ ρA induces covariant functoriality.

We fix a set P of properties of Galois characters. A deformation

ρA is called P-deformation if ρA satisfies P.



§0.2. Examples of P:
• Unramfied everywhere (full deformation for the maximal K/k
unramified everywhere);

• Unramified outside p (full deformation if we take K to be the

maximal p-profinite extension of F (ρ) unramified outside p);
• Unramified outside S for a fixed finite set S of places of k (full

deformation if we take K to be the maximal p-profinite extension

of F (ρ) unramified outside S);

• Suppose that ρ is ramified at S outside p with ramification

index prime to p. A deformation ρA is minimal if ρA(Il)
∼= ρ(Il)

by restriction for all l 6= p, where Il ⊂ G is the inertia subgroup.

The minimal deformation problem is a full deformation problem

if we choose K as follows: Take K = F (p)(ρ) to be the maximal

p-profinite extension of F (ρ) unramified outside p. Since ramifi-

cation of a minimal deformation ρA is concentrated to F (ρ)/k,
ρA factors through G = Gal(G/k); so, our choice is this K.



§0.3. Universal-deformation of a character.

A couple (R,ρ) (universal couple) made of an object R of C (or

pro-category CLB of C) and a character ρ : G→ R× satisfying P

is called a universal couple for ρ

if for any P-deformation ρ : G → A× of ρ, we have a unique

morphism φρ : R → A in CLW (so it is a local W -algebra homo-

morphism) such that φρ ◦ ρ = ρ.

Thus D(A) ∼= HomC(R,A) by ρA = φ ◦ ρ↔ φ ∈ HomC(R,A), and

R (pro-)represents the functor D. By the universality, if exists,

the couple (R,ρ) is determined uniquely up to isomorphisms.

All deformation functor listed in §0.2 is represented by (B[[Gabp ]],ρ)

defined in the following section. Does the ring B[[Gabp ]] determine

explicitly the group Gabp ? and if yes, how?



§0.4. Group algebra is universal. Let Gabp be the maximal

p-profinite abelian quotient Gp = lim←−n(G
ab/pnGab) for Gab =

G/[G,G]. Consider the group algebra B[[Gabp ]] = lim←−nB[Gn] writ-

ing Gabp = lim←−n Gn with finite Gn.

Since F× ↪→ B×, we may regard ρ as a character ρ0 : G → B×

(Teichmüller lift of ρ). Define ρ : G → B[[Gabp ]]× by ρ(g) =

ρ0(g)gp for the image gp of g in Gabp . Note that B[Gabn ] is a local

ring with residue field F; so, is B[[Gabp ]].

If A = lim←−nAn for finite An with An = A/mn, ρn := ρAρ
−1
0

mod mn : G → A×n has to factor through Gm(n) for some m(n)

by continuity, and we get ϕn ∈ Hom(B[Gm(n)], An) given by
∑
g agg 7→

∑
g agρnχ

−1
0 (g) ∈ A. Then ϕn ◦ ρ = ρn. Passing to

the limit, we have ϕ ◦ ρ = ρA for ϕ = lim←−nϕn : B[[Gabp ]]→ A.



§0.5. Example of group algebras.

• If Gabp is a cyclic group C of order pr, B[Gabp ] = B[T ]/(tp
r
− 1)

for t = 1 + T by sending a generator g ∈ C to t.

• If Gabp = C1×· · ·×Cn for p-cyclic groups Cj with order prj, then

B[Gabp ] =
B[T1, . . . , Tn]

(t
pr1
1 − 1, . . . , t

prn
n − 1)

=
B[[T1, . . . , Tn]]

(t
pr1
1 − 1, . . . , t

prn
n − 1)

(ti = 1+Ti).

Note that f1 := tp
r1 − 1, . . . , fr := tp

rn
− 1 in mB[[T1,...,Tn]

is a

regular sequence, and B[Gabp ] is free of finite rank over B. A ring

of the form B[[T1, . . . , Tn]]/(f1, . . . , fn) with regular sequence (fj)

in mB[[T1,...,Tn]]
is called a local complete intersection over B if it

is free of finite rank over B.

• The Iwasawa algebra Λ = W [[Γ]] (Γ = 1 + pZp = (1 + p)Zp) is

isomorphic to W [[T ]] by 1 + p↔ t = 1 + T .

We now explore an arithmetic expression of the universal ring.



§0.6. Ray class groups of finite level.

Fix an O-ideal c. Recall

Cl+k (c) =
{fractional O-ideals prime to c}

{(α)|α ≡ 1 mod×c∞}
,

Here α ≡ 1 mod×c∞ means that α = a/b for a, b ∈ O with (b)+c =

O is totally positive and a ≡ b mod c. Removing the condition

“∞”, we define Clk. Passing to the limit, write

Cl+k (cp∞) = lim←−
n
Cl+k (cpn).

Write Hcpn/k for the ray class field modulo cpn; i.e., a unique

abelian extension Hcpn/k only ramified at cp∞ such that we can

identify Gal(Hcpn/k) with the strict ray class group Cl+k (cpn) by

sending a class of prime l in Cl+k (cpn) to the Frobenius element

Frobl ∈ Gal(Hcpn/k). This isomorphism is called the Artin sym-

bol.



§0.7. Ray class group of infinite level.

The group Cl+k (cpn) is finite as we have an exact sequence:

(O/cpn)×
α 7→(α)
−−−−−→

i
Cl+k (cpn)→ Clk → 1.

Note |Cl+k |/|Clk|
∣∣∣2e (e = |Isomfield(k,R)|. Passing to the limit,

O×p × (O/c)×
α 7→(α)
−−−−−→

i
Cl+k (cp∞) = lim←−

n
Cl+k (cpn)→ Clk → 1

Then for Hcp∞ =
⋃
nHcpn, Cl

+
k (cp∞) ∼= Gal(Hcp∞/k) by [l] 7→ Frobl

for primes l - cp.

• Image of l-component of i is the l-inertia subgroup of Gal(Hcpn/k).

If k = Q and c = (N) for 0 < N ∈ Z, we have Hcpn is the

cyclotomic field Q[µNpn] for the group µNpn of Npn-th roots of

unity; so, ClQ(cpn) ∼= (Z/NpnZ)× and ClQ(cp∞) ∼= (Z/NZ)××Z×p .



§0.8. Universal deformation ring for a Galois character ρ.

Let Ck(p
∞) (resp. Ck) for the maximal p-profinite quotient of

Cl+k (p∞) (resp. Cl+k ). Suppose ρ is minimal, and let G =

Gal(K/k) for K = F (p)(ρ). we consider minimal deformations

ρA. Since ramification outside l has index prime to p, we con-

clude Gabp = Ck(p
∞). Let H∞ ⊂ Hp∞ with Gal(H∞/k) = Ck(p

∞).

If k = Q, Ck(p
∞) = 1+ pZp =: Γ and H∞ = Q∞ ⊂ Q[µp∞] for the

unique Zp-extension Q∞ of Q as Cl+Q (p∞) = Z×p .

For the Teichmüller lift ρ0 of ρ and the inclusion κ : Gabp =

Ck(p
∞) ↪→ W [[Ck(p

∞)]], we define ρ(σ) := ρ0(σ)κ(σ). Then the

universality of the group algebra tells us

Theorem 1. The couple (W [[Ck(p
∞)]],ρ) is universal among all

minimal deformations. If ρ is unramified everywhere, (W [Ck],ρ)

is universal among everywhere unramified deformations.



§0.9. Some remarks.

• As long as ρ satisfies minimality, the universal deformation ring

W [[Ck(p
∞)]] is essentially independent of ρ (its dependence is

the coefficient ring W .

• If k is totally real, rankZp Cp(p
∞) is expected to be 1 (Leopoldt

conjecture).

• More generally, if k has r1 real places and r2 complex places,

then rankZp Ck(p
∞) = r2 + 1? (Leopoldt conjecture).

• If k = Q, CQ(p∞) = Γ, so

W [[CQ(p∞)]] = lim←−
n
W [Γ/Γp

n
] = lim←−

n
W [[T ]]/(tp

n
− 1) = W [[T ]].

Iwasawa algebra again shows up. In general, if Ck = {1} and

Ck(p
∞) ∼= Zr2+1

p , then W [[Ck(p
∞)]] ∼= W [[T1, . . . , Tr2+1]].

We now introduce some ring invariants C0 and C1 to recover the

group Gabp out of the ring B[[Gabp ]].



§0.10. Differentials. Fix R ∈ C. For a continuous R-module

M , define continuous B-derivations by

DerB(R,M) :=
{
δ ∈ HomB(R,M)

∣∣∣δ(ab) = aδ(b)+bδ(a) (a, b ∈ R)
}
.

Here B-linearity of δ ⇔ δ(B) = 0. The associationM 7→ DerB(R,M)

is a covariant functor from the category MOD/R of continuous

profinite R-modules to modules MOD, which is represented by

an R-module ΩR/B with universal differential d : R→ ΩR/B, e.g.,

ΩR/B =
free module over R with basis dr (r ∈ R)

〈〈d(ab)− bda− adb, d(βa+ b)− βda− db〉〉 a,b∈R,β∈B
.

Here “〈〈?〉〉” means the mR-adic closure of the R-submodule gen-

erated by “?”.



§0.11. When R is a B-module of finite type.

Suppose that B is noetherian and that R is a B-module of finite

type. Choose r1, . . . , rn so that R = Br1+ · · ·+Brn. Then by B-

linearity, Ω′ :=
⊕
r∈RR ·dr/〈d(βa+ b)−βda−db〉a,b∈R is generated

by dr1, . . . , drn; so, 〈〈d(ab) − bda− adb〉〉a,b∈R,β∈B ⊂ Ω′ is equal to

〈d(ab) − bda− adb〉a,b∈R,β∈B inside Ω′. Therefore we can replace

〈〈?〉〉 by 〈?〉 in the definition of ΩR/B for B noetherian and R

of finite type as B-modules. In this case, by B-linearity, any

B-derivation δ : R→M is actually continuous.

By this, ΩB[[T ]]/B = B[[T ]]dT and for f = f(T) ∈ B[[T ]],

Ω(B[[T ]]/(f))/B = (B[[T ]]/(f, f ′))dT = B[θ]/(f ′(θ))

with f ′(T) = df
dT (T) and B[[T ]] 3 T 7→ θ := (T mod (f)) ∈

B[[T ]]/(f).



§0.12. Congruence modules C0 and C1. Let φ : R � A ∈

HomC(R,A). We define C1(φ;A) := ΩR/B ⊗R,φ A . To define

C0, we assume (i) A = B, (ii) B is a domain and (iii) R ∼= Br as

B-modules. The total quotient ring Frac(R) can be decomposed

Frac(R) = Frac(Im(φ))⊕X (unique algebra direct sum).

Write 1φ for the idempotent of Frac(Im(φ)) in Frac(R). Let b =

Ker(R→ X) = (1φR∩R), S = Im(R→ X) and b = Ker(φ). Here

the intersection 1φR ∩R is taken in Frac(R) = Frac(Im(φ))×X.

First note that b = R ∩ (B × 0) and x = (0×X) ∩ R. Put

C0 = C0(φ;B) := (R/b)⊗R,φ Im(φ) and C1 := ΩR/B ⊗R B.

The module Cj is called the congruence module (of degree j)

of φ. Note: C0 = Im(φ)/(φ(a)) ∼= A/a ∼= R/(a⊕ b) ∼= S/b via pro-

jection to B and S (an exercise).



§0.13. Higher congruence modules.

Suppose φ : R → A is onto. We know C0 = S/b and we can

prove C1 = b/b2 under (i)–(iii) by the second fundamental exact

sequence:

b/b2 b7→db
−−−→ ΩR/B ⊗R A→ ΩA/B → 0.

So why not we define Cn := bn/bn+1. Then gr(S) =
⊕
j Cj is the

graded algebra. Knowledgeof gr(S) is almost equivalent to the

knowledge of S. Once we know S, we recover

R = B ×C0
S = {(b, s) ∈ B × S|b mod a = s mod b}.

If C1 = b/b2 is generated by one element over B, then by

Nakayama’s lemma, b = (θ) for a non-zero-divisor θ ∈ S. Then

gr(S) ∼= C0[x] by sending θ mod b2 to the variable x.
What is S if B = W and C0 = F?

Is there any good way to compute Cn when R is the universal

deformation ring?



§0.14. Explicit form of C1(π; F) as cotangent space.

Write π : R→ R/mR = F for the projection. Let F[ε] = F[x]/(x2)
with x↔ ε. Then ε2 = 0.

For φ ∈ HomB-alg(R,F[ε]), write φ(a) = π(a) + δ(a)ε. From

φ(ab) = π(a)π(b) + π(a)δ(b)ε+ π(b)δ(a)ε,

we find HomB-alg(R,F[ε]) = DerB(R,F) by φ↔ δ.

φ is determined by φ|mR which kills m2
R + mB as ε2 = 0. Thus

HomF(ΩR/B ⊗R F,F) ∼= HomR(ΩR/B,F)
∼= DerB(R,F) = HomR(t∗R/B,F),

for t∗R/B := mR/(m
2
R + mB). Taking F-dual, if t∗R/B is finite di-

mensional, we get ΩR/B ⊗R F ∼= t∗R/B ; in particular, ΩR/B is an

R-module of finite type (by Nakayama’s lemma).



§0.15. Congruence modules for group algebras.

Let H be a finite p-abelian group. If m is a maximal ideal of B[H],

then for the inclusion κ : H ↪→ B[H]× with κ(σ) = σ, κ mod m is

trivial as the finite field B[H]/m has no non-trivial p-power roots

of unity; so, m is generated by {σ − 1}h∈H and mB. Thus m is

unique and B[H] is a local ring.

We have a canonical algebra homomorphism: B[H]→ B sending

σ ∈ H to 1. This homomorphism is called the augmentation

homomorphism of the group algebra. Write this map π : B[H]→

B. Then b = Ker(π) is generated by σ − 1 for σ ∈ H. Thus

b =
∑

σ∈H

B[H](σ − 1)B[H].

We compute the congruence module and the differential module

Cj(π, B) (j = 0,1).



§0.16. Theorem. Suppose B is an integral domain with char-

acteristic 0 Frac(B). We have

C0(π;B) ∼= B/|H|B and C1(π;B) = H ⊗Z B.

Proof for the congruence module.

Let K := Frac(B). Then π gives rise to the algebra direct factor

Kε ⊂ K[H] for the idempotent ε = 1
|H|

∑
σ∈H σ. Thus a = Kε ∩

B[H] = (
∑
σ∈H σ) and π(B(H))/a = (ε)/a ∼= B/|H|B.



§0.17. Proof of C1(π;B) = H ⊗Z B, 1st step.

Consider the functor F : CLB → SETS given by

F(A) = Homgroup(H,A
×) = HomB-alg(B[H], A).

Thus R := B[H] and the character ρ : H → B[H] (the inclusion:

H ↪→ B[H]) are universal among characters of H with values in

A ∈ CLB.

Then for any R-module X, consider R[X] = R⊕X with algebra

structure given by rx = 0 and xy = 0 for all r ∈ R and x, y ∈ X.

Define Φ(X) = {ρ ∈ F(R[X])|ρ mod X = ρ}. Write

ρ(σ) = ρ(σ)⊕ u′ρ(σ)

for u′ρ : H → X.



§0.18. Proof, Second step.

Since

ρ(στ)⊕ u′ρ(στ) = ρ(στ)

= (ρ(σ)⊕ u′ρ(σ))(ρ(τ)⊕ u′ρ(τ))

= ρ(στ)⊕ (u′ρ(σ)ρ(τ) + ρ(σ)u′ρ(τ)),

we have u′ρ(στ) = u′ρ(σ)ρ(τ)+ρ(σ)u′ρ(τ), and thus uρ := ρ
−1u′ρ :

H → X is a homomorphism from H into X.

This shows

Hom(H,X) = Φ(X).



§0.19. Proof, Third step.

Any B-algebra homomorphism ξ : R→ R[X] with ξ mod X = idR
can be aritten as ξ = idR⊕dξ with dξ : R→ X.

Since (r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ rx′ + r′x for r, r′ ∈ R and x.x′ ∈ X,

we have dξ(rr
′) = rdξ(r

′) + r′dξ(r); so, dξ ∈ DerB(R,X). By

universality of (R,ρ), we have

Φ(X) ∼= {ξ ∈ HomB-alg(R,R[X])|ξ mod X = id}

= DerB(R,X) = HomR(ΩR/B, X).



§0.20. Proof, Fourth step, Yoneda’s lemma.

Thus we have

HomB(H ⊗Zp Zp, X) = Hom(H,X)

= HomR(ΩR/B, X)

= HomB(ΩR/B ⊗R,π B,X).

This is true for all X, we have (essentially by Yoneda’s lemma)

H ∼= ΩR/B ⊗R,π B = C1(π;B).



§0.21. Class group and Selmer group.

For simplicity, assume p - [k : Q] and that k/Q is a Galois exten-

sion. Note that K/Q is a Galois extension as K is the maximal p-

profinite extension of k unramified outside p. Let Ind
Q
k id = id⊕χ

and H = Ck. Then for Ωk given basically by the regulator and

some power of (2πi),

|L(1, χ)/Ωk|p =
∣∣∣|Ck|

∣∣∣
p
.

We can identify C∨k = Hom(Ck,Qp/Zp) with the Selmer group of

χ given by Selk(1) := Ker(H1(G,Qp/Zp)→
∏

p|pH
1(Ip,Qp/Zp))

Selk(1)
Shapiro+α

= SelQ(χ) := Ker(H1(K/Q, V (χ)∗)→ H1(Ip, V (χ)∗))

for the p-inertia group Ip ⊂ G and the p-inertia group Ip ⊂

Gal(K/Q).



§0.22. Class number formula.

Theorem 2 (Class number formula). For the augmentation ho-

momorphism π : Zp[Ck]→ Zp,
∣∣∣∣∣
L(1, χ)

Ωk

∣∣∣∣∣
p

= |C1(π; Zp)|
−1 = |C0(π; Zp)|

−1 =
∣∣∣|SelQ(χ)|

∣∣∣
p

and C1(π; Zp) = ΩZp[Ck]/Zp
⊗Zp[Ck]

Zp = Ck and C0(π; Zp) =

Zp/|Ck|Zp.

Is there any way of proving the above class number formula

without using the classical ideal theory of integer ring of k but

the Galois deformation theory?

There are three incarnations of Ck as the p-primary part of the

class group (field arithmetic), as the Galois group of the maximal

abelian unramified extension (Galois theory), and as a Selmer

group (Cohomology theory)



§0.23. What we study in the next few weeks.

Hereafter k = Q and B = W,Λ Fix a 2-dimensional continuous

odd representation ρ = ρF : Gal(Q/Q) → GL2(F) ramified at

finitely many primes. Take the maximal p-profinite extension

F (p)(ρ) unramified outside p, and let G = Gal(F (p)(ρ)/Q). We

consider the functor roughly defined

D(A) := {ρA : G→ GL2(A)|ρA mod mA = ρ, (ord), (min)}/Γ(mA).

Dχ(A) := {ρA ∈ D(A)|(det)}/Γ(mA).

Here Γ(mA) = Ker(GL2(A)→ GL2(F)) acts by conjugation,

(min) ρA is a minimal deformation.

(ord) ρA|Dp
∼=

( εA ∗
0 δA

)
with δA mod mA = δF and δ unramified.

(det) det(ρA) = χ, where χ is often of the form νk−1
p ψ for the

p-adic cyclotomic character νp and a finite order character ψ.



§0.24. Cases of the Bloch-Kato conjecture (BKC). Usually

Dχ (χ = νk−1
p ψ,B = W ) is represented by the (unique) local

ring Tχ of the Hecke algebra hk(ψ) associated to ρ acting on

Sk(ψ) := Sk(Γ0(N), ψ;W ) for the conductor N of ψ. Given odd

ρ, Tχ always exists by Khare–Wintenberger. Here

hk(ψ) := W [T(n)|n = 1,2, . . . ] ⊂ EndW (Sk(ψ))

for the Hecke operators T(n). If φ : Tχ → W is given by

f |T(n) = φ(T(n))f for a cusp form f and its p-adic Galois repre-

sentation ρf , we describe the identities C1
∼= Sel(Ad(ρf)) (the

adjoint Selmer group) and Adjoint class number formula:

|Sel(Ad(ρf))| = |C1| = |C0| =

∣∣∣∣∣
L(1, Ad(f))

∗

∣∣∣∣∣

−1

p

(BKC)

for an explicit constant ∗ independent of p if f has weight k ≥ 2.



§0.25. Some general goals and questions. Fix f ∈ Sk0(ψ0)

with f |T(n) = φ(T(n))f , and put χ0 = ν
k0−1
p ψ0. The bigger

functor D is represented by a local ring of the big “ordinary”

Hecke algebra T free of finite rank over Λ = W [[Γ]] = W [[T ]]

such that T/(t−χ(γ)) ∼= Tχ for all χ = νk−1
p ψ of the form χ ≡ χ0

as long as k ≥ 2. Our goals in the coming few weeks are:

• Supposing k ≥ 2, study T moving p for a fixed f0, and try to

prove that T = Λ if and only if p - L(1, Ad(f0))/∗.

An obvious question is to ask

• What happens if k0 = 1?

When k0 = 1, ρf0 has finite image independent of p (an Artin Ga-

lois representation) by Deligne–Serre; so, it looks easier. How-

ever we do not know (BKC) and we need to deal with the p-

adic value Lp(Ad(f0)) for the p-adic L Lp(Ad(f)) interpolating

L(1, Ad(f))/∗ for f with different weight k; so, it depends on p.


