Introductory lecture slide No.0 for Math 207c Haruzo Hida

An expectation: For a given group G,

Knowing all irreducible representations is equivalent to knowing the group G?

as representations are easier to understand. If G is finite, a representation embeds G into $GL_n(A)$ for a suitable ring A; so, the question is "a sort of" valid (but hard to describe the image). But if G is huge?

When G is abelian, the unitary character group $\hat{G} := \text{Hom}(G, S^1)$ $(S^1 := \{z \in \mathbb{C}^{\times} : |z| = 1\})$ determines G (as long as G is locally compact; Pontryagin duality). Taking G to be the Galois group of the maximal abelian extension k^{ab} of a number field k, we get exact description of $\text{Gal}(k^{ab}/k)$ (Class field theory). If *G* is non-abelian, there is no-character group; though from the category Tan_G of all representation of *G*, we can recover an algebraic group *G* as its automorphism group basically fixing one point and preserving tensor product (Tannakian theory). This is not very useful as the category is too big if *G* is big (like Galois group Gal($\overline{\mathbb{Q}}/\mathbb{Q}$))? Though the motivic Galois group (far bigger than Gal($\overline{\mathbb{Q}}/\mathbb{Q}$)) is made this way (largely conjectural; Theory of motives).

Therefore we somehow want to fix dimension of representations, and somehow we want to know the collection of all representation reducing to a fixed small one (deformation theory), and from that information, try to see the group? §0.0. Set-up in abelian case. We describe the universal deformation ring for representations (characters) into GL_1 and introduce invariants to compute it.

We fix an odd prime p (and later move p). Fix a finite extension \mathbb{F}/\mathbb{F}_p and a local p-profinite noetherian ring B flat over \mathbb{Z}_p with residue field \mathbb{F} . Let $C = C_B$ be either the category of artinian local B-algebra with residue field \mathbb{F} or just p-profinite local B-algebra with residue field \mathbb{F} (this category is denoted by CL_B). Morphisms of C is a local B-algebra homomorphism.

Let k be a base field (a finite extension of \mathbb{Q}) with integer ring O. We take a Galois extension K/k over its Galois group G we consider deformation. For a representation $\rho : G \to \operatorname{GL}_n(A)$, we write $F(\rho) := K^{\operatorname{Ker}(\rho)}$ (splitting field). §0.1. Deformation of a character. The smallest (unique) choice of the base ring B is the discrete valuation ring $W = W(\mathbb{F})$ unramified over \mathbb{Z}_p with residue field \mathbb{F} (Witt vector ring with coefficients in \mathbb{F}), or you can choose a bigger one $W(\mathbb{F})[\mu_{p^r}]$ adding p^r -th roots of unity or the Iwasawa algebra $\Lambda = W[[T]]$.

We fix the origin; i.e., the starting continuous character $\overline{\rho} : G \to GL_1(\mathbb{F})$. A deformation into $GL_2(A)$ $(A \in \mathcal{C})$ over G is a **continuous** character $\rho_A : G \to GL_1(A)$ such that $\rho_A \mod \mathfrak{m}_A = \overline{\rho}$.

The (full) deformation (covariant) functor $\mathcal{D} : G \to GL_1(A)$

 $\mathcal{D}(A) = \{ \rho_A : G \to \mathsf{GL}_1(A) | \rho_A \mod \mathfrak{m}_A = \overline{\rho} \}.$

If $\phi \in \text{Hom}_{\mathcal{C}}(A, A')$, $\rho_A \mapsto \phi \circ \rho_A$ induces covariant functoriality. We fix a set \mathcal{P} of properties of Galois characters. A deformation ρ_A is called \mathcal{P} -deformation if ρ_A satisfies \mathcal{P} .

\S **0.2.** Examples of \mathcal{P} :

• Unramfied everywhere (full deformation for the maximal K/k unramified everywhere);

• Unramified outside p (full deformation if we take K to be the maximal p-profinite extension of $F(\overline{p})$ unramified outside p);

• Unramified outside S for a fixed finite set S of places of k (full deformation if we take K to be the maximal p-profinite extension of $F(\overline{p})$ unramified outside S);

• Suppose that $\overline{\rho}$ is ramified at S outside p with ramification index prime to p. A deformation ρ_A is *minimal* if $\rho_A(I_l) \cong \overline{\rho}(I_l)$ by restriction for all $l \neq p$, where $I_l \subset G$ is the inertia subgroup.

The minimal deformation problem is a full deformation problem if we choose K as follows: Take $K = F^{(p)}(\overline{\rho})$ to be the maximal p-profinite extension of $F(\overline{\rho})$ unramified outside p. Since ramification of a minimal deformation ρ_A is concentrated to $F(\overline{\rho})/k$, ρ_A factors through G = Gal(G/k); so, our choice is this K.

§0.3. Universal-deformation of a character.

A couple (R, ρ) (universal couple) made of an object R of C (or pro-category CL_B of C) and a character $\rho : G \to R^{\times}$ satisfying \mathcal{P} is called a *universal couple* for $\overline{\rho}$

if for any \mathcal{P} -deformation $\rho : G \to A^{\times}$ of $\overline{\rho}$, we have a unique morphism $\phi_{\rho} : R \to A$ in CL_W (so it is a local W-algebra homomorphism) such that $\phi_{\rho} \circ \rho = \rho$.

Thus $\mathcal{D}(A) \cong \text{Hom}_{\mathcal{C}}(R, A)$ by $\rho_A = \phi \circ \rho \leftrightarrow \phi \in \text{Hom}_{\mathcal{C}}(R, A)$, and R (pro-)represents the functor \mathcal{D} . By the universality, if exists, the couple (R, ρ) is determined uniquely up to isomorphisms.

All deformation functor listed in §0.2 is represented by $(B[[G_p^{ab}]], \rho)$ defined in the following section. Does the ring $B[[G_p^{ab}]]$ determine explicitly the group G_p^{ab} ? and if yes, how?

§0.4. Group algebra is universal. Let G_p^{ab} be the maximal p-profinite abelian quotient $G_p = \lim_{n} (G^{ab}/p^n G^{ab})$ for $G^{ab} = G/\overline{[G,G]}$. Consider the group algebra $B[[G_p^{ab}]] = \lim_{n} B[\mathcal{G}_n]$ writing $G_p^{ab} = \lim_{n} \mathcal{G}_n$ with finite \mathcal{G}_n .

Since $\mathbb{F}^{\times} \hookrightarrow B^{\times}$, we may regard $\overline{\rho}$ as a character $\rho_0 : \mathcal{G} \to B^{\times}$ (Teichmüller lift of $\overline{\rho}$). Define $\rho : G \to B[[G_p^{ab}]]^{\times}$ by $\rho(g) = \rho_0(g)g_p$ for the image g_p of g in G_p^{ab} . Note that $B[G_n^{ab}]$ is a local ring with residue field \mathbb{F} ; so, is $B[[G_p^{ab}]]$.

If $A = \varprojlim_n A_n$ for finite A_n with $A_n = A/\mathfrak{m}_n$, $\rho_n := \rho_A \rho_0^{-1}$ mod $\mathfrak{m}_n : G \to A_n^{\times}$ has to factor through $\mathcal{G}_{m(n)}$ for some m(n)by continuity, and we get $\varphi_n \in \operatorname{Hom}(B[\mathcal{G}_{m(n)}], A_n)$ given by $\sum_g a_g g \mapsto \sum_g a_g \rho_n \chi_0^{-1}(g) \in A$. Then $\varphi_n \circ \rho = \rho_n$. Passing to the limit, we have $\varphi \circ \rho = \rho_A$ for $\varphi = \varprojlim_n \varphi_n : B[[G_p^{ab}]] \to A$.

\S **0.5.** Example of group algebras.

• If G_p^{ab} is a cyclic group C of order p^r , $B[G_p^{ab}] = B[T]/(t^{p^r} - 1)$ for t = 1 + T by sending a generator $g \in C$ to t.

• If $G_p^{ab} = C_1 \times \cdots \times C_n$ for *p*-cyclic groups C_j with order p^{r_j} , then

$$B[G_p^{ab}] = \frac{B[T_1, \dots, T_n]}{(t_1^{p^{r_1}} - 1, \dots, t_n^{p^{r_n}} - 1)} = \frac{B[[T_1, \dots, T_n]]}{(t_1^{p^{r_1}} - 1, \dots, t_n^{p^{r_n}} - 1)} \ (t_i = 1 + T_i).$$

Note that $f_1 := t^{p^{r_1}} - 1, \ldots, f_r := t^{p^{r_n}} - 1$ in $\mathfrak{m}_{B[[T_1, \ldots, T_n]]}$ is a regular sequence, and $B[G_p^{ab}]$ is free of finite rank over B. A ring of the form $B[[T_1, \ldots, T_n]]/(f_1, \ldots, f_n)$ with regular sequence (f_j) in $\mathfrak{m}_{B[[T_1, \ldots, T_n]]}$ is called a *local complete intersection* over B if it is free of finite rank over B.

• The Iwasawa algebra $\Lambda = W[[\Gamma]]$ $(\Gamma = 1 + p\mathbb{Z}_p = (1 + p)\mathbb{Z}_p)$ is isomorphic to W[[T]] by $1 + p \leftrightarrow t = 1 + T$.

We now explore an arithmetic expression of the universal ring.

$\S0.6$. Ray class groups of finite level.

Fix an O-ideal \mathfrak{c} . Recall

$$Cl_k^+(\mathfrak{c}) = \frac{\{\text{fractional } O\text{-ideals prime to } \mathfrak{c}\}}{\{(\alpha) | \alpha \equiv 1 \mod^{\times} \mathfrak{c}\infty\}},$$

Here $\alpha \equiv 1 \mod^{\times} \mathfrak{c}_{\infty}$ means that $\alpha = a/b$ for $a, b \in O$ with $(b) + \mathfrak{c} = O$ is totally positive and $a \equiv b \mod \mathfrak{c}$. Removing the condition " ∞ ", we define Cl_k . Passing to the limit, write

$$Cl_k^+(\mathfrak{c}p^\infty) = \varprojlim_n Cl_k^+(\mathfrak{c}p^n).$$

Write $H_{\mathfrak{c}p^n}/k$ for the ray class field modulo $\mathfrak{c}p^n$; i.e., a unique abelian extension $H_{\mathfrak{c}p^n}/k$ only ramified at $\mathfrak{c}p\infty$ such that we can identify $\operatorname{Gal}(H_{\mathfrak{c}p^n}/k)$ with the strict ray class group $Cl_k^+(\mathfrak{c}p^n)$ by sending a class of prime \mathfrak{l} in $Cl_k^+(\mathfrak{c}p^n)$ to the Frobenius element $\operatorname{Frob}_{\mathfrak{l}} \in \operatorname{Gal}(H_{\mathfrak{c}p^n}/k)$. This isomorphism is called the Artin symbol.

$\S0.7$. Ray class group of infinite level.

The group $Cl_k^+(\mathfrak{c}p^n)$ is finite as we have an exact sequence:

$$(O/\mathfrak{c}p^n)^{\times} \xrightarrow[i]{\alpha \mapsto (\alpha)}{i} Cl_k^+(\mathfrak{c}p^n) \to Cl_k \to 1.$$

Note $|Cl_k^+|/|Cl_k||^{2^e}$ $(e = |\text{Isom}_{\text{field}}(k, \mathbb{R})|$. Passing to the limit,

$$O_p^{\times} \times (O/\mathfrak{c})^{\times} \xrightarrow[i]{\alpha \mapsto (\alpha)}{i} Cl_k^+(\mathfrak{c}p^{\infty}) = \varprojlim_n Cl_k^+(\mathfrak{c}p^n) \to Cl_k \to 1$$

Then for $H_{\mathfrak{c}p^{\infty}} = \bigcup_n H_{\mathfrak{c}p^n}$, $Cl_k^+(\mathfrak{c}p^{\infty}) \cong \operatorname{Gal}(H_{\mathfrak{c}p^{\infty}}/k)$ by $[\mathfrak{l}] \mapsto \operatorname{Frob}_{\mathfrak{l}}$ for primes $\mathfrak{l} \nmid \mathfrak{c}p$.

• Image of l-component of i is the l-inertia subgroup of $Gal(H_{\mathfrak{c}p^n}/k)$.

If $k = \mathbb{Q}$ and $\mathfrak{c} = (N)$ for $0 < N \in \mathbb{Z}$, we have $H_{\mathfrak{c}p^n}$ is the cyclotomic field $\mathbb{Q}[\mu_{Np^n}]$ for the group μ_{Np^n} of Np^n -th roots of unity; so, $Cl_{\mathbb{Q}}(\mathfrak{c}p^n) \cong (\mathbb{Z}/Np^n\mathbb{Z})^{\times}$ and $Cl_{\mathbb{Q}}(\mathfrak{c}p^\infty) \cong (\mathbb{Z}/N\mathbb{Z})^{\times} \times \mathbb{Z}_p^{\times}$.

§0.8. Universal deformation ring for a Galois character $\overline{\rho}$. Let $C_k(p^{\infty})$ (resp. C_k) for the maximal *p*-profinite quotient of $Cl_k^+(p^{\infty})$ (resp. Cl_k^+). Suppose $\overline{\rho}$ is minimal, and let G = Gal(K/k) for $K = F^{(p)}(\overline{\rho})$. we consider minimal deformations ρ_A . Since ramification outside *l* has index prime to *p*, we conclude $G_p^{ab} = C_k(p^{\infty})$. Let $H_{\infty} \subset H_{p^{\infty}}$ with $Gal(H_{\infty}/k) = C_k(p^{\infty})$. If $k = \mathbb{Q}$, $C_k(p^{\infty}) = 1 + p\mathbb{Z}_p =: \Gamma$ and $H_{\infty} = \mathbb{Q}_{\infty} \subset \mathbb{Q}[\mu_{p^{\infty}}]$ for the unique \mathbb{Z}_p -extension \mathbb{Q}_{∞} of \mathbb{Q} as $Cl_{\mathbb{Q}}^+(p^{\infty}) = \mathbb{Z}_p^{\times}$.

For the Teichmüller lift ρ_0 of $\overline{\rho}$ and the inclusion κ : $G_p^{ab} = C_k(p^{\infty}) \hookrightarrow W[[C_k(p^{\infty})]]$, we define $\rho(\sigma) := \rho_0(\sigma)\kappa(\sigma)$. Then the universality of the group algebra tells us

Theorem 1. The couple $(W[[C_k(p^{\infty})]], \rho)$ is universal among all minimal deformations. If $\overline{\rho}$ is unramified everywhere, $(W[C_k], \rho)$ is universal among everywhere unramified deformations.

\S **0.9.** Some remarks.

• As long as $\overline{\rho}$ satisfies minimality, the universal deformation ring $W[[C_k(p^{\infty})]]$ is essentially independent of $\overline{\rho}$ (its dependence is the coefficient ring W.

• If k is totally real, rank_{\mathbb{Z}_p} $C_p(p^{\infty})$ is expected to be 1 (Leopoldt conjecture).

• More generally, if k has r_1 real places and r_2 complex places, then $\operatorname{rank}_{\mathbb{Z}_p} C_k(p^{\infty}) = r_2 + 1$? (Leopoldt conjecture).

• If
$$k = \mathbb{Q}$$
, $C_{\mathbb{Q}}(p^{\infty}) = \Gamma$, so

 $W[[C_{\mathbb{Q}}(p^{\infty})]] = \varprojlim_{n} W[\Gamma/\Gamma^{p^{n}}] = \varprojlim_{n} W[[T]]/(t^{p^{n}} - 1) = W[[T]].$ Iwasawa algebra again shows up. In general, if $C_{k} = \{1\}$ and $C_{k}(p^{\infty}) \cong \mathbb{Z}_{p}^{r_{2}+1}$, then $W[[C_{k}(p^{\infty})]] \cong W[[T_{1}, \ldots, T_{r_{2}+1}]].$

We now introduce some ring invariants C_0 and C_1 to recover the group G_p^{ab} out of the ring $B[[G_p^{ab}]]$.

§0.10. Differentials. Fix $R \in C$. For a continuous R-module M, define continuous B-derivations by

$$\begin{split} Der_B(R,M) &:= \Big\{ \delta \in \operatorname{Hom}_B(R,M) \Big| \delta(ab) = a \delta(b) + b \delta(a) \; (a,b \in R) \Big\}. \\ \text{Here B-linearity of } \delta \Leftrightarrow \delta(B) = 0. \text{ The association } M \mapsto Der_B(R,M) \\ \text{is a covariant functor from the category $MOD_{/R}$ of continuous \\ \text{profinite R-modules to modules MOD, which is represented by \\ an R-module $\Omega_{R/B}$ with universal differential $d: R \to \Omega_{R/B}$, e.g., } \end{split}$$

 $\Omega_{R/B} = \frac{\text{free module over } R \text{ with basis } dr \ (r \in R)}{\langle \langle d(ab) - bda - adb, d(\beta a + b) - \beta da - db \rangle \rangle}_{a,b \in R, \beta \in B}.$

Here " $\langle\langle?\rangle\rangle$ " means the \mathfrak{m}_R -adic closure of the R-submodule generated by "?".

$\S 0.11$. When R is a B-module of finite type.

Suppose that *B* is noetherian and that *R* is a *B*-module of finite type. Choose r_1, \ldots, r_n so that $R = Br_1 + \cdots + Br_n$. Then by *B*-linearity, $\Omega' := \bigoplus_{r \in R} R \cdot dr/\langle d(\beta a + b) - \beta da - db \rangle_{a,b \in R}$ is generated by dr_1, \ldots, dr_n ; so, $\langle \langle d(ab) - bda - adb \rangle \rangle_{a,b \in R,\beta \in B} \subset \Omega'$ is equal to $\langle d(ab) - bda - adb \rangle_{a,b \in R,\beta \in B}$ inside Ω' . Therefore we can replace $\langle \langle ? \rangle \rangle$ by $\langle ? \rangle$ in the definition of $\Omega_{R/B}$ for *B* noetherian and *R* of finite type as *B*-modules. In this case, by *B*-linearity, any *B*-derivation $\delta : R \to M$ is actually continuous.

By this, $\Omega_{B[[T]]/B} = B[[T]]dT$ and for $f = f(T) \in B[[T]]$,

 $\Omega_{(B[[T]]/(f))/B} = (B[[T]]/(f, f'))dT = B[\theta]/(f'(\theta))$ with $f'(T) = \frac{df}{dT}(T)$ and $B[[T]] \ni T \mapsto \theta := (T \mod (f)) \in B[[T]]/(f).$ §0.12. Congruence modules C_0 and C_1 . Let $\phi : R \to A \in$ Hom_{$\mathcal{C}(R,A)$}. We define $C_1(\phi; A) := \Omega_{R/B} \otimes_{R,\phi} A$. To define C_0 , we assume (i) A = B, (ii) B is a domain and (iii) $R \cong B^r$ as B-modules. The total quotient ring Frac(R) can be decomposed

 $Frac(R) = Frac(Im(\phi)) \oplus X$ (unique algebra direct sum).

Write 1_{ϕ} for the idempotent of $\operatorname{Frac}(\operatorname{Im}(\phi))$ in $\operatorname{Frac}(R)$. Let $\mathfrak{b} = \operatorname{Ker}(R \to X) = (1_{\phi}R \cap R)$, $S = \operatorname{Im}(R \to X)$ and $\mathfrak{b} = \operatorname{Ker}(\phi)$. Here the intersection $1_{\phi}R \cap R$ is taken in $\operatorname{Frac}(R) = \operatorname{Frac}(\operatorname{Im}(\phi)) \times X$. First note that $\mathfrak{b} = R \cap (B \times 0)$ and $\mathfrak{x} = (0 \times X) \cap R$. Put

 $C_0 = C_0(\phi; B) := (R/\mathfrak{b}) \otimes_{R,\phi} \operatorname{Im}(\phi) \text{ and } C_1 := \Omega_{R/B} \otimes_R B.$

The module C_j is called the *congruence* module (of degree j) of ϕ . Note: $C_0 = \text{Im}(\phi)/(\phi(\mathfrak{a})) \cong A/\mathfrak{a} \cong R/(\mathfrak{a} \oplus \mathfrak{b}) \cong S/\mathfrak{b}$ via projection to B and S (an exercise).

§0.13. Higher congruence modules.

Suppose $\phi : R \to A$ is onto. We know $C_0 = S/\mathfrak{b}$ and we can prove $C_1 = \mathfrak{b}/\mathfrak{b}^2$ under (i)–(iii) by the second fundamental exact sequence:

$$\mathfrak{b}/\mathfrak{b}^2 \xrightarrow{b \mapsto db} \Omega_{R/B} \otimes_R A \to \Omega_{A/B} \to 0.$$

So why not we define $C_n := \mathfrak{b}^n/\mathfrak{b}^{n+1}$. Then $gr(S) = \bigoplus_j C_j$ is the graded algebra. Knowledge of gr(S) is almost equivalent to the knowledge of S. Once we know S, we recover

$$R = B \times_{C_0} S = \{(b, s) \in B \times S | b \mod \mathfrak{a} = s \mod \mathfrak{b} \}.$$

If $C_1 = \mathfrak{b}/\mathfrak{b}^2$ is generated by one element over B, then by Nakayama's lemma, $\mathfrak{b} = (\theta)$ for a non-zero-divisor $\theta \in S$. Then $gr(S) \cong C_0[x]$ by sending $\theta \mod \mathfrak{b}^2$ to the variable x. What is S if B = W and $C_0 = \mathbb{F}$? Is there any good way to compute C_n when R is the universal

deformation ring?

§0.14. Explicit form of $C_1(\pi; \mathbb{F})$ as cotangent space. Write $\pi : R \to R/\mathfrak{m}_R = \mathbb{F}$ for the projection. Let $\mathbb{F}[\varepsilon] = \mathbb{F}[x]/(x^2)$ with $x \leftrightarrow \varepsilon$. Then $\varepsilon^2 = 0$.

For $\phi \in \operatorname{Hom}_{B-\operatorname{alg}}(R, \mathbb{F}[\varepsilon])$, write $\phi(a) = \pi(a) + \delta(a)\varepsilon$. From $\phi(ab) = \pi(a)\pi(b) + \pi(a)\delta(b)\varepsilon + \pi(b)\delta(a)\varepsilon$, we find $\operatorname{Hom}_{B-\operatorname{alg}}(R, \mathbb{F}[\varepsilon]) = Der_B(R, \mathbb{F})$ by $\phi \leftrightarrow \delta$.

 ϕ is determined by $\phi|_{\mathfrak{m}_R}$ which kills $\mathfrak{m}_R^2 + \mathfrak{m}_B$ as $\varepsilon^2 = 0$. Thus $\operatorname{Hom}_{\mathbb{F}}(\Omega_{R/B} \otimes_R \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_R(\Omega_{R/B}, \mathbb{F})$ $\cong Der_B(R, \mathbb{F}) = \operatorname{Hom}_R(t_{R/B}^*, \mathbb{F}),$

for $t_{R/B}^* := \mathfrak{m}_R/(\mathfrak{m}_R^2 + \mathfrak{m}_B)$. Taking \mathbb{F} -dual, if $t_{R/B}^*$ is finite dimensional, we get $\Omega_{R/B} \otimes_R \mathbb{F} \cong t_{R/B}^*$; in particular, $\Omega_{R/B}$ is an R-module of finite type (by Nakayama's lemma).

\S **0.15.** Congruence modules for group algebras.

Let H be a finite p-abelian group. If \mathfrak{m} is a maximal ideal of B[H], then for the inclusion $\kappa : H \hookrightarrow B[H]^{\times}$ with $\kappa(\sigma) = \sigma, \kappa \mod \mathfrak{m}$ is trivial as the finite field $B[H]/\mathfrak{m}$ has no non-trivial p-power roots of unity; so, \mathfrak{m} is generated by $\{\sigma - 1\}_{h \in H}$ and \mathfrak{m}_B . Thus \mathfrak{m} is unique and B[H] is a local ring.

We have a canonical algebra homomorphism: $B[H] \to B$ sending $\sigma \in H$ to 1. This homomorphism is called the *augmentation* homomorphism of the group algebra. Write this map $\pi : B[H] \to B$. Then $\mathfrak{b} = \operatorname{Ker}(\pi)$ is generated by $\sigma - 1$ for $\sigma \in H$. Thus

$$\mathfrak{b} = \sum_{\sigma \in H} B[H](\sigma - 1)B[H].$$

We compute the congruence module and the differential module $C_j(\pi, B)$ (j = 0, 1).

§0.16. Theorem. Suppose B is an integral domain with characteristic 0 Frac(B). We have

 $C_0(\pi; B) \cong B/|H|B$ and $C_1(\pi; B) = H \otimes_{\mathbb{Z}} B.$

Proof for the congruence module.

Let $K := \operatorname{Frac}(B)$. Then π gives rise to the algebra direct factor $K\varepsilon \subset K[H]$ for the idempotent $\varepsilon = \frac{1}{|H|} \sum_{\sigma \in H} \sigma$. Thus $\mathfrak{a} = K\varepsilon \cap B[H] = (\sum_{\sigma \in H} \sigma)$ and $\pi(B(H))/\mathfrak{a} = (\varepsilon)/\mathfrak{a} \cong B/|H|B$.

§0.17. Proof of $C_1(\pi; B) = H \otimes_{\mathbb{Z}} B$, 1st step. Consider the functor $\mathcal{F} : CL_B \to SETS$ given by

 $\mathcal{F}(A) = \operatorname{Hom}_{\operatorname{group}}(H, A^{\times}) = \operatorname{Hom}_{B-\operatorname{alg}}(B[H], A).$

Thus R := B[H] and the character $\rho : H \to B[H]$ (the inclusion: $H \hookrightarrow B[H]$) are universal among characters of H with values in $A \in CL_B$.

Then for any *R*-module *X*, consider $R[X] = R \oplus X$ with algebra structure given by rx = 0 and xy = 0 for all $r \in R$ and $x, y \in X$.

Define $\Phi(X) = \{\rho \in \mathcal{F}(R[X]) | \rho \mod X = \rho\}$. Write $\rho(\sigma) = \rho(\sigma) \oplus u'_{\rho}(\sigma)$

for $u'_{\rho} : H \to X$.

§0.18. Proof, Second step. Since

$$\rho(\sigma\tau) \oplus u'_{\rho}(\sigma\tau) = \rho(\sigma\tau)$$

= $(\rho(\sigma) \oplus u'_{\rho}(\sigma))(\rho(\tau) \oplus u'_{\rho}(\tau))$
= $\rho(\sigma\tau) \oplus (u'_{\rho}(\sigma)\rho(\tau) + \rho(\sigma)u'_{\rho}(\tau)),$

we have $u'_{\rho}(\sigma\tau) = u'_{\rho}(\sigma)\rho(\tau) + \rho(\sigma)u'_{\rho}(\tau)$, and thus $u_{\rho} := \rho^{-1}u'_{\rho}$: $H \to X$ is a homomorphism from H into X.

This shows

 $Hom(H,X) = \Phi(X).$

$\S0.19$. Proof, Third step.

Any *B*-algebra homomorphism $\xi : R \to R[X]$ with $\xi \mod X = \operatorname{id}_R$ can be aritten as $\xi = \operatorname{id}_R \oplus d_{\xi}$ with $d_{\xi} : R \to X$.

Since $(r \oplus x)(r' \oplus x') = rr' \oplus rx' + r'x$ for $r, r' \in R$ and $x.x' \in X$, we have $d_{\xi}(rr') = rd_{\xi}(r') + r'd_{\xi}(r)$; so, $d_{\xi} \in Der_B(R, X)$. By universality of (R, ρ) , we have

 $\Phi(X) \cong \{\xi \in \operatorname{Hom}_{B-\operatorname{alg}}(R, R[X]) | \xi \mod X = \operatorname{id} \}$ $= Der_B(R, X) = \operatorname{Hom}_R(\Omega_{R/B}, X).$

$\S 0.20.$ Proof, Fourth step, Yoneda's lemma. Thus we have

$$Hom_B(H \otimes_{\mathbb{Z}_p} \mathbb{Z}_p, X) = Hom(H, X)$$

= $Hom_R(\Omega_{R/B}, X)$
= $Hom_B(\Omega_{R/B} \otimes_{R,\pi} B, X).$

This is true for all X, we have (essentially by Yoneda's lemma)

$$H \cong \Omega_{R/B} \otimes_{R,\pi} B = C_1(\pi; B).$$

§0.21. Class group and Selmer group.

For simplicity, assume $p \nmid [k : \mathbb{Q}]$ and that k/\mathbb{Q} is a Galois extension. Note that K/\mathbb{Q} is a Galois extension as K is the maximal p-profinite extension of k unramified outside p. Let $\operatorname{Ind}_k^{\mathbb{Q}} \operatorname{id} = \operatorname{id} \oplus \chi$ and $H = C_k$. Then for Ω_k given basically by the regulator and some power of $(2\pi i)$,

$$|L(1,\chi)/\Omega_k|_p = \left||C_k|\right|_p.$$

We can identify $C_k^{\vee} = \operatorname{Hom}(C_k, \mathbb{Q}_p/\mathbb{Z}_p)$ with the Selmer group of χ given by $\operatorname{Sel}_k(1) := \operatorname{Ker}(H^1(G, \mathbb{Q}_p/\mathbb{Z}_p) \to \prod_{\mathfrak{p}|p} H^1(I_{\mathfrak{p}}, \mathbb{Q}_p/\mathbb{Z}_p))$

 $\operatorname{Sel}_k(1) \stackrel{\operatorname{Shapiro}+\alpha}{=} \operatorname{Sel}_{\mathbb{Q}}(\chi) := \operatorname{Ker}(H^1(K/\mathbb{Q}, V(\chi)^*) \to H^1(I_p, V(\chi)^*))$ for the p-inertia group $I_p \subset G$ and the p-inertia group $I_p \subset$ $\operatorname{Gal}(K/\mathbb{Q}).$

§0.22. Class number formula.

Theorem 2 (Class number formula). For the augmentation homomorphism $\pi : \mathbb{Z}_p[C_k] \to \mathbb{Z}_p$,

$$\begin{aligned} \left| \frac{L(1,\chi)}{\Omega_k} \right|_p &= |C_1(\pi;\mathbb{Z}_p)|^{-1} = |C_0(\pi;\mathbb{Z}_p)|^{-1} = \left| |\mathsf{Sel}_{\mathbb{Q}}(\chi)| \right|_p \\ and \ C_1(\pi;\mathbb{Z}_p) &= \Omega_{\mathbb{Z}_p[C_k]/\mathbb{Z}_p} \otimes_{\mathbb{Z}_p[C_k]} \mathbb{Z}_p = C_k \text{ and } C_0(\pi;\mathbb{Z}_p) = \\ \mathbb{Z}_p/|C_k|\mathbb{Z}_p. \end{aligned}$$

Is there any way of proving the above class number formula without using the classical ideal theory of integer ring of k but the Galois deformation theory?

There are three incarnations of C_k as the *p*-primary part of the class group (field arithmetic), as the Galois group of the maximal abelian unramified extension (Galois theory), and as a Selmer group (Cohomology theory)

\S **0.23.** What we study in the next few weeks.

Hereafter $k = \mathbb{Q}$ and $B = W, \Lambda$ Fix a 2-dimensional continuous odd representation $\overline{\rho} = \rho_{\mathbb{F}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$ ramified at finitely many primes. Take the maximal *p*-profinite extension $F^{(p)}(\overline{\rho})$ unramified outside *p*, and let $G = \operatorname{Gal}(F^{(p)}(\rho)/\mathbb{Q})$. We consider the functor roughly defined

 $\mathcal{D}(A) := \{ \rho_A : G \to \mathsf{GL}_2(A) | \rho_A \mod \mathfrak{m}_A = \overline{\rho}, \text{ (ord), (min)} \} / \Gamma(\mathfrak{m}_A).$ $\mathcal{D}_{\chi}(A) := \{ \rho_A \in \mathcal{D}(A) | (\det) \} / \Gamma(\mathfrak{m}_A).$

Here $\Gamma(\mathfrak{m}_A) = \operatorname{Ker}(\operatorname{GL}_2(A) \to \operatorname{GL}_2(\mathbb{F}))$ acts by conjugation, (min) ρ_A is a minimal deformation. (ord) $\rho_A|_{D_p} \cong \begin{pmatrix} \epsilon_A & * \\ 0 & \delta_A \end{pmatrix}$ with $\delta_A \mod \mathfrak{m}_A = \delta_{\mathbb{F}}$ and δ unramified. (det) $\operatorname{det}(\rho_A) = \chi$, where χ is often of the form $\nu_p^{k-1}\psi$ for the p-adic cyclotomic character ν_p and a finite order character ψ . §0.24. Cases of the Bloch-Kato conjecture (BKC). Usually \mathcal{D}_{χ} ($\chi = \nu_p^{k-1}\psi, B = W$) is represented by the (unique) local ring \mathbb{T}_{χ} of the Hecke algebra $\mathbf{h}_k(\psi)$ associated to $\overline{\rho}$ acting on $S_k(\psi) := S_k(\Gamma_0(N), \psi; W)$ for the conductor N of ψ . Given odd $\overline{\rho}$, \mathbb{T}_{χ} always exists by Khare–Wintenberger. Here

$\mathbf{h}_k(\psi) := W[T(n)|n=1,2,\dots] \subset \mathsf{End}_W(S_k(\psi))$

for the Hecke operators T(n). If $\phi : \mathbb{T}_{\chi} \to W$ is given by $f|T(n) = \phi(T(n))f$ for a cusp form f and its p-adic Galois representation ρ_f , we describe the identities $C_1 \cong \text{Sel}(Ad(\rho_f))$ (the adjoint Selmer group) and Adjoint class number formula:

$$|\text{Sel}(Ad(\rho_f))| = |C_1| = |C_0| = \left|\frac{L(1, Ad(f))}{*}\right|_p^{-1}$$
 (BKC)

for an explicit constant * independent of p if f has weight $k \geq 2$.

§0.25. Some general goals and questions. Fix $f \in S_{k_0}(\psi_0)$ with $f|T(n) = \phi(T(n))f$, and put $\chi_0 = \nu_p^{k_0-1}\psi_0$. The bigger functor \mathcal{D} is represented by a local ring of the big "ordinary" Hecke algebra \mathbb{T} free of finite rank over $\Lambda = W[[\Gamma]] = W[[T]]$ such that $\mathbb{T}/(t - \chi(\gamma)) \cong \mathbb{T}_{\chi}$ for all $\chi = \nu_p^{k-1}\psi$ of the form $\chi \equiv \chi_0$ as long as $k \ge 2$. Our goals in the coming few weeks are:

• Supposing $k \ge 2$, study \mathbb{T} moving p for a fixed f_0 , and try to prove that $\mathbb{T} = \Lambda$ if and only if $p \nmid L(1, Ad(f_0))/*$.

An obvious question is to ask

• What happens if $k_0 = 1$?

When $k_0 = 1$, ρ_{f_0} has finite image independent of p (an Artin Galois representation) by Deligne–Serre; so, it looks easier. However we do not know (BKC) and we need to deal with the p-adic value $L_p(Ad(f_0))$ for the p-adic L $L_p(Ad(f))$ interpolating L(1, Ad(f))/* for f with different weight k; so, it depends on p.