Introductory lecture slide No. 0 for Math 207c

Haruzo Hida
An expectation: For a given group G, Knowing all irreducible representations is equivalent to knowing the group G ?
as representations are easier to understand. If G is finite, a representation embeds G into $\mathrm{GL}_{n}(A)$ for a suitable ring A; so, the question is "a sort of" valid (but hard to describe the image). But if G is huge?

When G is abelian, the unitary character group $\widehat{G}:=\operatorname{Hom}\left(G, S^{1}\right)$ ($S^{1}:=\left\{z \in \mathbb{C}^{\times}:|z|=1\right\}$) determines G (as long as G is locally compact; Pontryagin duality). Taking G to be the Galois group of the maximal abelian extension $k^{a b}$ of a number field k, we get exact description of $\operatorname{Gal}\left(k^{a b} / k\right)$ (Class field theory).

If G is non-abelian, there is no-character group; though from the category Tan_{G} of all representation of G, we can recover an algebraic group G as its automorphism group basically fixing one point and preserving tensor product (Tannakian theory). This is not very useful as the category is too big if G is big (like Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$? Though the motivic Galois group (far bigger than $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$) is made this way (largely conjectural; Theory of motives).

Therefore we somehow want to fix dimension of representations, and somehow we want to know the collection of all representation reducing to a fixed small one (deformation theory), and from that information, try to see the group?
§0.0. Set-up in abelian case. We describe the universal deformation ring for representations (characters) into GL_{1} and introduce invariants to compute it.

We fix an odd prime p (and later move p). Fix a finite extension $\mathbb{F} / \mathbb{F}_{p}$ and a local p-profinite noetherian ring B flat over \mathbb{Z}_{p} with residue field \mathbb{F}. Let $\mathcal{C}=\mathcal{C}_{B}$ be either the category of artinian local B-algebra with residue field \mathbb{F} or just p-profinite local B algebra with residue field \mathbb{F} (this category is denoted by $C L_{B}$). Morphisms of \mathcal{C} is a local B-algebra homomorphism.

Let k be a base field (a finite extension of \mathbb{Q}) with integer ring O. We take a Galois extension K / k over its Galois group G we consider deformation. For a representation $\rho: G \rightarrow \mathrm{GL}_{n}(A)$, we write $F(\rho):=K^{\operatorname{Ker}(\rho)}$ (splitting field).
§0.1. Deformation of a character. The smallest (unique) choice of the base ring B is the discrete valuation ring $W=W(\mathbb{F})$ unramified over \mathbb{Z}_{p} with residue field \mathbb{F} (Witt vector ring with coefficients in \mathbb{F}), or you can choose a bigger one $W(\mathbb{F})\left[\mu_{p^{r}}\right]$ adding p^{r}-th roots of unity or the Iwasawa algebra $\wedge=W[[T]]$.

We fix the origin; i.e., the starting continuous character $\bar{\rho}: G \rightarrow$ $\mathrm{GL}_{1}(\mathbb{F})$. A deformation into $\mathrm{GL}_{2}(A)(A \in \mathcal{C})$ over G is a continuous character $\rho_{A}: G \rightarrow \mathrm{GL}_{1}(A)$ such that $\rho_{A} \bmod \mathfrak{m}_{A}=\bar{\rho}$.

The (full) deformation (covariant) functor $\mathcal{D}: G \rightarrow \mathrm{GL}_{1}(A)$

$$
\mathcal{D}(A)=\left\{\rho_{A}: G \rightarrow \mathrm{GL}_{1}(A) \mid \rho_{A} \bmod \mathfrak{m}_{A}=\bar{\rho}\right\} .
$$

If $\phi \in \operatorname{Hom}_{\mathcal{C}}\left(A, A^{\prime}\right), \rho_{A} \mapsto \phi \circ \rho_{A}$ induces covariant functoriality. We fix a set \mathcal{P} of properties of Galois characters. A deformation ρ_{A} is called \mathcal{P}-deformation if ρ_{A} satisfies \mathcal{P}.

§0.2. Examples of \mathcal{P} :

- Unramfied everywhere (full deformation for the maximal K / k unramified everywhere);
- Unramified outside p (full deformation if we take K to be the maximal p-profinite extension of $F(\bar{\rho})$ unramified outside $p)$;
- Unramified outside S for a fixed finite set S of places of k (full deformation if we take K to be the maximal p-profinite extension of $F(\bar{\rho})$ unramified outside S);
- Suppose that $\bar{\rho}$ is ramified at S outside p with ramification index prime to p. A deformation ρ_{A} is minimal if $\rho_{A}\left(I_{l}\right) \cong \bar{\rho}\left(I_{l}\right)$ by restriction for all $l \neq p$, where $I_{l} \subset G$ is the inertia subgroup.

The minimal deformation problem is a full deformation problem if we choose K as follows: Take $K=F^{(p)}(\bar{\rho})$ to be the maximal p-profinite extension of $F(\bar{\rho})$ unramified outside p. Since ramification of a minimal deformation ρ_{A} is concentrated to $F(\bar{\rho}) / k$, ρ_{A} factors through $G=\operatorname{Gal}(G / k)$; so, our choice is this K.

§0.3. Universal-deformation of a character.

A couple ($R, \boldsymbol{\rho}$) (universal couple) made of an object R of \mathcal{C} (or pro-category $C L_{B}$ of \mathcal{C}) and a character $\rho: G \rightarrow R^{\times}$satisfying \mathcal{P} is called a universal couple for $\bar{\rho}$
if for any \mathcal{P}-deformation $\rho: G \rightarrow A^{\times}$of $\bar{\rho}$, we have a unique morphism $\phi_{\rho}: R \rightarrow A$ in $C L_{W}$ (so it is a local W-algebra homomorphism) such that $\phi_{\rho} \circ \rho=\rho$.

Thus $\mathcal{D}(A) \cong \operatorname{Hom}_{\mathcal{C}}(R, A)$ by $\rho_{A}=\phi \circ \rho \leftrightarrow \phi \in \operatorname{Hom}_{\mathcal{C}}(R, A)$, and R (pro-)represents the functor \mathcal{D}. By the universality, if exists, the couple (R, ρ) is determined uniquely up to isomorphisms.

All deformation functor listed in $\S 0.2$ is represented by ($B\left[\left[G_{p}^{a b}\right]\right], \boldsymbol{\rho}$) defined in the following section. Does the ring $B\left[\left[G_{p}^{a b}\right]\right]$ determine explicitly the group $G_{p}^{a b}$? and if yes, how?
§0.4. Group algebra is universal. Let $G_{p}^{a b}$ be the maximal p-profinite abelian quotient $G_{p}=\varliminf_{n}\left(G^{a b} / p^{n} G^{a b}\right)$ for $G^{a b}=$ $G / \overline{[G, G]}$. Consider the group algebra $B\left[\left[G_{p}^{a b}\right]\right]=\varliminf_{n} B\left[\mathcal{G}_{n}\right]$ writing $G_{p}^{a b}=\varliminf_{n} \mathcal{G}_{n}$ with finite \mathcal{G}_{n}.

Since $\mathbb{F}^{\times} \hookrightarrow B^{\times}$, we may regard $\bar{\rho}$ as a character $\rho_{0}: \mathcal{G} \rightarrow B^{\times}$ (Teichmüller lift of $\bar{\rho}$). Define $\rho: G \rightarrow B\left[\left[G_{p}^{a b}\right]\right]^{\times}$by $\rho(g)=$ $\rho_{0}(g) g_{p}$ for the image g_{p} of g in $G_{p}^{a b}$. Note that $B\left[G_{n}^{a b}\right]$ is a local ring with residue field \mathbb{F}; so, is $B\left[\left[G_{p}^{a b}\right]\right]$.

If $A=\varliminf_{n} A_{n}$ for finite A_{n} with $A_{n}=A / \mathfrak{m}_{n}, \rho_{n}:=\rho_{A} \rho_{0}^{-1}$ $\bmod \mathfrak{m}_{n}: G \rightarrow A_{n}^{\times}$has to factor through $\mathcal{G}_{m(n)}$ for some $m(n)$ by continuity, and we get $\varphi_{n} \in \operatorname{Hom}\left(B\left[\mathcal{G}_{m(n)}\right], A_{n}\right)$ given by $\sum_{g} a_{g} g \mapsto \sum_{g} a_{g} \rho_{n} \chi_{0}^{-1}(g) \in A$. Then $\varphi_{n} \circ \rho=\rho_{n}$. Passing to the limit, we have $\varphi \circ \rho=\rho_{A}$ for $\varphi=\varliminf_{n} \varphi_{n}: B\left[\left[G_{p}^{a b}\right]\right] \rightarrow A$.

§0.5. Example of group algebras.

- If $G_{p}^{a b}$ is a cyclic group C of order $p^{r}, B\left[G_{p}^{a b}\right]=B[T] /\left(t^{p^{r}}-1\right)$ for $t=1+T$ by sending a generator $g \in C$ to t.
- If $G_{p}^{a b}=C_{1} \times \cdots \times C_{n}$ for p-cyclic groups C_{j} with order $p^{r_{j}}$, then
$B\left[G_{p}^{a b}\right]=\frac{B\left[T_{1}, \ldots, T_{n}\right]}{\left(t_{1}^{p_{1} 1}-1, \ldots, t_{n}^{p_{n}}-1\right)}=\frac{B\left[\left[T_{1}, \ldots, T_{n}\right]\right]}{\left(t_{1}^{p_{1}^{r_{1}}}-1, \ldots, t_{n}^{p^{r} n}-1\right)}\left(t_{i}=1+T_{i}\right)$.
Note that $f_{1}:=t^{p^{r_{1}}}-1, \ldots, f_{r}:=t^{p^{r_{n}}}-1$ in $\mathfrak{m}_{B\left[\left[T_{1}, \ldots, T_{n}\right]\right.}$ is a regular sequence, and $B\left[G_{p}^{a b}\right]$ is free of finite rank over B. A ring of the form $B\left[\left[T_{1}, \ldots, T_{n}\right]\right] /\left(f_{1}, \ldots, f_{n}\right)$ with regular sequence $\left(f_{j}\right)$ in $\mathfrak{m}_{B\left[\left[T_{1}, \ldots, T_{n}\right]\right]}$ is called a local complete intersection over B if it is free of finite rank over B.
- The Iwasawa algebra $\wedge=W[[\Gamma]]\left(\Gamma=1+p \mathbb{Z}_{p}=(1+p)^{\mathbb{Z}_{p}}\right)$ is isomorphic to $W[[T]]$ by $1+p \leftrightarrow t=1+T$.

We now explore an arithmetic expression of the universal ring.

§0.6. Ray class groups of finite level.

Fix an O-ideal c. Recall

$$
C l_{k}^{+}(\mathfrak{c})=\frac{\{\text { fractional } O \text {-ideals prime to } \mathfrak{c}\}}{\left\{(\alpha) \mid \alpha \equiv 1 \bmod ^{\times} \mathfrak{c} \infty\right\}}
$$

Here $\alpha \equiv 1 \bmod ^{\times} \mathfrak{c} \infty$ means that $\alpha=a / b$ for $a, b \in O$ with $(b)+\mathfrak{c}=$ O is totally positive and $a \equiv b \bmod c$. Removing the condition " ∞ ", we define $C l_{k}$. Passing to the limit, write

$$
C l_{k}^{+}\left(\mathfrak{c} p^{\infty}\right)=\underset{n}{\lim _{n}} C l_{k}^{+}\left(\mathfrak{c} p^{n}\right)
$$

Write $H_{\mathfrak{c} p^{n}} / k$ for the ray class field modulo $\mathfrak{c} p^{n}$; i.e., a unique abelian extension $H_{\mathfrak{c} p^{n}} / k$ only ramified at $\mathfrak{c} p \infty$ such that we can identify $\operatorname{Gal}\left(H_{\mathfrak{c} p^{n}} / k\right)$ with the strict ray class group $C l_{k}^{+}\left(\mathfrak{c} p^{n}\right)$ by sending a class of prime \mathfrak{l} in $C l_{k}^{+}\left(\mathfrak{c} p^{n}\right)$ to the Frobenius element Frob $_{\mathfrak{l}} \in \operatorname{Gal}\left(H_{\mathfrak{c} p^{n}} / k\right)$. This isomorphism is called the Artin symbol.

§0.7. Ray class group of infinite level.

The group $C l_{k}^{+}\left(\mathfrak{c} p^{n}\right)$ is finite as we have an exact sequence:

$$
\left(O / \mathfrak{c} p^{n}\right)^{\times} \xrightarrow[i]{\alpha \mapsto(\alpha)} C l_{k}^{+}\left(\mathfrak{c} p^{n}\right) \rightarrow C l_{k} \rightarrow 1 .
$$

Note $\left|C l_{k}^{+}\right| /\left|C l_{k}\right| \mid 2^{e}\left(e=\left|\operatorname{Isom}_{\text {field }}(k, \mathbb{R})\right|\right.$. Passing to the limit,

$$
O_{p}^{\times} \times(O / \mathfrak{c})^{\times} \xrightarrow[i]{\alpha \mapsto(\alpha)} C l_{k}^{+}\left(\mathfrak{c} p^{\infty}\right)=\underset{\sum_{n}}{\lim } C l_{k}^{+}\left(\mathfrak{c} p^{n}\right) \rightarrow C l_{k} \rightarrow 1
$$

Then for $H_{\mathfrak{c} p \infty}=\cup_{n} H_{c^{p} p^{n}}, C l_{k}^{+}\left(c p^{\infty}\right) \cong \operatorname{Gal}\left(H_{c p p} / k\right)$ by $[l] \mapsto$ Frob $_{\mathfrak{l}}$ for primes $\mathfrak{l} \dagger \mathrm{c} p$.

- Image of \mathfrak{l}-component of i is the \mathfrak{l}-inertia subgroup of $\operatorname{Gal}\left(H_{\mathfrak{c} p^{n}} / k\right)$.

If $k=\mathbb{Q}$ and $\mathfrak{c}=(N)$ for $0<N \in \mathbb{Z}$, we have $H_{c p^{n}}$ is the cyclotomic field $\mathbb{Q}\left[\mu_{N p^{n}}\right]$ for the group $\mu_{N p^{n}}$ of $N p^{n}$-th roots of unity; so, $C l_{\mathbb{Q}}\left(\mathfrak{c} p^{n}\right) \cong\left(\mathbb{Z} / N p^{n} \mathbb{Z}\right)^{\times}$and $C l_{\mathbb{Q}}\left(c p^{\infty}\right) \cong(\mathbb{Z} / N \mathbb{Z})^{\times} \times \mathbb{Z}_{p}^{\times}$.

§0.8. Universal deformation ring for a Galois character $\bar{\rho}$.

 Let $C_{k}\left(p^{\infty}\right)$ (resp. C_{k}) for the maximal p-profinite quotient of $C l_{k}^{+}\left(p^{\infty}\right)$ (resp. $\left.C l_{k}^{+}\right)$. Suppose $\bar{\rho}$ is minimal, and let $G=$ Gal (K / k) for $K=F^{(p)}(\bar{\rho})$. we consider minimal deformations ρ_{A}. Since ramification outside l has index prime to p, we conclude $G_{p}^{a b}=C_{k}\left(p^{\infty}\right)$. Let $H_{\infty} \subset H_{p \infty}$ with $\operatorname{Gal}\left(H_{\infty} / k\right)=C_{k}\left(p^{\infty}\right)$. If $k=\mathbb{Q}, C_{k}\left(p^{\infty}\right)=1+p \mathbb{Z}_{p}=: \Gamma$ and $H_{\infty}=\mathbb{Q} \infty \subset \mathbb{Q}\left[\mu_{p} \infty\right]$ for the unique \mathbb{Z}_{p}-extension \mathbb{Q}_{∞} of \mathbb{Q} as $C l_{\mathbb{Q}}^{+}\left(p^{\infty}\right)=\mathbb{Z}_{p}^{\times}$.For the Teichmüller lift ρ_{0} of $\bar{\rho}$ and the inclusion $\kappa: G_{p}^{a b}=$ $C_{k}\left(p^{\infty}\right) \hookrightarrow W\left[\left[C_{k}\left(p^{\infty}\right)\right]\right]$, we define $\rho(\sigma):=\rho_{0}(\sigma) \kappa(\sigma)$. Then the universality of the group algebra tells us

Theorem 1. The couple ($\left.W\left[\left[C_{k}\left(p^{\infty}\right)\right]\right], \rho\right)$ is universal among all minimal deformations. If $\bar{\rho}$ is unramified everywhere, ($W\left[C_{k}\right], \rho$) is universal among everywhere unramified deformations.

§0.9. Some remarks.

- As long as $\bar{\rho}$ satisfies minimality, the universal deformation ring $W\left[\left[C_{k}\left(p^{\infty}\right)\right]\right]$ is essentially independent of $\bar{\rho}$ (its dependence is the coefficient ring W.
- If k is totally real, rank $\mathbb{Z}_{p} C_{p}\left(p^{\infty}\right)$ is expected to be 1 (Leopoldt conjecture).
- More generally, if k has r_{1} real places and r_{2} complex places, then $\operatorname{rank}_{\mathbb{Z}_{p}} C_{k}\left(p^{\infty}\right)=r_{2}+1$? (Leopoldt conjecture).
- If $k=\mathbb{Q}, C_{\mathbb{Q}}\left(p^{\infty}\right)=\Gamma$, so

$$
W\left[\left[C_{\mathbb{Q}}\left(p^{\infty}\right)\right]\right]=\underset{n}{\lim _{n}} W\left[\Gamma / \Gamma \Gamma^{p^{n}}\right]=\underset{n}{\lim } W[[T]] /\left(t^{p^{n}}-1\right)=W[[T]] .
$$

Iwasawa algebra again shows up. In general, if $C_{k}=\{1\}$ and $C_{k}\left(p^{\infty}\right) \cong \mathbb{Z}_{p}^{r_{2}+1}$, then $W\left[\left[C_{k}\left(p^{\infty}\right)\right]\right] \cong W\left[\left[T_{1}, \ldots, T_{r_{2}+1}\right]\right]$.

We now introduce some ring invariants C_{0} and C_{1} to recover the group $G_{p}^{a b}$ out of the ring $B\left[\left[G_{p}^{a b}\right]\right]$.
$\S 0.10$. Differentials. Fix $R \in \mathcal{C}$. For a continuous R-module M, define continuous B-derivations by
$\operatorname{Der}_{B}(R, M):=\left\{\delta \in \operatorname{Hom}_{B}(R, M) \mid \delta(a b)=a \delta(b)+b \delta(a)(a, b \in R)\right\}$. Here B-linearity of $\delta \Leftrightarrow \delta(B)=0$. The association $M \mapsto \operatorname{Der}_{B}(R, M)$ is a covariant functor from the category $M O D_{/ R}$ of continuous profinite R-modules to modules MOD, which is represented by an R-module $\Omega_{R / B}$ with universal differential $d: R \rightarrow \Omega_{R / B}$, e.g.,

$$
\Omega_{R / B}=\frac{\text { free module over } R \text { with basis } d r(r \in R)}{\langle\langle d(a b)-b d a-a d b, d(\beta a+b)-\beta d a-d b\rangle\rangle}{ }_{a, b \in R, \beta \in B} .
$$

Here " $\langle\langle ?\rangle\rangle$ " means the \mathfrak{m}_{R}-adic closure of the R-submodule generated by "?".

§0.11. When R is a B-module of finite type.

Suppose that B is noetherian and that R is a B-module of finite type. Choose r_{1}, \ldots, r_{n} so that $R=B r_{1}+\cdots+B r_{n}$. Then by $B-$ linearity, $\Omega^{\prime}:=\oplus_{r \in R} R \cdot d r /\langle d(\beta a+b)-\beta d a-d b\rangle_{a, b \in R}$ is generated by $d r_{1}, \ldots, d r_{n}$; so, $\langle\langle d(a b)-b d a-a d b\rangle\rangle_{a, b \in R, \beta \in B} \subset \Omega^{\prime}$ is equal to $\langle d(a b)-b d a-a d b\rangle_{a, b \in R, \beta \in B}$ inside Ω^{\prime}. Therefore we can replace $\langle\langle ?\rangle\rangle$ by $\langle ?\rangle$ in the definition of $\Omega_{R / B}$ for B noetherian and R of finite type as B-modules. In this case, by B-linearity, any B-derivation $\delta: R \rightarrow M$ is actually continuous.

By this, $\Omega_{B[[T]] / B}=B[[T]] d T$ and for $f=f(T) \in B[[T]]$,

$$
\Omega_{(B[[T]] /(f)) / B}=\left(B[[T]] /\left(f, f^{\prime}\right)\right) d T=B[\theta] /\left(f^{\prime}(\theta)\right)
$$

with $f^{\prime}(T)=\frac{d f}{d T}(T)$ and $B[[T]] \ni T \mapsto \theta:=(T \bmod (f)) \in$ $B[[T]] /(f)$.
§0.12. Congruence modules C_{0} and C_{1}. Let $\phi: R \rightarrow A \in$ $\operatorname{Hom}_{\mathcal{C}}(R, A)$. We define $C_{1}(\phi ; A):=\Omega_{R / B} \otimes_{R, \phi} A$. To define C_{0}, we assume (i) $A=B$, (ii) B is a domain and (iii) $R \cong B^{r}$ as B-modules. The total quotient ring $\operatorname{Frac}(R)$ can be decomposed

$$
\operatorname{Frac}(R)=\operatorname{Frac}(\operatorname{Im}(\phi)) \oplus X \quad \text { (unique algebra direct sum })
$$

Write 1_{ϕ} for the idempotent of $\operatorname{Frac}(\operatorname{Im}(\phi))$ in $\operatorname{Frac}(R)$. Let $\mathfrak{b}=$ $\operatorname{Ker}(R \rightarrow X)=\left(1_{\phi} R \cap R\right), S=\operatorname{Im}(R \rightarrow X)$ and $\mathfrak{b}=\operatorname{Ker}(\phi)$. Here the intersection $1_{\phi} R \cap R$ is taken in $\operatorname{Frac}(R)=\operatorname{Frac}(\operatorname{Im}(\phi)) \times X$. First note that $\mathfrak{b}=R \cap(B \times 0)$ and $\mathfrak{x}=(0 \times X) \cap R$. Put

$$
C_{0}=C_{0}(\phi ; B):=(R / \mathfrak{b}) \otimes_{R, \phi} \operatorname{Im}(\phi) \text { and } C_{1}:=\Omega_{R / B} \otimes_{R} B .
$$

The module C_{j} is called the congruence module (of degree j) of ϕ. Note: $C_{0}=\operatorname{Im}(\phi) /(\phi(\mathfrak{a})) \cong A / \mathfrak{a} \cong R /(\mathfrak{a} \oplus \mathfrak{b}) \cong S / \mathfrak{b}$ via projection to B and S (an exercise).

§0.13. Higher congruence modules.

Suppose $\phi: R \rightarrow A$ is onto. We know $C_{0}=S / \mathfrak{b}$ and we can prove $C_{1}=\mathfrak{b} / \mathfrak{b}^{2}$ under (i)-(iii) by the second fundamental exact sequence:

$$
\mathfrak{b / b}{ }^{2} \xrightarrow{b \mapsto d b} \Omega_{R / B} \otimes_{R} A \rightarrow \Omega_{A / B} \rightarrow 0 .
$$

So why not we define $C_{n}:=\mathfrak{b}^{n} / \mathfrak{b}^{n+1}$. Then $\operatorname{gr}(S)=\oplus_{j} C_{j}$ is the graded algebra. Knowledgeof $\operatorname{gr}(S)$ is almost equivalent to the knowledge of S. Once we know S, we recover

$$
R=B \times_{C_{0}} S=\{(b, s) \in B \times S \mid b \quad \bmod \mathfrak{a}=s \quad \bmod \mathfrak{b}\} .
$$

If $C_{1}=\mathfrak{b} / \mathfrak{b}^{2}$ is generated by one element over B, then by Nakayama's lemma, $\mathfrak{b}=(\theta)$ for a non-zero-divisor $\theta \in S$. Then $\operatorname{gr}(S) \cong C_{0}[x]$ by sending $\theta \bmod \mathfrak{b}^{2}$ to the variable x.
What is S if $B=W$ and $C_{0}=\mathbb{F}$?
Is there any good way to compute C_{n} when R is the universal deformation ring?

$\S 0.14$. Explicit form of $C_{1}(\pi ; \mathbb{F})$ as cotangent space.

 Write $\pi: R \rightarrow R / \mathfrak{m}_{R}=\mathbb{F}$ for the projection. Let $\mathbb{F}[\varepsilon]=\mathbb{F}[x] /\left(x^{2}\right)$ with $x \leftrightarrow \varepsilon$. Then $\varepsilon^{2}=0$.For $\phi \in \operatorname{Hom}_{B-\mathrm{alg}}(R, \mathbb{F}[\varepsilon])$, write $\phi(a)=\pi(a)+\delta(a) \varepsilon$. From

$$
\phi(a b)=\pi(a) \pi(b)+\pi(a) \delta(b) \varepsilon+\pi(b) \delta(a) \varepsilon,
$$

we find $\operatorname{Hom}_{B-\mathrm{alg}}(R, \mathbb{F}[\varepsilon])=\operatorname{Der}_{B}(R, \mathbb{F})$ by $\phi \leftrightarrow \delta$.
ϕ is determined by $\phi \mid \mathfrak{m}_{R}$ which kills $\mathfrak{m}_{R}^{2}+\mathfrak{m}_{B}$ as $\varepsilon^{2}=0$. Thus

$$
\operatorname{Hom}_{\mathbb{F}}\left(\Omega_{R / B} \otimes_{R} \mathbb{F}, \mathbb{F}\right) \cong \operatorname{Hom}_{R}\left(\Omega_{R / B}, \mathbb{F}\right)
$$

$$
\cong \operatorname{Der}_{B}(R, \mathbb{F})=\operatorname{Hom}_{R}\left(t_{R / B}^{*}, \mathbb{F}\right)
$$

for $t_{R / B}^{*}:=\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{B}\right)$. Taking \mathbb{F}-dual, if $t_{R / B}^{*}$ is finite dimensional, we get $\Omega_{R / B} \otimes_{R} \mathbb{F} \cong t_{R / B}^{*}$; in particular, $\Omega_{R / B}$ is an R-module of finite type (by Nakayama's lemma).

§0.15. Congruence modules for group algebras.

Let H be a finite p-abelian group. If \mathfrak{m} is a maximal ideal of $B[H]$, then for the inclusion $\kappa: H \hookrightarrow B[H]^{\times}$with $\kappa(\sigma)=\sigma, \kappa \bmod \mathfrak{m}$ is trivial as the finite field $B[H] / \mathfrak{m}$ has no non-trivial p-power roots of unity; so, \mathfrak{m} is generated by $\{\sigma-1\}_{h \in H}$ and \mathfrak{m}_{B}. Thus \mathfrak{m} is unique and $B[H]$ is a local ring.

We have a canonical algebra homomorphism: $B[H] \rightarrow B$ sending $\sigma \in H$ to 1 . This homomorphism is called the augmentation homomorphism of the group algebra. Write this map $\pi: B[H] \rightarrow$ B. Then $\mathfrak{b}=\operatorname{Ker}(\pi)$ is generated by $\sigma-1$ for $\sigma \in H$. Thus

$$
\mathfrak{b}=\sum_{\sigma \in H} B[H](\sigma-1) B[H] .
$$

We compute the congruence module and the differential module $C_{j}(\pi, B)(j=0,1)$.
§0.16. Theorem. Suppose B is an integral domain with characteristic $0 \operatorname{Frac}(B)$. We have

$$
C_{0}(\pi ; B) \cong B /|H| B \quad \text { and } \quad C_{1}(\pi ; B)=H \otimes_{\mathbb{Z}} B
$$

Proof for the congruence module.

Let $K:=\operatorname{Frac}(B)$. Then π gives rise to the algebra direct factor $K \varepsilon \subset K[H]$ for the idempotent $\varepsilon=\frac{1}{(H)} \sum_{\sigma \in H} \sigma$. Thus $\mathfrak{a}=K \varepsilon \cap$ $B[H]=\left(\sum_{\sigma \in H} \sigma\right)$ and $\pi(B(H)) / \mathfrak{a}=(\varepsilon) / \mathfrak{a} \cong B /|H| B$.
§0.17. Proof of $C_{1}(\pi ; B)=H \otimes_{\mathbb{Z}} B$, 1st step.
Consider the functor $\mathcal{F}: C L_{B} \rightarrow S E T S$ given by

$$
\mathcal{F}(A)=\operatorname{Hom}_{\text {group }}\left(H, A^{\times}\right)=\operatorname{Hom}_{B-\operatorname{alg}}(B[H], A) .
$$

Thus $R:=B[H]$ and the character $\boldsymbol{\rho}: H \rightarrow B[H]$ (the inclusion: $H \hookrightarrow B[H])$ are universal among characters of H with values in $A \in C L_{B}$.

Then for any R-module X, consider $R[X]=R \oplus X$ with algebra structure given by $r x=0$ and $x y=0$ for all $r \in R$ and $x, y \in X$.

Define $\Phi(X)=\{\rho \in \mathcal{F}(R[X]) \mid \rho \bmod X=\rho\}$. Write

$$
\rho(\sigma)=\rho(\sigma) \oplus u_{\rho}^{\prime}(\sigma)
$$

for $u_{\rho}^{\prime}: H \rightarrow X$.

§0.18. Proof, Second step.

Since

$$
\begin{aligned}
\rho(\sigma \tau) \oplus u_{\rho}^{\prime}(\sigma \tau)= & \rho(\sigma \tau) \\
& =\left(\rho(\sigma) \oplus u_{\rho}^{\prime}(\sigma)\right)\left(\rho(\tau) \oplus u_{\rho}^{\prime}(\tau)\right) \\
& =\rho(\sigma \tau) \oplus\left(u_{\rho}^{\prime}(\sigma) \rho(\tau)+\rho(\sigma) u_{\rho}^{\prime}(\tau)\right)
\end{aligned}
$$

we have $u_{\rho}^{\prime}(\sigma \tau)=u_{\rho}^{\prime}(\sigma) \boldsymbol{\rho}(\tau)+\boldsymbol{\rho}(\sigma) u_{\rho}^{\prime}(\tau)$, and thus $u_{\rho}:=\rho^{-1} u_{\rho}^{\prime}$: $H \rightarrow X$ is a homomorphism from H into X.

This shows

$$
\operatorname{Hom}(H, X)=\Phi(X)
$$

§0.19. Proof, Third step.

Any B-algebra homomorphism $\xi: R \rightarrow R[X]$ with $\xi \bmod X=\mathrm{id}_{R}$ can be aritten as $\xi=\mathrm{id}_{R} \oplus d_{\xi}$ with $d_{\xi}: R \rightarrow X$.

Since $(r \oplus x)\left(r^{\prime} \oplus x^{\prime}\right)=r r^{\prime} \oplus r x^{\prime}+r^{\prime} x$ for $r, r^{\prime} \in R$ and $x . x^{\prime} \in X$, we have $d_{\xi}\left(r r^{\prime}\right)=r d_{\xi}\left(r^{\prime}\right)+r^{\prime} d_{\xi}(r)$; so, $d_{\xi} \in \operatorname{Der}_{B}(R, X)$. By universality of (R, ρ), we have

$$
\begin{aligned}
& \Phi(X) \cong\left\{\xi \in \operatorname{Hom}_{B-\operatorname{alg}}(R, R[X]) \mid \xi \bmod X=\mathrm{id}\right\} \\
&=\operatorname{Der}_{B}(R, X)=\operatorname{Hom}_{R}\left(\Omega_{R / B}, X\right) .
\end{aligned}
$$

§0.20. Proof, Fourth step, Yoneda's lemma.

Thus we have
$\operatorname{Hom}_{B}\left(H \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}, X\right)=\operatorname{Hom}(H, X)$

$$
\begin{aligned}
& =\operatorname{Hom}_{R}\left(\Omega_{R / B}, X\right) \\
& \quad=\operatorname{Hom}_{B}\left(\Omega_{R / B} \otimes_{R, \pi} B, X\right)
\end{aligned}
$$

This is true for all X, we have (essentially by Yoneda's lemma)

$$
H \cong \Omega_{R / B} \otimes_{R, \pi} B=C_{1}(\pi ; B)
$$

§0.21. Class group and Selmer group.

For simplicity, assume $p \nmid[k: \mathbb{Q}]$ and that k / \mathbb{Q} is a Galois extension. Note that K / \mathbb{Q} is a Galois extension as K is the maximal p profinite extension of k unramified outside p. Let $\operatorname{Ind}_{k}^{\mathbb{Q}}$ id $=\mathrm{id} \oplus \chi$ and $H=C_{k}$. Then for Ω_{k} given basically by the regulator and some power of ($2 \pi i$),

$$
\left|L(1, \chi) / \Omega_{k}\right|_{p}=\left|\left|C_{k}\right|\right|_{p} .
$$

We can identify $C_{k}^{\vee}=\operatorname{Hom}\left(C_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ with the Selmer group of χ given by $\operatorname{Sel}_{k}(\mathbf{1}):=\operatorname{Ker}\left(H^{1}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow \prod_{\mathfrak{p} \mid p} H^{1}\left(I_{\mathfrak{p}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)$
$\operatorname{Sel}_{k}(1) \stackrel{\text { Shapiro }+\alpha}{=} \operatorname{Sel}_{\mathbb{Q}}(\chi):=\operatorname{Ker}\left(H^{1}\left(K / \mathbb{Q}, V(\chi)^{*}\right) \rightarrow H^{1}\left(I_{p}, V(\chi)^{*}\right)\right)$
for the \mathfrak{p}-inertia group $I_{\mathfrak{p}} \subset G$ and the p-inertia group $I_{p} \subset$ $\operatorname{Gal}(K / \mathbb{Q})$.

§0.22. Class number formula.

Theorem 2 (Class number formula). For the augmentation homomorphism $\pi: \mathbb{Z}_{p}\left[C_{k}\right] \rightarrow \mathbb{Z}_{p}$,

$$
\left|\frac{L(1, \chi)}{\Omega_{k}}\right|_{p}=\left|C_{1}\left(\pi ; \mathbb{Z}_{p}\right)\right|^{-1}=\left|C_{0}\left(\pi ; \mathbb{Z}_{p}\right)\right|^{-1}=\left|\left|\operatorname{Sel}_{\mathbb{Q}}(\chi)\right|\right|_{p}
$$

and $C_{1}\left(\pi ; \mathbb{Z}_{p}\right)=\Omega_{\mathbb{Z}_{p}\left[C_{k}\right] / \mathbb{Z}_{p}} \otimes_{\mathbb{Z}_{p}\left[C_{k}\right]} \mathbb{Z}_{p}=C_{k}$ and $C_{0}\left(\pi ; \mathbb{Z}_{p}\right)=$ $\mathbb{Z}_{p} /\left|C_{k}\right| \mathbb{Z}_{p}$.

Is there any way of proving the above class number formula without using the classical ideal theory of integer ring of k but the Galois deformation theory?

There are three incarnations of C_{k} as the p-primary part of the class group (field arithmetic), as the Galois group of the maximal abelian unramified extension (Galois theory), and as a Selmer group (Cohomology theory)

§0.23. What we study in the next few weeks.

Hereafter $k=\mathbb{Q}$ and $B=W, \wedge$ Fix a 2-dimensional continuous odd representation $\bar{\rho}=\rho_{\mathbb{F}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ ramified at finitely many primes. Take the maximal p-profinite extension $F^{(p)}(\bar{\rho})$ unramified outside p, and let $G=\operatorname{Gal}\left(F^{(p)}(\rho) / \mathbb{Q}\right)$. We consider the functor roughly defined
$\mathcal{D}(A):=\left\{\rho_{A}: G \rightarrow \operatorname{GL}_{2}(A) \mid \rho_{A} \bmod \mathfrak{m}_{A}=\bar{\rho},(\right.$ ord $\left.),(\min)\right\} / \Gamma\left(\mathfrak{m}_{A}\right)$.

$$
\mathcal{D}_{\chi}(A):=\left\{\rho_{A} \in \mathcal{D}(A) \mid(\mathrm{det})\right\} / \Gamma\left(\mathfrak{m}_{A}\right) .
$$

Here $\Gamma\left(\mathfrak{m}_{A}\right)=\operatorname{Ker}\left(\mathrm{GL}_{2}(A) \rightarrow \mathrm{GL}_{2}(\mathbb{F})\right)$ acts by conjugation, (min) ρ_{A} is a minimal deformation.
(ord) $\left.\rho_{A}\right|_{D_{p}} \cong\left(\begin{array}{cc}\epsilon_{A} & * \\ 0 & \delta_{A}\end{array}\right)$ with δ_{A} mod $\mathfrak{m}_{A}=\delta_{\mathbb{F}}$ and δ unramified. (det) $\operatorname{det}\left(\rho_{A}\right)=\chi$, where χ is often of the form $\nu_{p}^{k-1} \psi$ for the p-adic cyclotomic character ν_{p} and a finite order character ψ.
§0.24. Cases of the Bloch-Kato conjecture (BKC). Usually $\mathcal{D}_{\chi}\left(\chi=\nu_{p}^{k-1} \psi, B=W\right)$ is represented by the (unique) local ring \mathbb{T}_{χ} of the Hecke algebra $\mathbf{h}_{k}(\psi)$ associated to $\bar{\rho}$ acting on $S_{k}(\psi):=S_{k}\left(\Gamma_{0}(N), \psi ; W\right)$ for the conductor N of ψ. Given odd $\bar{\rho}, \mathbb{T}_{\chi}$ always exists by Khare-Wintenberger. Here

$$
\mathbf{h}_{k}(\psi):=W[T(n) \mid n=1,2, \ldots] \subset \operatorname{End}_{W}\left(S_{k}(\psi)\right)
$$

for the Hecke operators $T(n)$. If $\phi: \mathbb{T}_{\chi} \rightarrow W$ is given by $f \mid T(n)=\phi(T(n)) f$ for a cusp form f and its p-adic Galois representation ρ_{f}, we describe the identities $C_{1} \cong \operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{f}\right)\right)$ (the adjoint Selmer group) and Adjoint class number formula:

$$
\begin{equation*}
\left|\operatorname{Sel}\left(\operatorname{Ad}\left(\rho_{f}\right)\right)\right|=\left|C_{1}\right|=\left|C_{0}\right|=\left|\frac{L(1, \operatorname{Ad}(f))}{*}\right|_{p}^{-1} \tag{BKC}
\end{equation*}
$$

for an explicit constant $*$ independent of p if f has weight $k \geq 2$.
$\S 0.25$. Some general goals and questions. Fix $f \in S_{k_{0}}\left(\psi_{0}\right)$ with $f \mid T(n)=\phi(T(n)) f$, and put $\chi_{0}=\nu_{p}^{k_{0}-1} \psi_{0}$. The bigger functor \mathcal{D} is represented by a local ring of the big "ordinary" Hecke algebra \mathbb{T} free of finite rank over $\wedge=W[[\Gamma]]=W[[T]]$ such that $\mathbb{T} /(t-\chi(\gamma)) \cong \mathbb{T}_{\chi}$ for all $\chi=\nu_{p}^{k-1} \psi$ of the form $\chi \equiv \chi_{0}$ as long as $k \geq 2$. Our goals in the coming few weeks are:

- Supposing $k \geq 2$, study \mathbb{T} moving p for a fixed f_{0}, and try to prove that $\mathbb{T}=\wedge$ if and only if $p \nmid L\left(1, \operatorname{Ad}\left(f_{0}\right)\right) / *$.
An obvious question is to ask
- What happens if $k_{0}=1$?

When $k_{0}=1, \rho_{f_{0}}$ has finite image independent of p (an Artin Galois representation) by Deligne-Serre; so, it looks easier. However we do not know (BKC) and we need to deal with the p adic value $L_{p}\left(A d\left(f_{0}\right)\right)$ for the p-adic $\mathrm{L} L_{p}(A d(f))$ interpolating $L(1, \operatorname{Ad}(f)) / *$ for f with different weight k; so, it depends on p.

