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An expectation: For a given group G,

Knowing all irreducible representations is equivalent to knowing
the group G7

as representations are easier to understand. If G is finite, a
representation embeds G into GL,(A) for a suitable ring A; so,
the question is “a sort of” valid (but hard to describe the image).
But if G is huge?

When G is abelian, the unitary character group G = Hom (G, Sl)
(S1:={z € C*:|z| = 1}) determines G (as long as G is locally
compact; Pontryagin duality). Taking G to be the Galois group
of the maximal abelian extension k% of a number field k, we get
exact description of Gal(k%/k) (Class field theory).



If G is non-abelian, there is no-character group; though from
the category Tann of all representation of G, we can recover an
algebraic group G as its automorphism group basically fixing one
point and preserving tensor product (Tannakian theory). This is
not very useful as the category is too big if G is big (like Galois
group Gal(Q/Q))? Though the motivic Galois group (far bigger

than Gal(Q/Q)) is made this way (largely conjectural; Theory of
motives).

T herefore we somehow want to fix dimension of representations,
and somehow we want to know the collection of all representa-
tion reducing to a fixed small one (deformation theory), and from
that information, try to see the group?



§0.0. Set-up in abelian case. We describe the universal defor-
mation ring for representations (characters) into GL¢ and intro-
duce invariants to compute it.

We fix an odd prime p (and later move p). Fix a finite extension
F/Fp and a local p-profinite noetherian ring B flat over Z, with
residue field F. Let |C = Cp| be either the category of artinian
local B-algebra with residue field F or just p-profinite local B-
algebra with residue field F (this category is denoted by CLp).
Morphisms of C is a local B-algebra homomorphism.

Let £ be a base field (a finite extension of Q) with integer ring
O. We take a Galois extension K/k over its Galois group G we
consider deformation. For a representation p: G — GL,(A), we
write F(p) := KKer(p) (splitting field).



§0.1. Deformation of a character. The smallest (unique)
choice of the base ring B is the discrete valuation ring W = W (IF)
unramified over Z, with residue field F (Witt vector ring with
coefficients in IF), or you can choose a bigger one W (F)[u,r]
adding p"-th roots of unity or the Iwasawa algebra A = W|[[T]].

We fix the origin; i.e., the starting continuous character p: G —
GL1(F). A deformation into GL»(A) (A € C) over G is a contin-
uous character py4 : G — GL1(A) such that p4 mod my = p.

The (full) deformation (covariant) functor D : G — GL1(A)

D(A) ={pa:G — GL1(A)|pa mod my = p}.

If ¢ € Home(A, A"), pg — ¢ o py induces covariant functoriality.
We fix a set P of properties of Galois characters. A deformation
p4 IS called P-deformation if p4 satisfies P.



§0.2. Examples of P:

e Unramfied everywhere (full deformation for the maximal K/k
unramified everywhere);

e Unramified outside p (full deformation if we take K to be the
maximal p-profinite extension of F(p) unramified outside p);

e Unramified outside S for a fixed finite set S of places of k£ (full
deformation if we take K to be the maximal p-profinite extension
of F'(p) unramified outside S);

e Suppose that p is ramified at S outside p with ramification
index prime to p. A deformation py4 is minimal if ps(I;) = p(I;)
by restriction for all [ #= p, where I; C G is the inertia subgroup.

The minimal deformation problem is a full deformation problem
if we choose K as follows: Take K = F(P)(p) to be the maximal
p-profinite extension of F'(p) unramified outside p. Since ramifi-
cation of a minimal deformation p,4 is concentrated to F(p)/k,
p4 factors through G = Gal(G/k); so, our choice is this K.



§0.3. Universal-deformation of a character.

A couple (R, p) (universal couple) made of an object R of C (or
pro-category CLg of C) and a character p: G — R* satisfying P
is called a universal couple for p

if for any P-deformation p : G — A* of p, we have a unique
morphism ¢, : R — A in CLy, (so it is a local W-algebra homo-
morphism) such that ¢,o p = p.

Thus D(A) = Homg(R,A) by pgy =¢op«— ¢ € Homg(R, A), and
R (pro-)represents the functor D. By the universality, if exists,
the couple (R, p) is determined uniquely up to isomorphisms.

All deformation functor listed in §0.2 is represented by (B[[G“b]] P)
defined in the following section. Does the ring B[[G“b]] determme
explicitly the group G%°? and if yes, how?



§0.4. Group algebra is universal. Let G2 be the maximal
p-profinite abelian quotient Gp = lim (G“b/p”G“b) for G =
G/[G,G]. Consider the group algebra B[[Gab]] = |im B[Qn] writ-
ing G2 = lim G, with finite Gp.

Since F* — B”*, we may regard p as a character pg : G — B~
(Teichmiiller lift of p). Define p : G — B[[GX]]* by p(g) =
po(g)gp for the image g, of g in ng. Note that B[G%] is a local
ring with residue field F; so, is B[[GZ]].

If A= lim A, for finite A, with A, = A/mu, pn = papy’
mod my, : G — A7 has to factor through G,y for some m(n)
by continuity, and we get ¢, € Hom(B[gm(n)],An) given by

>.g Qg9 — Zgagpnxal(g) € A. Then ¢, op = pn. Passing to
the limit, we have pop = py for ¢ = lim_ ¢y, : B[[GE]] — A.



§0.5. Example of group algebras.

o If G2 is a cyclic group C of order p", B[G¥] = B[T]/(t** — 1)
fort =14 T by sending a generator g € C' to t.

o If G = Cy x - -- x Cy, for p-cyclic groups C; with order p'i, then

BITy.....T Bl[Ty.....T
B[ng] — 1 = p:rLL] — 1 = pr?z]] (ti = 1+T5).
(tl _1,...7tn _1) (tl _17...7tn _1
Note that f1 1= tP' — 1,....fp == t*" — 1 in mpqp, 7, iS a

regular sequence, and B[ng] is free of finite rank over B. A ring
of the form B[[T4,...,Tn]]l/(f1,-.., fn) with regular sequence (f;)
in mpr, .1, 1S called a local complete intersection over B if it
is free of finite rank over B.

e The Iwasawa algebra A = W[[l]] (I = 1+ pZp = (1 + p)Zr) is
isomorphic to W[[T]] by 14+ p—t=14+T.

We now explore an arithmetic expression of the universal ring.



§80.6. Ray class groups of finite level.
Fix an O-ideal ¢. Recall

{fractional O-ideals prime to ¢}
{(a)|la =1 mod*coo} 7
Here a = 1 mod”*coo means that a = a/b for a,b € O with (b)+4¢ =

O is totally positive and a = b mod ¢. Removing the condition
“oo', we define Cl;.. Passing to the limit, write

CLY (¢) =

CLT (p™) = lim CUY (cp™).
mn

Write Hcpn/k for the ray class field modulo ¢p™; i.e., a unique
abelian extension Hcpn/k only ramified at c¢poo such that we can
identify Gal(H,»/k) with the strict ray class group Cll;l_(Cpn) by

sending a class of prime [ in Cll;l_(Cpn) to the Frobenius element
Froby € Gal(H,n/k). This isomorphism is called the Artin sym-
bol.



§0.7. Ray class group of infinite level.
The group Cl,;"(cp”) is finite as we have an exact sequence:

« a—(a)

(O/cp)” ———= CI l (cp") — Clp. — 1.
k k
7

Note |CLT|/|Cly)

2¢ (e = |Isomysiqiq(k, R)|. Passing to the limit,
— ()
O;; x (0O/¢)” % Cll;l_(Cpoo) le l+(Cpn) — Cl, — 1

Then for Hepoo = Uy, Hepr, Cl,;"(CpOO) = Gal(Hpo/k) by [l] — Frob
for primes [ 1 cp.
e Image of [-component of 7 is the [-inertia subgroup of Gal(H,n/k).

If £k = Q and ¢ = (V) for 0 < N € Z, we have Hgn is the
cyclotomic field Q[upnpn] for the group pp,n of Np"-th roots of
unity; so, Clg(cp™) = (Z/Np"Z)* and Clg(cp™) = (Z/NZ)* X L, .



§0.8. Universal deformation ring for a Galois character p.
Let Cr(p>°) (resp. C}) for the maximal p-profinite quotient of
Cll;l_(poo) (resp. Cl,;"). Suppose p is minimal, and let G =
Gal(K/k) for K = F(P)(ﬁ). we consider minimal deformations
pA- Since ramification outside [ has index prime to p, we con-
clude G% = Cy(p™). Let Hoo C Hpo With Gal(Heo/k) = Cr(p™).
Ifk=Q, Cp,(p>™®) =1+pZp =:T and Hoo = Qoo C Q[uyec] for the
unique Zp-extension Qs of Q as Cl&(poo) =17y .

For the Teichmiiller lift pg of p and the inclusion k : G¥ =
Cr(p™>®) — WI[CL(p*°)]], we define p(o) := pg(c)k(c). Then the
universality of the group algebra tells us

Theorem 1. The couple (W][[CL(p*°)]], p) is universal among all
minimal deformations. If p is unramified everywhere, (W[CL], p)
is universal among everywhere unramified deformations.



§0.9. Some remarks.
e As |long as p satisfies minimality, the universal deformation ring
WI[CL(p*°)]] is essentially independent of p (its dependence is
the coefficient ring W.
e If k is totally real, rankz, Cp(p™) is expected to be 1 (Leopoldt
conjecture).
e More generally, if kK has r1 real places and ro complex places,
then rankg, Cr(p®>°) =ro+ 17 (Leopoldt conjecture).
e If k=Q, Cp(p>) =T, so

WI{[Co(®™)]] = limW[r/r?"] = lim W([T]]/(#" - 1) = W[[T]].

n

—
n

Iwasawa algebrf\ again shows up. In general, if C), = {1} and
C(p™) 2 Z2 T, then WIC,(p™)]] & WI[T1, ..., Tyt

We now introduce some ring invariants Cg and (/1 to recover the
group G& out of the ring B[[G]].



§0.10. Differentials. Fix R € C. For a continuous R-module
M, define continuous B-derivations by

Derg(R, M) := {5 € Hom (R, M)\(S(a,b) = ad5(b)+b5(a) (a,b € R)}.

Here B-linearity of § & §(B) = 0. The association M — Derg(R, M)
IS @ covariant functor from the category MOD/R of continuous
profinite R-modules to modules MOD, which is represented by
an R-module 2p,/p with universal differential d : R — Qg /g, €.9.,

o _ free module over R with basis dr (r € R)
/B {(d(ab) — bda — adb, d(Ba + b) — Bda — db)) . pe g pep

Here “((?))" means the mp-adic closure of the R-submodule gen-
erated by “7".




§0.11. When R is a B-module of finite type.

Suppose that B is noetherian and that R is a B-module of finite
type. Choose rq,...,7n, SO that R = Br1+---+ Brp. Then by B-
linearity, Q' := @,cr R-dr/(d(Ba—+b) — Bda—db), pcr iS generated
by dry,...,drn; sO, ((d(ab) —bda — adb)), per sep C ' is equal to
(d(ab) — bda — adb), pcr scp iNside ©'. Therefore we can replace
((?)) by (?) in the definition of Q2p,p for B noetherian and R
of finite type as B-modules. In this case, by B-linearity, any
B-derivation § : R — M is actually continuous.

By this, QB[[T]]/B = B[[T]]dT and for f = f(T) € B[[T]],

Qs y),s = BIUTN/(f, £))dT = Bl[0]/(f'(6))

with f/(T) = 9(T) and B[[T]] 5 T — 6 := (T mod (f)) €
B[[T1]/(f).



§0.12. Congruence modules Cyp and (4. Let ¢ : R » A €
Home(R,A). We define |C1(¢; A) = 2p/B ®Rr¢y Al To define
Co, we assume (i) A= B, (ii) B is a domain and (iii) R = B" as
B-modules. The total quotient ring Frac(R) can be decomposed

Frac(R) = Frac(Im(¢)) ® X (unique algebra direct sum).

Write 14 for the idempotent of Frac(Im(¢)) in Frac(R). Let b =
Ker(R— X) = (14RNR), S =Im(R — X) and b = Ker(¢). Here
the intersection 14R N R is taken in Frac(R) = Frac(Im(¢)) x X.
First notethat b= RN (B x0) and r= (0 x X)NR. Put

Co = Co(¢; B) := (R/b) Qo Im(¢) and Cy 1= 2p/B®R B.

The module C; is called the congruence module (of degree j)
of ¢. Note: Cp =Im(¢)/(¢p(a)) = A/a= R/(acdb) = S/b via pro-
jection to B and S (an exercise).



§0.13. Higher congruence modules.
Suppose ¢ : R — A is onto. We know Cg = S/b and we can
prove Cq1 = b/b2 under (i)—(iii) by the second fundamental exact
sequence:
2 b—db

b/b° —— Qr/p®rA— Ry p— 0.
So why not we define Cy, := b"/b"t1. Then gr(S) = @, C; is the
graded algebra. Knowledgeof gr(S) is almost equivalent to the
knowledge of S. Once we know S, we recover

R=Bxg,S={(b;s) € BxSlb moda=s mod b}.

If ¢4 = b/b2 IS generated by one element over B, then by
Nakayama’'s lemma, b = (6) for a non-zero-divisor 8 € S. Then
ar(S) £ Cylz] by sending 8 mod b2 to the variable z.

What is S if B=W and Cg =F?

Is there any good way to compute C,, when R is the universal
deformation ring?



§0.14. Explicit form of C1(x;F) as cotangent space.
Write 7 : R — R/mp = F for the projection. Let Fle] = F[z]/(z?)
with z < e. Then 2 = 0.

For ¢ € Homp_54(R,Fle]), write ¢(a) = n(a) + d(a)e. From
¢(ab) = w(a)m(b) + m(a)d(b)e + m(b)d(a)e,

we find Homp_54(R,Fle]) = Derg(R,F) by ¢ < 6.

¢ is determined by ¢|m; which Kills m% 4+ mp as e2 = 0. Thus

Homp(Qp/p ®r F,F) = Homg(Q2R, g, F)
= Derg(R,F) = HomR(tE/B,F),

for thp :=mpg/(m% 4+ mp). Taking F-dual, if thp is finite di-

mensional, we get QR/B QplF = tj{%/B; in particular, QR/B IS an

R-module of finite type (by Nakayama's lemma).



§0.15. Congruence modules for group algebras.

Let H be a finite p-abelian group. If m is a maximal ideal of B[H],
then for the inclusion s : H — B[H]* with k(¢) =0, Kk mod m is
trivial as the finite field B[H]/m has no non-trivial p-power roots
of unity; so, m is generated by {¢ — 1};,cyg and mpg. Thus m is
unique and B[H] is a local ring.

We have a canonical algebra homomorphism: B[H] — B sending
o€ H to 1. This homomorphism is called the augmentation
homomorphism of the group algebra. Write this map = : B[H] —
B. Then b = Ker(x) is generated by o — 1 for o0 € H. Thus

b = > B[H](c —1)B[H].
ccH
We compute the congruence module and the differential module

Ci(m,B) (j =0,1).



§0.16. Theorem. Suppose B is an integral domain with char-
acteristic 0 Frac(B). We have

Co(m; B) & B/|H|B and Ci(m; B) = H ® B.

Proof for the congruence module.

Let K := Frac(B). Then w gives rise to the algebra direct factor
Ke C K[H] for the idempotent ¢ = ﬁzaeHJ. Thus a = Ken
B[H] = (Ypep o) and n(B(H))/a = (¢)/a = B/|H|B.



§0.17. Proof of Ci(m; B) = H ®7 B, 1st step.
Consider the functor 7 : CLgp — SET'S given by

F(A) = Homgroup(H, AX) = Hom g_a4(B[H], A).

Thus R := B[H] and the character p: H — B[H] (the inclusion:
H — B[H]) are universal among characters of H with values in
A€ CLp.

Then for any R-module X, consider R[X] = R® X with algebra
structure given by rc =0 and xy =0 for all r € R and z,y € X.

Define ®(X) = {p € F(R[X])|p mod X = p}. Write

p(0) = p(o) @ uj,(o)
for u’p - H — X.



60.18. Proof, Second step.
Since

p(oT) ®uj(or) = p(oT)
= (p(0) & uy(0))(p(7) ® u,(7))
= p(o7) & (uy(0)p(7) + p(o)u,(T)),
we have UIIO(O'T) = uI’O(U)p(T) —I—p(a)uI’O(T), and thus u, = p_luI’O ;
H — X is a homomorphism from H into X.

T his shows

Hom(H, X) = &(X).



§0.19. Proof, Third step.
Any B-algebra homomorphism £ : R — R[X] with ¢ mod X = idp
can be aritten as § = idp®de with d¢ : R — X.

Since (rgz)(r ®z') =rr' @rz’ + 'z for r,v' € R and z.2' € X,
we have dg(rr') = rde(r') + r'de(r); so, d¢ € Derp(R,X). By
universality of (R, p), we have

D(X) & {€ € Homp ig(R, R[X])[¢ mod X = id}
— D@T’B(R,X) — HomR(QR/B,X)



§0.20. Proof, Fourth step, Yoneda’'s lemma.
Thus we have

Homg(H ®7, Zp, X) = HOM(H, X)
— HomR(QR/BaX)
= Homp(Q2Rr/p ®r .~ B, X).

This is true for all X, we have (essentially by Yoneda's lemma)

H = Qp/p®py B = C1(m; B).



§0.21. Class group and Selmer group.

For simplicity, assume p 1 [k : Q] and that k£/Q is a Galois exten-
sion. Note that K/Q is a Galois extension as K is the maximal p-
profinite extension of k£ unramified outside p. Let Indg id = id ®x
and H = C}.. Then for €2, given basically by the regulator and
some power of (271),

L(1, )/l = ||Cil|

We can identify C,}/ = Hom(C}, Qp/Zp) with the Selmer group of
x given by Sely(1) := Ker(H' (G, Qp/Zp) — Ty, H' (Ip, Qp/Zp))

Shaplro—l—a

Sel;(1) Selg(x) = Ker(H'(K/Q,V(x)*) — H (I, V(:)"))

for the p-inertia group Iy C G and the p-inertia group I, C
Gal(K/Q).



§0.22. Class number formula.
Theorem 2 (Class number formula). For the augmentation ho-
momorphism 7 . Zp|Cy] — Zp,

L(1,x) _ _
' Qkx =lonm ) b= |Co(m Zp)| 7t = |ISelg(0,

and C1(m Zp) = Q. (c,1/2, ©7,(C] Lo = Cr and Co(m; Zp) =
Lp/|Ck|Zyp.

Is there any way of proving the above class number formula
without using the classical ideal theory of integer ring of k£ but
the Galois deformation theory?

There are three incarnations of (', as the p-primary part of the
class group (field arithmetic), as the Galois group of the maximal
abelian unramified extension (Galois theory), and as a Selmer
group (Cohomology theory)



§0.23. What we study in the next few weeks.

Hereafter k = Q and B = W, A\ Fix a 2-dimensional continuous
odd representation p = pp : Gal(Q/Q) — GLo(F) ramified at
finitely many primes. Take the maximal p-profinite extension
F®)(5) unramified outside p, and let G = GaI(F(p)(p)/Q). We
consider the functor roughly defined

D(A) :={pa: G — GL2(A)[pg mod my =7p, (ord), (min)}/I"(my).
Dx(A) :={pa € D(A)[(det)}/T (m4).
Here N(my) = Ker(GL>(A) — GL»(IF)) acts by conjugation,
(min) p4 is @ minimal deformation.
(ord) palp, = <€(34 51) with 64, mod m4 = ép and § unramified.
(det) det(py) = x, where x is often of the form vi~1y for the
p-adic cyclotomic character vp and a finite order character .



§0.24. Cases of the Bloch-Kato conjecture (BKC). Usually
Dy (x = z/]’;—w,B — W) is represented by the (unique) local
ring T, of the Hecke algebra h;(y) associated to p acting on
Sp(¢) := Sp(Mo(N),y; W) for the conductor N of ¢. Given odd

p, Ty always exists by Khare—Wintenberger. Here

h,(¢) :=W[T(n)n =1,2,...] C Endy (Si(¥))

for the Hecke operators T'(n). If ¢ : Ty — W is given by
fIT(n) = ¢(T(n))f for a cusp form f and its p-adic Galois repre-
sentation p¢, we describe the identities |C'7 = Sel(Ad(pr))| (the
adjoint Selmer group) and Adjoint class number formula:

'L(l,Ad(f))

—1

Sel(Ad(pf))| = [C1] = |Co| = (BKC)

p
for an explicit constant x independent of p if f has weight £ > 2.



§0.25. Some general goals and questions. Fix f € S, (o)
with f|T(n) = ¢(T(n))f, and put xo = y50_1¢0. The bigger
functor D is represented by a local ring of the big “ordinary”
Hecke algebra T free of finite rank over A = W|[[l']] = W|[[T]]
such that T/(t —x(v)) £ Ty for all x = v&~ 1y of the form x = xq
as long as k£ > 2. Our goals in the coming few weeks are:

e Supposing k£ > 2, study T moving p for a fixed fg, and try to
prove that T = A if and only if p1 L(1, Ad(fg))/*.

An obvious question is to ask

e \What happens if kg = 17

When kg = 1, Pfo has finite image independent of p (an Artin Ga-
lois representation) by Deligne—Serre; so, it looks easier. How-
ever we do not know (BKC) and we need to deal with the p-
adic value Lp(Ad(fg)) for the p-adic L Lp(Ad(f)) interpolating
L(1,Ad(f))/= for f with different weight k; so, it depends on p.



