
HILBERT MODULAR FORMS AND THEIR GALOIS

REPRESENTATIONS

HARUZO HIDA

In this topic course, assuming basic knowledge of algebraic number theory, commu-
tative algebra and topology, we pick topics from the theory of Hilbert modular forms
and modular Galois representations into GL(2). We plan to discuss the following four
topics:

(1) Basics of analytic/algebraic theory of Hilbert/quaternion automorphic forms
(e.g., [HMI, Chapter 2]),

(2) Relation between Quaternionic automorphic forms and Hilbert modular forms
(quaternionic automorphic forms are indispensable in construction of the Galois
representation though we do not go into details of construction),

(3) Description of Galois representation attached to modular forms,
(4) Description of the “big” Galois representation attached to a p-adic families of

modular forms (if time allows).

Since this is a topic course, for some of the topics, we just give the results without
detailed proofs. Main reference is Chapters 2 and 3 of the following book [HMI]:

[HMI] H. Hida, Hilbert Modular Forms and Iwasawa Theory, Oxford University Press,
2006 (a list of errata posted at www.math.ucla.edu/~hida).

Here are some relevant books:

[LFE] H. Hida, Elementary Theory of L–functions and Eisenstein Series, LMSST 26,
Cambridge University Press, Cambridge, 1993.

[MFM] T. Miyake, Modular Forms, Springer, New York-Tokyo, 1989.

Take a look at the Overview posted in the class home page to know why we need
to study quaternion algebras and automorphihc forms on them even just to construct
Galois representations associated to Hilbert modular forms.
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1. Quaternion Algebras Over a Number Field

We recall basic structure theorems of quaternion algebras over a number field. Since
our description is limited to a minimum (necessary for understanding of the later dis-
cussions), we refer to [BNT] and [AAQ] for thorough description of the arithmetic of
simple algebras and quaternion algebras.

1.1. Quaternion algebras. Let F be a field of characteristic 0. A quaternion algebra
D over F is a central simple algebra of dimension 4 over F . Here the word “central”
means that F is the center of D and “simple” means that there are no two-sided ideals of
D except for {0} and D itself. First suppose that D is not a division algebra. ThusD has
a proper left ideal a ( D. Since a is also a vector F –subspace of D, its dimension over F
is either 1, 2 or 3. If dim(a) = 1, then for a generator x of the subspace a, bx for b ∈ D
is a constant multiple of x itself. Write this constant as ρ(b) ∈ F . Then ρ : D → F is
an F –algebra homomorphism and hence surjective. Thus Ker(ρ) is a three dimensional
two sided ideal, which contradicts to the simplicity of D. Thus dim(a) > 1. Similarly, if
dim(a) = 3, D/a is a one dimensional vector space over F on which the algebra D acts.
By the same argument as above, dim(a) = 3 is impossible. Thus dim(a) = 2. Choose a
basis x1, x2 of a over F . Define ρ : D → M2(F ) (the 2× 2 matrix algebra with entries
in F ) by (x1, x2)ρ(b) = b(x1, x2). Then ρ : D→ M2(F ) is an F –algebra homomorphism
taking the identity to the identity. Thus Ker(ρ) is a two sided ideal of D. Since ρ 6= 0,
the simplicity (non-existence of non-trivial two sided ideals) tells us that Ker(ρ) = {0}.
Thus ρ is injective. Comparing the dimension, we conclude that ρ : D ∼= M2(F ) is an
isomorphism.

Now assume thatD is a division algebra (so every non-zero element has a left and right
inverse). Pick x ∈ D which is not in the center F . Then the subalgebra K = F [x] ⊂ D
has to be a field. Thus D becomes a vector space over K via left multiplication by
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elements of K. Then we have

4 = dimF D = (dimK D) × [K : F ].

Thus [K : F ] is either 4 or 2. If [K : F ] = 4, K = D, and D becomes commutative.
This contradicts the centrality of D over F , and [K : F ] = 2. Taking y ∈ D−K, we can
consider the subspace K +Ky in D. These two spaces D and K +Ky have dimension
2 over K, and D = K +Ky. Then we define a representation ρ : D →M2(K) by

ρ(b)
(

1
y

)
=
(

1
y

)
b =

(
b
yb

)
.

This means α + βy = b and γ + δy = yb when ρ(b) =
(

α β
γ δ

)
. Since D is simple, ρ is

injective. Thus D is realized as an F –subalgebra of M2(K).
We now determine the image ρ(D) of D in M2(K) explicitly. Since x is quadratic over

F , we may assume that x satisfies x2 − ax+ b = 0 for a, b ∈ F , which is the minimal
equation of x over F . Thus X2−aX+b has two distinct roots: x, xτ which are conjugate
to each other under the generator τ of Gal(K/F ). Then ρ(x) satisfies the same equation,
and the eigenvalues of ρ(x) are roots of X2− aX+ b = 0. Since ρ(x) is not in the center
of ρ(D), it is not a scalar matrix, and the eigenvalues of ρ(x) are two distinct roots
of X2 − aX + b = 0. Changing the basis (1, y) suitably (we write the new basis as
(1, v)), we may assume that ρ(x) = ( x 0

0 xτ ). By the definition: ρ(b) ( 1
v ) = ( 1

v ) b, we see
xτv = vx in D. Here we do not need to change 1 because 1 is already an eigenvector
for ρ(x)1 = 1x = x1. Thus ρ(xτ)ρ(v) = ρ(v)ρ(x). This implies that for any a ∈ K,
ρ(aτ)ρ(v) = ρ(v)ρ(a) and ρ(v) =

(
0 α
β 0

)
for α, β ∈ K. Replacing v by vα−τ , we may

assume that ρ(v) =
(

0 1
ξ 0

)
and v2 = ξ. If ξ 6∈ F , then F [v] in D is of degree 4 over F ,

which is impossible. Thus ξ ∈ F . Namely

ρ(D) =
{
ρ(a + bv) =

(
a b

ξbτ aτ

) ∣∣a, b ∈ K
}
.

Thus we can always realize D as a subalgebra of M2(K) for any quadratic extension
K/F embeddable into D and a suitable ξ ∈ F× in the above form. We define for
β = a + bv ∈ D,

N(β) = det(ρ(β)) = aaτ − ξbbτ ∈ F and Tr(β) = Tr(ρ(β)) = a + aτ ∈ F.
Moreover, β = a + bv satisfies the equation X2 − Tr(β)X + N(β) = 0 in D, and
hence, Tr and N are independent of the choice of v and K. The map N is called the
reduced norm and Tr is called the reduced trace. On the image ρ(D) ⊂ M2(K), the
reduced norm N coincides with the determinant map of M2(K); so, N is multiplicative:
N(ab) = N(a)N(b) for a, b ∈ D.

Now we start with a subalgebra Dξ (ξ ∈ F×) of M2(K) for a quadratic extension K/F
given by

Dξ =
{(

a b
ξbτ aτ

) ∣∣a, b ∈ K
}
.

Since K is 2 dimensional over F , Dξ is 4 dimensional over F . Obviously Dξ is stable
under multiplication and addition. We also see easily that the center of Dξ is F . More-
over Dξ + Dξδ = M2(K) for any generator δ of K over F . Thus Dξ ⊗F K ∼= M2(K),
which shows that Dξ is a central simple algebra over F .



HILBERT MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 4

If ξ = αατ for α ∈ K×, for v =
(

0 1
ξ 0

)
∈ Dξ, N(a + bv) = aaτ − αb(αb)τ . Choosing

a = αb, c = αb+bv has determinant 0 but is a nonzero matrix. Thus Dξ is not a division
algebra and hence Dξ

∼= M2(F ). If ξ 6∈ NK/F (K×), then N(a + bv) = aaτ − ξbbτ = 0
implies a = b = 0. Therefore a + bv has always an inverse if a + bv 6= 0; so, Dξ is a
division algebra. We have proven

(1.1) ξ ∈ NK/F (K×) if and only if Dξ
∼= M2(F ).

If ξ = αατη for ξ, η ∈ F× and α ∈ K×, we see

( 1 0
0 α )

(
a b

ξbτ a

) (
1 0
0 α−1

)
=
(

a α−1b
ξ(α−1b)τ aτ

)
∈ Dξ.

ThusDξ
∼= Dη if ξ = αατη for ξ, η ∈ F× and α ∈ K×. Therefore the map: ξNK/F (K×) 7→

Dξ induces a surjection:

F×

NK/F (F×)

onto−−→
{
the isomorphism classes of Dξ in M2(K) for ξ ∈ F×

}
.

We find that by (1.1), this map is actually a bijection.
When F = R, then the only possibility of K is C. Since NC/R(C×) = R×

+, we have
R×/NC/R(C×) ∼= {±1}, there is only two isomorphism classes of quaternion algebras:
one is M2(R) = D1 and the other is the Hamilton quaternion algebra H = D−1. When
F = C, there is no quadratic extension of C, thus there is only one isomorphism class
M2(C) = D1.

Now we suppose that F is a p–adic field, that is, a finite extension of Qp, and we
study the quaternion algebras over F . Let $ be the prime element of the p–adic integer
ring O of F . Then

F× ∼= O× × {$n|n ∈ Z}.
We define formally the logarithm map on O× by

log(x) =
∞∑

n=1

(−1)n+1(x− 1)n

n

as long as the above series converges p-adically. Since for sufficiently large r, log con-
verges p–adically on 1 +$rO in O×, O× ∼= µ × Zp

[F :Qp] for the subgroup µ of roots of

unity in O. This shows F× ∼= µ× Zp
[F :Qp] × Z and

(∗) C2 = F×/(F×)2 ∼=
{

(µ/µ2)× Z/2Z if p > 2

(µ/µ2)× (Z/2Z)[F :Qp ]+1 if p = 2.

For any quadratic extension K/F , we can choose a generator δ of K over F such that
δ2 ∈ F . Since F [δ] = F [αδ] for α ∈ F×, we have a map: F [δ] 7→ δ2 mod (F×)2 induces
a bijection

{isomorphism classes of quadratic extension K/F} ∼= C2.

If p > 2, for any p–adic unit u 6∈ (O×)2, K = F [
√
u] is the unique unramified quadratic

extension. Thus if we write UK for the group of p–adic units of K, UF = O× = NK/F (UK)
if K/F is unramified and p > 2. Thus F×/NK/F (K×) ∼= Z/2Z if K/F is unramified and
p > 2.



HILBERT MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 5

Suppose that K/F is ramified. Let OK be the p–adic integer ring of K and P be the
maximal ideal of OK . Then NK/F (x) mod P = (x mod P)2 for x ∈ O×

K . This shows
that F×/NK/F (K×) has a quotient group isomorphic to Z/2Z. Since a prime element
of F is a norm of the prime element of K, F×/NK/F (K×) is a proper quotient group of
(µ/µ2)×Z/2Z ∼= (Z/2Z)2. Thus we know from (∗) that F×/NK/F (K×) ∼= Z/2Z even if
K/F is ramified (as long as p > 2).

Even if p = 2, we can prove by local class field theory

(1.2) F×/NK/F (K×) ∼= Gal(K/F ) ∼= Z/2Z.

Thus for a given quadratic extension K/F , there are only two isomorphism classes of
quaternion algebras Dξ/F inside M2(K).

We return to unramified K/F . The unique division quaternion algebra of the form Dξ

in M2(K) is isomorphic to D$. Since v = ( 0 1
$ 0 ) and v2 = $, we know that the ramified

extension F [
√
$] is isomorphic to K ′ = F [v] ⊂ D$. Thus any ramified quadratic

extension K ′/F is embeddable in D$. Since a division quaternion algebra embeddable
in M2(K

′) corresponds to the generator of F×/NK/F (K×) ∼= Z/2Z, which is unique.
There is only one isomorphism class of division quaternion algebras over F . Thus we
know that any quaternion algebra over F is either isomorphic to the unique division
quaternion algebra or M2(F ).

Now we assume that F is a number field. For each prime ideal p of the integer ring
O of F , we write Fp for the p-adic completion of F , and we put Dp = D ⊗F Fp, which
is a quaternion algebra over Fp. The prime p is called ramified in Dp if Dp is a division
quaternion algebra. We take a quadratic extension K/F inside D and take ξ ∈ F× so
that D ∼= Dξ . Then ξ ∈ NKp/Fp

(K×
p ) for all but finitely many p, where Kp = K ⊗F Fp.

Indeed, if Kp is a field extension of Fp, it is unramified for all but finitely many p (hence
NKp/Fp

(UKp ) = UFp for almost all p). Since ξ is a unit for all but finitely many p, we
know ξ ∈ NKp/Fp

(K×
p ) for all but finitely many p. If Kp = Fp⊕ Fp, Dp

∼= M2(Fp) and
also ξ ∈ NKp/Fp

(K×
p ). This shows that D ramifies at only finitely many places. For each

embedding σ : F ↪→ R, we say that D is ramified at σ, if Dσ = D⊗F,σ R ∼= H. We write
S for the set of all ramified places of F in D. Then global class field theory tells us the
following facts found by Hasse:

(H1) The cardinality |S| is even;
(H2) For any given set S of places with even cardinality, there exists a unique quater-

nion algebra D ramifying exactly at S.

One can find a proof of this in [BNT] XIII.3, Theorem 2 and XIII.6, Theorem 4.

Exercise 1.1.

(1) Prove that the center of Dξ (ξ ∈ F×) is equal to F .
(2) If D⊗F K ∼= M2(K) for an F–algebra D, prove that D is a central simple algebra

of dimension 4 over F .
(3) Determine the radius of convergence of the p–adic logarithm.
(4) For the p–adic integer ring O of a finite extension F/Qp, give a detailed proof of

O× ∼= µ× Zp
[F :Qp] for the subgroup µ of roots of unity in O.
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(5) Give a detailed proof of (∗).
(6) Let p be an odd prime, and K/F is a quadratic extension of p–adic fields. Without

using class field theory, give a detailed proof of (1.2).
(7) Let F be a number field and D be a division quaternion algebra containing a

quadratic extension K/F . Prove that if Kp = Fp⊕ Fp, Dp
∼= M2(Fp)

1.2. Orders of quaternion algebras. Let F be a field and A be a subring of F . We
assume that the field of fractions of A coincides with F . Let D be a quaternion algebra
over F . Let V be a finite dimensional vector space over F . An A–lattice L in V is an
A–submodule of D which satisfies

(L1) L is an A-module of finite type (i.e., L =
∑

iAξi for finitely many ξi);
(L2) L ⊗A F = V (i.e. L contains a basis of V over F ).

If V is an F -algebra, an A–order R of V is an A–lattice in V which is a subring of V
sharing the identity. Taking a quadratic extension K/F , we realize D as

Dξ =
{
α(a, b) =

(
a b

ξbσ aσ

) ∣∣a, b ∈ K
}
,

where σ is the generator of Gal(K/F ). Note that Dξ
∼= DNK/F (η)ξ for η ∈ K×. If A′ is

an A–order of K, we may therefore assume that ξ ∈ A′ by replacing ξ by NK/F (η)ξ for
a suitable η if necessary. Then

Rξ =
{
α(a, b) ∈ Dξ

∣∣a, b ∈ A′
}

is an A–order in D. We define, for α = α(a, b) ∈ Dξ ,

αι = α(aσ,−b) = Tr(α)− α = N(α)α−1.

Then α 7→ αι is an F –linear involution: (αβ)ι = βιαι. Recall that N(α) = det(α). Then
inD, N(α) = ααι ∈ F and Tr(α) = α+αι ∈ F . Especially Pα(X) = X2−Tr(α)X+N(α)
is the minimal polynomial of α in D if α 6∈ F , i.e. Pα(α) = 0 and Pα is monic and has
minimal degree among all monic polynomials Q(X) ∈ F [X] with Q(α) = 0.

Now we assume F to be a p–adic field and A to be the p–adic integer ring O of
F . If R is an order of D, then R is free of rank 4 over O because O is a valuation
ring. Then taking a base x = (x1, x2, x3, x4) of R, we define the regular representation
ρ : D ↪→ M4(F ) by ρ(α)tx = txα = t(x1α, x2α, x3α, x4α). Then ρ(R) is contained in
M4(O). Thus Q(α) = 0 for Q(X) = det(X14 − ρ(α)). Since Pα(X) is the minimal
polynomial of α, Pα(X) is a factor of Q(X). Since Q(X) is monic and has coefficients in
O, by Gauss’ lemma, Pα(X) has coefficients in O. Namely N and Tr induce N : R→ O
and Tr : R→ O.

Suppose now that D is a division algebra. We put

R0 =
{
α ∈ D

∣∣N(α) ∈ O
}
.

Since D is a division algebra, ξ 6∈ NK/F (K×). Note that NK/F (K×) ⊂ N(D×) because
aaσ = N(α(a, 0)). Since F×/NK/F (K×) ∼= Z/2Z andD contains any quadratic extension
of F , we know that N(D×) = F×. We may in fact assume that ξ is a prime element of
O. Then it is easy to see

R0 ⊃
{
α(a, b)

∣∣a, b ∈ OK

}
= R
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for the integer ring OK of K. For ω = α(0, 1), we have ωRω−1 = R, ω2 = ξ and
N(ω) = −ξ. Thus for each α ∈ D×, we can find the minimal exponent w(α) ∈ Z such
that αω−w(α) ∈ R. Then w is a sort of an additive valuation: it satisfies

w(αβ) = w(α) + w(β) and w(α+ β) ≥ min(w(α), w(α)).

We put w(0) =∞. Then R = {α ∈ D|w(α) ≥ 0} ⊃ R0, which is the (non-commutative)
“valuation” ring of w. This shows that R0 = R is an order. Since on any order R′, N
has values in O, we know R0 ⊃ R′. Thus R0 is the unique maximal order OD.

Proposition 1.2. If F is local and D is a division algebra, then all O-orders are con-
tained in one and only one maximal order OD.

In general, we call an order R in D maximal if there is no order containing R properly.
Thus there may be several maximal orders. Suppose now that D = M2(F ). Let L be
an O–lattice of F 2. We put R = RL = {α ∈ M2(F )|αL ⊂ L}. Then R is an O–order.
In fact, we can find a basis (x, y) of L. Since x and y are column vectors, we consider
X = (x, y) as an invertible matrix in M2(F ). Then defining the regular representation
ρ : D ∼= M2(F ) by Xρ(α)tX = tXα, we have

ρ(α) ∈M2(O) ⇐⇒ α ∈ RL.

Therefore, we have RL = X−1M2(O)X. Conversely, for any given O–order R in D, we
put L = π(R) for the projection:

π : D = M2(F ) 3 ( a b
c d ) 7→ ( b

d ) ∈ F 2.

Then L is an O–lattice of F 2 and R · L ⊂ L. Namely R ⊂ RL. Thus for any order R of
M2(F ), there exists a maximal order RL of the form X−1M2(O)X.

Proposition 1.3. If F is a p–adic local field and D = M2(F ), for any given order
R, there exists a maximal order OD containing R which is a conjugate of the standard
maximal order M2(O).

Thus all the maximal orders in M2(F ) (for local F ) are conjugate to each other.

Corollary 1.4. The group GL2(O) is a maximal compact subgroup of GL2(F ). If K is
a maximal compact subgroup of GL2(F ), then K is a conjugate of GL2(O) in GL2(F ).

Proof. LetK0 = GL2(O). A double cosetK0xK0 (x ∈ GL2(F )) is of the formK0

(
$a 0
0 $b

)
K0

for a suitable integer a ≥ b by the theory of elementary divisors. Thus, the subgroup
generated by K0 and any x outside K0 contains

(
$a 0
0 $b

)
with one of a and b nonzero.

Then plainly the subgroup is not compact; so, K0 is a maximal compact subgroup. Let
L = O2. Since K\K ·K0 is discrete and compact, it is finite. Then L′ =

∑
u∈K\K·K0

u(L)

is isomorphic to O2 as O-modules, and R = {x ∈ M2(F )|xL′ ⊂ L′} is a maximal order
of M2(F ), which is compact. Thus R× is a compact subgroup. Since R× ⊃ K, they are
equal by the maximality of K. Since R = g ·M2(O)g−1, we have K = R× = g ·K0g

−1

for g ∈ GL2(F ). �

We now suppose that F is a number field. We take A to be the integer ring O of F .
For any (finite dimensional) vector space V over F , we fix a base x1, . . . , xr and identify
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V with F r. We put L0 = O · x1 + · · · + O · xr, which is an O–lattice. Consider any
O–lattice L. By definition, L = O · y1 + · · ·+O · ym with m ≥ r. Since L0⊗O F = V , we
can find α, β ∈ F such that α · L0 ⊂ L ⊂ β · L0. For each prime ideal p of O, we write
Op for the p–adic completion of O and Fp = F ⊗O Op. Then for almost all p, α and β
are both p–adic units, and thus

L0,p = α · L0,p = αOp⊗O L0 ⊂ Lp ⊂ β · L0,p = L0,p.

This shows that for almost all p, Lp = L0,p. Conversely, let {Lp}p be a family of Op–
lattices indexed by all prime ideals of O. We suppose that Lp = L0,p for almost all
p. Such a collection {Lp}p is called admissible. This definition of admissibility does
not depend on the choice of starting lattice L0, because for any O–lattice, its p–adic
completion is the same for almost all p. We now show that for any given admissible
family {Lp}p of local lattices, there is a unique O–lattice L in V which gives rise to the
given collection. We first take α in F× so that

Lp ⊃ α · L0,p for all p.

We can always find such α, because L0,p and Lp are different for only finitely many p.
Since V/α ·L0

∼= (F/αO)r , we have a unique finite subgroup X in V/α ·L0 corresponding
to Lp/α·L0,p. Put L = {v ∈ V |v mod α·L0 ∈ X}. By definition, L satisfies the required
property, and we have

L =

(
∏

p

Lp

)
⋂
V

in V (A(∞)) = V ⊗F A(∞) for the finite part A(∞) of the adele ring A of Q.

We apply the above argument to V = D for a quaternion algebra D. Let R be
an O-order of D. Then Rp is an Op–order of Dp. First suppose that D = M2(F ).
Then M2(Op) is maximal at every p, M2(O) is maximal. Thus for any order R of D,
Rp = M2(Op) for almost all p and for finitely many p with Rp 6= M2(Op), we can find
xp ∈ D×

p such that xpM2(Op)x
−1
p = Rp. For other primes p, we simply put xp = 1. Thus

x = (xp)p ∈ D×
A (the adelization of D). The family {xpM2(Op)x

−1
p } is admissible, and

therefore there exists an O–lattice OD in D such that OD,p = xpM2(Op)x
−1
p for all p.

Since OD = D
⋂∏

pxpM2(Op)x
−1
p in D

(∞)
A , OD is a subring; namely, OD is an O–order.

Since RD,p is maximal for all p, OD has to be maximal and OD ⊃ R.
Now suppose that D is a division algebra over a number field F . We embed D

into M2(K) for a quadratic extension K/F . Let A be the integer ring of K. Then
R = M2(A) ∩D is an order of D. We shall show that Rp is a maximal order for almost
all p. We may assume that D = Dξ. If Kp = K ⊗F Fp

∼= Fp ⊕ Fp, then obviously
Rp
∼= M2(Ap) if ξ is a p–adic unit (which is true for almost all p). Suppose that

Kp/Fp is a field extension and Dp
∼= M2(Fp). Then ξ is an integral norm: ξ = xxσ for

x ∈ A×
p = (A⊗O Op)

×. This is true for almost all p. Conjugating Dξ by α =
(

xp 0
0 1

)
, we

may assume that ξ = 1. Then conjugating by β = ( δ −δ
1 1 ) for δ ∈ K with δ2 ∈ F×, we

knowRp 3 r 7→ βαrα−1β−1 induces an isomorphism ofRp withM2(Op) if βα ∈ GL2(Ap).
Since βα falls in GL2(Ap) for almost all p, Rp is maximal for almost all p. Thus if one



HILBERT MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 9

gives oneself a collection of maximal orders {OD,p}p such that OD,p = Rp for almost all
p, there exists a unique maximal order OD in D whose completion is equal to the given
data OD,p. Conversely, if R is any A-order of D, then Rp is maximal for almost all p.
We put OD,p = Rp if Rp is maximal and choose a maximal order OD,p in Dp containing
Rp if Rp is not maximal. Then the family {OD,p}p gives rise to a unique maximal order
OD in D containing R. We have

Proposition 1.5. Let D be a quaternion algebra over a number field or a p–adic local
field. Then for any given order R of D, there exists a maximal order containing R.

From now on, D is any quaternion algebra over a number field F (including M2(F )).
Fix a maximal order OD of D. Then for any other maximal order O′

D in D and for
each prime p, we can find xp ∈ D×

p such that xpOD,px
−1
p = O′

D,p. Since O′
D,p = OD,p for

almost all p, xp ∈ O×
D,p for almost all p. Therefore x = (xp)p ∈ D×

A . Thus we have a
bijection:

{maximal orders in D} ↔ D×
A/U ·D×

∞

for U =
∏

pO
×
D,p and D∞ =

∏
σ Dσ

∼= D⊗Q R for σ running over all archimedean places

of F , since xpOD,px
−1
p = OD,p for all p if x ∈ U · D×

∞. If x ∈ D×, then the conjugation
OD 3 r 7→ xrx−1 ∈ O′

D is well defined and hence OD
∼= O′

D. Thus we have a surjection:

D×\D×
A /U ·D×

∞ � {isomorphism classes of maximal orders in D} .

Let I = Homfield(F,C). Now we need to quote some deeper results:

Theorem 1.6 (Norm theorem). Let

F×
D =

{
x ∈ F×

∣∣xσ > 0 if D ⊗F,σ Fσ
∼= H for σ ∈ I

}
.

Then N(D×) = F×
D . Especially F×/N(D×) ∼= {±1}r, where r is the number of infinite

place at which D is ramified.

A proof of this theorem is in Weil’s book: [BNT] Proposition 3 in page 206. The proof
given there is 4 pages long but quite elementary and can be read without reading much
the material in the earlier sections of [BNT] (basic algebraic number theory suffices for
that).

Theorem 1.7 (Approximation theorem). The set D×\D×
A/U · D×

∞ is a finite set. Es-
pecially, isomorphism classes of maximal orders of D are finitely many.

A proof in the case where D = M2(F ) is in [LFE] Section 9.1. An outline of the proof
for division algebras D is as follows. We consider

D1
A =

{
x ∈ DA

∣∣|N(x)|A = 1
}
.

By the product formula: |ξ|A = 1 for ξ ∈ F× (e.g., [LFE] (8.1.5)), D× is a subgroup of
D1

A. Then D× can be shown to be a discrete subgroup of D1
A and D×\D1

A is compact
(see [MFM] Lemma 5.2.4). A similar assertion for number fields is also true, i.e.,

F× is discrete in F 1
A =

{
x ∈ FA

∣∣|x|A = 1
}
, and F 1

A/F
× is compact.
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A proof of this fact for fields F can be found in [LFE] Theorem 8.1.1. All the arguments
in the proof there works well for division algebras D replacing |x|A by |N(x)|A. Then
D1

A/ (U ·D×
∞ ∩D1

A) is discrete because U · D×
∞ ∩D1

A is an open subgroup of D1
A. Thus

D×\D1
A/ (U ·D×

∞ ∩D1
A) is discrete and compact and hence is finite. Note that

D×\D1
A/
(
U ·D×

∞ ∩D1
A

)

is the kernel of the norm map

N : D×\D×
A/U ·D×

∞ → F×
A /F

×
DUF (UF =

∏

p

O×
p ),

whose right-hand side is a ray class group (e.g., [LFE] Corollary 8.1.1]) which is finite.
This shows the above theorem. When D = M2(F ) (or more generally, if D ⊗Q R is
isomorphic to a product of copies of M2(R)), by the following theorem, |D×\D×

A/U ·D×
∞|

is equal to the class number of F (see (CL) below).

Theorem 1.8 (Strong approximation theorem). Let OD be a maximal order of D. Let
v be one place (either finite or archimedean) such that Dv

∼= M2(Fv). Let U (v) =∏
p6=v O

×
D,p, where we put OD,σ = M2(Fσ) if v is the infinite place σ ∈ I. Then

Γ(v) =
{
γ ∈ D×

∣∣N(γ) = 1 and γ ∈ O×
D,p for all p 6= v

}

is dense in {x ∈ U (v)|N(x) = 1}.
In other words, for any given x ∈ U (v), we can find γ ∈ Γ(v) such that γ ≡ x

mod N · Ô(v)
D for any ideal N prime to v and γ(v) is arbitrarily close to xσ for all infinite

place σ 6= v, where Ô
(v)
D =

∏
p6=v OD,p. When v is a infinite place, an elementary proof

can be found in Miyake’s book [MFM] Theorem 5.2.10. Although Miyake gives a proof
assuming that F = Q, his argument works well for general number fields without much
modification.

We see easily from the strong approximation theorem that the reduced norm N : D →
F induces, for any open subgroup S of U with SF = N(S) ⊂ F×

A(∞),

(CL) D×\D×
A/S ·D×

∞ = D×\D×
A(∞)/S ∼= F×

A(∞)/SF · F×
D

if D has at least one infinite place v such that Dv
∼= M2(Fv). The cardinality of the

set on the left hand side of (CL) is called the class number of D and is equal to the
number of the equivalence classes of the set {fractional right OD–ideals in D} modulo
the following equivalence relation a ∼ b ⇐⇒ a = αb for α ∈ D×. Thus often the
class number of D is given by that of a ray class group of F . However when D ⊗Q R
is isomorphic to HI =

∏
σ∈I H (such a quaternion algebra is called a definite quaternion

algebra), the class number of D cannot be given by the class number of F . If D is a
definite quaternion algebra over Q only ramifying at a prime p, one of our goals in this
course is to prove that the class number of D is equal to the dimension of the space of
holomorphic modular forms on Γ0(p) of weight 2.

Exercise 1.9.
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(1) Let F be a number field. For an O–lattice L of F n, prove that there exists an

O–ideal a such that L ∼= On−1 ⊕ a as O–modules. Hint: putting L̂ =
∏

pLp, find

x ∈ GLn(FA) such that x · L̂ = Ôn−1 ⊕ â ⊂ (F n ⊗Q A(∞)).
(2) For a given α ∈ GL2(F ), prove that α ∈ GL2(Op) for almost all p.
(3) Using the outcome of Exercise 1, show that the class number of F gives the

number |GLn(F )\GLn(FA)/GLn(Ô)GLn(F∞)|.
(4) Prove (CL) using Theorem 1.8.
(5) Prove the statement just after (CL) about class number of D.
(6) Suppose that F is totally real. For each embedding σ : F ↪→ R, define Dσ =

D ⊗F,σ R. Prove that D ⊗Q R ∼=
∏

σ Dσ. Describe what happens if F is not
totally real.

2. Automorphic Forms on Quaternion Algebras

In this section, we recall the definition of holomorphic automorphic forms on the
multiplicative idele group of a quaternion algebra. Following the tradition of Gauss,
Eisenstein, Kronecker and Hilbert, if D = M2(F ) (for a totally real field F ), such
functions are called modular forms. On the other hand, general quaternionic cases are
more recent, for which we use a more general term: automorphic forms (see [?] for the
distinction of modular and automorphic forms).

2.1. Arithmetic quotients. Let F be a totally real field and I be the total set of
embeddings of F into Q (the algebraic closure of Q in C). Recall the embeddings
i∞ : Q ↪→ C and ip : Q ↪→ Qp fixed in the introduction. Since F is totally real,
i∞ ◦σ has image in R for all σ ∈ I . As before, O denotes the integer ring of F . We fix a
quaternion algebraD/F . Let ID be a subset of I consisting of σ : F ↪→ R such that at the
infinite place i∞ ◦σ (which we write again σ for simplicity),Dσ = D⊗F,i∞◦σ R ∼= M2(R).
We write ΣD for the set of all places at which D ramifies and ID for the subset of ΣD

consisting of infinite places (thus I = ID t ID).
We fix a maximal order OD of D. Take a quadratic extension K/F inside D such that

Kσ = K ⊗F Fσ
∼= (R ⊕ R) if σ ∈ ID, and fix ρ : (D ⊗F K) ∼= M2(K). Then, Kσ

∼= C
if σ ∈ ID. We may assume that ρ(OD) is contained in M2(OK) for the integer ring
OK , because every O–order in M2(K) is contained in an adelic conjugate of M2(OK)
(Proposition 1.5). Since OD is a Z–lattice of D∞ = D ⊗Q R, OD is a discrete subset of
D∞. Then we see O×

D is a discrete subset of D×
∞. Let D1

∞ = {x ∈ D∞|N(x) = 1}. We
know that the natural map:

D1
∞ × F×

∞→ D×
∞ : (x, y) 7→ xy

has finite kernel (∼= {±1}I) and cokernel. Put O
(1)
D = O×

D ∩ D1
∞. Therefore O

(1)
D is

discrete in D1
∞. The natural map from D1

∞ to PD×
∞+ = D×

∞+/F
×
∞ is surjective and has

finite kernel (again {±1}I), where D×
∞+ is the subgroup of D×

∞ consisting of elements

with totally positive norm. The image of O
(1)
D in PD×

∞+ is discrete. We have an exact
sequence:

1→ O
(1)
D → O×

D

N−→ O× → Coker(N)→ 1.
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The image of the norm map N contains (O×)2. Since O× is a finitely generated abelian
group by Dirichlet’s theorem (e.g., [LFE] Theorem 1.2.3), (O× : (O×)2) is finite (a power

of 2). Thus Coker(N) is finite. This shows that the image O
×

D+ of O×
D+ = O×

D ∩D×
∞+ in

PD×
∞+ (isomorphic to O×

D/O
×) has the image of O

(1)
D as a subgroup of finite index, and

O
×

D+ is discrete in PD×
∞+. Let C∞ be the maximal compact subgroup of D1

∞. Since

D1
∞
∼= SL2(R)ID ×H1

ID

for H1 = {x ∈ H|N(x) = 1}, we have C∞
∼= SO2(R)ID ×H1

ID

. Thus

D×
∞+/F

×
∞C∞ = D1

∞/C∞
∼= HID

via g 7→ g(i) for i = (
√
−1, . . . ,

√
−1) ∈ HID (H = {z ∈ C| Im(z) > 0}). For simplicity,

we write ZD for HID . Since O
(1)
D is discrete, O

(1)
D ∩C∞ is discrete and compact and hence

finite. In particular, if ID = ∅, the reduced norm map N : D∞ → R is a positive definite
quadratic form (on H/R, it is sum of four squares), and PD×

∞ is compact. Thus we have

(2.1) If ID = ∅, O×
D/O

× is a finite group.

We say that a subgroup Γ of PD×
∞+ acts properly discontinuously on ZD, if for any point

z ∈ ZD, we can find an open neighborhood U of z such that {γ ∈ Γ|γ(U) ∩ U 6= ∅}
is finite. If this set is a singleton made up of the identity element for all z, the action
is called free. The quotient Γ\ZD for Γ acting freely is a complex manifold. When the
action is only properly discontinuous, the quotient is a complex analytic space (locally
isomorphic to a zero set of finitely many complex analytic functions in Cn). The group

O
(1)
D acts properly discontinuously on ZD (cf. [MFM] Section 1.5) because O

(1)
D ∩ C∞ is

finite, and hence O
×

D+ also acts properly discontinuously on ZD. We now claim:

Proposition 2.1. For any subgroup Γ of finite index of O
(1)
D or O

×

D+, the quotient
analytic space Γ\ZD is compact if D is a division algebra.

Proof. We only need to prove the proposition for O
(1)
D \ZD because Γ\ZD is a covering of

O
(1)
D \ZD with finite fiber (the number of elements in the fiber is less than or equal to the

index of Γ in O
(1)
D or O

×

D+) and O
×

D+\ZD is covered by O
(1)
D \ZD. We know that D×\D1

A is

compact for D1
A =

{
x ∈ DA

∣∣|N(x)|A = 1
}

(see 1.2). Thus D(1)\D(1)
A /U (1)C∞ is compact,

where D
(1)
A = {x ∈ DA|N(x) = 1}, U =

∏
pO

×
D,p, U

(1) = D
(1)
A ∩ U and D(1) = D

(1)
A ∩D.

We consider the map ι : ZD → D
(1)
A /U (1)C∞ given by ι(z) = g∞ mod C∞ for g∞ with

g∞(i) = z. Then it is easy to see that ι induces an inclusion O
(1)
D \ZD into D×\D1

A/UC∞.
By the strong approximation theorem, ι is surjective and hence an isomorphism. �

Exercise 2.2. Prove that the map ι in the above proof is an embedding.

By the above proposition, if D is a division algebra, Γ\ZD has no cusps. Let

O×
D(N) =

{
γ ∈ O×

D

∣∣γ − 1 ∈ NOD

}
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for each ideal N of O and O
(1)
D (N) = O×

D(N) ∩O(1)
D . We put Γ(N) to be the intersection

with O
×

D = Γ(1) with the image of O×
D(N) in PD×

∞+. Since O
(1)
D acts properly discon-

tinuously on ZD, for each point z ∈ ZD, the stabilizer O
(1)
D,z = {γ ∈ O(1)

D |γ(z) = z} of

z is a finite group. In particular, when D is definite, Γ(N) and O
(1)
D are finite. Take a

non-central element ζ ∈ O
(1)
D,z. Then ζm = 1 for some m > 2. Thus F [ζ] is a totally

imaginary quadratic extension of F in D. There are only finitely many such quadratic
extensions over F generated by roots of unity. Thus the order m of ζ is bounded inde-
pendently of z. Since m–th roots of unity for a given m > 2 can be separated modulo N

for sufficiently small ideal N in O, O
(1)
D (N) acts fixed point free on ZD. Any subgroup

of Γ containing O
(1)
D (N) for some ideal N is called a congruence subgroup of D×. Thus

(FR) We can find a congruence subgroup acting on ZD without fixed point.

Actually we can give an exact lower bound for N when Γ(N) acts freely on ZD (e.g.,

[H88] Lemma 7.1]). In particular, if N ⊂ (3), O
(1)
D (N) acts freely on ZD.

A natural question is

(CS) Are all subgroups of finite index of O
(1)
D congruence subgroups?

This is the congruence subgroup problem for D× (see [R] for a survey of the problem
for general semi-simple groups). It is conjectured by Serre that if the number r = |ID|
of infinite places of F unramified in D is bigger than or equal to 2, the answer should
be affirmative. Serre proved this to be affirmative for M2(F ) if F 6= Q (that is, r = [F :
Q] ≥ 2). When r = 1, for small enough N, X = Γ(N)\ZD is a compact Riemann surface
of genus g ≥ 1, and H1(X,Z) = Hom(π1(X),Z) ∼= Z2g. Thus the maximal abelian
quotient πab

1 (X) of the fundamental group π1(X) is infinite. On the other hand, it is
easy to show that the maximal abelian quotient of Γ(N) is finite if (CS) is affirmative
in this case. Thus (CS) has a negative answer when r = 1.

Exercise 2.3. Prove that the maximal abelian quotient of Γ(N) is finite, assuming (CS)
is affirmative.

We associate with the algebra D an algebraic group D× defined over F . As a group
functor, D×(R) = (D ⊗F R)× for all F -algebra R. Then we consider an algebraic
group GD defined over Q given by GD = ResF/QD

×. If we fix a maximal order OD, we
can extend D× to a group scheme defined over the integer ring O of F by D×(R) =
(OD⊗OR)× for all O-algebras R. Thus GD extends to a group scheme over Z by taking
GD

/Z
= ResO/ZD

×
/O (see [HMI, Theorem 2.16]). The center Z of GD is an algebraic group

satisfying Z(A) = (O ⊗Z A)×; so, it is independent of D and Z = ResO/ZGm/O.

Exercise 2.4. Prove that the functor D×
/F is an affine algebraic group over F .

Let GD(R)+ be the identity connected component of the real Lie group GD(R); then,
GD(R)+ = {x ∈ GD(R)|N(x) � 0}. We let g ∈ GD(R) act on ZD = HID by the linear
fractional transformation of

gσ = σ(g) ∈ GL2(K ⊗K,σ R) = GL2(R)
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component-wise. Write Cσ+ for the stabilizer of
√
−1 in (D⊗F,σ R)× and define a closed

subgroup CD
i
⊂ GD(R) by Z(R) ·

(∏
σ∈ID

Cσ+ ×
∏

σ∈ID H×
)
, which is the stabilizer

of i = (
√
−1, . . . ,

√
−1) ∈ HID in the connected component GD(R)+. Thus we have

ZD = HID ∼= GD(R)+/CD
i

by g(i)↔ g for the identity-connected component GD(R)+ of
GD(R). Write simply G = GM2(F ) = ResO/ZGL(2). Since G and GD have the common
center Z canonically isomorphic to ResF/QGm, we use the same symbol Z to indicate the

center of GD independently of D. For any open compact subgroup S ⊂ GD(A(∞)) under
the adele topology, we think of the automorphic manifold associated with the subgroup
S:

Y (S) = Y D(S) := GD(Q)\GD(A)/Z(A)S · CD
i
.

Exercise 2.5. Let Γg(S) =
(
g−1S ·GD(R)+g

)
∩D×.

(1) Show that Γg(S) is a discrete subgroup of GD(R);
(2) Prove that Y (S) ∼=

⊔
g Γg(S)\ZD via the isomorphism

GD(Q)\GD(Q)gZ(A)S ·GD(R)+/Z(A)S ·CD
i
∼= Γg(U)\ZD

given by gx∞ 7→ (gx)∞(i) ∈ ZD if D×
A =

⊔
g G

D(Q)g · Z(A)S · D×
∞+ by Theo-

rem 1.7.
(3) Prove that Y (S) is a complex analytic space of dimension r = |ID| and is a

complex manifold if S is sufficiently small.

2.2. Archimedean Hilbert modular forms. Let us recall the definition of the adelic
Hilbert modular forms and their Hecke ring of level N for an integral ideal N of F (cf.
[HMI, §2.3.2]). Thus in this subsection, D = M2(F ) for a totally real field F , and
( a b

c d )
ι
=
(

d −b
−c a

)
.

Let G = ResO/ZGL(2) as an algebraic group over Z; G(A) = GL2(A ⊗Z O) for
each commutative ring A. Let T0 = G2

m/O be the diagonal torus of GL(2)/O, and
put, T = ResO/ZGm and TG = ResO/ZT0. Then TG contains the center Z of G. Write

I = Homfield(F,Q). Then the set of algebraic charactersX(TG) = Homalg gp(TG/Q,Gm/Q)

can be identified with Z[I ]2 so that κ = (κ1, κ2) ∈ Z[I ]2 induces the following character
on TG(Q) = F× × F×

TG(Q) 3 (ξ1, ξ2) 7→ κ(ξ1, ξ2) = ξκ1
1 ξ

κ2
2 ∈ Q

×
,

where ξκj =
∏

σ∈I σ(ξj)
κj,σ ∈ Q

×
. We consider the following set of continuous “Neben”

characters

ε = (ε1, ε2 : T (Ẑ)→ C×, ε+ : Z(A)/Z(Q)→ C×).

If a character ψ : T (Ẑ) → C× is continuous, it is of finite order, and we have an ideal

c(ψ) maximal among integral ideals c satisfying ψ(x) = 1 for all x ∈ T (Ẑ) = Ô× with

x− 1 ∈ cÔ. We call c(ψ) the conductor of ψ.

Exercise 2.6. Prove that a continuous character ψ : T (Ẑ)→ C× is of finite order (see
[MFG] Proposition 2.2).
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The character ε+ : Z(A)/Z(Q) → C× is an arithmetic Hecke character such that

ε+(z) = ε1(z)ε2(z) for z ∈ Z(Ẑ) and ε+(x∞) = x−(κ1+κ2)+I . We can define the conductor

c(ε+) in the same manner as above taking the restriction of ε+ to Z(Ẑ) ∼= T (Ẑ). We
define c(ε) = c(ε1)c(ε2) ⊂ c(ε+).

The standard level group of Γ0(N)-type for an integral ideal N is given by

(2.2) Γ̂0(N) =
{

( a b
c d ) ∈ G(Ẑ)

∣∣c ∈ NÔ
}
.

We also define the principal congruence subgroup

Γ̂(N) =
{

( a b
c d ) ∈ G(Ẑ)

∣∣a− 1, b, c, d − 1 ∈ NÔ
}
.

Exercise 2.7. Show that for any integral ideal 0 6= N and any a ∈ G(A(∞)), there exists

an integral ideal 0 6= N′ ⊂ N such that Γ̂(N′) ⊂ aΓ̂(N)a−1.

Let d be the absolute different of F , and choosing an idele δ ∈ Ô with dÔ = δÔ, we
then define a variant of Γ̂0(N):

(2.3) S0(N) = ( δ 0
0 1 )

−1
Γ̂0(N) ( δ 0

0 1 ) .

This type of level groups has been often used by Shimura. Hilbert modular forms on the
level group S0(N) have a simpler form of Fourier expansion than those of level Γ̂0(N).

If c(ε−) ⊃ N for ε− = ε−1
2 ε1, ( a b

c d ) 7→ ε ( a b
c d ) = ε2(ad− bc)ε−(aN) is a continuous char-

acter of the compact group S0(N) (this type of “Neben” character was first considered
in [H89]). Here aN is the projection of a to the product FN of Fl over all prime factors l
of N.

Exercise 2.8. Show that ε(uu′) = ε(u)ε(u′) for u, u′ ∈ S0(N) if c(ε−) ⊃ N.

We define the automorphy factor Jκ(g, z) of weight κ for z ∈ Z = HI by

(2.4) Jκ(g, z) = det(g)κ1−Ij(g, z)κ2−κ1+I for g ∈ G(R) and z ∈ Z.

Here j(g, z) = (cσzσ + dσ)σ∈I ∈ CI = F ⊗R C, writing g = (gσ) ∈ GL2(R)I = GL2(F∞)
and z = (zσ) ∈ Z. The power j(g, z)κ2−κ1+I is an abbreviation of

∏
σ(cσzσ+dσ)κ2,σ−κ1,σ+1,

and similarly det(g)κ1−I =
∏

σ det(gσ)κ1,σ−1. Then we define Sκ(N, ε; C) to be the space
of functions f : G(A) → C satisfying the following three conditions. A function in
Sκ(N, ε; C) is called a Hilbert cusp form of level N and with character ε.

(SA1) We have the following automorphy

f(αxuz) = ε+(z)ε(u)f(x)Jκ(u∞, i)
−1

for all α ∈ G(Q), z ∈ Z(A), and u ∈ S0(N)Ci for the stabilizer Ci in G(R)+ of i =
(
√
−1, . . . ,

√
−1) ∈ Z = HI , where G(R)+ is the identity-connected component

of G(R);
(SA2) Choosing u ∈ G(R) with u(i) = z for each z ∈ HI , define a function fg : Z → C

by fg(z) = f(gu∞)Jκ(u∞, i) for each g ∈ G(A(∞)). Then fg is a holomorphic
function on Z for all g;
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(SA3)
∫

FA/F
f (( 1 u

0 1 ) x) du = 0 for all x ∈ GL2(F
(∞)
A ). This is equivalent to the following

statement: The function: z 7→ fg(z)|
∏

σ∈I Im(zσ)
kσ/2| is bounded independently

of z ∈ Z, where kσ = κ2,σ − κ1,σ + 1. Here “du” is an additive Haar measure on
FA/F .

Replacing the word “bounded” in (SA3) by “slowly increasing” with polynomial growth
as Im(z)→∞, we define a larger space of modular forms Gκ(N, ε; C).

The function fg in (SA2) satisfies the classical automorphy condition

(2.5) fg(γ(z)) = ε−1(g−1γg)fg(z)Jκ(γ, z) for all γ ∈ Γ0,g(N),

where Γ0,g(N) = g · S0(N)g−1G(R)+ ∩G(Q), and G(R)+ is the subgroup of G(R) made
up of matrices with totally positive determinant. Indeed, we have under the notation in
(SA2),

fg(γ(z)) = f(g(γu)∞)Jκ((γu)∞, i) = f(γγ(∞)−1
g · u∞)Jκ((γu)∞, i)

= ε−1(g−1γg)f(gu∞)Jκ(γ, u∞(i))Jκ(u∞, i) = ε−1(g−1γg)fg(z)Jκ(γ, z).

The same computation applied to α ∈ G(Q)+ yields

(2.6) fg(α(z))Jκ(α, z)
−1 = f

α(∞)−1
g
(z).

By (SA3) combined with (2.6), we conclude fg is decreasing rapidly towards all cusps of

Γ0,g(N). Since we have gΓ̂0(N)g−1 ⊃ Γ̂(N′) for a suitable integral ideal N′, the discrete
congruence subgroup Γ0,g(N) contains

Γ∞(a) =
{
( 1 a

0 1 )
∣∣a ∈ a

}

for a suitable ideal a ⊃ N′. The action of ( 1 a
0 1 ) on Z is given by z 7→ z + a; so, fg

in (2.5) satisfies fg(z + a) = fg(z) for all a ∈ a. Since F∞/a is a compact abelian
group isomorphic to (R/Z)d, we can apply the standard Fourier analysis for the group
F∞/a (e.g., [LFE] Section 8.4), and we get the following Fourier expansion of fg locally
uniformly (and absolutely) convergent over Z:

fg(z) =
∑

a∈a∗

a(ξ, fg)q
ξ,

where qξ is an abbreviation of exp(2πi
∑

σ ξ
σzσ) and

a∗ = a−1d−1 = {ξ ∈ F |TrF/Q(ξO) ⊂ Z}.
Since fg decreases as Im(zσ)→∞ uniformly for σ ∈ I , we have a(ξ, f) = 0 if σ(ξ) ≤ 0 for
one embedding σ : F ↪→ R. This shows that fg decreases exponentially as Im(zσ)→∞
uniformly for σ ∈ I . Writing a∗

+ for the subset of a∗ made up of totally positive elements
(that is, elements ξ with σ(ξ) > 0 for all σ ∈ I), we thus have

(2.7) fg(z) =
∑

a∈a∗+

a(ξ, fg)q
ξ

for f ∈ Sκ(N, ε; C). If f ∈ Gκ(N, ε; C), the expansion can have a nontrivial constant

term a(0, fg). Again by gΓ̂0(N)g−1 ⊃ Γ̂(N′), for a subgroup E of finite index in O× (on
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which ε is trivial), Γ0,g(N) contains diagonal matrices
(

ε 0
0 ε−1

)
for all ε ∈ E. The effect

of these matrices on fg is given by fg(ε
2z) = εκ1−κ2−Ifg(z) by (2.5). Thus we have

(2.8) a(ε−2ξ, fg) = εκ1−κ2−Ia(ξ, fg)

for a sufficiently small subgroup E ⊂ O× of finite index, and we conclude

(2.9) Gκ(N, ε; C) = Sκ(N, ε; C) unless κ1 − κ2 ∈ Z · I .
Indeed, E contains a basis over R of the kernel Ker(N : F×

∞+ → R×) of the norm map
N by Dirichlet’s theorem. Here F∞ = F ⊗Q R, and F×

∞+ is the identity connected
component of the multiplicative group F×

∞.
Similarly we have Gκ = 0 unless κ1 + κ2 = [κ1 + κ2]I for [κ1 + κ2] ∈ Z. To see

this, we note by (SA1), for scalar matrices ( α 0
0 α ) with α ∈ F×, f ∈ Gκ(N, ε; C) satisfies

f(x) = f(αx) = ε+(α(∞))ακ1+κ2−If(x) by (2.5). Thus ε+(α(∞))ακ1+κ2−I has to be equal
to 1 for all α ∈ F×, which implies the infinity type of the Hecke character ε+ is κ1+κ2−I .
On Ô×, ε+ is of finite order m, and hence for ε ∈ O×, we have ε+(ε(∞))m = 1 and hence
εm(κ1+κ2−I) = 1 for all ε ∈ O×. Again by Dirichlet’s theorem, we get

(2.10) Gκ 6= 0⇒ κ1 + κ2 ∈ Z · I and ε+(α(∞))ακ1+κ2−I = 1 for all α ∈ F×.

We hereafter simply write [κ] for [κ1 + κ2] ∈ Z if κ1 + κ2 ∈ Z · I . Also, by (2.9) and
(2.10) combined, Gκ 6= Sκ implies that κ1 ∈ Z · I ; so, in this case, we write κ1 = [κ1]I
for [κ1] ∈ Z.

We define the level N semi-group ∆0(N) ⊂M2(Ô) ∩G(A(∞)) by

(2.11) ∆0(N) =
{

( a b
c d ) ∈M2(Ô) ∩G(A(∞))

∣∣aN ∈ O×
N, c ∈ NÔ

}
.

Here ON is the product of Ol over all prime factors l of N. The opposite semi-group
∆∗

0(N) is defined to be the image of ∆0(N) for the involution ι of M2(F ) with x+ xι =
Tr(x). Thus

(2.12) ∆∗
0(N) =

{
( a b

c d ) ∈M2(Ô) ∩ G(A(∞))
∣∣dN ∈ O×

N, c ∈ NÔ
}
.

We fix a prime p, and write v for one of the rational places p or ∞. Let W be a

p-adic valuation ring of a number field inside C containing the values of ε on T (Ẑ) and

Z(Ẑ) and all the conjugates of O in Q. We fix once and for all a prime element $q for
each prime ideal q. Here we choose $q inside W ∩ F . We extend our Neben character
ε = (ε1, ε2, ε+) to T (A(∞)) and ∆0(N) as follows.

(ex0) For each w ∈ Z[I ], we extend the character xp 7→ xw
p of T (Zp) to T (Qp) trivially

on
⊕

p|p$
Z
p and write this extension as xp 7→ x

wp
p , where xw

p =
∏

σ∈I σ(xp)
wσ for

x ∈ O×
p = T (Zp). Thus pwp is a p-adic unit. This only applies to the place v = p,

because x ∈ T (Ẑ) has trivial component x∞ = 1 at the infinity. In particular,
xw∞

∞ := xw
∞ = 1 for any x ∈ ∆0(N) and any w ∈ Z[I ] in the following conditions.

(ex1) We extend ε2 to the idele group T (A(∞)) trivially on
⊕

q$
Z
q and then extend ε1

to T (A(∞)) by ε1ε2(x) = ε+(x(∞)). We put ε−(a) = ε−1
2 (a)ε1(a) for a ∈ T (A(∞)).

Thus identifying T 2 ∼= TG by (a, d) 7→ ( a 0
0 d ), we get an extension of ε to TG(A).
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(ex2) We extend the character ε of TG(Ẑ)∩S0((v)∩N) to a character of the semi-group
∆0((v) ∩N) by

εv
∆(δ) = det(δ)−Iv

v ε2(det(δ))ε−v (a(v)∩N)

for δ = ( a b
c d ) ∈ ∆0((v)∩N) ∪∆0((v)∩N)ι. Here (v)∩N = (p) ∩N if v = p and

(v) ∩N = N if v =∞.
(ex3) Since the character Z(A(∞))/Z(Q) 3 z 7→ |z(∞)|−2

A z−2Iv
v ε+(z) and εv

∆ on S0((v)∩
N) coincide on S0((v) ∩ N) ∩ Z(A(∞)), we may extend εv

∆|S0((v)∩N) to εS = εv
S :

Z(A)S0((v) ∩N) = Z(A)S1((v) ∩N) → B× by εv
S(zs) = |z(∞)|−2

A z−2Iv
v ε+(z)εv

∆(s)
for z ∈ Z(A) and s ∈ S1((v) ∩N).

Since ε∞∆ is defined over ∆0(N) and coincides with z 7→ ε+(zN)ε2(det(z(N))) on Z(A(∞))∩
∆0(N), we may extend it to the subgroup generated by Z(A(∞))∆0(N) (which contains
∆∗

0(N)) so that ε(zδ) = ε+(zN)ε2(det(z(N)))ε∞∆ (δ) for δ ∈ ∆0(N) and z ∈ Z(A(∞)).
For each y ∈ ∆0(N), we can decompose

(2.13) S0(N)yιS0(N) =
⊔

u,t

utS0(N)

for finitely many u ∈ U(Ẑ) and t ∈ TG(A(∞)) with det(t) = det(y) (see (2.33)).

(2.14) f |[S0(N)yιS0(N)](g) =
∑

u,t

ε∞∆ ((ut)ι)f(gut)
(∗)
= ε(det(y))

∑

h

ε(ut)−1f(gut).

The second identity (∗) follows from det(t) = det(y), (ut)ι = det(t)(ut)−1 and multiplica-
tivity of ε, and by this, the sum is independent of the choice of u and t as long as det(t) =
det(y). It is easy to verify that the Hecke operator defined by (2.14) preserves the space
Gκ(N, ε; C) and Sκ(N, ε; C) by confirming (SA1–3) for f |[S0(N)yιS0(N)]. Fix an isomor-

phism Qp
∼= C (compatible with the two embeddings Qp

ip←↩ Q
i∞
↪→ C). Then assuming

N ⊂ (p), we can also define the action of [S0(N)yιS0(N)]p taking v = p in place of∞ and
replacing ε∞∆ (y) by det(yp)

−κ1εp
∆(y). Since det(yp)

−κ1εp
∆(y) = det(yp)

−Ip−κ1ε∞∆ (y) (under
the convention of (ex0)), the only difference of the two normalization is det(yp)

−Ip−κ1 ,
and in particular, we have

det(yp)
−κ1 [S0(N)yιS0(N)] = [S0(N)yιS0(N)]p

for y =
(

1 0
0 $q

)
for our chosen uniformizer $q, because $

Ip
q = 1 (but $−κ1

p 6= 1 if κ1 6= 0).
We simply write therefore T ($q) (resp. Tp($q)) for the operator [S0(N)yιS0(N)] (resp.
[S0(N)yιS0(N)]p) with y =

(
1 0
0 $q

)
. When q is a factor of N, writing N(q) for the prime-

to–q part of N and assuming that the conductor of ε− is a factor of N(q), we find that the
operator T ($q) on Sκ(N, ε; C) does not preserve Sκ(N

(q), ε; C) ⊂ Sκ(N, ε; C) and does
not induce the operator T ($q) on Sκ(N

(q), ε; C). Thus if it is necessary to distinguish two
operators T ($q) of level N and of level N(q), we write U($q) (resp. Up($q)) for T ($q)
(resp. Tp($q)) of level N if q ⊃ N. Note here Tp($q) = T ($q) and Up($q) = U($q) if
κ1 = 0 or q - p.
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2.3. Hilbert modular forms with integral coefficients. Let eF : FA/F → C× be
the standard additive character determined by the condition: eF (x∞) = exp(2πi

∑
σ xσ)

for x∞ ∈ F∞ (e.g., [LFE] Theorem 8.3.1). We start with

Proposition 2.9. Each member f of Sκ(N, ε; C) has a Fourier expansion of the follow-
ing form,

(2.15) f ( y x
0 1 ) = |y|A

∑

0�ξ∈F

a∞(ξy, f)(ξy∞)−κ1eF (iξy∞)eF (ξx).

More generally, each modular form f of Gκ(N, ε; C) with κ1 = [κ1]I for [κ1] ∈ Z can be
expanded into

f ( y x
0 1 ) = |y|A

{
a0(y, f)|y|−[κ1]

A +
∑

0�ξ∈F

a∞(ξy, f)(ξy∞)−κ1eF (iξy∞)eF (ξx)

}
.

Here y 7→ a∞(y, f) is a function defined on y ∈ F×
A only depending on its finite part

y(∞) and satisfies a∞(uy, f) = ε1(u)a∞(y, f) for u ∈ T (Ẑ). The function a∞(y, f) is

supported by the set (Ô×F∞) ∩ F×
A of integral ideles. The function y 7→ a0(y, f) factors

through the class group ClF = F×
A(∞)/Ô

×F×.

We note that the function
(

y∞ 0
0 1

)
7→ y−κ1

∞ eF (iy∞) is the restriction of the canonical
Whittaker function of G(R)+ to matrices of the form ( ∗ 0

0 1 ) (whose Mellin transform gives
the optimal Γ-factor of the standard L-function of f). Here is a sketch of a proof.

Proof. Since the proof is basically the same for cusp forms and modular forms, we give
an argument for cusp forms (see [H88] Section 4 for modular forms). We consider the
unipotent subgroup

U(R) =
{
( 1 u

0 1 )
∣∣u ∈ (R ⊗Q F )

}

of G. Then for ( 1 α
0 1 ) ∈ U(Q),

f (( 1 α
0 1 ) ( y x

0 1 )) = f (( y x+α
0 1 )) = f (( y x

0 1 )) .

Thus the function x 7→ f (( y x
0 1 )) for a fixed y is a function on FA/F , which is a compact

abelian group. Applying the standard Fourier analysis to this group FA/F (e.g., [LFE]
8.3–4), we can expand

f (( y x
0 1 )) =

∑

ξ∈F

c(ξ, y, f)eF (ξx).

Taking α ∈ F×, by (SA1), we have

∑

ξ∈F

c(ξ, αy, f)eF (ξαx) = f (( αy αx
0 1 ))

= f (( α 0
0 1 ) ( y x

0 1 )) = f (( y x
0 1 )) =

∑

ξ∈F

c(ξ, y, f)eF (ξx).
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Thus c(ξ, y, f) = c(ξα−1, αy, f) for all α ∈ F×. In other words, c(ξ, y, f) only depends on
ξy; so, writing c(y, f) = c(1, y, f), we have c(ξ, y, f) = c(ξy, f). Taking g =

(
y(∞) x(∞)

0 1

)

and u∞ = ( y∞ x∞

0 1 ) in (SA2), as in (2.7) we have

fg(x∞ + iy∞) = yκ1−I
∞ f (( y x

0 1 )) =
∑

ξ∈a∗

a(ξ, fg) exp(2πi
∑

σ

ξσ(xσ + iyσ)).

This shows
c(ξy, f) = yI−κ1

∞ a(ξ, fg) exp(−2π
∑

σ

ξσyσ).

Since Γ0,g(N) = g · S0(N)g−1G(R)+ ∩ G(Q), a is given by y(∞)δ−1Ô ∩ F ; so, a∗ =

(y(∞))−1Ô ∩ F . This shows that c(ξy, f) = 0 unless (ξy)(∞) ∈ Ô, and hence c(y, f) = 0

unless y(∞) ∈ Ô. Thus we may define

a∞(y, f) = c(y, f) exp(2π
∑

σ

yσ)|y|−1
A yκ1

∞ = |y(∞)|−1
A a(1, fg)

for g =
(

y(∞) x(∞)

0 1

)
, which satisfies the desired properties. In particular, from f (( y x

0 1 ) ( u 0
0 1 )) =

ε1(u)f (( y x
0 1 )), we have a∞(uy, f) = ε1(u)a∞(y, f) for u ∈ T (Ẑ). �

In view of the well known decomposition (e.g., [HMI, Lemma 2.46])

S0(N)
(

$q 0
0 1

)
S0(N) =

{(
1 0
0 $q

)
S0(N) t⊔u∈δ−1

q Oq/δ−1
q q ( $q u

0 1 )S0(N) if q - N,⊔
u∈δ−1

q Oq/δ−1
q q ( $q u

0 1 ) S0(N) if q|N,

we can directly verify by computation the following fact

a∞(y, f |T ($q)) = a∞(y$q, f) +N(q)ε+($q)a∞(
y

$q

, f) if q - N,

a∞(y, f |U($q)) = a∞(y$q, f) if q|N.
(2.16)

Remark 2.1. The Hecke operator T ($q) for q|N acts slightly differently from other
T ($l) for l prime to N. If N(q) is the prime-to-q part of N and if the conductor of ε is
prime to q, the action of T ($q) on Sκ(N

(q), ε; C) is not the restriction of the action of
U($q) on Sκ(N, ε; C) to Sκ(N

(q), ε; C) though Sκ(N
(q), ε; C) is canonically a subspace of

Sκ(N, ε; C).

Let us prove (2.16). We call an idele y ∈ F×
A integral if y(∞) ∈ Ô. Since the compu-

tation in the cases where q|N and q - N is the same, we treat the case of q - N. By
the above decomposition of S0(N)

(
$q 0
0 1

)
S0(N) (into a disjoint union of right cosets)

combined with
(

1 0
0 $q

)
= $q

(
$−1

q 0
0 1

)
, we have for integral y

|y|Aa∞(y, f |T ($q))eF(x) = ε+($q)|$−1
q y|Aa∞(

y

$q

, f)eF (x)

+ |$qy|Aa∞($qy, f)eF(x)


 ∑

u∈δ−1
q Oq/δ−1

q qOq

eF (yu)
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Note that
∑

u∈δ−1
q Oq/δ−1

q qOq
eF (yu) = |$q|−1

A = N(q), because y ∈ Ô. From this we get

the desired formula.

For each Q-algebra R ⊂ C containing the values of characters ε = (ε+, ε1, ε2) and κ
on TG(Q), we define

Sκ(N, ε;R) =
{
f ∈ Sκ(N, ε; C)

∣∣a∞(y, f) ∈ R for all y
}
,

Gκ(N, ε;R) =
{
f ∈ Gκ(N, ε; C)

∣∣a0(y, f), a∞(y, f) ∈ R for all y
}
.

(2.17)

Recall the p-adic valuation ring W of a number field inside C containing the values of ε
on T (Ẑ) and Z(Ẑ) and all the Galois conjugates of O in Q. As in [HMI, (4.3.7)], for a
W-algebra R ⊂ Q with i∞ : Q ↪→ C:

(2.18) Gκ(N, ε;R) ⊗R,i∞ C = Gκ(N, ε; C) and Sκ(N, ε;R) ⊗R,i∞ C = Sκ(N, ε; C).

We recall the embedding ip : Q ↪→ Qp. Then for any Qp-algebra R, we define, consis-
tently with (2.18),

Gκ(N, ε;R) = Gκ(N, ε; Q)⊗Q,ip
R and Sκ(N, ε;R) = Sκ(N, ε; Q)⊗Q,ip

R.

There is a more intrinsic definition of these spaces as global sections of the automorphic
line bundle ωκ,ε over Hilbert modular Shimura varieties (see [HMI, Chapter 4]). By

linearity, (y, f) 7→ a∞(y, f) extends to functions on F×
A × Gκ(N, ε;R) with values in

R. Then we define the p-adic q-expansion coefficients ap(y, f) (originally given in [PAF,
(4.63)]) of f ∈ Gκ(N, ε;R) by

(2.19) ap(y, f) = y−κ1
p a∞(y, f).

Here y−κ1
p =

∏
σ σ(yp)

−κ1,σ does not follow the convention in (ex0). Even if we have
divided by possibly a nonunit yκ1

p , the coefficients ap(y, f) reflects faithfully the p-

integrality coming from the q-expansion. Indeed, writing y = ξc for ξ ∈ F×
+ and an

idele c with cp = c∞ = 1, we have ap(y, f) = |c(∞)|−1
A a(ξ, fg) for g = ( c 0

0 1 ), which is the
q-expansion coefficients of the classical modular form fg up to p-adic unit |c(∞)|−1

A . By
Proposition 2.9, we have

(2.20) ap(uy, f) = ε1(u)u
−κ1
p ap(y, f) for u ∈ T (Ẑ).

The coefficient ap behaves better then a∞ under the action of Hecke operators, because
we have the following p-integral formula without any conditions on κ which follows from
(2.16) and (2.19) combined (see also Proposition ?? in the text and [PAF] (4.65–66) and
(4.79)):

ap(y, f |Tp($q)) = ap(y$q, f) +N(q)ε+($q)ap(
y

$q

, f) if q - pN,

ap(y, f |Up($q)) = ap(y$q, f) if q|pN.
(2.21)

The formal q-expansion of f has values in the space of functions on T (A(∞)) with
values in the formal monoid algebra R[[qξ]]ξ∈F×

+
of the multiplicative semi-group F×

+ ,
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which is given by

(2.22) f(y) =
∑

ξ�0

ap(ξy, f)qξ.

Here ξ � 0 implies σ(ξ) > 0 for all σ ∈ I . This is the p-adic analogue of the Archimedean
Fourier expansion (2.15). In particular, if ap(y, f) = 0 for all integral ideles y, the
modular form f vanishes. In other words, the q-expansion: y 7→ f(y) determines f
uniquely (for any algebra R for which the space of R-integral modular forms is well-
defined).

Let W = lim←−n
W/pnW be the p-adic completion ofW. From the q-expansion principle

(see [HMI, Corollary 4.16]), for any p-adically complete W -algebra R in Q̂p (the p-adic
completion of Qp), we conclude that the space

(2.23) Sκ(N, ε;R) =
{
f ∈ Sκ(N, ε; Q̂p)

∣∣ap(y, f) ∈ R for all integral y
}

coincides with the space of R-integral cusp forms defined algebro-geometrically (see
[HMI, §4.3.3]). For the moment, we take the above description (2.23) as the definition
of the space Sκ(N, ε;R) for W -algebras R.

As a direct consequence of (2.21), under the following condition

(2.24) either p|N or [κ] ≥ 0,

the space of R-integral modular forms Sκ(N, ε;R) is stable under Hecke operators. We
then define the Hecke algebra hκ(N, ε;R) by the subalgebra of EndR(Sκ(N, ε;R)) gener-
ated overR by Tp($l) for all prime ideal l. Actually we have well-defined linear operators
Tp(y) for general integral ideles y as we will see in the following section, and Tp(y) is an
integral polynomial of Tp($l) and the operators given by the action of S0(N) (via ε) (see
Lemma 2.21 in the text and [MFG] Lemma 3.9). Thus hκ(N, ε;R) is the R-subalgebra
of EndR(Sκ(N, ε;R)) generated by Tp(y) for all integral ideles y.

Since we have chosen $q insideW, writing Â = A⊗W W for any W-algebra A ⊂ Qp,

we have a well defined A-integral subspace Sκ(N, ε;A) of Sκ(N, ε; Â) given by

{f ∈ Sκ(N, ε; Â)|ap(y, f) ∈ A if y is a product of $q for primes q}.
Then we have

Sκ(N, ε; Â) = Sκ(N, ε;A)⊗A Â.

2.4. Duality and Hecke algebras. The elementary duality theorem between the
Hecke algebra and the space of modular forms we state now is quite useful in many
different applications.

Let

T (y) =
{
g ∈ ( δ 0

0 1 )
−1

∆0(N) ( δ 0
0 1 )

∣∣ det g = y
}
.

Decompose the double coset S0(N)T (y)S0(N) for an integral finite idele y into a disjoint
union of right cosets

⊔
α:det(α)=y αS0(N). Then we extend the definition of the Hecke

operator T ($l) to general integral ideles y by f |Tp(y)(g) =
∑

α y
−κ1
p εp

∆(αι)f(gα). Here
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we have taken α so that det(α) = y (which tells us that the operator depends on y).
Then by (2.21), we find, for each integral finite idele y,

(2.25) ap(1, f |Tp(y)) = ap(y, f).

Since we have chosen$q insideW, the operator Tp(y) for y =
∏

q$
e(q)
q with e(q) ≥ 0 pre-

serves Sκ(N, ε;A) for anyW-algebra A. Thus we may extend the definition of the Hecke
algebra hκ(N, ε;A) toW-algebras A so that it is the A-subalgebra of EndA(Sκ(N, ε;A))

generated by Tp(y) for all y of the form y =
∏

q$
e(q)
q . Then we define an A–bilinear

pairing
( , ) : hκ(N, ε;A)× Sκ(N, ε;A)→ A by (h, f) = ap(1, f |h).

Theorem 2.10 (Duality). Let A be a W–algebra. Then ( , ) induces isomorphisms

HomA(Sκ(N, ε;A), A) ∼= hκ(N, ε;A), HomA(hκ(N, ε;A), A) ∼= Sκ(N, ε;A),

and the latter isomorphism is given by sending φ to f with ap(y, f) = φ(Tp(y)).

Proof. Since Sκ(N, ε;A) = Sκ(N, ε;W) ⊗W A, we may assume that A = W. Since
W is p-adic completion of W, it is faithfully flat over W; so, we may assume that
A = W . Actually we prove the duality first for the quotient field K of W . The space
Sκ(N, ε;K) is finite dimensional over Qp; so, we need to prove nondegeneracy of the
pairing. By (2.25), ap(1, f |Tp(y)) = ap(y, f); so, if (h, f) = 0 for all h, ap(y, f) =
(Tp(y), f) = 0 for all integral y, and hence f = 0. If (h, f) = 0 for all f , then 0 =
(h, f |Tp(y)) = ap(1, f |Tp(y)h) = (Tp(y), f |h) = ap(y, f |h); so, f |h = 0 for all f , which
implies h = 0. If φ ∈ HomW (hκ(N, ε;W ),W ), then we find f ∈ Sκ(N, ε;K) with
(h, f) = φ(h), and ap(y, f) = (Tp(y), f) = φ(Tp(y)) ∈ W ; so, f ∈ Sκ(N, ε;W ). This
shows Sκ(N, ε;W ) = HomW (hκ(N, ε;W ),W ). Since W is a discrete valuation ring, we
also have HomW (Sκ(N, ε;W ),W ) ∼= hκ(N, ε;W ). �

This tells us

Corollary 2.11. Let H = hκ(N, ε;A). Let V and V ′ be H–modules free of finite rank
over A with an A–bilinear pairing 〈 , 〉 : V × V ′ → A. Define a formal q–expansion of
Θ(v⊗ v′) by ap(y,Θ(v⊗ v′)) = 〈v|T (y), v′〉. Then Θ gives an H–linear map of V ⊗A V

′

into Sκ(N, ε;A) regarding V ⊗A V
′ as an H–module through V . If V is H–free of rank

1 and HomA(V,A) ∼= V ′ by 〈 , 〉 and 〈hv, v′〉 = 〈v, hv′〉 for h ∈ H, Θ induces an
isomorphism V ⊗H V ′ ∼= Sκ(N, ε;A).

Proof. Just apply the theorem to Θ(v ⊗ v′) ∈ HomA(H,A) = Sκ(N, ε;A) given by
Θ(v ⊗ v′)(h) = 〈hv, v′〉. �

We can give an analytic proof of this fact when V is the space of quaternionic auto-
morphic firms (see the discussions after [HMI, Proposition 2.51]).

2.5. Quaternionic automorphic forms. We now generalize the definition (SA1–3) of
Hilbert modular forms to automorphic forms on a quaternion algebra D/F .

We first define the standard level (open compact) subgroup in GD(A(∞)). We assume
that Dp = D ⊗Z Zp

∼= M2(Fp) for the fixed prime p. For each prime ideal l outside ΣD,
we fix an isomorphism OD,l

∼= M2(Ol) so that for the p-adic place p|p coming from ip ◦σ,
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this isomorphism is given by the one already fixed: OD ↪→ M2(OK)
ip◦σ−−→ M2(Op). By

means of these isomorphisms, we identify Dl with M2(Fl). Let d(D) be the product of
prime ideals in ΣD. For an integral ideal N0 of F prime to d(D), putting N = N0d(D),
we define

(2.26) Γ̂D
0 (N) =

{
x ∈ Ô×

D

∣∣xN0 = ( a b
c d ) with c ∈ N0ON0

}
,

where ÔD = OD ⊗Z Ẑ, and ON0 =
∏

l|N0
Ol. We set SD

0 (N) = s−1Γ̂D
0 (N)s for s =(

δ(d(D)) 0
0 1

)
with a finite idele δ such that δÔ ∩ F = d. Similarly we define ∆D

0 (N) ⊂ D×
A(∞)

so that it is the product of local components ∆l which coincide with the local components
of ∆0(N) as long as l - d(D) and ∆l = OD,l if l|d(D).

We can think of the double coset ring R(SD
0 (N),∆D

0 (N)) (which is a collection of formal
linear combinations of double cosets SD

0 (N)xSD
0 (N) for x ∈ ∆D

0 (N) with multiplication
given by convolution product; see 2.7 for a precise definition of the ring). We have
R(SD

0 (N),∆D
0 (N)) ∼= R(SD

0 (N),∆D∗
0 (N)). Here ∆D∗

0 (N) is the image of ∆D
0 (N) under

the involution ι (xι = N(x)x−1 for the reduced norm map N : D → F ). We call modules
over these isomorphic double coset rings Hecke modules.

We have T (l) = SD
0 (N)

(
$l 0
0 1

)
SD

0 (N) and T (l, l) = SD
0 (N)$lS

D
0 (N) inR(SD

0 (N),∆D∗
0 (N))

for l - d(D), because the local component ∆D
0 (N)l at l of ∆D

0 (N) is identical to ∆0(N)l.
For l|d(D), we take αl ∈ OD,l so that its reduced norm generates lOl. Then we define
T (l) = SD

0 (N)αlS
D
0 (N) for l|d(D), and we have

(2.27) R(SD
0 (N),∆D

0 (N)) ∼= R(S0(N),∆0(N)).

These elements T (l) and T (l, l) (indexed by primes l) are generators of the commutative
ring R(SD

0 (N),∆D∗
0 (N)) over Z (see Lemma 2.21). The above isomorphism brings T (l)

and T (l, l) to the corresponding elements in the right-hand side. As an operator on the
space of automorphic forms, T (l, l) induces the central action 〈l〉 of $l.

A particular feature of quaternionic automorphic forms is that they are often vector
valued, though Hilbert modular forms defined in (SA1–3) are scalar valued. Here we
define the space in which quaternionic automorphic forms have values. For a given ring
R, we consider the following module L(κ∗;R) of the multiplicative semi-group M2(R).
Let κ∗ = (κ1 + I, κ2) and put n = κ2 − κ1 − I ∈ Z[I ], which is the restriction of
κ∗ ∈ X(TG) to T ⊂ G1, and we confirm (κ|T )∗ = k − 2I = n. We suppose that
n ≥ 0 (i.e., nσ ≥ 0 for all σ ∈ I), and we consider polynomials with coefficients in R of
(Xσ, Yσ)σ∈I homogeneous of degree nσ for each pair (Xσ, Yσ). The collection of all such
polynomials forms an R-free module L(κ∗;R) of rank

∏
σ(nσ + 1).

As before, we write v for the fixed place p or ∞; so, the base ring B is W if v = p
and C if v =∞. Suppose that R is a B-algebra. Then iv(σ(δv)) (which we write simply
σ(δv)) for δ ∈ GD(A) can be regarded as an element in M2(R). Take a Neben character
ε as in (ex1–4) of Section 2.2 with ε−|T (bZ) factoring through (O/N0)

×.

We define εj (j = 1, 2) as in (ex1) and extend ε to ∆D
0 (N) by ε∆

D(δ) = ε2(N(δ))ε−(a)
if δN0 = ( a b

c d ). Since s 7→ ε∆
D(s) and z 7→ ε+(z) coincide on Z(A(∞)) ∩ SD

0 (N), we
may extend ε to a character εS

D : SD
0 (N)Z(A(∞)) → R× by εS

D(zu) = ε∆
D(u)ε+(z) for

z ∈ Z(A(∞)) and u ∈ SD
0 (N). We let ∆D

0 (N) and Z(A)SD
0 (N)GD(R)+ act on L(κ∗;R)
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as follows.

δ · Φ
((

Xσ
Yσ

))
= ε∆

D(δ)−1N(δv)
κ1Φ

(
σ((sδv)

ι)
(

Xσ
Yσ

))
,

(zu) · Φ
((

Xσ
Yσ

))
= εS

D(z(∞)u(∞))−1N(zvuv)
κ1Φ

(
σ(s(zvuv)

ι)
(

Xσ
Yσ

))
.

(2.28)

Here z ∈ Z(A), u ∈ SD
0 (N)GD(R), and δι = N(δ)δ−1 and sδ = sδs−1 for s given just be-

low (2.26). We write L(κ∗ε;R) for the module L(κ∗;R) with this (∆D
0 (N), Z(A)SD

0 (N)GD(R))-
action.

By computation, z ∈ Z(A) acts on L(κ∗ε;R) through scalar multiplication by ε+(z)−1zκ1+κ2−I
v ;

in particular, ε ∈ O×
+ ⊂ Z(A) acts trivially on L(κ∗ε;R). If S is a sufficiently small

open compact subgroup so that S ∩ Z(Q) ⊂ O×
+ in G(A(∞)), central elements in

Γx = xSx−1 ∩ GD(Q) act trivially on L(κ∗ε;R).
Assume that v = ∞. We state a definition of automorphic forms on GD(A) now

for a division algebra D. For each κ, we define κD ∈ Z[I ]2 by κD = (κD
1 , κ

D
2 ) for

κD
j =

∑
σ∈ID κj,σσ. Thus κD is the projection of κ to Z[ID]2. Similarly, we define κD by

the projection of κ to Z[ID]2 ⊂ Z[I ]2.
With each κ ∈ Z[I ]2 = X(TG), we associate an automorphy factor,

(2.29) JD
κ (g, z) = det(g)κD,1−ID j(g, z)κD,2−κD,1+ID ,

for g ∈ GD(R) and z ∈ ZD. We write κ∗,D for the projection of κ∗ to Z[ID]. We take a
subset Θ ⊂ ID and split ID as ID = Θ tΘ. Define for z ∈ ZD

zΘ
σ =

{
zσ if σ ∈ Θ,

zσ if σ ∈ Θ .

Then, if ID 6= ∅, we define SD
κ,Θ(N, ε; C) to be the space of functions f on GD(A) with

values in the left CD
i

-module L(κ∗,D,C) satisfying the following conditions.

(SB1) We have the following automorphy

f(αxuz) = ε+(z)ε∆
D(u(∞))u−1

∞ · f(x)JD
κ (u∞, i

Θ)−1

for all α ∈ GD(Q), z ∈ Z(A), and u ∈ SD
0 (N)CD

i
, where GD(R)+ is the identity-

connected component of GD(R). Here f(x) 7→ u∞ · f(x) is the action of the
ID-component uD

∞ of u∞ on L(κ∗,D; C);
(SB2) Choosing u ∈ GD(R) with uD = 1 and u(i) = z for each z ∈ ZD, define a function

fg : ZD → C by fg(z) = f(gu∞)Jκ(u∞, i) for each g ∈ G(A(∞)). Then, for all g,
fg is a function on ZD holomorphic in zσ for σ ∈ Θ and antiholomorphic in zσ

for σ ∈ Θ.

If Θ = ID, we simply write SD
κ (N, ε; C) for SD

κ,ID
(N, ε; C), which is the space of holo-

morphic automorphic forms on GD(A) of level S0(N) and of weight (κ, ε).
When ID = I (⇔ ID = ∅), the variety Y D(S) is a finite set of points; so, the

condition (SB2) is empty, and we may replace C in (SB1) by any ring A ⊂ C with
values of ε. Writing MD

κ (N, ε;A) for the space of functions satisfying (SB1) in this
definite case, we need to take SD

κ (N, ε;A) to be the following quotient: SD
κ (N, ε;A) =

MD
κ (N, ε;A)/Iv(N, ε;A), where Iv(N, ε;A) is the subspace made up of functions in

SD
κ (N, ε;A) factoring through the reduced norm map N : GD(A)→ T (A). If κ2−κ1 6= I
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or ε is nontrivial for some x ∈ GD(A) withN(x) = 1, Iv(N, ε; C) = 0; so, no modification
is necessary. Decomposing SD

0 (N)yιSD
0 (N) for y ∈ ∆D

0 (N) into
⊔

h hS
D
0 (N), we shall

define the action of R(SD
0 (N),∆D

0 (N)) on SD
κ (N, ε;A) by

(2.30) f |[SD
0 (N)yιSD

0 (N)](g) =
∑

h

h · f(gh) =
∑

h

h−ι · f(gh−ι).

WhenD = M2(F ), we simply write Sκ,Θ(N, ε; C) for the space of functions onGL2(FA)
satisfying (SB1-2) and (SA3). As we have stated for holomorphic Hilbert modular forms,
the Hecke algebra R(S0(N),∆0(N)) naturally acts on Sκ(N, ε; C).

We now extend the definition of automorphic forms on GD(A) and on ZD to more

general level groups U ⊂ GD(Ẑ). Let DH =
∏

σ∈ID Dσ
∼= HID

. For simplicity, we write

V for L(κ∗,D; C). Let U ⊂ Ô×
D be an open subgroup. Thus the image Γ(U) of U ∩GD(Q)

in PGD(R)+ is a congruence subgroup of Γ(1). An automorphic form of weight κ and
of analytic type (Θ,Θ) (of level U) is a function f : GD(A)→ V satisfying the following
two conditions (sb1-2).

(sb1) f(γxs) = s−1
∞ · f(x)JD

κ (s∞, i
Θ)−1 for γ ∈ GD(Q) and s ∈ U · CD

i
. The action of

s∞ : f(x) 7→ s∞ · f(x) is through the action of D×
H on V .

For each g ∈ GD(A) with g∞ = 1, as before, we define a function fg : ZD → V by

fg(z) = s∞f(gs∞)JD
κ (s∞, i

Θ)

for s∞ ∈ GD(R)+ with s∞(i) = z. If z = s∞(i) = s′∞(i), we can write s′∞ = s∞c with
c ∈ F×

∞C∞. Thus

s′∞f(gs′∞)JD
κ (s′∞, i

Θ) = s∞cf(gs∞c)J
D
κ (s∞c, i

Θ)

= s∞cc
−1f(gs∞c)J

D
κ (c, iΘ)−1JD

κ (c, iΘ)JD
κ (s∞, i

Θ) = fg(z).

This shows that fg is well defined independently of the choice of s∞. For

γ ∈ Γg(U) =
(
g−1UGD(R)+g

)
∩GD(Q)

which is a congruence subgroup of the unit group of another maximal order Og
D =

g−1ODg ∩D, we see

fg(γ(z)) = γ∞s∞ · f(gγ∞s∞)JD
κ (γ∞s∞, i

Θ)

= γ∞s∞ · f(γgγ(∞)−1
g−1gs∞)JD

κ (γ∞s∞, i
Θ)

= γ∞s∞ · f(γgs∞)JD
κ (γ∞s∞, i

Θ) (gγ(∞)−1
g−1 ∈ U)

= γ∞s∞ · f(gs∞)JD
κ (s∞, i

Θ)JD
κ (γ, zΘ)

= γ∞ · fg(z)J
D
κ (γ, zΘ).

Thus fg is a modular form on Γg(U). Now, for σ ∈ IB, we impose the holomorphy or
the anti-holomorphy condition:

(sb2)
∂fg

∂zσ
= 0 for σ ∈ Θ and

∂fg

∂zσ
= 0 for σ ∈ Θ.
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Except for the cases where D is definite and dimV = 1 and D = M2(F ), the space
of functions satisfying the above conditions (sb1-2) will be denoted as SD

κ,Θ(U ; C). If
Θ = ID, we drop the subscript Θ. When D = M2(F ), we write Sκ,Θ(U ; C) (dropping
the superscript D = M2(F )) for the space of functions satisfying the above conditions
(sb1-2) and (SA3). We write Gκ,Θ(U ; C) for the space of functions satisfying (sb1-2)
with polynomial growth towards the cusps of Y D(U) when D = M2(F ).

In order to define the space SD
κ (U ; C) as before, when D is definite and dimV = 1, we

writeM(U ; C) for the space of functions: GD(A)→ V satisfying (sb1-2). Then writing
Iv(U ; C) for the subspace of functions inM(U ; C) factoring through the reduced norm
map N : GD(A)→ T (A), we define SD

κ (U ; C) =M(U ; C)/Iv(U ; C). We let each double
coset [UxU ] of x ∈ GD(A(∞)) act on Sκ(U ; C) as a Hecke operator. In other words,
decomposing UxU =

⊔
y yU , the action is given by

f |[UxU ](g) =
∑

g

f(gy).

2.6. The Jacquet–Langlands correspondence. As before, we identifyD
(d(B)∞)
A with

M2(F
(d(B)∞)
A ). We state the theorem of Jacquet–Langlands and Shimizu in the following

way.

Theorem 2.12. For an open compact subgroup U (d(D)) of GL2(F
(d(D)∞)
A ), define open

subgroups of GD(A(∞)) and GL2(F
(∞)
A ) by

UD = U (d(D)) ×
∏

q|d(D)

O×
D,q ⊂ GD(A(∞)),

U0(d(D)) = U (d(D)) × S0(d(D))d(D) ⊂ GL2(F
(∞)
A ).

Then we have a C-linear embedding i : SD
κ (UD; C) ↪→ Sκ(U0(d(B)); C) for all weights κ

with kσ ≥ 2 and for all σ ∈ ID, where kσ = κ2,σ−κ1,σ +1. For all x ∈ GL2(F
(d(D)∞)
A ), we

have i ◦ [UDxUD] = [U0(d(B))xU0(d(B))] ◦ i. The image of this embedding only depends
on d(D) and is made up of cusp forms in Sκ(U0(d(B)); C) new at all primes q|d(D). In
particular, if d(D) = 1, the above morphism is a surjective isomorphism.

The word “new” means that a cusp form in the image of i cannot be in the space
generated by

∑
q|d(D) Sκ(U0(d(D)/q); C) under the action f(h) 7→ x · f(h) = f(hx) of

x =
(

$q 0
0 1

)
∈ G(Fd(D)); in other words, any f ∈ Im(i) is orthogonal to x · g(h) = g(hx)

for any g ∈∑q|d(D) Sκ(U0(d(D)/q); C) and x ∈ G(Fd(D)), that is,
∫

G(Q)\G(A)/Z(A)
f(h)x ·

g(h)dh = 0 for a right invariant Haar measure dh on G(Q)\G(A)/Z(A). We write
Snew

κ (U0(d(D)); C) for the subspace of new forms. Some more comments on the new
forms will be given after the classification lemma (Lemma 2.23) of local representations.

Applying the above theorem to U = SD
0 (N), we have

Corollary 2.13. Suppose N = N0d(D) for an integral ideal N0 prime to d(D). Identify
R(S0(N),∆0(N)) and R(SD

0 (N),∆D
0 (N)) as in (2.27). Then we have an R(S0(N),∆0(N))-

linear embedding ι : SD
κ (N, ε; C) ↪→ Sκ(N, ε; C) for all weights κ with kσ ≥ 2 for all
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σ ∈ ID. The image of this embedding only depends on d(D) and is made up of cusp
forms in Snew

κ (N, ε; C) new at all primes q|d(D). In particular, if d(D) = 1, the above
morphism is a surjective isomorphism.

Since known proofs of this theorem require harmonic analysis and a good knowledge
of representation theory of adele groups (especially the theta correspondence), we do
not give a full proof of this fact, and we quote here some references where one can find
a proof. The above formulation of the theorem was given in [PAF] Section 4.3, [H81]
Section 2 and [H88] Theorem 2.1, where one can find an exposition of how to deduce
this result from the original result of Jacquet–Langlands (whose exposition can be found
in [AAG] Section 10). The result of Jacquet–Langlands is more general than the above
theorem in the following points:

(JL1) It covers any real-analytic automorphic forms including Maass forms and any
level group U (not necessarily under the condition Uq = O×

D,q for q|d(D));
(JL2) It gives also a description of the relation of the local representations of D×

q and
GL2(Fq) for q|d(D);

(JL3) Their approach is more representation theoretic: It gives a precise correspon-
dence of automorphic representations πD realized on the L2–space of functions
on GD(Q)\GD(A) (with a given central character χ) and π realized on the L2–
space of functions on GL2(F )\GL2(FA) with the same central character χ. If we
factorize πD = ⊗vπv(D) and π = ⊗vπv, πv(D) ∼= πv as long as Dv

∼= M2(Fv).
For v with division Dv, the correspondence πv(D) 7→ πv is given by the Weil
representation πv associated to πv(D) with respect to the norm form of D/F .

We will give a slightly more detailed description of the correspondence πD 7→ π in (JL3)
at the end of the following subsection.

Shimizu originally proved a result close to this theorem when d(D) = 1 (and a weaker
assertion when d(D) 6= 1). Later he explictly realized the correspondence using theta
series.

The method of proof in the original work of Shimizu and Jacquet–Langlands is to
compute the trace of the operator [UxU ] on both sides by means of the Eichler-Selberg
trace formula. Eichler initiated the comparison of such traces (and he proved results
slightly weaker than the above corollary for definite quaternion algebras over Q; [E]).
We will give an exposition later of this for F = Q along a line closer to the treatment
of Eichler, Shimizu and Shimura.

We can actually embed SD
κ,Θ(U ; C) into Sκ(U0(d(D)); C) in a way compatible with the

Hecke operator action. This fact follows from Theorem 2.12 and the following result:

Proposition 2.14. For each Θ ⊂ ID, there is an isomorphism: SD
κ (U ; C) ∼= SD

κ;Θ(U ; C)

which is linear under the action of [UxU ] for all x ∈ GD(A(∞)).

Proof. Let j = (−1 0
0 1 ) ∈ GL2(R). We define t(Θ) ∈ D×

∞ by

t(Θ)σ =

{
j if s ∈ Θ,

1 otherwise.
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Then f(x) 7→ f(xt(Θ)) gives the isomorphism iΘ. Left multiplication by t(Θ) only takes
effect at infinite places and hence commutes with [UxU ]. �

In the previous section, we have only defined the space SD
κ (N, ε; C) of quaternionic

automorphic forms with coefficients in C. However, we have a good integral structure
on SD

κ (N, ε; C) overW (see [HMI, Chapter 3]). Now we assume to have such an integral
structure, and for each W-algebra A, we write SD

κ (N, ε;A) for the space of A-integral
automorphic forms. We thus suppose

(R1) SD
κ (N, ε;A) = SD

κ (N, ε;W)⊗W A for every W-algebra R;
(R2) SD

κ (N, ε;W) ⊂ SD
κ (N, ε; C) is stable under the action of R(SD

0 (N),∆D
0 (N)).

We then extends the Hecke action of R(SD
0 (N),∆D

0 (N)) to SD
κ (N, ε;A) by the identity

(R1). Thus SD
κ (N, ε;W ) becomes a module over the Hecke algebra hκ(N, ε;W ). Let

SD
κ (N, ε;A)∗ be the A-linear dual of SD

κ (N, ε;A). We regard SD
κ (N, ε;A)∗ as hκ(N, ε;A)-

module by the adjoint action. Then by Proposition ??, we have a morphism of hκ(N, ε;W )–
modules

fA : SD
κ (N, ε;A)⊗A S

D
κ (N, ε;A)∗ → Sκ(N, ε;A).

For a suitable choice of φ ∈ SD
κ (N, ε; C)∗, g 7→ fC(g ⊗ φ) induces an embedding ι :

SD
κ (N, ε; C)→ Sκ(N, ε; C) in Corollary 2.13. By the faithful flatness of C over the field

of fractions K of W, ι induces an embedding ι : SD
κ (N, ε;K) → Sκ(N, ε;K) which is

hκ(N, ε;K)–linear. Then extending scalar to K-algebra A, we find

Corollary 2.15. Suppose N = N0d(D) for an integral ideal N0 prime to d(D). Let A
be a K-algebra. Then we have an hκ(N, ε;A)-linear embedding

ιA : SD
κ (N, ε;A) ↪→ Sκ(N, ε;A)

for all weights κ with kσ ≥ 2 for all σ ∈ ID. In particular, if d(D) = 1, the above
morphism is a surjective isomorphism.

Exercise 2.16.

(1) If χ : H× → C× is a continuous character, prove that χ factors through the
reduced norm N : H× → R×.

(2) Prove that v ∈ Z[I ] is an integer multiple of
∑

σ σ if εv = 1 for all ε in a subgroup
of finite index in O×.

(3) Prove that if U is an open compact subgroup of GD(A(∞)), the double coset UyU
for y ∈ GD(A(∞)) contains only finitely many left (and right) cosets

(4) Give a detailed proof that (f |j)x(z) = fx(−z) for any x ∈ GD(A(∞)) if D =
M2(Q) and f ∈ Sκ(U ; C), where f |j(g) = f(gj) and j is as in the proof of
Proposition 2.14.

(5) Prove that for a given κ and U , there are only finitely many Hecke characters
χ : F×UF \F×

A → C× with χ(z∞) = zκ1+κ2−I
∞ , where UF = U ∩ Z(A(∞)) regarded

as an open subgroup of (F
(∞)
A )×.
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2.7. Local representations of GL(2). We summarize here well-known results from
representation theory of the local group G = GL2(Fq) for a prime ideal q in order to
supplement the representation theoretic description in (JL1-3) of the Jacquet–Langlands
correspondence.

A representation V of G with coefficients in a fieldK of characteristic 0 is called smooth
if for each v ∈ V , we find an open subgroup S ⊂ G that leaves v invariant. If furthermore,
H0(S, V ) is finite-dimensional for all open subgroups S, V is called admissible. Let π be
an admissible semi-simple representation of G on a vector space V = V (π) over a field
K of characteristic 0.

Let U(Fq) be the maximal upper unipotent subgroup of G, and write

U(Oq) =
{
( 1 u

0 1 )
∣∣u ∈ Oq

}
⊂ U(Fq).

Let B(Fq) (resp. B(Oq)) be the normalizer of U(Fq) in G (resp. GL2(Oq)). Then
B(A) = T (A) n U(A) for the subgroup T (A) of diagonal matrices (for A = Fq and Oq).
They are made up of upper triangular matrices. We have a Haar measure du of U(Fq)
with

∫
U(Oq)

du = 1. We define

V (B) = V (B, π) =
{
v − π(n)v ∈ V (π)

∣∣v ∈ V (π), n ∈ U(Fq)
}

as a T (Fq)-module, and put VB = VB(π) = V/V (B), which is called the Jacquet module
of V . The notion of Jacquet module is useful in the classification of admissible repre-
sentations of a local group like G (see [BZ]). By this definition, V 7→ VB is a right exact
functor. For each w = v − π(n)v ∈ V (B), we take a sufficiently large open compact
subgroup Uw ⊂ U(Fq) containing n. Then we see that

∫
U π(u)vdu = 0 for every open

subgroup U with Uw ⊂ U ⊂ U(Fq). If
∫
U
π(u)vdu = 0 for every sufficiently large open

subgroup U of U(Fq), for the stabilizer U ′ of v in U , we find
(∫

U ′

du

)
v =

(∫

U ′

du

)
v −

∫

U

π(u)vdu =

(∫

U ′

du

) ∑

n∈U/U ′

(v − π(n)v)

which is in V (B). Thus V (B) is the collection of v with
∫
U
π(u)vdu = 0 for every

sufficiently large open subgroup U of U(Fq). By this fact, the functor V 7→ VB is left
exact, and we conclude that the association is an exact functor.

Exercise 2.17. Explain why V 7→ VB is exact (sending exact sequences of representa-
tions to exact sequences of K-vector spaces).

For a smooth character λ of T (Fq) (regarding it as a character of B via the projection
B � T ∼= B/U), the smooth induction from B of λ is defined by

(2.31) IndG
B(λ) = {f : G → V (λ)|f : smooth, f(bg) = λ(b)g(g) ∀b ∈ B(Fq)},

on which we let G act by g · f(x) = f(xg). Here the word “smooth” means that for
each f ∈ IndG

B V (λ), we find an open compact subgroup S such that f(xk) = f(x) for
all k ∈ S. Thus IndG

B λ is smooth as a representation of G by definition. Since the
smooth induction preserves admissibility (see [BZ] 2.3), V = IndG

B λ has composition
series {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V stable under the action of G, and hence its semi-
simplification (IndG

B λ)
ss =

⊕
j Vj+1/Vj is well-defined as an admissible G-module.



HILBERT MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 31

Put λ̃ = δ
1/2
B λ for the module character δB of B:

∫

U(Fq)

φ(u)du = δB(b)

∫

U(Fq )

φ(bxb−1)du (for all φ).

Exercise 2.18. Prove δB ( a 0
0 d ) = |a−1d|q for the standard absolute value |x|q = |Oq/xOq|−1

(x ∈ Oq− {0}).

If IndG
B λ̃ is irreducible, we call the induced representation principal (or in the principal

series). If IndG
B λ̃ is reducible, only one factor of the composition series is infinite dimen-

sional, which is called special (or a Steinberg representation). Since T is diagonal, we

can write λ ( a 0
0 d ) = λ1(a)λ2(d). Then a principal (resp. special) representation IndG

B λ̃ is
denoted by π(λ1, λ2) (resp. σ(λ1, λ2)).

The following results are well known (e.g., [BZ]),

(π1) HomB(VB, V (λ)) ∼= HomG(V, IndG
B V (λ)) [BZ] 1.9 (reciprocity);

(π2) If π is absolutely irreducible, then dimK VB ≤ |W| = 2, where W is the Weyl
group of T in G (see [BZ] 2.9);

(π3) If π is absolutely irreducible and VB 6= 0, then we have a surjective linear map
IndG

B λ � V of G-modules for a character λ : T → K× (see [BZ] 2.4–5);

(π4)
(
IndG

B λ̃
)ss ∼=

(
IndG

B λ̃
w
)ss

for w ∈W (see [BZ] 2.9),

where we have written λw(t) = λ(wtw−1).

On V U , we have the Hecke operator T ($) for a prime element $ of Oq given by
T ($)v =

∑
αU⊂UξU/U π(α)v for ξ = ( $ 0

0 1 ), where U − U(Oq). We generalize this action

of Hecke operators as follows. Write B = B(Oq) and U = U(Oq) for simplicity. Let

D =
{
x ∈ T (Fq)

∣∣xUx−1 ⊃ U
}

D∗ =
{
x ∈ T (Fq)

∣∣xUx−1 ⊂ U
}
.

(2.32)

The semi-group D is called the expanding semi-group in T (Fq), and D∗ is called shrinking
semi-group. The set ∆U = U · D · U and ∆∗

U = U · D∗ · U are also multiplicative semi-
groups.

Exercise 2.19. Show that D (resp. D∗) is generated by T (Oq) and ( $e1 0
0 $e2 ) for integers

e1 ≤ e2 (resp. e1 ≥ e2).

Define the so-called Iwahori subgroups by

I0(r) =
{
u ∈ GL2(Oq)

∣∣u mod qr ∈ B(O/qr)
}
,

I1(r) =
{
u ∈ I0(r)

∣∣u mod qr ∈ U(O/qr)
}
.

These subgroups S have the Iwahori decomposition S = U ′T ′U ∼= U ′ × T ′ × U for open
compact subgroups T ′ ⊂ T (Oq) and U ′ in the opposite unipotent tU . Each x ∈ D
shrinks tU : xtUx−1 ⊂ tU . From this, ∆S = S · D · S and ∆∗

S = S · D∗ · S are again
multiplicative sub-semigroups of G (this statement includes ∆B = B ·D ·B = ∆I0(∞) and
∆∗

B = B ·D∗ ·B). We call ∆S (resp. ∆∗
S) the expanding (resp. shrinking) semi-group with
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respect to (S,U). When G = GL(2), ∆S for S = I0(r) (r > 0) is almost equal to the
q-part of the image of the semi-group ∆0(q

r) introduced in (2.11) under the involution
ι (strictly speaking, we have ∆0(q

r)p = ∆S modulo center).

Exercise 2.20. Prove, as sets,

I0(r) = tU(qOq)T (Oq)U(Oq) = tU(qOq)× T (Oq)× U(Oq),

where U(a) =
{
( 1 u

0 1 )
∣∣u ∈ a

}
for an ideal a of Oq.

By the Iwahori decomposition, we have, for X = U ,B, and an Iwahori subgroup S,

XξX =
⊔

u∈ξ−1Uξ\U

Xξu =
⊔

u∈U\ξUξ−1

Xuξ for ξ ∈ D

XξX =
⊔

u∈ξUξ−1\U

uξX =
⊔

u∈U\ξ−1Uξ

ξuX for ξ ∈ D∗.
(2.33)

By this fact, the double coset ring (or the Hecke ring; e.g., [?] 3.1) generated additively
over Z by double cosets of X in ∆X have the following homomorphic relations as algebras:

R = R(U ,∆U) � R(B,∆B) ∼= R(S,∆S) = RB

o ↓ o ↓ o ↓
R∗ = R(U ,∆∗

U) � R(B,∆∗
B) ∼= R(S,∆∗

S) = R∗
B

via UξU 7→ BξB 7→ SξS for ξ ∈ ∆U (resp. ξ ∈ ∆∗
U) and R 3 UξU 7→ UξιU ∈ R∗ for

xιx = det(x). These algebras are commutative: T (ξ)T (η) = T (ξη) for T (ξ) = UξU and
ξ, η ∈ D or D∗. Here is a proof of these facts. Since we only need to deal with D or
D∗, in the following lemma, we prove the result for D∗ (and the result for D follows by
applying the involution “ι”).

Lemma 2.21. Let the notation and the assumption be as above. The algebras R(S,∆∗
S)

for Iwahori subgroups S are commutative, and if S ⊃ B(Zp), they are all isomorphic to
the polynomial ring Z[t1, t2, t

−1
2 ] (with t2 inverted) for t1 = S ( $ 0

0 1 )S and t2 = ( $ 0
0 $ ).

If S ⊃ U , we have R(S,∆∗
S) ∼= Z[TS][t1, t2, t

−1
2 ] for the quotient group TS = T (Oq)S/S,

where Z[TS] is the group algebra of TS.

Proof. For ξ ∈ D∗, we consider the double coset BξB. Decompose

B =
⊔

η∈Ξ(ξ)

η(ξBξ−1 ∩ B).

Multiplying by ξBξ−1 from the right, we get BξBξ−1 =
⊔

η∈Ξ(ξ) ηξBξ−1 ⇔ BξB =⊔
η∈Ξ(ξ) ηξB. If ξ = ( $a1 0

0 $a2 ), we have

ξBξ−1 ∩ B =
{
( a b

0 d ) ∈ B
∣∣b ∈ $a1−a2Oq

}
.

We may choose the subset Ξ(ξ) inside U so that

Ξ(ξ) 3 ( 1 b
0 1 ) 7→

(
b mod $a1−a2Oq

)
∈ O/$a1−a2O

is a bijection. Then we have BξB =
⊔

η∈Ξ(ξ) ηξB and a formula of the index: (B :

ξBξ−1 ∩ B) = |$[ξ]|−1
q with [ξ] = (a1 − a2). Writing deg(BξB) for the number of right
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cosets of B in BξB, we find deg(BξζB) = deg(BξB) deg(BζB), because [ξζ] = [ξ] + [ζ]
for ξ, ζ ∈ D∗. Since BξBζB ⊃ BξζB, if we can show that deg(BξBζB) = deg(BξζB), we
get BξBζB = BξζB and (BξB) · (BζB) = BξζB in the double coset ring R(B,∆∗

B), which
in particular shows the commutativity of R(B,∆∗

B). To see deg(BξBζB) = deg(BξζB),
we note BξBζB =

⋃
η∈Ξ(ξ)

⋃
η′∈Ξ(ζ) ηξη

′ζB. This implies

deg(BξBζB) ≤ deg(BξB) deg(BζB) = deg(BξζB),

and hence we get the identity deg(BξBζB) = deg(BξζB). Since the αjs give independent
generators of D∗/T (Oq), the monoid algebra Z[D∗/T (Oq)] is isomorphic to a polynomial
ring with two variables Z[α,$12, ($12)

−1] with α = ( $ 0
0 1 ) (because $12 ∈ Z(Oq) is

invertible in D∗). The association α 7→ T ($) = BαB and $12 7→ B$B therefore induces
a surjective algebra homomorphism Z[D∗/T (Oq)]→ R(B,∆∗

B), which can be easily seen
to be an isomorphism. Replacing D∗/T (Oq) by D∗/(T (Oq) ∩ S) = TS × (D∗/T (Oq)) in
the above argument, the same proof works well for any S with I0(r) ⊃ S ⊃ I1(r) and
yields R(S,∆∗

S) ∼= Z[TS][D∗/T (Oq)] ∼= Z[TS][t1, t2, t
−1
2 ], where Z[TS] is embedded into

R(S,∆∗
S) by sending t ∈ TS to StS. �

We let R∗ act on v ∈ V U = H0(U , V ) by

(2.34) T (ξ)v = [UξU ]v =
∑

u∈ξUξ−1\U

π(uξ)v =

∫

ξ−1Uξ

π(ξ)π(u)vdu,

and similarly for v ∈ VB in place of v ∈ V U ; then the projection: V U → VB is R∗-linear.
To see the last identity of (2.34), it is sufficient to recall that we have normalized the
measure du so that

∫
U du = 1. We may regard the above action as an action of R via

the isomorphism R ∼= R∗:

(2.35) v|T (ξ) = v|[UξU ] =
∑

u∈ξ−1Uξ\U

π((ξu)ι)v =

∫

ξUξ−1

π(ξι)π(uι)vdu.

For α = ( $ 0
0 1 ), we have U(Fq) = ∪∞j=0α

−jUαj . Thus writing T ($) = [UαU ] and

T (ξ) = [UξU ] for ξ ∈ D∗ as an operator on V U = H0(U , V ), we see easily from (2.34)
that T (αj) = T ($)j and for each finite-dimensional subspace X ⊂ V (B), T ($)|X is
nilpotent on XU by (2.34).

For any R-eigenvector v ∈ V U with tv = λ(t)v (t ∈ T (Fq), v = v mod V (B)), we get

(2.36) v| [U ( a 0
0 d )U ] = [U : ( a 0

0 d )U ( a 0
0 d )

−1
]λ ( a 0

0 d ) v = |a−1d|qλ ( a 0
0 d ) v,

where | |q is the standard absolute value of Oq such that |$|−1
q = N(q).

Lemma 2.22. If V = V (π) is admissible, we have a canonical splitting V U ∼= VB⊕V (B)U

as Hecke modules, where V U = H0(U(Oq), V ).

An absolutely irreducible admissible representation π is called supercuspidal if VB = 0.
In other words, by (π1), an absolutely irreducible supercuspidal representation can never
appear in a subquotient of an induced representation IndG

B λ.
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Proof. We have by definition, V U = V U(Zp) =
⋃

r V
I1(r). The subspace Vr = V S1(r) is

finite-dimensional and stable under R. By the Jordan decomposition applied to T ($),
we can decompose uniquely that Vr = V ◦

r ⊕V nil so that T ($) is an automorphism on V ◦
r

and is nilpotent on V nil. We may replace T ($) by T (αa) = T ($)a for any positive a in
the definition of the above splitting. Since T ($) is nilpotent over any finite-dimensional
subspace of V (B), V ◦

r injects into VB; so, dimV ◦
r is bounded by dimVB ≤ |W| = 2. For

any T -eigenvector v ∈ VB, lift it to v ∈ V . Then for sufficiently large j, π(α−j)v is in
V U . Since π(α−j)v is a constant multiple of v, we may replace v and v by π(α−j)v and
π(α−j)v, respectively. Then for sufficiently large k, w = T (αk)v ∈ V ◦

r , and T ($)−kw is
equal to v for the image w in VB. This finishes the proof when the action of T on VB is
semi-simple. In general, take a sufficiently large r so that Vr surjects down to VB. We
apply the above argument to the semi-simplification of Vr under the action of the Hecke
algebra. Thus V ◦ =

⋃
r V

◦
r
∼= VB, and this finishes the proof of V U = VB ⊕ V (B)U as

R-modules. �

Lemma 2.23. We have

(1) If an absolutely irreducible admissible representation π of G is finite dimensional,
it is one dimensional and is a character.

(2) If IndG
B λ is absolutely reducible, λj has to satisfy λ1/λ2(x) = |x|±1

q .

(3) If λ1/λ2(x) = |x|±1
q , IndG

B λ̃ is reducible, the length of the composition series of

IndG
B λ̃ is 2. The infinite dimensional irreducible subquotient in IndG

B λ̃ is denoted
by σ(λ1, λ2) and is called special (or Steinberg) representation of G.

(4) If λ1/λ2(x) = |x|−1
q , IndG

B λ̃ contains the subspace on which G acts by the character

x 7→ λ1(det(x))| det(x)|1/2
q , and if λ1/λ2(x) = |x|q, IndG

B λ̃
w contains the quotient

on which G acts by the character x 7→ λ2(det(x))| det(x)|1/2
q . If the conductor of

λ1 is given by qr, the subspace of the infinite dimensional irreducible subquotient
on which I0(r) acts by ( a b

c d ) 7→ λ1(a)λ2(d) is one dimensional.

Each vector in the subspace of the infinite dimensional subquotient (the Steinberg
representation) described by the fourth assertion is called a minimal vector, which is
uniquely determined up to scalar multiple. Indeed, for any induced representation

IndG
B λ̃, we can have two type of minimal vectors v1 and v2 on which I0(r) acts by

( a b
c d ) v1 = λ1(a)λ2(d)v1 and ( a b

c d ) v2 = λ2(a)λ1(d)v2 if qr is the smallest ideal among the
conductors of λ1 and λ2. When λ1 is unramified for a Steinberg representation σ(λ1, λ2),
the minimal vector v1 ∈ σ(λ1, λ2) coincides with the new vector. A cusp form in the
image of the Jacquet–Langlands correspondence in Theorem 2.12 regarded as an element
of the representation space of GL2(Fq) for q ∈ ΣD is a linear combination of such new
vectors. This is another aspect of the word “new” in Theorem 2.12. In particular, a
nonzero new vector is not a linear combination of translations by elements of G of vectors
fixed by a maximal compact subgroup of G (because in this Steinberg representation,
there is no vector fixed by any maximal compact subgroup).
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Proof. Suppose that the representation space V (π) of π is finite dimensional. Let α =
( $ 0

0 1 ) for a prime element $ of Oq, and define

Un = αnUα−n =
{
( 1 u

0 1 )
∣∣u ∈ $nOq

}
.

Since {Un}n gives a fundamental system of neighborhoods of U(Fq), we find a nonzero
vector v fixed by Un for some n ∈ Z. Then π(α−m)v is fixed by α−mUnα

m = Un−m. This
shows that H0(Un, V (π)) 6= 0 for all n. Since Un ⊂ Un−1, we have an infinite sequence
of nontrivial subspace

H0(U0, V (π)) ⊃ H0(U−1, V (π)) ⊃ · · · ⊃ H0(U−n, V (π)) ⊃ · · · .
From dimV < ∞, we conclude H0(U(Fq), V (π)) =

⋂
nH

0(Un, V (π)) 6= 0, which is
stable under B(Fq) because B normalizes U . Since π is admissible, the stabilizer of
0 6= v ∈ H0(U(Fq), V (π)) contains an open subgroup S of G. In particular, the orbit
S(∞) of the infinity under S in the one dimensional projective space P1(Fq) = Fqt{∞}
is open. Since U(Fq) acts transitively on P1(Fq) − {∞} = Fq, the subgroup H of
G generated by U(Fq) and S acts P1(Fq) transitively. In particular, H contains all
conjugates of U(Fq) and hence all unipotent elements. As is well known, SL2(Fq) is
generated by unipotent elements (e.g., [PAF] Lemma 4.46). Thus π factors through
G/SL2(Fq) ∼= F×

q . Then by Schur’s lemma, π is one dimensional. This proves (1).

Suppose that W = IndG
B λ̃ is reducible. Take a proper subspace V ⊂ W stable under

G. Then VB is a proper subspace of WB, because V 7→ VB is exact and (π1). Since

dimWB = 2 by (π4), if λ̃w 6= λ̃ ⇔ λ1/λ2 6= | · |±1
q for w = ( 0 −1

1 0 ) (cf. Exercise 2.18), we
may assume that VB = V (λ). Since the action of w preserves V , VB also has a nonzero
B-eigenvector belonging to λw; so, VB = WB, a contradiction. Thus if W is reducible,
λ1/λ2 = | · |±1

q .

If λ1/λ2 = | · |−1
q , IndG

B(λ̃) contains x 7→ λ1(det(x))| det(x)|1/2
q ; so, IndG

B(λ̃) is reducible.

If λ1/λ2 = | · |q, IndG
B(λ̃w) contains x 7→ λ2(det(x))| det(x)|1/2

q ; so, IndG
B(λ̃) is reducible

by (π4).
As for the last assertion, by an explicit computation, the subspace of minimal vectors

in IndG
B λ̃ (on which I0(r) acts as specified) is two dimensional. Indeed, by Lemma 2.22,

the space is isomorphic to VB under the projection V 7→ VB, and hence at most two
dimensional. One can easily create two linearly independent vectors in the space; so,
it is two dimensional. Then by the third assertion, the one dimensional subquotient
takes one dimensional subquotient of this two dimensional subspace. The rest gives the
desired one dimensional subspace of the infinite dimensional irreducible subquotient. �

All admissible absolutely irreducible representations of G are classified into four dis-
joint classes of representations: characters, principal representations, Steinberg repre-
sentations and supercuspidal representations.

To give a more precise description of the correspondence πD 7→ π in (JL3), we first
note a consequence of Proposition 1.2:

Lemma 2.24. If Dq is a division algebra, each admissible irreducible representation of
D×

q over C is finite dimensional. If it has nonzero vector fixed by the unit group of
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the maximal order, it is isomorphic to a character λ ◦ N for an admissible character
λ : F×

q → C×, where N : Dq→ F×
q is the reduced norm map.

Proof. By Proposition 1.2, the unique maximal order R = ODq of Dq has a unique
maximal two-sided ideal m with R/m = O/q. Then mn are all two-sided ideals, and
hence 1 + mn is a normal subgroup of D×

q . Let V = V (π) be an admissible irreducible
representation of D×

q . Since 1 + mn give a fundamental system of open neighborhoods
of the identity of D×

q , for sufficiently large n, H0(1 + mn, V ) 6= 0. Since 1 + mn is
normal in D×

q , H0(1 + mn, V ) is stable under D×
q . Then by the irreducibility of V ,

H0(1 + mn, V ) = V . Since V is admissible, H0(1 + mn, V ) is finite dimensional.
If H0(R×, V ) 6= 0, by the above argument, we have H0(R×, V ) = V , and hence

the action of D×
q on V factors through the abelian group D×

q /R
× ∼= Z. Thus by the

irreducibility, V is one dimensional. Since the reduced norm map N has kernel inside
R×, the character π factors through F×

q ; so, π = χ ◦N . This finishes the proof. �

Secondly, we note that by the strong multiplicity one theorem (e.g., [AAG] Theorems
5.14 and 10.10), for a given quaternion algebra D over F , the representation ΠD of
GD(A(∞)) on the space generated by ΠD(g)h(x) = h(xg) for all g ∈ GD(A(∞)) and all
h ∈ SD

κ (N, ε; C) is a direct sum of finitely many irreducible representations πD with
multiplicity one.

Here is a slightly more precise description of the correspondence πD 7→ π in (JL3).
Start with an eigenform 0 6= f ∈ SD

κ (N, ε; C) of all Hecke operators in hκ(N, ε; C). By
the multiplicity one theorem, the representation πD of GD(A(∞)) on the space generated
by πD(g)f(x) = f(xg) for all g ∈ GD(A(∞)) is irreducible. We can factor πD = ⊗qπq(D)
for local irreducible representations πq(D) of D×

q (for the localization-completion Dq =
D⊗FFq). Thus the space V (N, ε; πD) is the tensor product of the corresponding subspace
V (N, εq; πq(D)), and if qr exactly divides N and q is prime to d(D),

V (N, εq; πq(D)) =
{
v ∈ V (πq(D))

∣∣u · v = ε(u)v for all u ∈ I0(r)
}
.

We decompose V (N, ε; π) = ⊗qV (N, εq; πq) for subspaces V (N, εq; πq) ⊂ V (πq) similarly
defined for π = πM2(F ). If Dq is a division algebra, our definition of SD

0 (N) implies
S0(N)q = O×

D,q; so, πq(D) = λ ◦N as above. Then the associated automorphic represen-

tation π = πM2(F ) of GL2(F
(∞)
A ) is given as follows:

(2.37) πq
∼=
{
πq(D) if Dq

∼= M2(Fq)

σ(λ, λ| · |−1
q ) if Dq is division and πq(D) is a character λ ◦N ,

where N : D×
q → F×

q is the reduced norm map. Then writing N = d(D)N0, d(D) is
prime to N0. Then by Lemma 2.24, πq(D) = λ◦N for q|d(D), and U($q) acts on the one
dimensional space V (πq(D)) via the multiplication by λ($q). Since πq = σ(λ, λ| · |−1

q ),
H0(I0(1), V (πq)) is one dimensional, and the eigenvalue of U($q) on this space is again
given by λ($q) as easily computable by the expression of the representation as an induced
representation in Lemma 2.23. If q is prime to d(D), the representation πq and πq(D) are
isomorphic, identifying Dq with M2(Fq); thus, V (N, εq; πq(D)) ∼= V (N, εq; πq) as Hecke
modules. Thus the action of T ($q) of the corresponding representations match, and
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hence we have an hκ(N, ε; C)-linear isomorphism V (N, ε; πD) ∼= V (N, ε; πM2(F )). The
representation π associated to πD appears as an automorphic representation spanned
by π(g)f0 for a Hecke eigenform f0 ∈ Sκ(N, ε; C) unique up to scalar multiples. In
other words, fixing the isomorphism V (N, ε; πD) ∼= V (N, ε; πM2(F )), we get an inclusion
SD

κ (N, ε; C) =
⊕

πD
V (N, ε; πD) ∼=

⊕
πM2(F )

V (N, ε; πM2(F )) ↪→ Sκ(N, ε; C) which is the

linear map in Corollary 2.13, and the correspondence f 7→ f0 gives rise to the embedding
SD

κ (N, ε; C) ↪→ Sκ(N, ε; C). A Hecke eigenform in SD
κ (N, ε; C) or Sκ(N, ε; C) is called

q-new (resp. q-minimal) for a prime q of F , if it gives a new vector (resp. a minimal
vector) of the local q-component of the automorphic representation generated by the
automorphic form.

2.8. Galois representations. For almost all ideals a of the Hecke algebra h = hκ(N, ε;W ),
we can associate a modular two-dimensional Galois representation ρa. Thus h may be
considered to be a deformation ring parameterizing all “modular” deformations of given
level and given “Neben” characters. By the techniques invented by Wiles (and Tay-
lor), under suitable assumptions, we can prove that a local ring of h is the universal
deformation ring we studied in Fall 2015. First we describe the representation ρP for
prime ideals P of h. In the following description, we normalize the local Artin symbol
[u, Fq] so that [$q, Fq] modulo the inertia subgroup is the arithmetic Frobenius element

in Gal(Fq/FN(q)) for q > 0 with (q) = Z ∩ q.

Theorem 2.25. Suppose k = κ2−κ1+I ≥ I. Let P be a prime ideal of h = hκ(N, ε;W )
and write k(P ) for the quotient field of h/P . We assume that k(P ) has characteristic
different from 2. Then we have a semisimple Galois representation ρP : Gal(F/F ) →
GL2(k(P )) unramified outside pN such that

(1) ρP is continuous with respect to the profinite topology on k(P ) induced from the
profinite subring h/P .

(2) We have Tr(ρP (Frobl)) = T ($l) mod P for all prime ideal l prime to pN and
det(ρP ) = ε+N [κ] for the p-adic cyclotomic character N , where we regard ε+ as
a Galois character by global class field theory.

(3) Let m be the unique maximal ideal containing P . Either if k ≥ 2I and Tp(p) 6∈ m
or if k = 2I and Tp($p) 6∈ m for a prime factor p of p in F , we have ρP |Dp

∼=( εp ∗
0 δp

)
for the decomposition subgroup Dp at p, and δp([y, Fp]) = Up(y) mod P

for the local Artin symbol [y, Fp]; in particular, δp([u, Fp]) = ε1,p(u)u
−κ1 for u ∈

O×
p . Here we have written Up(y) = [S0(p

∞N)
(

y 0
0 1

)
S0(p

∞N)] for y ∈ F×
p .

(4) Write N = N0c(ε
−). If the prime to p-part N

(p)
0 of N0 is square-free and is prime

to c(ε−), for each prime factor l of N0 prime to p, we have ρP |Dl
∼=
( εl ∗

0 δl

)
for

the decomposition subgroup Dl at l, and δl([y, Fl]) = U(y) mod P for the local
Artin symbol [y, Fl] (y ∈ F×

l ); in particular, δl([u, Fl]) = ε1,l(u) for u ∈ O×
l .

The representation ρP can be realized to have values in GL2(h/P ) which is unique up
to isomorphisms over h/P if ρm for the maximal ideal m containing P is absolutely
irreducible.
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Now we describe local structure of automorphic representations via local Galois prop-
erties.

Proposition 2.26. Let the notation and the assumption be as in the theorem. Suppose
P = Ker(λ) for the algebra homomorphism λ : hκ(N, ε;W ) → Qp satisfying f |T ($q) =

λ(T ($q))f for all prime ideals q for a Hecke eigenform f ∈ Sκ(N, ε; Q). Write π = ⊗qπq

for the irreducible representation generated by f . Let l - p be a prime.

(1) If πl
∼= π(η1, η2) for characters ηj : F×

l → Q
×
, then the restriction of ρP to

the decomposition group Dl is isomorphic to
(

η2 0
0 η1

)
, where we abused notation

so that ηj is identified with the Galois character Dl → Q
×

inducing the local
characters ηj via local class field theory.

(2) If πl
∼= σ(η, η| · |−1

l ), the restriction of ρP to the decomposition group Dl is iso-
morphic to a non-semisimple

(
ηNl ∗
0 η

)
for the cyclotomic character Nl : Dl→ Zp

×

with Nl([u, Fl]) = |u|−1
l .

(3) If πl is supercuspidal and N0 = N/c(ε−) is prime to c(ε−), then l2|N0 and ρP

restricted to Dl is absolutely irreducible.

Here is a brief outline of the proof of the above results. When F = Q, all these follows
from the theorems of [GME, §4.2.3-7]. First suppose that k(P ) has characteristic 0. By
Theorem 2.10, the projection π : h → h/P (regarded as a linear form π : h → h/P )
gives rise to a Hecke eigenform f ∈ Sκ(N, ε; k(P )) with a∞($l, f) = π(T ($l)) for all
primes l; so, we are in the setting of Proposition 2.26.

Let N0 = N/c(ε−). By looking at Fourier expansion, if a prime factor l of N satisfies
l2 - N0 and l - c(ε−), we can show that the Hecke operator T ($l) on Sκ(N, ε; C) is
invertible (e.g., [MFM] Theorem 4.6.17 or [H88] Lemma 12.2). Then by Lemma 2.22, πl

cannot be supercuspidal, which implies the fact l2|N0 when πl is supercuspidal (in (3)
of Proposition 2.26).

If there exists a quaternion algebra D/F with dimZD = 1 such that f is in the
image of the Jacquet–Langlands correspondence ιh/P , the existence of ρP satisfying
the conditions in Theorem 2.25 and Proposition 2.26 follows from the work of Carayol
[C86b] (see also [68c] in [CPS] and [H81] Theorem 4.12). In particular, if [F : Q] is
odd, we have ρP by the work of Carayol. Even if [F : Q] is even, Blasius-Rogawski [BR]
realized the representation ρP in the p-adic étale cohomology group on the Shimura
variety of a unitary group of dimension 3, and at the same time, R. Taylor [T89] (and
[T95]) generalized the method of Wiles in [W] to obtain the representation ρP by gluing
together Galois representations coming from quaternion algebras D as above, using
Wiles’ observation (see [T89]) that the image of the Jacquet–Langlands correspondence is
p-adically dense in the space of p-adic modular forms (if we vary quaternion algebras D).
Once ρP is constructed, for the reduced part hred (i.e., hred = h modulo the nilradical),
we can find a pseudo-representation π : Gal(Q/F )→ hred unramified outside pN in the
sense of Wiles with Tr(π(Frobl)) = T ($l) for all l outside pN (by the gluing technique
described in [GME] 4.2.5). Out of the pseudo-representation π mod P , we can always
create a representation as in (1) and (2). Since Taylor’s construction comes from gluing
mod pn representations of Carayol which satisfies (4), it supplies us the assertion (4) of
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the theorem for all ρP . As for the assertion (3) of the theorem, it is verified in [W] and
[H89].

It remains to prove the existence of ρm and the assertions (3) and (4) of the theorem
for each maximal ideal m of h. Take a prime ideal P ⊂ m (so, k(P ) has characteristic
0). Then by conjugating ρP , we may assume that ρP has values in the maximal compact
subgroup GL2(WP ) in GL2(k(P )) (Corollary 1.4), where WP is the p-adic integer ring
of k(Q). Let ρ′m = ρP mod mP for the maximal ideal mP of WP . The representation ρ′m
satisfies the four conditions for the coefficient ring k(mP ) = WP /mP in place of k(m).
Since Tr(ρP ) = Tr(π) mod P , the trace of ρ′m has values in h/m. Since the character-
istic of k(m) is odd, by the theory of pseudo representations, if ρ′m is irreducible, the
representation ρ′ : Gal(Q/F )→ GL2(h/m) constructed out of the pseudo representation
π mod m has the same trace as ρ′m. Since ρP is also constructed by the same pseudo
representation π, if we follow the same procedure as described in Proposition ?? to con-
struct ρP and ρ′, we find that ρ′ = ρP mod mP = ρ′m. Thus in this case, ρ′m satisfies the
assertions (3) and (4); so, we put ρm = ρ′m.

If ρ′m is reducible, we define ρm by the semi-simplification of ρ′m. Thus ρm
∼= ε⊕ δ for

two global characters ε and δ. Suppose that T ($p) 6∈ m for all p|p. Then we may define

a character δp : Dp→ k(m)× by δp([y, Fp]) = Up(y) mod m for y ∈ F×
p . Then ρ′m for the

maximal ideal mP of WP satisfies the assertions (3) and (4) for k(mP ) in place of k(P ).
Put εp = det(ρP )δ−1

p mod mP . Since det ρP has values in h/P , εp has values in k(m)×.

In particular, we have ρm|Dp
∼= εp⊕ δp for the decomposition subgroup Dp at p. By the

Brauer-Nesbitt theorem (e.g., [MFG] Corollary 2.8; see also Proposition ?? in the text),
we have {εp, δp} coincides with {ε|Dp , δ|Dp} as sets; so, the assertion (3) follows for our
choice of ρm. The assertion (4) of the theorem can be proven similarly.

The uniqueness under absolute irreducibility follows again from the Brauer-Nesbitt
theorem.

We consider the following condition,

(sf) N/c(ε−) is square-free and is prime to c(ε−).

We can generalize the result in the above theorem from a prime ideal to any ideal of a
local ring of h under mild assumptions including (sf):

Corollary 2.27. Suppose (sf). Let T be the localization of hκ(N, ε;W ) at a maximal
ideal m. If ρm is absolutely irreducible, for any ideal a of T containing the nilradical of T,
we have a unique Galois representation ρa : Gal(Q/F )→ GL2(T/a) up to isomorphisms
over T/a such that

(1) ρa is continuous with respect to the profinite topology on T/a.
(2) We have Tr(ρa(Frobl)) = T ($l) mod a for all prime ideal l prime to pN and

det(ρa) = ε+N [κ] for the p-adic cyclotomic character N , where we regard ε+ as
a Galois character by global class field theory.

Moreover, if we assume further that T ($p) 6∈ m for all prime factor p of p in F and

that εp 6= δp for all p|p, then ρa|Dp
∼=
( εp ∗

0 δp

)
for the decomposition subgroup Dp at p,

and δp([y, Fp]) = Up(y) mod a for the local Artin symbol [y, Fp]; in particular, εp ≡ εp



HILBERT MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 40

mod m and δp ≡ δp mod m. As for the restriction to Dl for a prime l outside p, if

ρm|Dl
∼=
(

εl ∗

0 δl

)
with εl 6= δl for a prime factor l of N0 prime to p, we have ρa|Dl

∼=
( εl ∗

0 δl

)

for the decomposition subgroup Dl at l, and δl([y, Fl]) = Up(y) mod a for the local Artin
symbol [y, Fl]; in particular, δl([u, Fl]) = ε1,l(u) for u ∈ O×

l .

Proof. Let π : Gal(Q/F )→ hred be the pseudo representation as in the above sketch of
the proof of Theorem 2.25. Let πT be the projection of π to Tred for the reduced part
Tred of T. Let t($l) and u(y) for the projection to Tred of the Hecke operator T ($l) and
Up(y). By the irreducibility of ρm, by the method of Wiles, we have a representation

ρ : Gal(Q/F ) → GL2(T
red) unramified outside pN and Tr(ρ(Frobl) = T ($l) for all

prime ideals l outside pN. The uniqueness under absolute irreducibility follows from
Chebotarev’s density theorem and the theorem of Carayol and Serre. By this uniqueness,
we have ρm = ρ mod m.

Since Tred ⊗Z Q =
∏

P k(P ), where P running through prime ideals of T of residual
characteristicP . We have ρ ∼=

⊕
P ρP over Tred⊗ZQ. Let δp : Dp→ Tred be the character

given by δ([y, Fp]) = u(y), and define εp = det(ρ)δ−1
p . Writing the representation space of

ρ as V (ρ), we define V (δp) by the quotient of V (ρ) by {x ∈ V (ρ)|σv = ε(σ)v ∀σ ∈ Dp}.
By (3) of Theorem 2.25, V (δp) ⊗Z Q is free of rank 1 over Tred ⊗Z Q. Since the semi-

simplification of ρm|Dp is isomorphic to εm⊕ δp, we find from εm 6= δp that V (δp) is free
of rank 1 over Tred. This shows the second assertion.

The third assertion follows from a similar argument. �
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