
ARITHMETIC OF CURVES

HARUZO HIDA

In this course, we start with very basics of curves and try to reach the theory of their jacobians
and at the end, we introduce modular Galois representation a la Eichler–Shimura:

(1) Plane curves over a field (elementary, up to Section 3);
(2) Scheme/group functor over a ring (a try-to-be easy introduction to scheme theory);
(3) Picard schemes and Jacobian of curves (more sophisticated hereafter);
(4) General theory of abelian varieties;
(5) Construction of modular Galois representation.

Elliptic curves and modular curves are one of the most important objects studied in number theory.
As everybody knows, the theory is a base of the proof by Wiles (through Ribet’s work) of Fermat’s
last theorem, is the main tool in the proof of Serre’s mod p modularity conjecture (by Khare–
Wintenberger), it supplies us with the simplest (and perhaps the most beautiful) example of Shimura
varieties (cf. [IAT] Chapters 6 and 7), it supplies a fast prime factorization algorithm (cf. [REC]
IV), and so on. Since this is a topic course, we give details of proofs in the first few weeks and later
we try to introduce more up-to-date materials in a less strict manner though in this notes, detailed
proofs of many theorems (which may not be touched in the lecture) are given.
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1. Curves over a Field

In this section, we describe basics of plane curves over a fixed field k. We also fix an algebraic
closure k of k and a sufficiently big algebraically closed field Ω containing k. Here we suppose
that Ω has many transcendental elements over k. An example of this setting is a familiar one:
k = Q ⊂ Q ⊂ C = Ω.

1.1. Plane curves. Let a be a principal ideal of the polynomial ring k[X, Y ]. Note that polynomial
rings over a field is a unique factorization domain. We thus have prime factorization a =

∏
p pe(p)

with principal primes p. We call a square free if 0 ≤ e(p) ≤ 1 for all principal primes p. Fix a
square-free a. The set of A-rational points for any k-algebra A of a plane curve is given by the zero
set

Va(A) =
{
(x, y) ∈ A2

∣∣f(x, y) = 0 for all f(X, Y ) ∈ a
}
.

It is common to take an intermediate field Ω/A/k classically, but the definition itself works well
for any k-algebra A (here a k-algebra is a commutative ring containing k sharing identity with k).
Often in mathematics, if one has more flexibility, proofs become easier; so, we just allow Va(A) for
any k-algebras A. Obviously, for a generator f(X, Y ) of a, we could have defined

Va(A) = Vf(A) =
{
(x, y) ∈ A2

∣∣f(x, y) = 0
}
,

but this does not depend on the choice of generators and depends only on the ideal a; so, it is more
appropriate to write Va. As an exceptional case, we note V(0)(A) = A2. Geometrically, we think

of Va(Ω) as a curve in Ω2 = V(0)(Ω). This is more geometric if we take k ⊂ C (the 2-dimensional
“plane” as a real manifold). In this sense, for any algebraically closed field K over k, a point
x ∈ Va(K) is called a geometric point with coefficients in K, and V(f)(K) ⊂ V(0)(K) is called the

geometric curve in V(0)(K) = K2 defined by the equation f(X, Y ) = 0.
By Hilbert’s zero theorem (Nullstellensatz; see [CRT] Theorem 5.4 and [ALG] Theorem I.1.3A),

writing a the principal ideal of k[X, Y ] generated by a, we have

(1.1) a =
{
g(X, Y ) ∈ k[X, Y ]

∣∣g(x, y) = 0 for all (x, y) ∈ Va(k)
}
.

Thus we have a bijection

{square-free ideals of k[X, Y ]} ↔ {plane curves Va(k) ⊂ V(0)(k)}.
The association Va : A 7→ Va(A) is a covariant functor from the category of k-algebras to the
category of sets (denoted by SETS). Indeed, for any k-algebra homomorphism σ : A→ A′, we have
an associated map: Va(A) 3 (x, y) 7→ (σ(x), σ(y)) ∈ Va(A

′) as 0 = σ(0) = σ(f(x, y)) = f(σ(x), σ(y)).
Thus a = a∩k[X, Y ] is determined uniquely by this functor, but the value Va(A) for an individual A
may not determine a. From number theoretic view point, studying Va(A) for a small field (or even
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a ring, such as Z) is important. Thus it would be better regard Va as a functor in number theoretic
setting.

If a =
∏

p p for principal prime ideals p, by definition, we have

Va =
⋃

p

Vp.

The plane curve Vp (for each prime p|a) is called an irreducible component of Va. Since p is a
principal prime, we cannot further have non-trivial decomposition Vp = V ∪W with plane curves V

and W . A prime ideal p ⊂ k[X, Y ] may decompose into a product of primes in k[X, Y ]. If p remains

prime in k[X, Y ], we call Vp geometrically irreducible.
Suppose that we have a map FA = F (φ)A : Va(A)→ Vb(A) given by two polynomials

φX(X, Y ), φY (X, Y ) ∈ k[X, Y ]

(independent of A) such that FA(x, y) = (φX(x), φY (y)) for all (x, y) ∈ Va(A) and all k-algebras A.
Such a map is called a regular k-map or a k-morphism from a plane k-curve Va into Vb. Here Va and
Vb are plane curve defined over k. If A1 = Vb is the affine line, i.e., Vb(A) ∼= A for all A (taking for
example b = (y)), a regular k-map Va → A1 is called a regular k-function. Regular k-functions are
just functions induced by the polynomials in k[x, y] on Va; so, Ra is the ring of regular k-functions
of Va defined over k.

We write Homk-curves(Va, Vb) for the set of regular k-maps from Va into Vb. Obviously, only φ?

mod a can possibly be unique. We have a commutative diagram for any k-algebra homomorphism
σ : A→ A′:

Va(A)
FA−−−−→ Vb(A)

σ

y
yσ

Va(A′) −−−−→
FA′

Vb(A′).

Indeed,

σ(FA((x, y))) = (σ(φX(x, y)), σ(φY (x, y))) = (φX(σ(x), σ(y)), φY (σ(x), σ(y)) = FA′(σ(x), σ(y)).

Thus the k-morphism is a natural transformation of functors (or a morphism of functors) from Va

into Vb. We write HomCOF (Va, Vb) for the set of natural transformations (we will see later that
HomCOF (Va, Vb) is a set).

The polynomials (φX , φY ) induces a k-algebra homomorphism F : k[X, Y ] → k[X, Y ] by pull-
back, that is, F (Φ(X, Y )) = Φ(φX(X, Y ), φY (X, Y )). Take a class [Φ]b = Φ + b in B = k[X, Y ]/b.

Then look at F (Φ) ∈ k[X, Y ] for Φ ∈ b. Since (φX(x), φY (y)) ∈ Vb(k) for all (x, y) ∈ Va(k),

Φ(φX(x, y), φY (x, y)) = 0 for all (x, y) ∈ Va(k). By Nullstellensatz, F (Φ) ∈ a ∩ k[X, Y ] = a. Thus
F (b) ⊂ a, and F induces a (reverse) k-algebra homomorphism

F : k[X, Y ]/b→ k[X, Y ]/a

making the following diagram commutative:

k[X, Y ]
F−−−−→ k[X, Y ]

y
y

k[X, Y ]/b −−−−→
F

k[X, Y ]/a.

We write Ra = k[X, Y ]/a and call it the affine ring of Va. Here is a useful (but tautological) lemma
which is a special case of Yoneda’s lemma:

Lemma 1.1. We have a canonical isomorphism:

HomCOF (Va, Vb) ∼= Homk-curves(Va, Vb) ∼= Homk−alg(Rb, Ra).

The first association is covariant and the second is contravariant. In particular, HomCOF (Va, Vb) is
a set.
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Here is a sketch of the proof.

Proof. First we note Va(A) ∼= HomALG/k
(Ra, A) via (a, b)↔ (Φ(X, Y ) 7→ Φ(a, b)). Thus as functors,

we have Va(?) ∼= HomALG/k
(Ra, ?). We identify the two functors A 7→ Va(A) and A 7→ Hom(Ra, A)

in this way. Then the main point of the proof of the lemma is to construct from a given natural
transformation F ∈ HomCOF (Va, Vb) a k-algebra homomorphism F : Rb → Ra giving F by Va(A) =

HomALG/k
(Ra, A) 3 φ FA7→ φ ◦ F ∈ HomALG/k

(Rb, A) = Vb(A). Then the following exercise finishes
the proof, as plainly if we start with F , the above association gives rise to F . �

Exercise 1.2. Let F = FRa
(idRa

) ∈ VRb
(Ra) = HomALG/k

(Rb, Ra), where idRa
∈ Va(Ra) =

HomALG/k
(Ra, Ra) is the identity map. Then prove that F does the required job.

We call Va irreducible (resp. geometrically irreducible) if a is a prime ideal of k[x, y] (resp. a =

ak[X, Y ] is a prime ideal in k[X, Y ]).

Exercise 1.3. (1) Prove that for any UFD R, R[X] is a UFD.
(2) Give an example of two distinct principal prime ideals a, b of Q[X, Y ] with Va(Q) = Vb(Q).
(3) If a and b are two distinct principal prime ideals of Q[X, Y ], prove Va(Q) 6= Vb(Q).
(4) For a principal ideal a = (f) ⊂ k[X, Y ], prove a ∩ k[X, Y ] = a.
(5) Show that F : k[X, Y ]/b → k[X, Y ]/a is uniquely determined by F : Va → Vb independent

of the choice of (φX , φY ), give an example that F : k[X, Y ]→ k[X, Y ] depends really on the
choice of (φX , φY ).

An element in the total quotient ring of Ra is called a rational k-function on Va. If Va is irreducible,
then rational k-functions form a field. This field is called the rational function field of Va over k.

1.2. Tangent space and local rings. Suppose a = (f(X, Y )). Write V = Va and R = Ra. Let
P = (a, b) ∈ Va(K). We consider partial derivatives

∂f

∂X
(P ) :=

∂f

∂X
(a, b) and

∂f

∂Y
(P ) :=

∂f

∂Y
(a, b).

Then the line tangent to Va at (a, b) has equation

∂f

∂X
(a, b)(X − a) +

∂f

∂Y
(a, b)(Y − b) = 0.

We write corresponding line as TP = Vb for the principal ideal b generated by ∂f
∂X (a, b)(X − a) +

∂f
∂Y (a, b)(Y − b). We call Va is non-singular or smooth at P = (a, b) ∈ Va(K) for a subfield K ⊂ Ω if

this TP is really a line; in other word, if ( ∂f∂X (P ), ∂f∂Y (P )) 6= (0, 0).

Example 1.4. Let a = (f) for f(X, Y ) = Y 2 − X3. Then ∂f
∂X

(a, b)(X − a) + ∂f
∂Y

(a, b)(Y − b) =

−3a2(X − a) + 2b(Y − b) (b2 = a3). Thus this curve is singular only at (0, 0).

Example 1.5. Suppose that k has characteristic different from 2. Let a = (Y 2 − g(X)) for a cubic
polynomial g(X) = X3 + aX + b. Then the tangent line at (x0, y0) is given by 2y0(X − x0) −
g′(x0)(Y − y0). This equation vanishes if 0 = y2

0 = g(x0) and g′(x0) = 0; so, singular at only (x0, 0)
for a multiple root x0 of g(X). Thus Va is a nonsingular curve if and only if g(X) is separable if
and only if its discriminant −4a3 − 27b2 6= 0.

Suppose that K/k is an algebraic field extension. Then K[X, Y ]/aK[X, Y ] contains Ra as a
subring. The maximal ideal (X − a, Y − b) ⊂ K[X, Y ]/aK[X, Y ] induces a maximal ideal P =
(X − a, Y − b) ∩Ra of Ra. The local ring OV,P at P is the localization

OV,P =
{a
b

∣∣b ∈ R, b ∈ R \ P
}
,

where a
b = a′

b′ if there exists s ∈ R \ P such that s(ab′ − a′b) = 0. Write the maximal ideal of OV,P
as mP . Then mP ∩R = P .

Lemma 1.6. The linear vector space TP (K) is the dual vector space of P/P 2 = mP/m
2
P .
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Proof. Write a = (f). Replacing k[X, Y ]/(f) by K[X, Y ]/(f), we may assume that K = k. A
K-derivation ∂ : OV,P → K (at P ) is a K-linear map with ∂(φϕ) = ϕ(P )∂(φ) + φ(P )∂(ϕ). Writing
DV,P for the space of K-derivations at P , which is a K-vector space. Plainly for A := V(0), DA,P

is a 2-dimensional vector space generated by ∂X : φ 7→ ∂φ
∂X (P ) and ∂Y : φ 7→ ∂φ

∂Y (P ). We have a
natural injection i : DV,P → DA,P given by i(∂)(φ) = ∂(φ|V ). Note that Ω(a,b) = (X − a,X −
b)/(X−a,X−b)2 is a 2-dimensional vector space over K generated by X−a and Y −b. Thus DA,P

and Ω(a,b) is dual each other under the pairing (α(X − a) + β(Y − b), ∂) = ∂(α(X − a) + β(Y − b)).
The projection k[X, Y ] � R induces a surjection

Ω(a,b) → ΩV,P = P/P 2,

whose kernel is spanned by f mod (X − a, Y − b)2 = ∂f
∂X

(a, b)(X − a) + ∂f
∂Y

(a, b)(Y − b) if a = (f),

since φ(X, Y ) ≡ ∂φ
∂X (a, b)(X − a) + ∂φ

∂Y (a, b)(Y − b) mod (X − a, Y − b)2. Thus the above duality

between Ω(a,b) and DA,(a,b) induces the duality ΩV,P = P/P 2 and TP (K) given by (ω, t) = t(ω),
where we regard t as a derivation OV,P → K. �

We call TP the tangent space at P and ΩP = ΩV,P the cotangent space at P of V . More generally,
a k-derivation ∂ : Ra → Ra is a k-linear map satisfying the Leibniz condition ∂(φϕ) = φ∂(ϕ)+ϕ∂(φ)
and ∂(k) = 0. For a k-derivation as above, f∂ : ϕ 7→ f · ∂(ϕ) for f ∈ Ra is again a k-derivation.
The totality of k-derivation DerVa/k is therefore an Ra-module.

First take a = (0); so, Va = A2. By the Leibniz relation,

∂(Xn) = nXn−1∂X, ∂(Y m) = mY m−1∂Y and ∂(XnY m) = nXn−1Y m∂X +mXnY m−1∂Y

for ∂ ∈ DerA2/k; so, ∂ is determined by its value ∂(X) and ∂(Y ). Note that (∂X) ∂
∂X + (∂Y ) ∂

∂Y in
DerA2/k and the original ∂ has the same value at X and Y ; so, we have

∂ = (∂X)
∂

∂X
+ (∂Y )

∂

∂Y
.

Thus
{

∂
∂X
, ∂
∂Y

}
gives a basis of DerA2/k.

Assuming Va nonsingular (including A2 = V(0)), we write the dual as ΩVa/k := Hom(DerVa/k, Ra)
(the space of k-differentials) with the duality pairing

(·, ·) : ΩVa/k ×DerVa/k → Ra.

We have a natural map d : Ra → ΩVa/k given by φ 7→ (dφ : ∂ 7→ ∂(φ)) ∈ DerVa/k. Note

(d(φϕ), ∂) = ∂(φϕ) = φ∂(ϕ) + ϕ∂(φ) = (φdϕ+ ϕdφ, ∂)

for all ∂ ∈ DerVa/k. Thus we have d(φϕ) = φdϕ+ϕdφ, and d is a k-linear derivation with values in
ΩVa/k.

Again let us first look into ΩA2/k. Then by definition (dX, ∂) = ∂X and (dY, ∂) = ∂Y ; so,

{dX, dY } is the dual basis of
{

∂
∂X ,

∂
∂Y

}
. We have dΦ = ∂Φ

∂X dX+ ∂Φ
∂Y dY as we can check easily that

the left hand side and right hand side as the same value on any ∂ ∈ DerA2/k.
If ∂ : Ra = k[X, Y ]/(f) → Ra is a k-derivation, we can apply it to any polynomial Φ(X, Y ) ∈

k[X, Y ] and hence regard it as ∂ : k[X, Y ] → Ra. By the above argument, Derk(k[X, Y ], Ra)
has a basis

{
∂
∂X ,

∂
∂Y

}
now over Ra. Since ∂ factors through the quotient k[X, Y ]/(f), it satisfies

∂(f(X, Y )) = (df, ∂) = 0. Thus we have

Lemma 1.7. We have an inclusion DerVa/k ↪→ (Ra
∂
∂X ⊕ Ra

∂
∂Y ) whose image is given by {∂ ∈

Derk(k[X, Y ], Ra)|∂f = 0}. This implies

ΩVa/k = (RadX ⊕RadY )/Radf

for df = ∂f
∂X
dX + ∂

∂Y
dY by duality.

Remark 1.8. If Va is an irreducible curve; so, Ra is an integral domain, for its quotient field k(Va),
k(Va)ΩVa/k = (k(Va)dX ⊕ k(Va)dY )/k(Va)df is 1 dimensional, as df 6= 0 in ΩA2/k. In particular,
if we pick ψ ∈ Ra with dψ 6= 0 (i.e., a non-constant), any differential ω ∈ ΩVa/k can be uniquely
written as ω = φdψ for φ ∈ k(Va).

Lemma 1.9. The following four conditions are equivalent:
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(1) A point P of V (k) is a smooth point.
(2) OV,P is a local principal ideal domain, not a field.

(3) OV,P is a discrete valuation ring with residue field k.

(4) lim←−nOV,P/m
n
P
∼= k[[T ]] (a formal power series ring of one variable).

Proof. Let K = k. By the above lemma, TP is a line if and only if dimTP (K) = 1 if and only if
dimP/P 2 = 1. Thus by Nakayama’s lemma (e.g., [MFG] Lemma 2.3), P is principal. Any prime
ideal of k[X, Y ] is either minimal or maximal (i.e, the ring k[X, Y ] has Krull dimension 2). Thus
any prime ideal of R and OV,P is maximal. Thus (1) and (2) are equivalent. The equivalence of (2)
and (3) follows from general ring theory (see [CRT] Theorem 11.2). We leave the equivalence (3)⇔
(4) as an exercise for the reader. �

Write x, y for the image ofX, Y ∈ k[X, Y ] in Ra. Any ω ∈ ΩVa/k can be written as φdx+ϕdy. Sup-
pose that Va is nonsingular. Since OVa,P ↪→ k[[T ]] (for P ∈ Va(k)) for a local parameter T as above,
φ, ϕ, x, y have the “Taylor expansion” as an element of k[[T ]], for example, x(T ) =

∑
n≥0 an(x)T

n

with an(x) ∈ k. Thus dx, dy also have a well define expansion, say, dx = d(
∑

n≥0 an(x)T
n) =∑

n≥1 an(x)T
n−1dT . Therefore we may expand

ω = φdx+ ϕdy =
∑

n≥0

an(ω)TndT

once we choose a parameter T at P . This expansion is unique independent of the expression φdx+
ϕdy. Indeed, if we allow meromorphic functions Φ as coefficients, as we remarked already, we can
uniquely write ω = Φdx and the above expansion coincides with the Taylor expansion of Φdx.

Exercise 1.10. Let P ∈ Va(K) for a finite field extension K/k, and pull back P to a maximal ideal
(X − a, Y − b) ⊂ K[X, Y ]. Define (X − a, Y − b) ∩ k[X, Y ], and project it down to a maximal ideal
p ⊂ Ra = k[X, Y ]/a. Write OVA,p for the localization of Ra at p. Prove the following facts:

(1) p is a maximal ideal and its residue field is isomorphic to the field k(a, b) generated by a and
b over k.

(2) (p/p2)⊗k(a,b) K ∼= P/P 2 as K-vector space.
(3) Any maximal ideal of Ra is the restriction of P ∈ Va(K) for a suitable finite field extension

K/k.
(4) OVa,p is a DVR if and only if OVa,P is a DVR.

Write Max(Ra) for the set of maximal ideals of Ra. Then plainly, we have a natural inclusion
Va(k) ↪→ Max(Ra) sending (a, b) to (x − a, y − b) for the image x, y in Ra of X, Y ∈ k[X, Y ]. For
P ∈Max(Ra), we call P is smooth on Va if OV,P is a discrete valuation ring. By the above exercise,
this is consistent with the earlier definition (no more and no less).

For any given affine plane irreducible curve Va, we call Va is normal if Ra is integrally closed in
its field of fractions.

Corollary 1.11. Any normal irreducible affine plane curve is smooth everywhere.

Proof. By ring theory, any localization of a normal domain is normal. Thus OV,P is a normal
domain. By the exercise below, we may assume that P ∩ k[X, Y ] 6= (0). Then P is a maximal ideal,
and hence K = k[X, Y ]/P is an algebraic extension of k. In this case, OV,P is a normal local domain
with principal maximal ideal, which is a discrete valuation ring (cf. [CRT] Theorem 11.1). �

Exercise 1.12. (1) Let P = k[X, Y ] ∩ (X − a, Y − b) for (a, b) ∈ Va(Ω), where (X − a, Y − b)
is the ideal of Ω[X, Y ]. Is it possible to have P = (0) ⊂ k[X, Y ] for a point (a, b) ∈ Va(Ω).

(2) If a = (XY ), is the ring OV,O for O = (0, 0) an integral domain? What is dimk mO/m
2
O?

(3) For all points P ∈ Va(Ω) with Ra ∩ P = (0) (regarding P = (x − a, y − b) as an maximal
ideal of Ω[X, Y ]/aΩ[X, Y ]), prove that V is smooth at P .

(4) If A is a discrete valuation ring containing a field k ⊂ A which is naturally isomorphic to

the residue field of A, prove Â = lim←−nA/m
n
A
∼= k[[T ]], where mA is the maximal ideal of A.
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1.3. Projective space. Let A be a commutative ring. Write AP be the localization at a prime
ideal P of A. Thus

AP =

{
b

s

∣∣s ∈ A \ P
}
/ ∼,

where b
s ∼ b′

s′ if there exists s′′ ∈ A \P such that s′′(s′b− sb′) = 0. An A-module M is called locally
free at P if

MP = {m
s
|s ∈ A \ P }/ ∼= AP ⊗AM

is free over AP . We call M locally free if it is free at all prime ideals of A. If rankAP MP is constant
r independent of P , we write rankAM for r.

Write ALG/k for the category of k-algebras; so, HomALG/k
(A,A′) is made up of k-algebra homo-

morphisms from A into A′ sending the identity 1A to the identity 1A′ . Here k is a general base ring,
and we write ALG for ALG/Z (as ALG is the category of all commutative rings with identity). We
consider a covariant functor Pn = Pn

/k : ALG/k → SETS given by

Pn(A) =
{
L ⊂ An+1

∣∣L (resp. An+1/L) is locally A-free of rank 1 (resp. n)
}
.

This is a covariant functor. Indeed, if σ : A → A′ is a k-algebra homomorphism, letting it act on
An+1 coordinate-wise, L 7→ σ(L) induces a map Pn(A)→ Pn(A′). If A is a field K, then X has to
be free of dimension 1 generated by a non-zero vector x = (x0, x1, . . . , xn). The vector x is unique
up to multiplication by non-zero elements of K. Thus we have proven the first statement (for a
field) of the following

Lemma 1.13. Suppose that K is a local ring with maximal ideal m. Then we have

Pn(K) ∼=
{
x = (x0, x1, . . . , xn) ∈ Kn+1|x 6≡ (0, . . . , 0) mod m

}
/K×.

Moreover, writing Di : ALG/k → SETS for the subfunctor Di(A) ⊂ Pn(A) made up of the classes

L whose projection to the i-th component A ⊂ An+1 is surjective, we have Pn(K) =
⋃
iDi(K) and

Di(A) ∼= An canonically for all k-algebras A. If A is a local ring K, Di ∼= An is given by sending
(x0, . . . , xn) to (x0

xi
, . . . , xn

xi
) ∈ Kn removing the i-th coordinate.

Proof. Since K = Km for its maximal ideal m, L is K-free if it is locally free. Thus we have a
generator x = (x0, . . . , xn) of L over K. Since Kn+1/L is locally free of rank n, it has to be free of
rank n over K as K is local. Take a basis v1, . . . , vn of Kn+1/L, we can lift them to vi ∈ Kn+1 so
that x, v1, . . . , vn form a basis of Kn+1 over K. Thus x 6≡ 0 mod m for the maximal ideal m of K.
In particular, for an index i, xi 6∈ m; so, xi ∈ K×. Since the projection of L to the i-th component
is generated by xi ∈ K×, it is equal to K, and hence x ∈ Di(K). Thus Pn(K) =

⋃
iDi(K).

If L ∈ Di(A), we have the following commutative diagram

L
↪→−−−−→ An+1

‖
y

yi-th proj

L
∼−−−−→ A

Thus L is free of rank 1 over A; so, it has a generator (x0, . . . , xn) with xi ∈ A×. Then (x0, . . . , xn) 7→
(x0

xi
, . . . , xn

xi
) ∈ An gives rise to a natural transformation of Di onto An (which is an isomorphism of

functors). �

If K is local (in particular, a field), we write (x0 : x1 : · · · : xn) for the point of Pn(K) represented
by (x0, . . . , xn) as only the ratio matters.

Exercise 1.14. Is there any example of a point in X ∈ P1(A) (and a ring A) such that the
projections to the first and the second coordinate are both not surjective?

We assume that K is a field for a while. When n = 1, we see P1(K) = K× t {∞} by (x : y) 7→
x
y ∈ K t {∞}. Thus P1(R) is isomorphic to a circle and P1(C) is a Riemann sphere.

We now assume that n = 2. Writing L = {(x : y : 0) ∈ P2(K)}. Then P1 ∼= L by (x : y) 7→ (x :
y : 0); so, L is isomorphic to the projective line. We have P2(K) = D(K) t L for fields K, where
D = D2. Thus geometrically (i.e., over fields), P2 is the union of the affine plane added L. We call
L = L∞ (the line at ∞).
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1.4. Projective plane curve. For a plane curve defined by a = (f(x, y)) for f(x, y) of degree m,
we define F (X, Y, Z) = Zmf(XZ ,

Y
Z ), which is a (square-free) homogeneous polynomial of degree m

in k[X, Y, Z]. If L ∈ P2(A), we can think of F (`) for ` ∈ L. We write F (L) = 0 if F (`) = 0 for all
` ∈ L. Thus for any k-algebra A, we define the functor V a : ALG/k → SETS by

V a(A) =
{
L ∈ P2(A)|F (L) = 0

}
.

If A is a field K, we sent L ∈ P2(K) to its generator (a : b : c) ∈ L when we identified P2(K)
with the (classical) projective space with homogeneous coordinate. Since F (L) = 0 if and only if
F (a : b : c) = 0 in this circumstances, we have

V a(K) =
{
(a : b : c) ∈ P2(K)|F (a, b, c) = 0

}

which is called a projective plane k-curve. Since D2
∼= A2 canonically via (x : y : 1) 7→ (x, y) (and

this coordinate is well defined even over A which is not a field), we have V a(A) ∩ D2(A) = Va(A).

In this sense, we can think of V a as a completion of Va adding the boundary V a ∩ L∞. Since in
Dj ∼= A2 (j = 0, 1), V a∩Dj is a plane affine curve (for example, V a∩D0 is defined by F (1, y, z) = 0),

(L∞ ∩ V a)(k) is a finite set. Thus V a is a sort of completion/compactification of the (open) affine
curve Va (we sort out this point more rigorously later). Of course, we can start with a homogeneous
polynomial F (X, Y, Z) (or a homogeneous ideal of k[X, Y, Z] generated by F (X, Y, Z)) to define a
projective plane curve. Following Lemma 1.1, we define Homk-curves(V a, V b) := HomCOF (V a, V b).

Example 1.15. Suppose a = (y2 − f(x)) for a cubic f(x) = x3 + ax + b. Then F (X, Y, Z) =
Y 2Z −X3 − aXZ2 − bZ3. Since L∞ is defined by Z = 0, we find L∞ ∩ V a = {(0 : 1 : 0)} made of a
single point (of V a intersecting with L∞ with multiplicity 3). This point we call the origin 0 of Va.

A projective plane curve V a is non-singular (or smooth) if V a ∩Dj is a non-singular plane curve

for all j = 0, 1, 2. The tangent space at P ∈ V a(K) is defined as before since P is in one of Dj ∩ Va.

Exercise 1.16. Suppose V a is defined by F (X, Y, Z) = 0. Let f(x, y) = F (x, y, 1) and g(y, z) =

F (1, y, z). Then the projective plane curve V a for a = (f(x, y)) satisfies V a ∩D0 = V(g). Show that

OVa,P
∼= OV(g),P canonically if P ∈ V a ∩D0 ∩D2.

By the above exercise, the tangent space (the dual of mP/m
2
P ) at P ∈ V a(K) does not depend on

the choice of j with P ∈ V a ∩Dj . If a projective plane curve C is irreducible, the rational function

field over k is the field of fraction of OC,P for any P ∈ C(k); so, independent of C ∩Dj .
Lemma 1.17. Take a nonzero f ∈ k(C). Then we find homogeneous polynomials H(X, Y, Z)

and G(X, Y, Z) 6= 0 in k[X, Y, Z] with deg(G) = deg(H) such that f(x:y:z) = H(x,y,z)
G(x,y,z)

for all

(x:y:z) ∈ C(k).

Proof. We may write on C ∩ D2 f(x, y, 1) = h(x,y)
g(x,y) . If m = deg(h) = deg(g), we just de-

fine H(X, Y, Z) = h(XZ ,
Y
Z )Zm and G(X, Y, Z) = g(XZ ,

Y
Z )Zm. If deg(h) > deg(g), we define

H(X, Y, Z) = h(X
Z
, Y
Z

)Zdeg(h) and G(X, Y, Z) = g(X
Z
, Y
Z

)Zdeg(h). If deg(h) < deg(g), we define

H(X, Y, Z) = h(XZ ,
Y
Z )Zdeg(g) and G(X, Y, Z) = g(XZ ,

Y
Z )Zdeg(g). Multiplying h or g by a power of

Z does not change the above identity f(x, y, 1) = h(x,y)
g(x,y) , because Z = 1 on C ∩D2. Thus adjusting

in this way, we get G and H . �

Example 1.18. Consider the function φ = cx+dy in k(C) for C = V a with a = (y2−x3−ax− b).
Then C is defined by Y 2Z −X3 − aXZ2 − bZ3 = 0, and

φ(X:Y :Z) = c
X

Z
+ d

Y

Z
=
cX + dY

Z
.

So φ has pole of order 3 at Z = 0 (as the infinity on C has multiplicity 3) and three zeros at the
intersection of L := {cx+ dy = 0} and C ∩D2 ∩ L.

Take a projective nonsingular plane k-curve C/k. Put Ci = C ∩Di which is an affine nonsingular
plane curve. Then we have well defined global differentials DerCi/k. Since ∂ : DerCi/k induces
∂P : OCi,P → K for any P ∈ Ci(K) by f 7→ ∂(f)(P ), we have ∂P ∈ TP . If ∂i ∈ DerCi/k given for
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each i = 0, 1, 2 satisfies ∂i,P = ∂j,P for all (i, j) and all P ∈ (Di ∩Dj)(k), we call ∂ = {∂i}i a global
tangent vector defined on C. Plainly the totality TC/k of global tangent vectors are k-vector space.
The k-dual of TC/k is called the space of k-differentials over k and written as ΩC/k. It is known that
ΩC/k is finite dimensional over k.

Corollary 1.19. Suppose that C is non-singular. Each φ ∈ k(C) induces φ ∈ Homk-curves(C,P
1).

Indeed, we have k(C) t {∞} ∼= Homproj k-curves(C,P
1), where ∞ stands for the constant function

sending all P ∈ C(A) to the image of ∞ ∈ P1(k) in P1(A).

Proof. We prove only the first assertion. Suppose k = k. Write φ(x:y:z) = h(x,y,z)
g(x,y,z) as a reduced

fraction by the above lemma. For L ∈ C(A) ⊂ P2(A), we consider the sub A-module φ(L) of A2

generated by {(h(`), g(`)) ∈ A2|` ∈ L}. We now show that φ(L) ∈ P1(A); so, we will show that the
map C(A) 3 L 7→ φ(L) ∈ P1(A) induces the natural transformation of C into P1. If A is local, by
Lemma 1.13, L is generated by (a, b, c) with at least one unit coordinate. Then any ` ∈ L is of the
form λ(a, b, c) and therefore φ(`) = λdeg(h)φ(a, b, c). Thus φ(L) = A·φ(a, b, c). Since A is a k-algebra,
k is naturally a subalgebra of the residue field A/m of A. Since φ(P ) for all P ∈ C(k) is either a
constant in k or ∞, we may assume that (h(P ), g(P )) 6= (0, 0) for all P ∈ C(k). Since (a, b, c) 6≡ 0
mod m as (a, b, c) generates a direct summand of A3. Thus (h(a, b, c), g(a, b, c)) 6≡ (0, 0) mod m.
After tensoring A/m over A, (A/m)2/(φ(L)/mφ(L)) is one dimensional. Thus by Nakayama’s lemma
(e.g., [CRT] Theorem 2.2–3), A/φ(L) is generated by a single element and has to be a free module
of rank 1 as φ(L) is a free A-module of rank 1. Thus φ(L) ∈ P1(A). If k is not algebraically closed,

replacing A by A = A ⊗k k, we find φ(L) ⊗k k ∈ P2(k) and hence φ(L) ⊗A A/m ∈ P2(k), which
implies φ(L) ∈ P2(A).

If A is not necessarily local, applying the above argument to the local ring AP for any prime ideal
P of A, we find that φ(L)P = φ(LP ) and A2

P /φ(LP ) are free of rank 1; so, φ(L) and A2/φ(L) are
locally free of rank 1; therefore, φ(L) ∈ P2(A).

Now it is plain that L 7→ φ(L) induces a natural transformation of functors. �

Exercise 1.20. Prove the following facts:

(1) If Lm is free of finite rank r for a maximal ideal m of A, LP is free of rank r for any prime
ideal P ⊂ m.

(2) If L ⊂ A2 is a free A-submodule of rank 1 and A2/L is generated by one element over A,
A2/L is A-free of rank 1.

(3) Homk-curves(C,P
1) \∞ ∼= k(C).

1.5. Divisors. The divisor group Div(C) of a non-singular projective geometrically irreducible plane
curve C is a formal free Z-module generated by points P ∈ C(k). When we consider a point P as
a divisor, we write it as [P ]. For each divisor D =

∑
P mP [P ], we define deg(D) =

∑
P mP .

Since C is nonsingular, for any point P ∈ C(k), OC,P is a DVR, and the rational function field

k(C) is the quotient field of OC,P (regarding C as defined over k). Thus if we write the valuation

vP : k(C) � Z ∪ {∞} for the additive valuation of OC,P , we have a well defined vP (f) ∈ Z for

any non-zero rational k-function f ∈ k(C). Since mP = (tP ) and t
vP (f)
P ‖f in OC,P , f has a zero

of order vp(f) at P if vP (f) > 0 and a pole of order |vp(f)| if vP (f) < 0. In other words, the
Taylor expansion of f at P is given by

∑
n an(f)t

n
P and vp(f) = min(n : an(f) 6= 0). For a global

differential ω ∈ ΩC/k, we have its Taylor expansion
∑

n an(f)tnP dtP at each P ∈ C(k); so, we may

also define vP (ω) := min(n : an(ω) 6= 0). We extend this definition for meromorphic differentials
k(C) · ΩC/k = {f · ω|f ∈ k(C), ω ∈ ΩC/k}. Here we quote Bézout’s theorem:

Theorem 1.21. Let C and C ′ be two plane projective k-curves inside P2 defined by relatively prime
homogeneous equations

F (X, Y, Z) = 0 and G(X, Y, Z) = 0

of degree m and n respectively. Then counting with multiplicity, we have |C(k) ∩ C ′(k)| = m · n.

If C is smooth at P ∈ C∩C ′ in C∩D2, φ =
G(X,Y,Z)

Zn is a function vanishing at P . The multiplicity
of P in C ∩C ′ is just vP (φ). More generally, if P = (a, b) is not necessarily a smooth point, writing
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C ∩D2 = Va and C ′ ∩D2 = Vb for principal ideals a, b in k[X, Y ] and viewing P as an ideal

(X − a, Y − b) ⊂ k[X, Y ],

the multiplicity is given by the dimension of the localization (k[x, y]/a + b)P over k. The same
definition works well for any points in C ∩D0 and C ∩D1. One can find the proof of this theorem
with (possibly more sophisticated) definition of multiplicity in a text of algebraic geometry (e.g.
[ALG] Theorem I.7.7).

We define divisors div(f) =
∑

P∈C(k) vP (f)[P ], div0(f) =
∑

P∈C(k),vP (f)>0 vP (f)[P ] (zero divi-

sor) and div∞(f) =
∑

P∈C(k),vP (f)<0 vP (f)[P ] (polar divisor) of f . Similarly, for meromorphic differ-

ential ω, we define again div(ω) =
∑

P vP (ω)[P ]. By Lemma 1.17, f(x:y:z) = h(x:y:z)
g(x:y:z)

for a homoge-

neous polynomial h, g in k[x, y, z] of the same degree. If the degree of equation defining C ism and C ′

is defined by h(X, Y, Z) = 0, deg0(div(f)) = |C(k)∩C ′(k)| = mdeg(h) = mdeg(g) = deg∞(div(f)).
This shows deg(div(f)) = 0 as

∑
P,vP (f)>0mP = mdeg(h) and −∑

P,vP (f)<0mP = mdeg(g).

Lemma 1.22. Let C be a nonsingular projective plane curve. For any f ∈ k(C), deg(div(f)) = 0,

and if f ∈ k(C) is regular at every P ∈ C, f is a constant in k.

Lemma 1.23. If f ∈ k(C) satisfies deg(div0(f)) = deg(div∞(f)) = 1, f : C → P1 induces an
isomorphism of projective plane curve over k.

Proof. Write φ(x:y:z) = H(x,y,z)
G(x,y,z) as a reduced fraction of homogeneous polynomialsG,H ∈ k[X, Y, Z]

of degree n. Suppose C is defined by a homogeneous equation of degree m. Then by Bézout’s
theorem, m · n = deg(div0(φ)) = 1. Thus m = n = 1, and it is then plain that (x:y:z) 7→
(G(x, y, z):H(x, y, z)) gives rise to an isomorphism C ∼= P1.

Another proof: By the proof of Corollary 1.19, deg(div0(f)) is the number of points over 0
(counting with multiplicity) of the regular map f : C → P1. By taking off a constant α ∈ k ⊂ P1

to f , deg(div0(f − α)) = 1 = deg(div∞(f − α)), and |f−1(α)| = deg(div0(f − α)) = 1; so, we find
that f is one-to-one and onto. Thus f is an isomorphism. �

Write Divr(C) = {D ∈ Div(C/k)| deg(D) = r}. Inside Div0(C), we have the subgroup {div(f)|f ∈
k(C)×}. We call two divisors D,D′ linearly equivalent if D = div(f) + D′ for f ∈ k(C). We call
that D and D′ are algebraically equivalent if deg(D) = deg(D′). The quotient groups

J (C) =
Div0(C)

{div(f)|f ∈ k(C)×} and Pic(C) =
Div(C)

{div(f)|f ∈ k(C)×}
are called the jacobian and the Picard group of C, respectively. Sometimes, J (C) is written as
Pic0(C) (the degree 0 Picard group).

1.6. Riemann–Roch theorem. We write D =
∑

P mP [P ] ≥ 0 (resp. D > 0) for a divisor D on
C if mP ≥ 0 for all P (resp. D ≥ 0 and D 6= 0). For a divisor D on Ck

L(D) = {f ∈ k(C)|div(f) +D ≥ 0} ∪ {0}.
Plainly, L(D) is a vector space over k. It is known that `(D) = dimk L(D) < ∞. For φ ∈ k(C)×,
L(D) 3 f 7→ fφ ∈ L(D − div(φ)) is an isomorphism. Thus `(D) only depends on the class of D in
Pic(C).

Example 1.24. Let C = P1. For a positive divisor D =
∑

a∈kma[a] with ma ≥ 0 and ma > 0

for some a, regarding a ∈ k as a point [a] ∈ P1(k) = k t {∞}. On A1(k) = k, forgetting about

the infinity, div(f) + D ≥ 0 if f = g(x)Q
a(x−a)ma for a polynomial g(x). If deg(D) ≥ deg(g(x)),

the function f does not have pole at ∞. Thus L(D) = {g(x)| deg(g(x)) ≤ deg(D)} and we have

`(D) = 1+deg(D) if D > 0. If C is a plane projective curve, we can write f = h(X,Y,Z)
g(X,Y,Z) as a reduced

fraction by Lemma 1.17. WriteD =
∑

P mP [P ], and put |D| = {P |D =
∑

P mP [P ] with mP 6= 0}.
If |D| is inside D2 ∩C ⊂ A2 and D > 0, we may assume that V(g(X,Y,1)) ∩C contains |D|. Then not
to have pole at C \D2, deg(h) has to be bounded; so, `(D) <∞. Since L(D) ⊂ L(D+) in general,
writing D = D+ +D− so that D+ ≥ 0 and −D− ≥ 0, this shows `(D) <∞.
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Exercise 1.25. Give more details of the proof of `(D) <∞.

Theorem 1.26 (Riemann-Roch). Let C be a non-singular projective curve defined over a field k.
Then for g = dimk ΩC/k and a divisor K of degree 2g − 2 of the form div(ω) for a meromorphic

differential ω on C such that `(D) = 1− g+deg(D)+ `(K −D) for all divisor D on C(k). If g = 1,
we have K = 0.

This theorem applies to any smooth projective curve including non-singular projective curves of
the form V a. We will study general curves and schemes later in Section 4. The divisor K is called
a canonical divisor K (whose linear equivalence class is unique). Note that

L(K) = {f ∈ k(C)|div(fω) = div(f) + div(ω) ≥ 0} ∼= ΩC/k

by f 7→ fω ∈ ΩC/k. Then by the above theorem,

g(C) = dimΩC/k = `(K) = 1− g + deg(K) + `(0) = 2 + deg(K)− g(C),

and from this, we conclude deg(K) = 2g(C) − 2. One can find a proof of this theorem in any
introductory book of algebraic geometry (e.g., [ALG] IV.1 or [GME] Theorem 2.1.3).

Corollary 1.27. If g(C) = 1, then `(D) = deg(D) and `(−D) = 0 if deg(D) > 0.

Proof. For a non-constant f ∈ k(E), deg(div(f)) = 0 implies that f has a pole somewhere. If D > 0,
f ∈ L(−D) does not have pole; so, constant. Since D > 0, f vanishes at P ⊂ D. Thus f = 0. More
generally, if deg(D) > 0 and φ ∈ L(−D), then 0 > deg(−D) = deg(φ) − deg(D) ≥ 0; so, φ = 0.
Thus if deg(D) > 0, then `(−D) = 0. Since K = 0, we have by the Riemann-Roch theorem that
`(D) = deg(D) + `(0−D) = deg(D) if deg(D) > 0. �

Because of deg(div(f)) = 0, if D � 0, `(−D) = 0. In particular `(K −D) = 0 if D � 0. Thus
the above theorem implies what Riemann originally proved:

Corollary 1.28 (Riemann). Let C = V a be a non-singular projective curve defined over a field k.
Then there exists a non-negative integer g = g(C) such that `(D) ≥ 1 − g + deg(D) for all divisor
D on C(k) and the equality holds for sufficiently positive divisor D.

By the above example, we conclude g(P1) = 0 from the corollary.

Exercise 1.29. Prove Ω
P1/k = 0.

1.7. Regular maps from a curve into projective space. Take a divisor D on a nonsingular
projective plane curve C. Suppose `(D) = n > 0. Take a basis (f1 , f2, . . . , fn) of L(D). Thus

we can write fj =
hj

gj
with homogeneous polynomials gj , hj having deg(gj) = deg(hj). Replacing

(gj, hj) by (g′0 := g1g2 · · ·gn, h′j := hjg
(j)) for g(j) =

∏
i 6=j gi, we may assume deg(g′j) = deg(h′j) for

all j, and further dividing them by the GCD of (h′1, . . . , h
′
n, g

′
0), we may assume that fj =

hj

g0
with

deg(hj) = deg(g0) for all j and (g0, h1, . . . , hn) do not have nontrivial common divisor.

Lemma 1.30. Let the assumptions on (g0, h1, . . . , hn) be as above. Suppose that

(g0(P ), h1(P ), . . . , hn(P )) 6= (0, 0, . . . , 0)

for all P ∈ C(k). Define L ∈ C(A) ⊂ Pn(A), φA(L) for an A-submodule of An+1 generated by
φ(`) = (g0(`), h1(`), . . . , hn(`)) ∈ An+1 for all ` ∈ L. Then φ = {φA}A : C → Pn is a k-morphism
of the projective plane k-curve C into Pn

/k.

The proof of the above lemma is the same as that of Corollary 1.19; so, we leave it to the reader:

Exercise 1.31. Prove the above lemma.

2. Elliptic Curves

An elliptic curve E/k is a non-singular projective geometrically irreducible plane curve with point

0E specified having g(E) = 1. Here we define g(E), regarding E is defined over k. We study elliptic
curves in more details.
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2.1. Abel’s theorem. When we regard P ∈ E(k) as a divisor, we just write [P ]. So 3[P ] is a
divisor supported on P with multiplicity 3. We prove

Theorem 2.1 (Abel). Let E/k be an elliptic curve with origin 0E. The correspondence P 7→
[P ]− [0E ] induces a bijection E(k) ∼= J (E). In particular, E(k) is an abelian group.

Proof. Injectivity: if [P ] − [Q] = [P ] − [0E] − ([Q] − [0E]) = div(f) with P 6= Q in E(k), by
Lemma 1.23, f is an isomorphism. This is wrong as g(P1) = 0 while g(E) = 1. Thus P = Q.

Surjectivity: PickD ∈ Div0(E). ThenD+[0E ] has degree 1; so, by Corollary 1.27, `(D+[0E ]) = 1,
and we have φ ∈ L(D + [0E]). Then div(φ) + D + [0E ] ≥ 0, and this divisor has degree 1. Any
non-negative divisor with degree 1 is a single point [P ]. Thus D+ [0E ] is linearly equivalent to [P ];
so, the map is surjective. �

Corollary 2.2. If 0 6= ω ∈ ΩE/k, then div(ω) = 0.

Proof. Since E(k) is a group, for each P ∈ E(k), TP : Q 7→ Q + P gives an automorphism of E.

Thus ω◦TP is another element in ΩE/k. Since dimΩE/k = 1, we find ω◦TP = λ(P )ω for λ(P ) ∈ k×.

Since ω 6= 0, at some point P ∈ E(k), vP (ω) = 0. Since vQ(ω ◦ TP ) = vP+Q(ω) and we can bring
any point to P by translation, we have vP (ω) = 0 everywhere. Thus div(ω) = 0. �

We can show easily λ(P ) = 1 for all P (see [GME] §2.2.3). Nonzero differentials ω in ΩE/k are
called nowhere vanishing differentials as div(ω) = 0. They are unique up to constant multiple.

Exercise 2.3. Take a line L defined by aX + bY + cZ on P2 and suppose its intersection with an
elliptic curve E ⊂ P2 to be {P,Q,R}. Prove that [P ] + [Q] + [R] ∼ 3[0E ].

A field k is called a perfect field if any finite field extension of k is separable (i.e., generated by θ
over k whose minimal equation over k does not have multiple roots). Fields of characteristic 0 and
finite fields are perfect.

Exercise 2.4. Let C be an irreducible plane curve over a perfect field k. Let K be the integral
closure of k in k(C). Show

(1) K/k is a finite field extension;

(2) K ⊗k k ∼=
d︷ ︸︸ ︷

k × k × · · · × k as k-algebras for d = dimkK;
(3) C is geometrically irreducible if and only if K = k.

Remark 2.5. If k is perfect, k/k is a Galois extension possibly infinite; so, by Galois theory, we
have a bijection between open subgroups G of Gal(k/k) and finite extensions K/k inside k by

G 7→ k
G

= {x ∈ k|σ(x) = x for all σ ∈ G}

and K 7→ Gal(k/K). Since the isomorphism E(k) ∼= J (C) is Galois equivariant, we have

E(K) ∼= J (E)Gal(k/K) = {D ∈ J (E)|σ(D) = D for all σ ∈ G},

where σ ∈ Gal(k/k) acts on D =
∑

P mP [P ] by σ(D) =
∑

P mP [σ(P )]. Basically by definition, we
have

J (E)(K) := J (E)Gal(k/K) =
{D ∈ Pic0(E)|σ(D) = D}
{div(f)|f ∈ K(E)×} .

Since any subfield K ⊂ k is a union of finite extensions, the identity E(K) ∼= J (E)(K) is also true
for an infinite extension K/k inside K . Actually we have a good definition of Pic(E)(A) for any
k-algebra A, and we can generalize the identity E(K) ∼= J (E)(K) to all k-algebras A in place of

fields K inside k (see [GME] Theorem 2.2.1).
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2.2. Weierstrass equations of elliptic curves. We now embed E/k into the two-dimensional

projective space P2
/k using a base of L(3[0]) and determine the equation of the image in P2

/k.

Choose a parameter T = t0 at the origin 0 = 0E . We first consider L(n[0]) which has dimension
n if n > 0. We have L([0]) = k and L(2[0]) = k1 + kx. Since x has to have a pole of order 2
at 0, we may normalize x so that x = T−2(1 + higher terms) in k[[T ]]. Here x is unique up to
translation: x 7→ x + a with a ∈ k. Then L(3[0]) = k1 + kx + ky. We may then normalize y
so that y = −T−3(1 + higher terms). Following the tradition, we later rewrite y for 2y; thus, the
normalization will be y = −2T−3(1 + higher terms) at the end. Then y is unique up to the affine
transformation: y 7→ y + ax+ b (a, b ∈ k).
Proposition 2.6. Suppose that the characteristic of the base field k is different from 2 and 3. Then
for a given pair (E, ω) of an elliptic curve E and a nowhere-vanishing differential ω both defined
over k, we can find a unique base (1, x, y) of L(3[0]) such that E is embedded into P2

/k by (1, x, y)

whose image is defined by the affine equation

(2.1) y2 = 4x3 − g2x− g3 with g2, g3 ∈ k,
and ω on the image is given by dx

y . Conversely, a projective algebraic curve defined by the above

equation is an elliptic curve with a specific nowhere-vanishing differential dx
y

if and only if the

discriminant ∆(E, ω) = g3
2 − 27g2

3 of 4X3 − g2X − g3 does not vanish.

The function ∆(E, ω) is called the discriminant function and also Ramanujan’s ∆-function. An
equation of an elliptic curve E as in (2.1) is called a Weierstrass equation of E, which is determined
by the pair (E, ω).

Proof. By the dimension formulas, counting the order of poles at 0 of monomials of x and y, we
have

L(4[0]) = k + kx+ ky + kx2,

L(5[0]) = k + kx+ ky + kx2 + kxy and

L(6[0]) = k + kx+ ky + kx2 + kxy + kx3

= k + kx+ ky + kx2 + kxy + ky2 ,

from which the following relation results,

(2.2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with aj ∈ k,

because the poles of order 6 of y2 and x3 have to be canceled. We homogenize the equation (2.2)
by putting x = X

Z and y = Y
Z (and multiplying by Z3). Write C for the projective plane k-curve

in P2 defined by the (homogenized) equation. Thus we have a k-regular map: φ : E → C ⊂ P2

given by P 7→ (x(P ) : y(P ) : 1). Thus the function field k(E) contains the function field k(C) by
the pull back of φ. By definition, k(C) = k(x, y). Since div∞(x) = 2[0E] for x = X

Z : E → P1, this
gives a covering of degree 2; so, [k(E) : k(x)] = 2. Similarly [k(E) : k(y)] = 3. Since [k(E) : k(C)]
is a common factor of [k(E) : k(x)] = 2 and [k(E) : k(y)] = 3, we get k(E) = k(C). Thus if C is
smooth, E ∼= C by φ as a smooth geometrically irreducible curve is determined by its function field.
Therefore, assuming C is smooth, E/k can be embedded into P2

/k via P 7→ (x(P ), y(P )). The image

is defined by the equation (2.2).
Let T be a local parameter at 0E normalized so that

ω = (1 + higher degree terms)dT.

Anyway ω = (a + higher degree terms)dT for a ∈ k×, and by replacing T by aT , we achieve this
normalization. The parameter T normalized as above is called a parameter adapted to ω. Then we
may normalize x so that x = T−2 + higher degree terms. We now suppose that 2 is invertible in k.
Then we may further normalize y so that y = −2T−3 + higher degree terms (which we will do soon
but not yet; so, for the moment, we still assume y = T−3 + higher degree terms).

The above normalization is not affected by variable change of the form y 7→ y + ax + b and
x 7→ x+ a′. Now we make a variable change y 7→ y+ ax+ b in order to remove the terms of xy and
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y (i.e., we are going to make a1 = a3 = 0):

(y + ax+ b)2 + a1x(y+ ax+ b) + a3(y + ax+ b)

= y2 + (2a+ a1)xy + (2b+ a3)y + polynomial in x.

Assuming that 2 is invertible in k, we take a = −a1

2 and b = −a3

2 . The resulting equation is of the

form y2 = x3 + b2x
2 + b4x+ b6. We now make the change of variable x 7→ x+ a′ to make b2 = 0:

y2 = (x + a′)3 + b2(x+ a′)2 + b4(x+ a′) + b6 = x3 + (3a′ + b2)x
2 + · · · .

Assuming that 3 is invertible in k, we take a′ = − b23 . We can rewrite the equation as in (2.1) (making

a variable change −2y 7→ y). By the variable change as above, we have y = −2T−3(1+higher terms),
and from this, we conclude ω = dx

y . The numbers g2 and g3 are determined by T adapted to a given

nowhere-vanishing differential form ω.
If the discriminant ∆(E, ω) of g(x) = 4x3−g2x−g3 vanishes, C has only singularity at (x0 : 0 : 1)

for a multiple root x0 of g(x) = 0. If g(x) has a double zero, C is isomorphic over k to the curve

defined by y2 = x2(x−a) for a 6= 0. Let t = x
y . Then for P ∈ E(k) mapping to (0, 0), vP (y) = vP (x);

so, P is neither a zero nor a pole of t. The function t never vanish outside 0E (having a pole at
(a, 0)). It has a simple zero at 0E by the normalization of x and y. Thus deg(div0(t)) = 1, and

k(C) = k(t), which is impossible as k(C) = k(E) and g(E) = 1. The case of triple zero can be
excluded similarly. Thus we conclude ∆(E, ω) 6= 0 (⇔ C is smooth: Example 1.15), and we have
E ∼= C by φ.

Conversely, we have seen that any curve defined by equation (2.1) is smooth in Example 1.15 if
the cubic polynomial F (X) = 4X3 − g2X − g3 has three distinct roots in k. In other words, if the
discriminant ∆(E, ω) of F (X) does not vanish, E is smooth.

For a given equation, Y 2 = F (X), the algebraic curve E defined by the homogeneous equation
Y 2Z = 4X3 − g2XZ2 − g3Z3 in P2

/k has a rational point 0 = (0, 1, 0) ∈ E(k), which is ∞ in P2.

Thus E is smooth over k if and only if ∆(E, ω) 6= 0 (an exercise following this proof).
We show that there is a canonical nowhere-vanishing differential ω ∈ ΩE/k if E is defined by

(2.1). If such an ω exists, all other holomorphic differentials ω′ are of the form fω with div(f) ≥ 0,
which implies f ∈ k; so, g = dimk ΩE/k = 1, and E/k is an elliptic curve. It is an easy exercise to

show that y−1dx does not vanish on E (an exercise following this proof).
We summarize what we have seen. Returning to the starting elliptic curve E/k, for the parameter

T at the origin, we see by definition

x = T−2(1 + higher degree terms) and y = −2T−3(1 + higher degree terms).

This shows
dx

y
=
−2T−3(1 + · · · )
−2T−3(1 + · · · )dT = (1 + higher degree terms)dT = ω.

Thus the nowhere-vanishing differential form ω to which T is adapted is given by dx
y . Conversely, if

∆ 6= 0, the curve defined by y2 = 4x3− g2x− g3 is an elliptic curve over k with origin 0 =∞ and a
standard nowhere-vanishing differential form ω = dx

y . This finishes the proof. �

Exercise 2.7. (1) If C is defined by y2 = x3, prove k(C) = k(t) for t = x
y .

(2) Compute vP (dx/y) explicitly at any point P on E(k).
(3) Show that if ∆ 6= 0, the curve defined by y2 = 4x3−g2x−g3 (over a field k of characteristic
6= 2, 3) is also smooth at 0 =∞.

2.3. Moduli of Weierstrass type. We continue to assume that the characteristic of k is different
from 2 and 3. Suppose that we are given two elliptic curves (E, ω)/k and (E′, ω′)/k with nowhere-
vanishing differential forms ω and ω′. We call two pairs (E, ω) and (E′, ω′) isomorphic if we have an
isomorphism ϕ : E → E′ with ϕ∗ω′ = ω. Here for ω′ = fdg, ϕ∗ω′ = (f ◦ ϕ)d(g ◦ ϕ); in other words,
if σ : k(E′)→ k(E) is the isomorphism of the function fields associated with ϕ, ϕ∗ω′ = σ(f)d(σ(g)).
Let T ′ be the parameter at the origin 0 of E′ adapted to ω′. If ϕ : (E, ω) ∼= (E′, ω′), then the
parameter T = ϕ∗T ′ mod T 2 is adapted to ω (because ϕ∗ω′ = ω). We choose coordinates (x, y)
for E and (x′, y′) for E′ relative to T and T ′ as above. By the uniqueness of the choice of (x, y)
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and (x′, y′), we know ϕ∗x′ = x and ϕ∗y′ = y. Thus the Weierstrass equations of (E, ω) and (E′, ω′)
coincide. We write g2(E, ω) and g3(E, ω) for the g2 and g3 of the coefficients of the Weierstrass
equation of (E, ω). If a field K has characteristic different from 2 and 3, we have

[
(E, ω)/K

] ∼=
{
(g2, g3) ∈ K2

∣∣∆(E, ω) 6= 0
} ∼= HomALG(Z[

1

6
, X, Y,

1

X3 − 27Y 2
], K),

where [·] indicates the set of isomorphism classes of the objects inside the bracket and Spec(R)(K)
for a ring R is the set of all algebra homomorphisms: R → K. The last isomorphism sends (g2, g3)
to the algebra homomorphism φ with φ(X) = g2 and φ(Y ) = g3. We will see later this identity is
actually valid any algebra A in ALG/Z[ 16 ] in place of a field K.

Exercise 2.8. If k has characteristic 2, show that we cannot have any ring R such that
[
(E, ω)/K

] ∼= HomALG(R, K)

for all field extension K/k. Here the isomrophism is a natural transformation bewteen the functors
K 7→ [(E, ω)/K] and K 7→ HomALG(R, K) from the category of fields into SETS.

We now classify elliptic curves E eliminating the contribution of the differential from the pair
(E, ω). If ϕ : E ∼= E′ for (E, ω) and (E′, ω′), we have ϕ∗ω′ = λω with λ ∈ K×, because ϕ∗ω′

is another nowhere-vanishing differential. Therefore we study K×-orbit: (E, ω) mod K× under
the action of λ ∈ K× given by (E, ω)/K 7−→ (E, λω)/K , computing the dependence of gj(E, λω)
(j = 2, 3) on λ for a given pair (E, ω)/K . Let T be the parameter adapted to ω. Then λT is adapted
to λω. We see

x(E, ω) =
(1 + Tφ(T ))

T 2
⇒ x(E, λω) =

(1 + higher terms)

(λT )2
= λ−2x(E, ω),

y(E, ω) =
(−2 + Tψ(T ))

T 3
⇒ y(E, λω) =

(−2 + higher terms)

(λT )3
= λ−3y(E, ω).

Since y2 = 4x3 − g2(E, ω)x − g3(E, ω), we have

(λ−3y)2 = 4λ−6x3 − g2(E, ω)λ−6x− λ−6g3(E, ω)

= 4(λ−2x)3 − λ−4g2(E, ω)(λ−2x)− λ−6g3(E, ω),

(2.3) g2(E, λω) = λ−4g2(E, ω) and g3(E, λω) = λ−6g3(E, ω).

Thus we have

Theorem 2.9. If two elliptic curves E/K and E′
/K are isomorphic, then choosing nowhere-vanishing

differentials ω/E and ω′
/E′ , we have gj(E

′, ω′) = λ−2jgj(E, ω) for λ ∈ K×. The constant λ is given

by ϕ∗ω′ = λω.

We define the J-invariant of E by J(E) = (12g2(E,ω))3

∆(E,ω) . Then J only depends on E (not the chosen

differential ω). If J(E) = J(E′), then we have

(12g2(E, ω))3

∆(E, ω)
=

(12g2(E
′, ω′))3

∆(E′, ω′)
⇐⇒ gj(E

′, ω′) = λ−2jgj(E, ω)

for a twelfth root λ of ∆(E, ω)/∆(E′, ω′). Note that the twelfth root λ may not be in K if K is not
algebraically closed.

Conversely, for a given j 6∈ {0, 1}, the elliptic curve defined by y2 = 4x3 − gx − g for g = 27j
j−1

has J-invariant 123j. If j = 0 or 1, we can take the following elliptic curve with J = 0 or 123. If
J = 0, then y2 = 4x3 − 1 and if J = 123, then y2 = 4x3 − 4x (Gauss’ lemniscate). Thus we have

Corollary 2.10. If K is algebraically closed, then J(E) = J(E′)⇔ E ∼= E′ for two elliptic curves
over K. Moreover, for any field K, there exists an elliptic curve E with a given J(E) ∈ K.

Exercise 2.11. (1) Prove that gj(E
′, ω′) = λ−2jgj(E, ω) for suitable ω and ω′ and a suitable

twelfth root λ of ∆(E, ω)/∆(E′, ω′) if J(E) = J(E′).
(2) Explain what happens if J(E) = J(E′) but E 6∼= E′ over a field K not necessarily algebraically

closed.
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3. Modular Forms

We give an algebraic definition of modular forms and then relate it to classical defintions.

3.1. Elliptic curves over general rings. What we have done over fields can be also done over
general noetherian rings A. We sketch the theory without much proof. Here is a definition of
a plain projective curve over a ring A as a subfunctor C ⊂ P2. Recall L ∈ P2(R) for an A-
algebra R is a locally free R-submodule of R3 of rank 1 with locally free quotient R3/L. For a
given homogeneous plynomial Φ(X, Y, Z) ∈ A[X, Y, Z], we define Φ(L) = 0 if Φ(`) = 0 for all
` ∈ L. Assume that F (X, Y, Z) is not a zero-divisor in A[X, Y, Z]. Then a homogeneous polynomial
F (X, Y, Z) ∈ A[X, Y, Z] defines a subfunctor (called a plane projective A-curve) by

R 7→ C(R) = {L ∈ P2(R)|Φ(L) = 0}.

Plainly C is a covariant subfunctor of P2. If the residue ring
A[X,Y,Z]

(F (X,Y,Z)) modulo its nilradical is an

integral domain, we call C irreducible.

Exercise 3.1. If A is a field k, verify that this definition is equivalent to the definition of irreducibil-
ity of the plane k-curve already given earlier.

We define

HomA-curves(C,C
′) := HomCOF (C,C ′),

and in this way, we get the category of plane projective A-curves. Fix such a curve C ⊂ P2
/A. First

suppose that A is a local ring with maximal ideal m. Write k for A/m. We then define

R0 =
A[Y, Z]

(F (1, Y, Z))
, R1 =

A[X,Z]

(F (X, 1, Z))
, R2 =

A[X, Y ]

(F (X, Y, 1))
.

Consider a covariant functor Ci : R 7→ HomALG/A
(Rj , R) from ALG/A to SETS. This functor can

be identified with a subfunctor of C, for example, by

C2(R) 3 φ 7→ L = R · (φ(X), φ(Y ), 1) ∈ C(R),

and C2 can be identified with the functor sending R to the zero set of F (X, Y, 1) in R2. If R is a
local ring, we know C(R) = C0(R) ∪ C1(R) ∪ C2(R). For any finite field extension K of k, a point
P ∈ Ci(K) gives rise to an A-algebra homomorphism φ : Ri → K; so, Ker(φ) is a maximal ideal of
Ri.

Exercise 3.2. Under the above setting, prove

(1) Ker(φ) is a maximal ideal of Ri if K/k is a finite field extension,
(2) any maximal ideal of Ri is given in this way as Ker(φ).

The point P ∈ C(k) is called a maximal point of C. We define

OC,P = {a
b
|b ∈ Ri \Ker(φ)}/ ≈ .

Again OC,P is determined independent of the choice of i with P ∈ Ci(K). Then OC,P is a local
ring with maximal ideal mP with OC,P /mP

∼= Im(φ) ⊂ K. The cotangent space at P is defined by
P/P 2 and the tangent space at P over K is by definition its dual HomK(P/P 2, K). As before, the
tangent space is isomorphic to the space of K-derivations ∂ : OC,P → K.

We are going to sketch a general definition of smoothness, but before starting this subtle process
of defining smoothness over a ring, we point out that, general definition aside, an important point
is that we can again prove that an elliptic curve defined by y2 = 4x3 − g2x − g3 is smooth over
A = Z[ 1

6
, g2, g3] if and only if ∆ ∈ A×. If the reader is not very familiar with the notion of

smoothness/étaleness over rings, he or she can just admit this fact for a while to go through this
section and the next (as he/she will understand details once scheme theory is learned).

Here is a formal definition of smoothness/étaleness. For an A–algebra R and R′, we define
the R′-module of derivations DerA(R,R′) just by the R′-module of derivations trivial over A (so,
(∂ : R→ R′) ∈ DerA(R,R′) satisfies ∂(ϕφ) = ϕ∂(φ) + φ∂(ϕ) and ∂(a) = 0 for all a ∈ A).
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Consider m-adic completions

Â = lim←−
n

A/mn and ÔC,P = lim←−
n

OC,P /mn
P .

Then ÔC,P is naturally an algebra over Â. Write m̂P for the maximal ideal of ÔC,P . We call

P ∈ C(K) smooth over A if ÔC,P is free of finite positive rank over Â[[T ]] (i.e., ÔC,P ∼= Â[[T ]]r for

0 < r ∈ Z) for a variable T ∈ ÔC,P and any derivation of Â[[T ]] over Â with values in any artinian

ÔC,P -algebra extends uniquely to ÔC,P ; i.e., the ring theoretic tangent spaces of ÔC,P and Â[[T ]]
are equal. This last point means that Ω bOC,P/ bA[[T ]] = 0 (see [GME] §1.9.2 for differentials). In short,

ÔC,P is an étale algebra over Â[[T ]]; i.e., Spec(ÔC,P ) and Spec(Â[[T ]]) are locally isomorphic in the
sense of algebraic geometry).

If C is smooth over A at all maximal points P ∈ C(K), we call C smooth over A. Assuming

that k is algebraically closed, C is smooth over A if and only if ÔC,P ∼= Â[[T ]] as Â-algebras for all
maximal points P ∈ C.

For general A not necessarily local, we call C smooth over A if C is smooth over the localization
of A at every maximal ideal of A.

Exercise 3.3. Prove that if C is a smooth plane projective curve over an integral local domain A
with algebraically closed residue field, C is smooth over the quotient field of A, regarding C a plane
projective curve over the quotient field.

Suppose C is smooth over A. We can define the Ri-module of derivationsDerCi/A = DerA(Ri, Ri)
just by the Ri-module of derivations trivial over A (so, (∂ : Ri → Ri) ∈ DerCi/A satisfies ∂(ϕφ) =
ϕ∂(φ) + φ∂(ϕ) and ∂(a) = 0 for all a ∈ A). The Ri-dual ΩCi/A of DerCi/A is called the Ri-module
of 1-differentials over Ci. Each ∂ ∈ DerCi/A gives rise to an AP -derivation ∂P : OC,P → OC,P given

by ∂P (ab ) = ∂(a)b−a∂(b)
b2 for a maximal point P ∈ Ci, where AP is the localization of A at P ∩ A

(regarding P as a prime ideal of Ri). By duality, ω ∈ ΩCi/A therefore gives rise to the cotangent
vector ωP ∈ ΩOC,P/AP

:= HomAP (DerOC,P /AP
,OC,P ). The Ri-module ΩCi/A is a locally-free Ri-

module of rank 1. Then we define ΩC/A to be the collection of all ω = (ωi ∈ ΩCi/A)i such that

ωi,P = ωj,P for all P ∈ (Ci ∩Cj)(k) ((i, j) = (0, 1), (1, 2), (0, 2)). If C is smooth over A, again ΩC/A
is a locally free A-module of some rank g, and this number g is called the genus g(C) of C over A.

An elliptic curve over A is a plane projective smooth curve E of genus 1 with a specific point
0E ∈ E(A). If ΩE/A = Aω, the differential ω is called a nowhere vanishing differential. If φ : E → E′

is a morphism of elliptic curve, we can pull back a nowhere vanishing differential ω′ on E′ by φ,
which is written as φ∗ω′. Note here that φ∗ω′ may not be nowhere vanishing (though it is, if φ is
an isomorphism).

Exercise 3.4. Let A = Fp. Give an example of a non-constant morphism φ : E → E such that
φ∗ω = 0 for a nowhere vanishing differential ω on E.

If A
σ−→ A′ is an algebra homomorphism and if a plane projective A-curve C is defined by an

equation F (X, Y, Z) =
∑

i,j,l ci,j,lX
iY jZl, the σ-transform σ(F )(X, Y, Z) =

∑
i,j,l σ(ci,j,l)X

iY jZl

defines a plane projective A′-curve σ(C). Note that σ(Ci) is defined by the ring Ri⊗A,σA′; so, often
we write C⊗AA′ for σ(C) and call it the base-change C⊗AA′

/A′ of C/A. Similarly, if ∂ : Ri → Ri is

an A-derivation, ∂ ⊗ 1 : Ri ⊗A A′ → Ri⊗A A′ given by ∂ ⊗ 1(φ⊗ a) = σ(a∂(φ)) is an A′-derivation.
This shows DerCi/A⊗AA′ = DerCi⊗A′/A′ . Thus by duality, we also have ΩCi/A⊗AA′ = ΩCi⊗A′/A′ .
In particular, ω ∈ ΩC/A induces σ∗(ω) = ω ⊗ 1 ∈ ΩC⊗A′/A′ . We write the pair (E ⊗A A′, σ∗ω) as

(E, ω)⊗A A′. This makes P : ALG→ SETS given by P(A) =
[
(E, ω)/A

]
a covariant functor from

the category of algebras into sets. We again have the following result basically in the same way as
in the case of fields (see [GME] §2.2.6 for a proof):

Theorem 3.5. Let R = Z[ 16 , g2, g3,
1
∆ ]. Then we have a canonical equivalence of functors from

ALG/Z[ 16 ] to SETS: P(?) ∼= HomALG
/Z[ 1

6
]
(R, ?).

In other word, for a given pair (E, ω)/A of an elliptic curve E over A and a nowhere vanishing

differential ω, there exists unique (g2(E, ω), g3(E, ω)) ∈ A2 such that E is canonically isomorphic to
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an elliptic curve defined by

Y 2Z = 4X3 − g2(E, ω)XZ2 − g3(E, ω)Z3

and ω induces the differential dX
Y

on E2 = E ∩D2 under this isomorphism. Thus we have

(1) If (E, ω) is defined over a Z[ 16 ]-algebra A, we have gj(E, ω) ∈ A, which depends only on the
isomorphism class of (E, ω) over A,

(2) gj((E, ω)⊗A A′) = σ(gj(E, ω)) for each Z[ 16 ]-algebra homomorphism σ : A→ A′,
(3) gj(E, λω) = λ−2jgj(E, ω) for all λ ∈ A×.

3.2. Geometric modular forms. Let A be an algebra over Z[ 16 ]. We restrict the functor P to

ALG/A and write the restriction P/A. Then by Theorem 3.5, for RA := A[g2, g3,
1
∆

],

P/A(?) = HomALG/A
(RA, ?).

A morphism of functors φ : P/A → A1
/A is given by maps φR : P/A(R) → A1(R) = R indexed by

R ∈ ALG/A such that for any σ : R→ R′ in HomALG/A
(R,R′), φR′((E, ω)⊗RR′) = σ(f((E, ω)/R)).

Note that A1
/A(?) = HomALG/A

(A[X], ?) by R 3 a ↔ (ϕ : A[X] → R) ∈ HomALG/A
(A[X], ?) with

ϕ(X) = a. In particular,

φRA : P(RA) = HomALG/A
(RA,RA)→ A1(A[X],RA) = RA.

Thus φRA(idRA) ∈ RA; so, write φRA(idRA) = Φ(g2, g3) for a two variable rational function
Φ(x, y) ∈ A[x, y, 1

x3−27y2 ]. Let E/RA
be the universal elliptic curve over RA defined by Y 2Z =

4X3 − g2XZ
2 − g3Z

3 with the universal differential ω = dX
Y

. If we have (E, ω)/R, we have
a unique A-algebra homomorphism σ : RA → R given by σ(gj) = gj(E, ω); in other words,
(E, ω)/R ∼= (E, ω)RA ⊗RA R, and

φR(E, ω) = φR((E, ω) ⊗RA R) = σ(φRA(E, ω))

= σ(φRA(idRA)) = Φ(σ(g2), σ(g3)) = Φ(g2(E, ω), g3(E, ω)).

Theorem 3.6. Any functor morphism φ : P/A → A1
/A is given by a rational function Φ ∈ RA of

g2 and g3 so that φ(E, ω) = Φ(g2(E, ω), g2(E, ω)) for every elliptic curve (E, ω) over an A-algebra.

Define a weight function w : A[g2, g3] → Z by w(ga2g
b
3) = 4a + 6b, and for general polynomials

Φ =
∑
a,b ca,bg

a
2g
b
3, we put w(Φ) = max(w(ga2g

b
3)|ca,b 6= 0). A polynomial Φ =

∑
a,b≥0 ca,bg

a
2g
b
3 of g2

and g3 is called isobaric if ca,b 6= 0⇒ 4a+ 6b = w.
A weight w modular form defined over A is a morphism of functors P/A → A1

/A given by an

isobaric polynomial of g2 and g3 of weight w with coefficients in A. Write Gw(A) = Gw(Γ0(1);A)
for the A-module of modular forms of weight w. Then f ∈ Gw(A) is a functorial rule assigning each
isomorphism class of (E, ω)/R for an A-algebra R an element f(E, ω) ∈ R satisfying the following
properties:

(G0) f ∈ A[g2, g3],
(G1) If (E, ω) is defined over an A-algebra R, we have f(E, ω) ∈ R, which depends only on the

isomorphism class of (E, ω) over R,
(G2) f((E, ω) ⊗R R′) = σ(f(E, ω)) for each A-algebra homomorphism σ : R→ R′,
(G3) f((E, λω)/R) = λ−wf(E, ω) for any λ ∈ R×.

Exercise 3.7. For a field K with 1
6 ∈ K, prove, for 0 < w ∈ 2Z,

dimK Gw(K) =

{[
w
12

]
if w ≡ 2 mod 12,[

w
12

]
+ 1 otherwise.
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4. Functorial Algebraic Geometry

We recall here briefly definitions and results in functorial algebraic geometry as succinct as possible
in a style suitable to deal with jacobian and abelian varieties (cf. [RAG] I.1). In order to make our
exposition short and to reach fast to the core of the theory necessary to our later treatment, we
define schemes as covariant functors outright, and in this sense our exposition is unconventional.
Since the spectrum Spec(A) over the base ring B (or equivalently, over the base scheme Spec(B))
is traditionally first defined as a local ringed space made up of prime ideals of A with Zariski
topology, we write SA for the associated covariant functor defined on the category of B-algebras
R 7→ SA(B) = HomB-alg(A,R) only in this section (later we write this functor as R 7→ SpecB(A)(R),
identifying the functor and the scheme). All rings R we consider are commutative, have the identity
element 1R, and we denote by 0R the zero element of R.

4.1. Affine variety. Let k be an algebraically closed field. A Zariski closed subset V in kn is
defined by the zero set of finitely many polynomials f1, . . . , fm ∈ k[X] = k[X1, . . . , Xn]; so, V =
{(x = (x1, . . . , xn) ∈ kn|fj(x) = 0 (j = 1, . . . , m)}. The polynomials f1, . . . , fm generates an ideal
I =

∑m
j=1 k[X]fj ⊂ k[X], and plainly,

V = V (I) = {x ∈ kn|f(x) = 0 ∀f ∈ I}.
Thus we write this closed set as V = V (I) for the ideal I. Since k[X] is noetherian, an ideal I is
generated by finitely many elements; hence, any Zariski closed subset has the form V (I) with an
ideal I.

Easy to verify V (k[X]) = ∅, V ((0)) = kn, V (I ∩ J) = V (I) ∪ V (J) and V (
∑

i∈I Ii) =
⋂
i∈I V (Ii).

Thus the family of subsets of the form V (I) for ideals I satisfies the axiom of closed subsets of kn

giving the Zariski topology on kn. By Hilbert’s zero theorem (cf. [CRT] Section 5), V (I) = V (
√
I)

for the radical
√
I = {f ∈ k[X]|fn ∈ I}. Thus the association

{ideals of k[X]} → {Zariski closed subsets of k[X]}
given by I 7→ V (I) is surjective but not injective.

For any k-algebra R, define

VI(R) = {x = (x1, . . . , xn) ∈ Rn|f(x) = 0 ∀f ∈ I}.
Then R 7→ VI(R) is a covariant functor from the category of k-algebras into sets (see the following
section for the definition of functors), as any k-algebra homomorphism φ ∈ Homk-alg(R,R

′) induces
a map VI(φ) : VI(R) → VI (R′) given by (x1, . . . , xn) 7→ (φ(x1), . . . , φ(xn)), which satisfies VI(φ′ ◦
φ) = VI (φ′) ◦ VI(φ). If α ∈ VI(R), we have a k-algebra homomorphism φα : k[X] → R given by
φα(f(X)) = f(α) for f(X) ∈ k[X] = k[X1, . . . , Xn]. Since f(α) = 0 for all f ∈ I, φα factors through
k[X]/I. Thus we get a map φR : VI(R) → Homk-alg(k[X]/I, R) sending α ∈ VI(R) to φα. For any
given ϕ ∈ Homk-alg(k[X]/I, R), it is plain that ϕR = φα for α = (ϕ(X1), . . . , ϕ(Xn)). Thus

(4.1) φ : VI(?)→ Homk-alg(k[X]/I, ?) is an isomorphism of functors.

Even if V (I) = V (
√
I), it is obvious that VI 6= V√I as functors as easily checked

Homk-alg(k[X]/
√
I, k[X]/I) 6= Homk-alg(k[X]/I, k[X]/I)

if I 6=
√
I. We call the functor V√I an affine variety, which is a reduced affine k-scheme (a general

definition of k-schemes will be given in a following section).
If W ⊂ kr is another Zariski closed subset defined by an ideal J ⊂ k[Y ] = k[Y1, . . . , Yr]. A

map ϕ : V → W is a regular map if there exists a set of polynomials ϕ1, . . . , ϕr in k[X] such that
ϕ(x) = (ϕ1(x), . . . , ϕr(x)) ∈ kr for all x ∈ V . This induces a morphism of functors VI → VJ given
by ϕR : VI (R) → VJ (R) with ϕR(x) = (ϕ1(x), . . . , ϕr(x)) for all x ∈ VI(R) ⊂ Rn. The set of
polynomials ϕ = (ϕ1, . . . , ϕr) gives rise to a k-algebra homomorphism ϕ : k[Y ] → k[X] given by

ϕ(Yj) = ϕj(X). It induces therefore a k-algebra homomorphism ϕ : k[Y ] → k[X]/I by composing

the projection k[X] � k[X]/I. If f(Y ) ∈ J , then ϕ(f(Y )) = f(ϕ1(X), . . . , ϕr(X)) mod I. Since
ϕ(x) = (ϕ1(x), . . . , ϕr(x)) ∈W for all x ∈ V , we get ϕ(f(Y ))(x) = 0; so, by Hilbert’s zero theorem,
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ϕ(f(Y )) ∈
√
I. Thus ϕ induces ϕ : k[Y ]/

√
J → k[X]/

√
I . In particular, if

√
I = I and

√
J = J , we

get

Homfunctor(VI ,VJ) 3 ϕ 7→ ϕ ∈ Homk-alg(k[Y ]/J, k[X]/I).

As we will see in (4.5), this is an isomorphism. Thus basically, knowing the affine variety VI is
equivalent to knowing the algebra k[X]/I (cf. Yoneda’s lemma, see Lemma 4.16).

4.2. Categories. We give a brief outline of the definition of categories and examples. A category C
consists of two data: objects of C and morphisms of C. For any two objects X and Y of C, we have
a set HomC(X, Y ) of morphisms satisfying the following three rules:

(Ct1) For three objects X, Y , Z, there is a composition map:

HomC(Y, Z) × HomC(X, Y )→ HomC(X,Z) : (g, f) 7→ g ◦ f ;

(Ct2) (Associativity). For three morphisms: X
f−→ Y

g−→ Z
h−→W , we have h ◦ (g ◦ f) = (h ◦ g) ◦ f;

(Ct3) For each object X, there is a specific element 1X ∈ HomC(X,X) such that 1X ◦ f = f and
g ◦ 1X = g for all f : Y → X and g : X → Z.

For two objects X and Y in C, we write X ∼= Y if there exist morphisms f : X → Y and g : Y → X
such that f ◦ g = 1Y and g ◦ f = 1X . Often C is a subcategory of SETS, and in that case, 1X is
usually given by the identity map idX ; so, in such a case, we write idX for 1X .

Example 4.1. A list of examples of categories: In the table below, X denotes a given topological
space (it is often the underlying toplogical space of a scheme). See [GME] Chapter 1 a brief outline
of tradtional theory of schemes and its language (see [EGA] for real details). We will recall functorial
definition of scheme in a couple of sections ahead.

Category Objects Morphisms

SETS sets maps between sets

AB Abelian groups group homomorphisms
ALG Algebras Algebra homomorphisms

ALG/B B-algebras B-algebra homomorphisms

ÂLG/B complete B-algebras continuous B-algebra homomorphisms
O(X) open subsets in X inclusions
PS(X) presheaves on X morphisms of presheaves

S(X) sheaves on X morphisms of presheaves
QS(X) quasi coherent sheaves morphisms of presheaves

SCH/S S-Schemes morphisms of local ringed spaces/S
GSCH/S group S-Schemes group morphisms of SCH/S

BT/S Barsotti–Tate groups/S morphisms of GSCH/S

ELL/SCH elliptic curves E/S morphisms of GSCH/S

MOD/B B-modules B-linear maps

In the above table, ELL/SCH is actually a fiber category over the category SCH of schemes. This
means that each elliptic curve E is defined over a scheme S, and HomELL(E/S , E

′
/S′) is made up of

a commutative diagram

E −−−−→ E′
y

y

S −−−−→ S′

with the top arrow sending the origin of E to that of E′.

A category C′ is a subcategory of C if the following two conditions are satisfied:

(i) Each object of C′ is an object of C and HomC′ (X, Y ) ⊂ HomC(X, Y );
(ii) The composition of morphisms is the same in C and C′.



ARITHMETIC OF CURVES 21

A subcategory C′ is called a full subcategory of C if the sets of homomorphisms are equal:

HomC′ (X, Y ) = HomC(X, Y )

for any two objects X and Y in C′.
4.3. Functors. A covariant (resp. contravariant) functor F : C → C′ is a rule associating an object
F (X) of C′ and a morphism F (f) ∈ HomC′ (F (X), F (Y )) (resp. F (f) ∈ HomC′ (F (Y ), F (X))) to
each morphism f : X → Y of C. We require F (1X) = 1F (X) and

(4.2) F (f ◦ h) = F (f) ◦ F (h) (resp. F (f ◦ h) = F (h) ◦ F (f)).

Example 4.2. Let X be a topological space. Then the category O(X) of open sets consists of open
subsets and inclusions:

HomO(X)(U, V ) =

{
Inc : U ↪→ V if U ⊂ V
∅ otherwise.

Then a presheaf F is a functor from O(X) into AB.

A morphism f between two contravariant functors F , G : C → C′ is a system of morphisms {φX ∈
HomC′ (F (X), G(X))}X∈C making the following diagram commutative for all u ∈ HomC(X, Y ):

(4.3)

F (Y )
F (u)−−−−→ F (X)

φY

y
yφX

G(Y ) −−−−→
G(u)

G(X).

In general, the totality of morphisms between two functors may not be a set; so, we cannot define the
category of contravariant functors out-right by the collection of all functors from C to C′. However
we pretend to have the “category” of contravariant functors CTF (C, C′) using the above definition
of morphisms between functors. Similarly, we have the “category” COF (C, C′) of covariant functors
by reversing the direction of morphisms F (u) and G(u). In practice, we impose some conditions on
functors in these “categories” to have well defined full subcategory (so, this does not pose any real
problem).

If F,G : C → SETS are functors, and F (A) ⊂ G(A) for all A ∈ Ob(C), we call F a subfunctor of
G. Here, for φ ∈ HomC(A,A′), G(φ) induces F (φ) (in other words, the inclusion iA : F (A) ↪→ G(A)
is a functor morphism). If Gi ⊂ G are subfunctors indexed by an index set I, then plainly A 7→⋂
i∈I Gi(A) ⊂ G(A) is a subfunctor of G. We call this functor the intersection of all Gi in G.
We can also define the product of two functors F,G : C → SETS just putting F × G(A) :=

F (A)×G(A) (the set theoretic product) with (F ×G)(φ) = F (φ)×G(φ). If f : F → S and g : G→ S
are morphism of functors F,G, S : C → SETS, we define the fibered product F ×S G : C → SETS
by

(4.4) A 7→ (F ×S G)(A) = {(x, y) ∈ F (A)×G(A)|fA(x) = gA(y)}
with (F ×S G)(φ)(x, y) = (F (φ)(x), G(φ)(y)). If further f : F ↪→ S and g : G ↪→ S are inclusions
of functors, identifying F and G with subfunctors of S by f and g, it is plain that F ×S G(R) =
F (R) ∩G(R) in S.

If f : X → Y is a morphism in COF (C, SETS) and Y ′ ⊂ Y be a subfunctor, we define f−1(Y ′) ∈
COF (C, SETS) by f−1(Y ′)(A) = f−1

A (Y ′(A)). Plainly, f−1(Y ′) is a subfunctor of X.

4.4. Affine schemes. As we remarked, knowing the affine variety VI is equivalent to knowing the
algebra A = k[X]/I. So we may start with a k-algebra A in place of the zero set V to make
a theory. Slightly more generally, writing B for a fixed base commutative ring B, we consider a
B-algebra A. The affine B-scheme S = SA = SpecB(A) associated to A is a functorial rule of
assigning to each B–algebra R the set given by S(R) = HomB-alg(A,R). When the underlying base
algebra B is evident in the context, we simply write Spec(A) for SpecB(A). Though Spec(A) has
another aspect of a topological local ringed space as described in, for example, [GME] Section 1.2,
here we concentrate on its functorial property. Since the category SCH/B of B-schemes is a full
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subcatageory of COF (ALG/B, SETS), this is legitimate (see [GME] §1.4.3 and Lemma 4.16 in the
text). Hereafter we write simply CB for COF (ALG/B, SETS), which is the biggest “category”
containing our geometric objects. As we remarked already, COF (ALG/B, SETS) may not be really
a category in true sense (i.e., HomCOF (F,G) may not be a set), but our category of schemes SCH/B

is defined later imposing a sheaf condition to assure that it is a category by Yoneda’s lemma (cf.
Lemma 4.16).

The set SA(R) is called the set of R–rational points (or R–integral points) of SA. A B–morphism
φ : SA → SC (or a morphism defined over B) is given by φ(P ) = P ◦φ for an underlying B–algebra
homomorphism φ : C → A; in other words, we have the following commutative diagram:

A
P−−−−→ R

φ

x
xP◦φ

C C

By definition, we have the following properties of the functor SA:

(F1) If R
f−→ R′ g−→ R′′ are B–algebra homomorphisms, then we have maps f∗ : SA(R)→ SA(R′)

and g∗ : SA(R′) → SA(R′′) given by f∗(P ) = f ◦ P and g∗(Q) = g ◦ Q, and we have
(g ◦ f)∗ = g∗ ◦ f∗.

(F2) If R′ = R′′ and g as above is the identity map idR′ : R′ → R′, we have idR′,∗ ◦f∗ = f∗. If
R = R′ and f as above is the identity map idR : R→ R, we have g∗ ◦ idR,∗ = g∗.

(F3) For the identity map idR : R → R, idR,∗ : SA(R) → SA(R) is the identity map of the set
SA(R).

In short, R 7→ SA(R) is a covariant functor of B–algebras into sets; so, an object in CB . For two affine
schemes S and T over B, a morphism φ : S → T is a family of maps φR : S(R) → T (R) indexed
by B–algebras R such that the following diagram commutes for any B–algebra homomorphism
α : R → R′:

S(R)
φR−−−−→ T (R)

α∗

y
yα∗

S(R′) −−−−→
φR′

T (R′).

If confusion nis unlikely, we write HomB(S, T ) = HomCB(S, T ) for the set of all morphisms from S
into T .

By definition, we also have the following properties of affine schemes:

(cf1) If A
φ−→ C

ψ−→ D are B–algebra homomorphisms, then we have morphisms of schemes

SD
ψ−→ SC

φ−→ SA such that φ ◦ ψ is associated to ψ ◦ φ.
(cf2) If A = C and φ in (cf1) is the identity map idA of A, we have idA ◦ψ = ψ. If C = D and ψ

in (cf1) is the identity map idC of C, we have φ ◦ idC = φ.
(cf3) For the identity map idA : A → A, idA : SA(R) → SA(R) is the identity map for all

B–algebras R.

Thus the functor A 7→ SA is a contravariant functor from B–algebras into CB . One of the most basic
facts in functorial algebraic geometry is full-faithfullness of this functor (e.g. [GME] §1.4.3):

(4.5) HomB-alg(A
′, A) ∼= HomB(SA, SA′ ) via α↔ α.

A main point of the proof of this fact is to construct from a given morphism φ ∈ HomB(SA, SA′) a
B-algebra homomorphism ϕ : A′ → A such that ϕ = φ.

Exercise 4.3. Let ϕ = φA(idA) ∈ SA′ (A) = HomB-alg(A
′, A), where idA ∈ SA(A) = HomB-alg(A,A)

is the identity map. Then prove that ϕ = φ.

Here are some examples of affine schemes:
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Example 4.4. Take f(X, Y, Z) = Xp + Y p − Zp for a prime p, and let B = Z. Then consider
A = Z[X, Y, Z]/(f(X, Y, Z)). For each algebra R, we claim

SA(R) ∼= {(x, y, z) ∈ R3|xp + yp = zp}.
Indeed, for each solution P = (x, y, z) of Fermat’s equation in R, we define an algebra homomorphism
φ : B[X, Y, Z] → R by sending polynomials Φ(X, Y, Z) to its value Φ(x, y, z) =: φ(Φ) ∈ R. Since

Φ ∈ (f(X, Y, Z)) ⇔ Φ = Ψf , we find that φ(Ψf) = Ψ(x, y, z)f(x, y, z) = 0; so, φ factors through the
quotient A getting φ ∈ SA(R). In this way, we get an injection from the right-hand-side to SA(R).
If we start from φ : A→ R in SA(R), we find

0 = φ(0) = φ(Xp + Y p − Zp) = φ(X)p + φ(Y )p − φ(Z)p.

Thus (x, y, z) := (φ(X), φ(Y ), φ(Z)) is an element in the right-hand-side, getting the isomorphism.
By Fermat’s last theorem, we have

SA(Z) ∼= {(a, 0, a), (0, b, b), (c,−c, 0)|a, b, c∈ Z} if p is a prime ≥ 3.

There is a simpler example: We have

SZ[X1,...,Xn](R) = Rn via φ 7→ (φ(X1), . . . , φ(Xn)).

Often SZ[X1 ,...,Xn] is written as An or Gn
a and is called the affine space of dimension n. We write Ga

for G1
a, though we have written it earlier as A1 (the affine line). We have an algebra homomorphism

B[X, Y, Z] → A for A in Example 4.4 sending Φ to (Φ mod f(X, Y, Z)). This in turn induces a
morphism i : SA → G3

a, which is visibly injective.

An A-algebra A′ is called finite type over A if we can write A′ = A[X1, . . . , Xn]/a for the poly-
nomial ring A[X1, . . . , Xn] of finitely many variables modulo an ideal a. If further a is generated by
finitely many elements of A[X1, . . . , Xn], we call A′ finitely presented over A (cf. [EGA] IV.1.4). If A
is noetherian, A[X1, . . . , Xn] is noetherian; so, finite-presentation of A[X]/a is automatic. However
when we treat non-noetherian rings (for example, if we want to show that the classification functor
of elliptic curves E/R given by R 7→ {E/A}/ ∼= is (close to) a scheme), finite-presentation property
guarantees that the number of equations defining affine scheme is finite (and hence the property is
important technically). The corresponding morphism SA′ → SA of affine schemes are also called
finite type (resp. finitely presented) if A′/A is of finite type (resp. finitely presented).

A morphism φ : SA → SA′ is called flat if M 7→ M ⊗A′,φ A is a left exact functor from the

category of A′-modules to the category of A-modules. Here the functor M 7→M ⊗A′,φA is left exact

if it preserves injective morphisms of A-modules, that is,

Ker(ι⊗ 1 : M ⊗A′,φ A→M ′ ⊗A′,φ A) = 0 if Ker(ι : M →M ′) = 0.

The morphism φ is faithfully flat if (i) it is flat and (ii) 0 → M → M ′ → M ′′ → 0 is exact if
0 → M ⊗A′,φ A → M ′ ⊗A′,φ A → M ′′ ⊗A′,φ A → 0 is exact for any sequence M → M ′ → M ′′ of

A′-modules. The proof of the following fact is a bit demanding:

Proposition 4.5. Suppose that A is noetherian B-algebra and A′ is an A-algebra of finite type. Let
M be an A′-module of finite type.

(1) {P ∈ Spec(A′)|MP is flat over AP } is an open subscheme of SA′ ,
(2) If A′ is A-flat, the morphism SA′ → SA is an open map.

We refer the proof to [CRT] Theorem 24.3 for (1), [CMA] page 48 or [EGA] IV.2.4.6 for (2).
A morphism φ : SA′ → SA is called finite if the A-module A′ (via φ) is of finite type (that is, there

exist a positive integer n and a surjective A-linear map An � A′). If SA′ is finite flat, localizations
A′

m at each prime ideal m of A are free of finite rank over Am, and therefore, SA′ is also called locally
free of finite rank over SA if φ is finite flat.

For a maximal ideal m of A′, φ is smooth at m if A′
m is flat over Am and for any A-algebra R with a

square-zero ideal I, HomA-alg(A
′/mnA′, R)→ HomA-alg(A

′/mnA′, R/I) is surjective for all positive
integer n (that is, any A-algebra homomorphism φ0 : A′/mnA′ → R/I can be lifted to an A-algebra
homomorphism φ1 : A′/mnA′ → R such that φ1 mod I = φ0). Here A′

m is the localization of A′ at
m and Am is the localization of A at φ−1(m). We call φ : SA′ → SA smooth if φ is smooth at all
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maximal ideals m of A. Since smoothness at m is an infinitesimal property only depending modulo
a power of the maximal ideal, it only depends on the adic completion of the maximal ideal.

Suppose that B is a perfect field k and that SA is of finite type over Sk (so, K = A/m is a
finite separable extension of k for a maximal ideal m of A), SA → Sk is smooth at m if and only

if the m-adic completion Â = lim←−nA/m
n is isomorphic to a power series ring K[[X1, . . . , Xn]] for

n = dimA (cf. [BCM] IX.3.3). Thus if B is a perfect field k and A is noetherian of (Krull) dimension
n, SA is smooth over Sk if and only of the local ring of A at every maximal ideal m has completion
isomorphic to (A/m)[[X1, . . . , Xn]].

Exercise 4.6. Prove that Gn
a is smooth over SZ = Spec(Z).

For a maximal ideal m of A′, φ : SA′ → SA is étale at m if SA′
m

is flat over SAm
and for any

A-algebra R with a square-zero ideal I, HomA-alg(A
′/mn, R) → HomA-alg(A

′/mn, R/I) is bijective
for all positive integers n.

Lemma 4.7. If A′ is a local ring étale finite over a local ring A having the same residue field k.
Then A/mn

A = A′/mn
A′ for all n, in particular, we have

Â = lim←−
n

A/mn
A = lim←−

n

A′/mn
A′ = Â′.

Proof. By assumption, A/mA = A′/mA′ = k for maximal ideals mA and mA′ . Since mA is square
zero ideal of A/m2

A, taking R to be A/m2
A, we have

HomA-alg(A
′/m2

A′ , A/mA) ∼= HomA-alg(A
′/m2

A′ , A/m2
A),

whose left hand side is a singleton given by the projection A′/m2
A′ � k. Similarly, taking R to be

A′/m2
A′ ,

HomA-alg(A
′/m2

A′, A′/mA′) ∼= EndA-alg(A
′/m2

A′),

whose left-hand-side is a singleton. Thus

HomA-alg(A
′/m2

A′ , A/m2
A) = {ϕ2} and EndA-alg(A

′/m2
A′) = {idA′/m2

A′
}

are both singletons. SinceA′/m2
A′ is anA-algebra, HomA-alg(A/m

2
A, A

′/m2
A′) = {φ2 = ιA mod m2

A′}.
TakingA′ = A, we find EndA-alg(A/m

2
A) = {idA/m2

A
}. Thus ϕ2◦φ2 = idA/m2

A
and φ2◦ϕ2 = idA′/m2

A′
.

Thus A′/m2
A′ = A/m2

A.

We now proceed by induction on n assuming A/mn−1
A = A′/mn−1

A′ and prove A/mn
A = A′/mn

A′.

Since mn−1
A′ ⊂ A′/mn

A′ and mn−1
A ⊂ A/mn

A are square zero ideals, taking (R, I) to be (A′/mn
A′,m

n−1
A′ )

and (A′/mn
A′,mn−1

A′ ), by the same argument as above, we find

HomA-alg(A
′/mn

A′ , A/mn
A) ∼= HomA-alg(A

′/mn
A′ , A/mn−1

A ) = {ϕn}
HomA-alg(A

′/mn
A′ , A′/mn−1

A′ ) ∼= EndA-alg(A
′/mn

A′) = {idA′/m2
A′
}.

Then for a unique A-algebra homomorphism φn = (ιA mod mn
A′) : A/mn

A → A′/mn
A′ , we find

ϕn ◦ φn = idA/mn
A

and φn ◦ ϕn = idA′/mn
A′

, and we are done. �

We call φ : SA → SA′ étale if φ is étale at all maximal ideals of A′.

Exercise 4.8. Suppose we have morphisms of B-schemes SA′′ → SA′ → SA. If SA′′ is étale over
SA′ and SA′ is smooth over SA, prove that SA′′ is smooth over SA. How about, if SA′′ is smooth
over SA and SA′′ is étale over SA′ , is SA′ smooth over SA?

4.5. Zariski open covering. When we have a morphism of affine schemes φ : SA → SC , and if
φ : C → A is a surjective ring homomorphism, we call φ a closed immersion. Then φR is injective
(for any B-algebra R), and we can identify SA ⊂ SC all the time. In this case, SA regarded as a
subfunctor of SC is called B–closed in SC . As we will see in Exercise 4.15 (2), if Si ⊂ SC is closed
for a finite number of affine schemes Si, the intersection R 7→ ⋂

i Si(R) is again an affine closed
subscheme. Thus we can give a topology on SC(R) for each R so that closed sets are given by the
empty set ∅ and those of the form SA(R) for closed immersion SA ↪→ SC . This topology is called the
Zariski B-topology of SC . When B is obvious in the context, we call it Zariski topology on SC . If
B′ is a B–algebra, we may regard A′ = B′ ⊗B A as a B′–algebra by a′ 7→ a⊗ 1. Then we get a new
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scheme SA′ over the ring B′, which sometimes written as SB′ ×B SA and is called the fibered product
of SA and SB′ over B. Indeed as a functor, it is identical to SB′ ×SB SA (Exercise 4.15 (3–4)). If we
have a point φ ∈ SA(R) for a B′–algebra R, we can extend φ : A→ R to φ′ : A′ = B′ ⊗B A→ R by

φ′(a⊗ b) = aφ(b). Thus φ 7→ φ′ gives the natural map SA(R)→ SA′ (R) for all B′–algebras R. This
map is an isomorphism, because for any given φ′ ∈ SA′ (R), φ(b) = φ(1⊗ b) gives a point φ ∈ SA(R)

as long as R is a B′–algebra (Exercise 4.15 (3)). However a B′–closed subset of SA′ may not be
B–closed; so, the Zariski topology depends on the base ring B.

Exercise 4.9. Let f : SA′ → SA be a morphism of affine scheme. If SA ⊂ SA is a closed subscheme,
prove that f−1(SA) is a closed subscheme (so, any morphism of affine schemes is “continuous” with
respect to Zariski topology).

Pick 0 6= f ∈ A. Then A = A/(f) is a surjective image of A. Thus SA ⊂ SA is a closed
subscheme. For each point φ ∈ SA(R), f : φ 7→ φ(f) gives rise to a map fR : SA(R)→ Ga(R) = R.
This collection of maps {fR}R can be easily checked to be a morphism SA → Ga of functors, which
we again call f : SA → Ga. In this way, we regard f ∈ A as a function (or more precisely, a functor
morphism) defined on SA with values in Ga. Any B-algebra homomorphism (P : A→ R) ∈ SA(R)
factoring through A satisfies f(P ) = P (f) = 0. Thus SA(R) = {P ∈ SA(R)|f(P ) = 0} (which is

the zero-set of f). We consider the quotient ring Af = A[ 1
f ]. Then the natural map b 7→ b

1 is a

B-algebra homomorphism of A into Af ; so, SAf ⊂ SA. If P ∈ SA(R) factors through Af , we have

f(P ) = P (f) ∈ R×, as f ∈ A is invertible in Af . Thus SA ⊃ SAtSAf , and SA(k) = SA(k)tSAf (k)
for any field k (which is a B-algebra). Hence we call SAf an open subscheme of SA, giving outside
the zero set of the function f .

Exercise 4.10. Prove that SA(k) = SA(k)tSAf (k) for any field k, and give an example of B-algebra
R such that SA(R) ) SA(R) t SAf (R).

More generally, a subfunctor U ⊂ SA is called an open subscheme if U is a subfunctor and there
exists a subset I ⊂ A such that

U(R) = UI (R) = {P ∈ SA(R)|
∑

f∈I
f(P )R = R}

= {P ∈ HomB-alg(A,R)|
∑

f∈I
P (f)R = R}.

(4.6)

Obviously, for the ideal generated (I) by I, U(I) = UI , and we may assume that I is an ideal. For
I = (0A), U(0)(R) = ∅ for any B-algebra R; so, ∅ is an open subscheme. Similarly, UA(R) = SA(R)
for all R; so, SA itself is an open subscheme. If {Ii}i∈I is a family of ideals, we have UP

i∈I Ii
⊃⋃

i∈I Ui and UP
i∈I Ii

(k) =
⋃
i∈I Ui(k) if k is a field.

Exercise 4.11. Check that R 7→ UI(R) is a subfunctor of SA, and verify that SAf = U if I = {f}.
Exercise 4.12. If a nonempty open subscheme U ⊂ SA is isomorphic to an affine scheme SA′ ,
prove that there exists a multiplicative set S ⊂ A such that A′ is isomorphic as B-algebras to the
ring of fractions S−1A.

Exercise 4.13. Let B = C and A = C[X, Y ] (the polynomial ring of the indeterminates X and Y ).
Define a closed subscheme SC of SA for C = A/(X, Y ). Prove that there exists an open subscheme
U of SA such that U(k) = SA(k) − SC(k) for any field extension k/C but U is not isomorphic to
any affine C-scheme.

Lemma 4.14. Let U, U ′ be open-subschemes of SA. If U(k) = U ′(k) for any field k over B, U = U ′.

Proof. Let U = UI and U ′ = UJ for ideals I and J . If U 6= U ′, we can find a B-algebra R such
that P ∈ U(R) but P 6∈ U ′(R). Regarding P ∈ SA(R) = HomB-alg(A,R), we find that P (I)R = R
and P (J)R ( R. Since P (J)R is a proper ideal of R, we can find a maximal ideal m of R such that
m ⊃ P (J)R (cf. [CRT] Theorem 1.1). Let k = R/m and define P ∈ HomB-alg(A, k) by composing

P with the projection R � k. Then P ∈ U(k) and P 6∈ U ′(k). �

Exercise 4.15.
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(1) Prove that a closed immersion i : SA ↪→ SC gives rise to an injection iR : SA(R) ↪→ SC (R)
for any B–algebras R.

(2) Prove that if i : SA ⊂ SC and j : SD ⊂ SC are closed, then R 7→ SA(R)∩SD(R) is closed in
SC and is isomorphic to SE for E = A⊗C D, where the tensor product is taken with respect
to the associated algebra homomorphisms i : C → A and j : C → D.

(3) Prove SA(R) ∼= SA′ (R) if A′ = B′ ⊗B A and R is a B′–algebra, where B′ is another B–
algebra. Here the left-hand side is regarded as an affine B-scheme and the right-hand side
is regarded as an affine B′-scheme.

(4) For two B–algebras A and C, show that SA⊗BC(R) = SA(R)×SC(R) for any B–algebra R.
Hint: φ ∈ SA(R) and ψ ∈ SC (R), we associate φ⊗ψ ∈ SA⊗BC(R) given by (φ⊗ψ)(b⊗ c) =
φ(b)ψ(c). Thus a product of affine schemes is again an affine B-scheme. The scheme SA⊗BC

is called the fibered product of SA and SC over B.

Recall the simplified notation: CB = COF (ALG/B, SETS). We can generalize open/closed
subschemes to open/closed subfunctors in the following way. A subfunctor U ⊂ X is called open
(resp. closed) subfunctor if for any affine B-scheme SA and any morphism f : SA → X, the pullback
f−1(U) is an open (resp. closed) subscheme. By Exercise 4.9, if X ∼= SA is affine, the definition
of closedness of U is the same as that of closed affine subscheme. An open subscheme of an affine
scheme is determined by its value over fields (Lemma 4.14), and the value of an open subscheme at
a field is the complement of a closed subscheme. This shows that if X ∼= SA is affine, the definition
of being open for U in X is the same as that of open affine subscheme.

Here is a slightly more general version of Yoneda’s lemma than Exercise 4.3:

Lemma 4.16. For any X ∈ CB, we have a canonical isomorphsm

ι : HomB(SA, X) ∼= X(A)

given by ι(f) = fA(idA) for the identity map idA : A ∼= A.

Taking R = A and X = SA′ , this proves (4.5).

Proof. We have ι well defined as above. Take a (variable) B-algebra R. Then for any φ ∈
HomB-alg(A,R) = SA(R), we have X(φ) ◦ fA = fR ◦ SA(φ) as f is a morphism of functors. Then
writing If = fA(idA), we get fR(φ) = X(φ)(If ) as SA(φ)(idA) = φ ◦ idA = α. Since R is a
variable, f is uniquely determined by If . Thus ι is injective. Conversely, for any x ∈ X(A) and
φ ∈ SA(R) = HomB-alg(A,R), we define fR(φ) = X(φ)(x), and we leave the reader to verify ι(f) = x.
In this way, we can recover f and hence ι is surjective. �

Lemma 4.17. If U, U ′ ⊂ X ∈ CB are open subfunctors, U = U ′ if U(k) = U ′(k) for all fields k
over B.

Proof. Suppose that U 6= U ′. Then we find a B-algebra A such that U(A) 6= U ′(A). Thus we find
P ∈ U(A) but P 6∈ U ′(A). By Lemma 4.16, we may regard P ∈ HomB(SA, U) ⊂ HomB(SA, X).
Then PA : SA(A) → X(A), and idA ∈ P−1

A (U(A)) but idA 6∈ P−1
A (U ′(A)); so, P−1(U) 6= P−1(U ′).

Then by Lemma 4.14, we find a field k with P−1(U)(k) 6= P−1(U ′)(k); so, U(k) 6= U ′(k). �

A family {Ui}i∈I of open subfunctors of X is called an open covering if X(k) =
⋃
i∈I Ui(k) for all

fields k over B.
For a given X ∈ CB , we can think of the category O(X) of open subfunctors of X, whose objects

are made up of open subsubfuctors of X and HomO(X)(U, U
′) is either the inclusion U ⊂ U ′ or the

empty set according as U is a subfunctor of U ′ or not. By Lemma 4.17, the category O(X) looks
very close to the category of open subsets of a topological space.

4.6. Zariski sheaves. A functor X ∈ CB is called local if it satisfies the following set theoretic exact
sequence for any open covering {Yi}i∈I of any object Y in CB :

(4.7) HomCB (Y,X)→
∏

i∈I
HomCB(Yi, X) ⇒

∏

i,j∈I
HomCB (Yi ∩ Yj, X),

in other words, writing Resi : HomCB (Y,X) → HomCB(Yi, X) for the restriction to Yi and Resi,j :
HomCB (Yi, X)→ HomCB(Yi∩Yj, X) for the restriction to Yi∩Yj, if Resi,j(αi) = Resj,i(αj) for (αi) ∈
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HomCB (Y,X) → ∏
i∈I HomCB (Yi, X), then αi = Resi(α) for all i for a unique α ∈ HomCB (Y,X).

Thus, any morphism from Y to X is determined by the local data αi. This is the least requirement
for X being a geometric object as a morphism from a geoemetric object must be determined by
local data. A B-scheme is a local functor in CB which has an open covering by affine B-schemes.
For a B-scheme S, an S-scheme is a pair of a morphism ιX : X → S and X. We write SCH/S for
the category of S-schemes. A morphism of S-schemes φ : X → Y by definition satisfies ιY ◦φ = ιX .
If X/S and Y/S are S-schemes, X ×S Y is plainly an S-scheme (so, SCH/B has fibered product; see
[GME] §1.5.2). A morphism X → Y of B-scheme is separated if the diagonal subfunctor ∆X/Y (R) =
{(x, x) ∈ X(R)×Y (R) X(R)|x ∈ X(R)} is a closed subscheme of X ×Y X. We define a morphism of
scheme f : X → S to be proper if the following two conditions are satisfied by f :

(1) f is separated and of finite type;
(2) For any S–scheme T , the projection fT : XT = X ×S T → T is a closed map.

A morphism X
f−→ Y of B-scheme is quasi-compact if for any open subscheme U ⊂ Y , the topological

space of f−1(U) is quasi-compact (i.e., any open covering of f−1(U) has finite subcovering).
As expected, we have (cf. [RAG] 1.8):

Lemma 4.18. An affine B-scheme is a B-scheme.

Here is a sketch of a proof.

Proof. By Lemma 4.16 and (4.3), X(A) = HomCB (SA, SR) = HomB-alg(R,A). Thus, for an open
affine covering {SAi}i∈I (for fraction rings Ai) of SA, we need to prove exactness of

HomCB (SA, X)→
∏

i∈I
HomCB(SAi , X) ⇒

∏

i,j∈I
HomCB(SAi ∩ SAj , X)

for X = SR, which turns out to be

HomB-alg(R,A)→
∏

i∈I
HomB-alg(R,Ai) ⇒

∏

i,j∈I
HomB-alg(R,Ai ⊗A Aj),

since SAi ∩ SAj = SAi⊗Aj with Resi,j corresponding to Ai 3 a 7→ a⊗ 1 ∈ Ai ⊗A Aj. The exactness
of the above sequence is equivalent to the exactness of

A→
∏

i∈I
Ai ⇒

∏

i,j∈I
Ai ⊗A Aj.

Since O(SA) has a base of open subsets of the form SAf , we may assume Ai = Afi for {fi}i∈I . Then
Ai ⊗A Aj = Afifj by a ⊗ b 7→ ab, and the exactness of the above sequence follows from standard
commutative ring theory (cf. [ALG] II.2.2 or [GME] §1.2.1). �

For A ∈ ALG/B , we have the structure morphism ιA : B → A given the B-algebra structure on
A, and hence ιA : SA → SB . Let X be a B-scheme; so, X =

⋃
i∈I SAi for open affine subschemes

SAi . Since X is local, we have the exact sequence

HomCB (X, SB)→
∏

i∈I
HomCB(SAi , SB) ⇒

∏

i,j∈I
HomCB (SAi ∩ SAj , SB)

and {ιAi : SAi → SB}i is in the kernel of the second double arrows; so, we have a unique structure
morphism ιX : X → SB .

Let X be a B-scheme. A presheaf F on X is a contravariant functor from O(X) to AB. A
morphism of presheaves F → G is a morphism of contravariant group functors. A sheaf F is
a presheaf which satisfies the following exact sequence (of abelian groups) for any open covering
{Yi}i∈I of any object Y in CB :

0→ F (Y )
Q

i Resi−−−−−→
∏

i∈I
F (Yi)

Q
i,j Resi−Resj−−−−−−−−−−→

∏

i,j∈I
F (Yi ∩ Yj),

where Resi indicate the restriction map F (Y )→ F (Yi) and Resi −Resj is taken in F (Yi ∩ Yj) after
restricting to Yi ∩ Yj . The category of sheaves S(X) is a full subcategory of the category PS(X) of
preseaves. For a presheaf F and an open subscheme U , often we write H0(U, F ) for F (U) following
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a tradition of cohomology theory. For any open subscheme Y ⊂ X of a scheme and a sheaf F on X,
F induces a sheaf on Y as any open subscheme of Y is open in X. We write F |Y for the induced
sheaf.

The stalk at P ∈ X(k) (for a field k) of a sheaf F is an abelian group given by FP = lim−→U
H0(U, F ),

where U runs over affine open subscheme such that P ∈ U(k) (such an open subscheme is called an
open neighbourhood of P ). We call P a maximal point if it has an affine open neighbourhood SA
with P ∈ SA(k) = HomB-alg(A, k) surjecting down to k. A point P ∈ X(k) is called a geometric
point if k is an algebraically closed field. A geometric point may not be maximal as P : A → k
may not be surjective for any open neighbourhood SA of P . For any integral domain R, P ∈ X(R)
induces a geometric point P ∈ X(k) for an algebraic closure k of the field of fraction of R as we
have a natural inclusion map X(R) ↪→ X(k). For a point P ∈ X(k) as above, we write k(P ) for
the coefficient field k. Since the stalk at P is determined by open affine neighbourhoods of P , any
property of affine schemes determined by stalks can be extended to general schemes; so, for example,
flatness, smoothness, étaleness, and so on is well defined for general scheme morphism f : X → Y .

Since a sheaf has values in abelian groups, it has a natural structure of additive category. We
call a sequence of sheaves F → G→ H exact if FP → GP → HP is exact for stalks at all maximal
points P . Then the category of sheaves on X becomes an abelian category (see [GME] §1.4.4 for
abelian/additive categories). If f : X → Y is a morphism of B-schemes and F is a sheaf on X, the
direct image sheaf on Y , written as f∗F is defined by f∗F (U) = F (f−1(U)) for open subschemes U
of Y .

We have a unique sheaf OS of “schematic functions” on S such that OS(SA) = H0(SA,OS) =
A for any affine open subscheme SA ↪→ S. Indeed, for any open subscheme U ⊂ S, we have
H0(U,OS) = HomB(U,Ga). This sheaf is called the structure sheaf of S. Since Ga is a ring scheme,
OS(U) = H0(U,OS) is a ring. Thus OS is a sheaf of rings. A sheaf F over a B-scheme S is called
an OS-module if we have a functor morphism OS × F → F which gives rise to an OS(U)-module
structure on F (U) for every open subscheme U ⊂ S. Consider a sheaf of rings A/S which is at
the same time an OS-module under the structure OS-algebra homomorphism ιA : OS → A. Such
a sheaf is called a sheaf of OS -algebras. We write the category of OS -algebras as ALG/OS

whose
morphism f are sheaf OS -algebra homomorphisms, that is, f : A → A′ is a morphism of functors
from O(S) to AB and is at the same time fU : A(U)→ A′(U) is OS(U)-algebra homomorphism.

We may replace SB by a general B-scheme S in the construction of B-schemes. Consider the
category CS = COF (ALG/OS

, SETS). Since ALG/OS
is a subcategory of ALG/B , we may restrict

SA for any OS-algebraA (which is also a B-algebra). A subfunctor U ofX ∈ CS is called open/closed

if f−1(U) is open for any morphism SA
f−→ X from an affine scheme SA. An open covering {Yi}i

of Y ∈ CS is made up of open subschemes Yi ⊂ Y such that Y (k) =
⋃
i Yi(k) for any field k over

the algebra OS(U) for any affine subscheme U ⊂ S. Using this definition of open covering, we call
X ∈ CS local if it satisfies the sheaf exact sequence (4.7) (replacing CB by CS) for open coverings
{Yi}i of Y . A functor X ∈ CS is called S-schemes if it is local and covered by affine open subschemes.
The functor F ∈ CS = COF (SCH/S, SETS) given by F (f : X → S) = HomOS-algebra(A, f∗OX).

Here f∗OX is a sheaf of OS-algebras given by f∗OX(U) = OX(f−1(U)). Since A and f∗OX are
local as they are sheaves over S, the functor F is also local. Thus F is an S-scheme. We often write

F = SpecS(A). A morphism X
f−→ S is called affine relative to S if X = SpecS(A) for a sheaf of

OS-algebras. By definition, for any affine open subscheme SA ⊂ S, f−1(SA) is an affine scheme over
A if and only if X = SpecS(A) (see [GME] §1.5.4).

An OX-module F on a scheme X is called invertible or a line bundle if there exists an open
covering {Yi}i∈I of X such that F |Yi

∼= OYi for each i. This is equivalent to FP ∼= OX,P for all
maximal points P . An OX-module F is called quasi-coherent if we have a sheaf exact sequence
OIX → OJX → F → 0, where OIX is the product of copies of OX indexed by any set I. If we can take
I and J finite, the OX -module F is called coherent.

Remark 4.19. If X = SA is affine, for a quasi-coherent OX -module F , putting M = F (X) we have

F (SAf ) = Mf = Af ⊗AM ; thus, F is determined by M and sometimes written as M̃ . For any given
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A-module, we have a unique sheaf M̃ such that H0(SAf , M̃) = Mf (cf. [GME] §1.2.3). Indeed, if we

write Ga⊗AM for the A-module functor R 7→ R⊗AM in CA, we have M̃(U) = HomCA(U,Ga⊗AM).

We write QS(X) for the full subcategory in S(X) of quasi-coherent OX -modules. The morphisms
of this category are defined to be OX -linear morphisms in the category of (abelian) presheaves on
X.

Exercise 4.20. Let S be a scheme. Prove the following facts:

(1) For a morphism of OS-modules f :M→M′, Ker(f)(U) = Ker(f :M(U) →M′(U)) is a
OS-submodule of M (in particular, it is a sheaf).

(2) For a set I of morphisms of OS-modules f :M→M′,
⋂
f∈I Ker(f) a a OS-submodule of

M (in particular, it is a sheaf).

If X
f−→ Y is a morphism of S-schemes, the direct image F 7→ f∗F gives a covariant functor

from QS(X) to QS(Y ). It has a left adjoint (contravariant) functor f∗ : QS(Y ) → QS(X). In
other words, the cotravariant functor G 7→ HomQS(Y )(G, f∗F ) (for F ∈ QS(X) and G ∈ QS(Y )))
is represented by a quasi-coherent sheaf f∗G over X; so, we have a canonical isomorphism (of
bifunctors) HomQS(Y )(G, f∗F ) ∼= HomQS(X)(f

∗G, F ). The sheaf f∗G is called the inverse image of
G (see [GME] §1.5.3).

Exercise 4.21. Using functoriality of “⊗” and “HomA”, check that if X = SA′ and Y = SA and

G = M̃ , we have f∗G = ˜(M ⊗A A′).

A morphism X
f−→ Y of B-schemes is a finite morphism if f∗OX is a coherent OY -module. If f

is finite, for all field k over B, the fiber of the map fk : X(k) → Y (k) is finite. If this property of
finiteness of the fiber is satisfied for all fields k over B, f is called quasi-finite morphism.

Lemma 4.22. If a B-morphism X
f−→ Y is finite, we have X ∼= SpecY (f∗OX); so, f is an affine

morphism.

Proof. Let A = f∗OX . Then, SA(T ) = HomOY -alg(A, g∗OT ) for any Y -scheme T
g−→ Y . In par-

ticular, SA(X) = HomOY -alg(A,A) has a canonical element idA, which gives rise to a morphism
f ′ : X → SpecY (A). For any maximal point y ∈ Y (k), Ay is a OY,y module of finite type with
Ay/myAy giving rise to OX,f−1(y)/myOX,f−1(y). By Nakayama’s lemma ([CRT] Theorem 2.2), we
have OX,f−1(y) = Ay. Thus shows that f ′ gives rise to isomorphism of all stalks, and hence f ′ is an
isomorphism. �

A scheme X ∈ SCH/B is locally noetherian if for any open affine subscheme SA of X, A is a
noetherian ring. If further the topological space of X is quasi compact, X is called noetherian. A

morphism X
f−→ Y of B-schemes is of finite type if f is quasi compact and there exists an open

covering {Yi}i of Y such that f−1(Yi) is covered with (finitely many) affine open subschemes SAj

with Aj finitely generated over OY (Yi). A B-morphism X
f−→ Y is called proper if (i) it is separated

of finite type and (ii) for any Y -scheme T , the base-change fT : X ×Y T → T = Y ×Y T is a closed
map of the corresponding topological space. The valuative criterion of separatedness/properness is
given as follows:

Proposition 4.23. Suppose f : X → Y be a morphism of finite type with X noetherian in SCH/B.
Suppose we have a commutative diagram:

SK
iX−−−−→ X

y
y

SV −−−−→
iY

Y

for valuation ring V with quotient field K in ALG/B . Then f is separated (resp. proper) if and only
if there exists at most one (resp. there exists a unique) morphism i : SV → X making the above
diagram commutative (after inserting diagonal arrow given by i).
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See, for example, [ALG] II.4.7 for a proof.

Exercise 4.24. Let g : Y → X and f : X → S be two morphisms. Prove that g is proper if f ◦ g is
proper and f is separated.

Corollary 4.25. Let the notation be as in Proposition 4.23. If the morphism f : X → Y is finite,
it is proper.

Proof. We apply the above proposition. Since Spec(V ) is irreducible reduced affine, we may assume
that X = Spec(A′) and Y = Spec(A) are irreducible and reduced. Since X is finite over Y , A′ is
integral over A. Then the diagram

SK
iX−−−−→ X

y
y

SV −−−−→
iY

Y

is equivalent to

K
iX←−−−− A′

∪
x

x∪

V ←−−−−
iY

A.

Since the valuation ring is integrally closed in K, iX maps A′ into V and hence induces SV → X
with desired commutativity. �

4.7. Sheaf of differential forms on schemes. Let S = SA for a B-algebra A and R be an A–
algebra. We have the structure morphism X = SR → S. For each R–module M , an A–derivation
δ : R → M is an A–linear map satisfying δ(fg) = fδ(g) + gδ(f) for all f, g ∈ R. We write
DerA(R,M) for the R–module of A–derivations. Note that δ(1) = δ(1 × 1) = δ(1) + δ(1), and
δ(1) = 0. For a ∈ A, δ(a) = δ(a1) = aδ(1) = 0 by the A–linearity of δ. Thus each A–derivation kills
A. Conversely, if a derivation δ kills A, we see δ(ar) = aδ(r) + rδ(a) = aδ(r), and δ is A–linear.

In algebraic geometry, there is no naive definition of differentiation. However we can think of

derivations of the structure sheaf OX = R̃ for each affine scheme X = Spec(R). Thus if the covariant
functor: M 7→ DerA(R,M) from R–MOD to AB is representable by an R–module ΩX/S = ΩR/A,
i.e. DerA(R,M) ∼= HomR(ΩR/A,M), we may think ΩR/A as an analog of the cotangent bundle in
Differential geometry. Indeed, we have

Proposition 4.26. Let R be an A–algebra. The functor R–MOD 3 M 7→ DerA(R,M) ∈ AB is
representable by an R–module ΩR/A with a universal derivation d : R → ΩR/A, which is unique up
to automorphisms of ΩR/A over A. In other words, if δ : R →M is an A–derivation, then there is
a unique R–linear map φ : ΩR/A → M such that δ = φ ◦ d.

Proof. Take the free R–module F generated by symbols {dr|r ∈ R}, and make a quotient by the
R–submodule generated by d(ar + a′r′) − adr − a′dr′ and drr′ − rdr′ − r′dr for all r, r′ ∈ R and
a, a′ ∈ A. Then the resulted R–module ΩR/A represents the functor.

There is another construction of ΩR/A. The multiplication a ⊗ b 7→ ab induces an A–algebra
homomorphism m : R ⊗A R → R taking a ⊗ b to ab. We put I = Ker(m), which is an ideal of
R ⊗A R. Then we define ΩR/A = I/I2. It is easy to check that the map d : R → ΩR/A given by

d(a) = a ⊗ 1− 1 ⊗ a mod I2 is a continuous A–derivation. Thus we have a morphism of functors:
HomR(ΩR/A, ?)→ DerA(R, ?) given by φ 7→ φ ◦ d. Since ΩR/A is generated by d(A) as A–modules,
the above map is injective.

To show that ΩR/A represents the functor, we need to show the surjectivity. Define φ : R×R→M
by (a, b) 7→ aδ(b) for δ ∈ DerA(R,M). Then φ(ab, c) = abδ(c) = φ(b, c) and φ(a, bc) = aδ(bc) =
abδ(c) = bφ(a, c) for a, c ∈ R and b ∈ A, and φ gives a continuousA–bilinear map. By the universality
of the tensor product, φ : R × R → M extends to an A–linear map φ : R⊗A R → M . Now we see
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that φ(a⊗ 1− 1⊗ a) = aδ(1)− δ(a) = −δ(a) and

φ((a⊗ 1− 1⊗ a)(b⊗ 1− 1⊗ b)) = φ(ab⊗ 1− a⊗ b− b ⊗ a+ 1⊗ ab)
= −aδ(b)− bδ(a) + δ(ab) = 0.

This shows that φ|I–factors through I/I2 = ΩR/A, and we have δ = φ ◦ d, as desired. �

Let A′ and R be A-algebras. Write I = Ker(R ⊗A R a⊗b 7→ab−−−−−→ R), R′ = A′ ⊗A A′ and I′ =

Ker(R′ ⊗A′ R′ a⊗b 7→ab−−−−−→ R′). By the second construction of ΩR/A, we get

ΩR/A ⊗R (A′ ⊗A R) ∼= I/I2 ⊗R R′ ∼= I′/I′
2 ∼= ΩR′/A′

canonically. Thus we get

Corollary 4.27. Let R ← A→ A′ be morphisms of algebras. Then we have ΩR/A ⊗R (A′ ⊗A R) ∼=
ΩA′⊗AR/A′ .

By the above proof of the proposition, any element of ΩR/A can be written as
∑

i fidri for some

ri and fi in R. By Corollary 4.27, taking A′ = S−1A for a multiplicative subset S in A, we get

(4.8) S−1ΩR/A = ΩR/A ⊗R S−1R = ΩS−1A⊗AR/S−1A′ = ΩS−1R/S−1A.

Let S be a general scheme and f : X → S be a morphism of schemes. Let S =
⋃
i Si (Si =

Spec(Ai)) be an open affine covering and X =
⋃
αXα (Xα = Spec(Rα)) be an open affine covering

of X so that f induces fα : Xα → Si(α). Let Ωα be the sheaf on Xα associated with the R–module
ΩRα/Ai(α)

. Then by (4.8) and the universality, we have

ϕαβ : Ωα|Xα∩Xβ
∼= Ωβ |Xβ∩Xα and ϕβγ ◦ ϕαβ = ϕαγ on Xα ∩Xβ ∩Xγ .

The sheaves Ωα’s glue together into a quasi-coherent sheaf ΩX/S . It is coherent if X is noetherian.
This sheaf is called the sheaf of differential 1–forms onX over S. By this construction, Corollary 4.27
implies

Corollary 4.28. Let X → Y ← Y ′ be morphism of schemes. Then we have ΩX/Y ⊗OX OX×Y Y ′
∼=

ΩX×Y Y ′/Y ′ canonically. In particular, for a point y ∈ Y , writing the fiber of X at y as Xy, we have
ΩX/Y ⊗OX OXy

∼= ΩXy/y.

Remark 4.29. Let F : S(X) → SETS or SCH/X → SETS be a representable functor whenever
X is affine. Here SCH/X is the category whose object is a pair (Y, f) made of a scheme Y and a
morphism f : Y → X and whose morphisms are given by

HomSCH/X((Y, f), (Z, g)) =
{
h ∈ HomSCH(Y, Z)

∣∣g ◦ h = f
}
.

Write CX for the category of functors either from S(X) or from SCH/X into SETS depending on
to which F belongs. We slightly generalize the notion of local functor from schemes to functors in
CX . A functor F ∈ CX is called local if it satisfies the following set theoretic exact sequence for any
open covering {Yi}i∈I of any object Y in CX :

HomCX (Y, F )→
∏

i∈I
HomCX (Yi, F ) ⇒

∏

i,j∈I
HomCX (Yi ∩ Yj , F ).

In other words, the functor F is local if F is determined by local data depending only on a (whatever)
small neighbourhood of each point of X. If F is local and F restricted to SCH/Y or S(Y ) is a
representable functor whenever the X-scheme Y is affine, then F is representable over SCH/X for
an arbitrary scheme X. Indeed, taking an affine open covering X =

⋃
αXα, if Wα represents F

restricted overXα, we have a canonical isomorphism ϕαβ : Wα|Xα∩Xβ
∼= Wβ|Xα∩Xβ with ϕβγ ◦ϕαβ =

ϕαγ on Xα ∩ Xβ ∩ Xγ by the universality. Thus Wα glues together well into an object W which
represents F over X.

In view of the above remark, the sheaf ΩX/S represents a functor: QS(X) 3 F 7→ DerOS (OX ,F),
where DerOS (OX ,F) is a sheaf generated by the presheaf U 7→ DerOS(f(U))(OX(U),F(U)) for each
open set U . Here OS(f(U)) = lim−→V⊃f(U)

OS(V ). The OX -dual HomOX (ΩX/Y ,OX) is the tangent

sheaf relative to X/Y . See [ALG] II.8 or [GME] §1.5.1 for more details.
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Lemma 4.30. For a finite flat S-morphism f : X → Y/S, f is étale if and only if ΩX/Y = Coker(f∗ :
f∗ΩY/S → ΩX/S) = 0.

Proof. Since f is affine by Lemma 4.22, we may assume that S = Spec(B), X = Spec(A′) and
Y = Spec(A). Suppose f is étale. Consider the exact sequence defining ΩA′/A:

0→ I/I2 → A′ ⊗A A′/I2 a⊗b 7→ab−−−−−→ A′ → 0.

The map A′ 3 a 7→ a ⊗ 1 ∈ A′ ⊗A A′/I2 gives the section of multiplication a⊗ b 7→ ab; so, we have
A′ ⊗A A′/I = A′ ⊕ I/I2 = A′ ⊕ΩA′/A with projection π to ΩA′/A. Note that HomALG/A

(A′, A′ ⊗A
A′/I2) ∼= DerA(A′,ΩA′/A) by φ 7→ π ◦ φ. Since I is a square 0 ideal of A′ ⊗A A′/I2, by étaleness,
DerA(A′,ΩA′/A) = {0}. Thus ΩA′/A = 0. The fact ΩX/Y = Coker(f∗ : f∗ΩY/S → ΩX/S) is a re-
statement of the fundamental exact sequence (e.g., [CRT] Theorem 25.1 or [GME] Proposition 1.5.4).

Conversely, assume that ΩA′/A = 0. We prove étaleness by supposing that we have A-algebra
homomorphisms φ, ϕ : A′ → E extending an A-algebra homomorphism A′ → E/J for a square
0 ideal J of an A-algebra E. This liftability basically follows comes from the natural map A′ =
A′ ⊗A A′ → A′ ⊗A A′ ⊗A E = A′ ⊗A E which satisfies by ΩA′/A = 0 descent data for getting
A′ → E (see [CRT] §28 or [EGA] IV.22). Define an A-algebra homomorphism Φ : A′ ⊗A A′ → E
by Φ(a⊗ b) = φ(a)ϕ(b). Since φ mod J = ϕ mod J , we have Φ(I) ⊂ J and Φ(d(a) · d(a′)) = 0 for
d(a) = a⊗1−1⊗a by computation. Thus Φ induces ΩA′/A = I/I2 → J . Since ΩA′/A = 0, Φ|I = 0.
Since φ(a) − ϕ(a) = Φ(d(a)) = 0, we get ϕ = φ; so, A′/A is étale. �

4.8. Scheme and variety. In §4.6, we defined a B-scheme as a local functor in CB covered by open
affine subschemes. Here is a more down-to-earth definition. Let f : S1 → S and g : S2 → S be
morphisms in CB. Recall

S1 ×S S2(R) = {(x, y) ∈ S1(R)× S2(R)|fR(x) = gR(y)},
as an object in CB . If T is the fourth functor with morphisms f ′ : T → S1 and g′ : T → S2 such
that g ◦ g′ = f ◦ f ′, we have a unique morphism h : T → S1 ×S S2 given by h(x) = (f ′(x), g′(x))
such that f ◦ h = g′ ◦ h. In this sense, S1 ×S S2 satisfies the universality of the fibered product over
S. Now a finitely presented quasi compact B-scheme S/B is a covariant functor from the category
ALG/B of B-algebras into SETS such that

(1) We have finitely many affine schemes Si = Spec(Bi) for finitely presented B-algebras Bi
with inclusion Si ↪→ S such that S =

⋃
i Si (i.e., S(k) =

⋃
i Si(k) for all fields k over B);

(2) Si ∩ Sj = Si ×S Sj is Zariski open in Si and Sj for all pairs (i, j) of indices (so, {Si} is an
open covering of S).

In practice, the scheme S is often constructed by gluing the affine schemes Si, and each φ ∈ S(R) is
determined by its “restriction” φi to Si in the following way: For each B-algebra R, we require the
local property that φ ∈ S(R) be determined by the tuple

{φi ∈ Hom(SR ×S Si, Si)}
such that φi and φj induce an identical morphism of SR×SSi×SSj → Si×S Sj (ignoring the indices
i with SR ×S Si = ∅); then, we may define

S(R) =
⋃

i

Si :=

{
(φi)i

∣∣∣φi ∈ Hom(SR ×S Si, Si), and
φi and φj coincide on SR ×S Si ×S Sj for all i, j

}
.

Thus S is a local functor covered with “finitely” many affine open subschemes (this finiteness is
“quasi-compacity” as all affine schemes are quasi-compact; see [GME] §1.2.2).

A B-morphism φ : S → T of schemes is a morphism in CB ; so, the category of B-schemes SCH/B

is a full subcategory of CB. The category SCH/B contains the category of affine B-schemes as a full
subcategory (by Lemma 4.16).

Let φ : S → T be a morphism of B-schemes. Covering T by affine schemes {SA′

i
}i for B-algebras

A′
i, that is, T =

⋃
i SA′

i
. Then φ−1(SA′

i
) can be covered again by suitable affine schemes SAij for

A′
i-algebras Aij. If SAij is smooth (resp. étale) over SA′

i
for all i and j, we call S is smooth (resp.

étale) over T .
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A separated geometrically reduced scheme V of finite type over a field k is called a (algebraic)
variety in this course. Here the word “geometrically reduced” means that V := V ×k k for an
algebraic closure k of k is reduced (i.e., OV does not have nontrivial nilpotent elements). We do
not include connectedness in the notion of “varieties”. If V/k is an irreducible variety, for any dense
affine open subscheme SA ⊂ V , the Krull dimension dimA is independent of the choice of the affine
open subscheme. We put dimV = dimA. A variety is equidimensional if all irreducible components
have equal dimension, written as dimV . As already remarked, a variety V/k (of equidimension n)
over a perfect field k is smooth over k if and only if its stalk at all maximal point has completion
isomorphic to (OV,x/mx)[[X1, . . . , Xn]] (hence, also, if and only if OV,x is regular for all maximal
points x). A normal variety is a variety V whose stalk OV,x is integrally closed in its total quotient
ring for any closed point (hence any point) of V . In particular, a smooth variety is normal (as power
series rings over a field is normal). A dimension one variety is called a curve. Since any normal
noetherian domain of dimension 1 is a discrete valuation ring (cf. [CRT] Theorem 11.2), a curve is
smooth over a perfect field k if and only if it is normal.

4.9. Projective schemes. In order to give a typical example of non-affine schemes, we introduce
graded algebras over a commutative algebra B. A graded algebra R over an algebra B is a direct
sum

⊕
dRd for a B-subalgebra R0 and R0-modules Rd for integers d such that RnRm ⊂ Rm+n.

A B-morphism φ : R → R′ of graded B-algebras R and R′ is a B-algebra homomorphism with
φ(Rd) ⊂ R′

d for all d. An element x of a graded algebra R is called homogeneous of degree d if
x ∈ Rd. The polynomial ring B[T ] is a graded algebra with B[T ]d = T dB for d ≥ 0 and Bd = 0
for negative d. More generally, the polynomial ring B[T1, . . . , Tn] of n variables is a graded algebra
such that each monomial of degree d is homogeneous of degree d.

If x ∈ R is homogeneous of degree d 6= 0, then R[ 1
x ] is a graded ring by putting R[ 1

x ]n =∑
jd+m=n x

jRm (in other words, for a homogeneous element a ∈ R, deg( a
xj ) = deg(a)−jd). Suppose

that the base ring B is noetherian. If a graded algebra R is noetherian, then there are finitely many
homogeneous elements x0, . . . , xn (of degree d0, . . . , dn, respectively) in R which generate the B-
algebra R. Thus the algebra homomorphism B[T0, . . . , Tn]→ R sending a polynomial P (T0, . . . , Tn)
to P (x1, . . . , xn) ∈ R is a surjective algebra homomorphism.

Write Di = Spec(B[T0, . . . , Tn][
1
Ti

]0). Since we have

B[T0, . . . , Tn][T
−1
i ]0 ∩B[T0, . . . , Tn][T

−1
j ]0 = B[T0, . . . , Tn][(TiTj)

−1]0

for i 6= j (in B[T0, . . . , Tn][ 1
T0
, 1
T1
, . . . , 1

Tn
]0), we identify Di∩Dj with Spec(B[T0, . . . , Tn][(TiTj)

−1]0)

canonically. In this way, we can define the projective space of dimension n by Pn =
⋃n
j=0Dj , which

is not affine. If A is a B-algebra which is either a field or a valuation ring, by definition, we have

Pn(A) ∼= {(x0, . . . , xn)|xj ∈ A× for at least one j}/A×.

If R is a general noetherian graded B-algebra, taking a finite set of homogeneous generators
x0, . . . , xn of degree 1, taking the surjective B-algebra homomorphismB[T0, . . . , Tn] sending Tj to xj,

the algebra homomorphism induces a surjection B[T0, . . . , Tn][T−1
i ]0 → R[x−1

i ]0, which in turn gives

rise to a subscheme Vi = Spec(R[x−1
i ]0) of Di. Then we define Proj(R) =

⋃
i Vi. We can generalize

this definition to any graded B-algebra R generated by finitely many homogeneous elements (not
necessarily of degree 1; see [GME] Section 1.3), because Proj(R) = Proj(R(n)) for R(n) =

⊕
dRnd.

If R× contains a homogeneous element of nonzero degree, we have Proj(R) ∼= Spec(R0) by definition
(compare with [GME] Lemma 1.3.1); however, if R has no negative degree elements, Proj(R) is not
affine.

If we can realize a B-scheme X as a closed subscheme of Pn (i.e., if we have a closed immersion
X ↪→ Pn

/B), X is called B-projective. More generally, if we can realize a morphism f : X → Y so

that it factors through Pn
Y = Pn

/B×SB Y , f is called a projective morphism. This is equivalent to have

an invertible sheaf L with generators x0, . . . , xn on X whose graded algebra R =
⊕

n≥0H
0(X,L⊗n)

has Proj(R) isomorphic to X, where x0, . . . , xn are regarded as homogeneous generators of R. The
morphism X → Proj(R) is the canonical one described in [GME] §1.5.5. If (X, f : X → Y ) is
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isomorphic in SCH/Y to an open subscheme (U, g : U → Y ) of a closed subscheme (C, h : C → Y )

of Pn
/Y (i.e., U

open−−−→
⊂

C as Y -schemes), f is called quasi projective.

Exercise 4.31. Prove that any projective morphism X → Y of B-schemes is a proper morphism
(hint: Use Proposition 4.23).

Exercise 4.32. Suppose that B is an algebraically closed field k. Prove that for any k-morphism
f from Pn

/k into an affine scheme S, fK : Pn(K) → S(K) has one point image for any field K/k.

Using this fact, show further that Pn is not affine if n ≥ 1.

Similar to the relative spectrum SpecS(A) for a quasi-coherent OS-algebra, we can construct
relative “Proj” for a quasi-coherent graded OS-algebras A =

⊕
nAn. We assume that A is finitely

generated over A0 and A0 is a coherent OS-algebras (so, An is also coherent). Then for any
affine open Spec(R) ⊂ S, A(Spec(R)) is a graded algbera of finite type over R, and we have
Proj(A(Spec(R)). Plainly if we cover S by affine open subscheme Spec(Ri), {Proj(A(Spec(Ri)))}i
glue naturally over S, giving rise to a projective S-scheme ProjS(A)→ S.

4.10. Cartier divisors. Let S be a locally noetherian scheme. We mean by a projective smooth
curve of genus g over S a morphism of schemes f : C → S satisfying the following conditions:

(C0) f is projective of relative dimension 1 and is fiber by fiber connected;
(C1) f is smooth;
(C2) The sheaf f∗ΩC/S is a locally free OS–module of rank g.

This means that for each geometric point s ∈ S, its fiber Cs = f−1(s) is reduced, connected, of
dimension 1 and dimk(s)H

0(ΩC/S ⊗ k(s)) = g. The number g in (C3) is called the genus of C/S.
When C/S is not smooth, the differential sheaf ΩC/S is often not locally free.

Hereafter we always assume that C/S is a projective smooth curve of genus g. We recall the
definition of invertible sheaves. A sheaf L is called invertible, if it is locally free of rank 1 over OC.
We define a sheaf HomOC (L,OC) by HomOC (L,OC)(U) = HomOU (L|U ,OU) for each open set U .
It is easy to see that HomOC (L,OC) is a sheaf. In particular, HomOC (L,OC) is invertible if L is
invertible. Now we see that

HomOC (L,OC)⊗ L ∼= OC
via φ ⊗ l 7→ φ(l). Thus the set Pic(C) of isomorphism classes of all invertible sheaves is a group
under the tensor product, whose identity is given by the class of OC . In particular, we write
L−1 = HomOC (L,OC).

An effective relative Cartier divisor D in C/S ([AME] Chapter 1 and [EGA] IV.21.15) is a closed

subscheme D
ι⊂ C such that

(D1) D/S is flat (⇒ f∗(OD) is a locally free sheaf over OS);
(D2) The sheaf of ideals I(D) defining D in O is invertible.

Then we have an exact sequence

(4.9) 0 −→ I(D) −→ OC −→ OD −→ 0.

By definition, I(D) is an invertible sheaf. For each open U ⊂ C, we may regard I(D)(U) as an ideal
of OC(U); so, we may take its inverse: I(D)−1 (which is a fractional OC(U)–ideal in the function
field of C). The sheaf I(D)−1 is invertible. We have a natural morphism: I(D)−1⊗I(D) → OC and
I(D)−1

x ⊗ I(D)x = I(D)x ⊗HomOC (I(D)x ,OC,x) = OC,x. Thus I(D)−1 ⊗ I(D) = OC . Tensoring
I(D)−1 with the sequence (4.9), we have another exact sequence:

0 −→ OC −→ I(D)−1 −→ OD ⊗OC I(D)−1 −→ 0.

Since OD is flat over S, the sheaf OD ⊗OC I(D)−1 is again flat over S supported on D. If we are
given an exact sequence of the above type:

(4.10) 0→ OC `−→ L −→ L/OC → 0 with invertible L and L/OC flat over S,

we have a global section ` ∈ L as above; in other words multiplication: x 7→ `x by ` gives the
inclusion OC ↪→L.
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Let Supp(L/OC) = {x ∈ C|(L/OC)x 6= 0}, which is a closed subset of C. We now try to
recover the data of D out of (4.10). We put |D| = Supp(L/OC), where |D| indicates the underlying
topological space. We have a local commutative diagram with exact rows:

0 −→ OC,x `−→ Lx −→ Lx/OC,x −→ 0
‖ ‖o ‖o

0 −→ OC,x −→̀ OC,x −→ OC,x/`OC,x −→ 0.

Tensoring by k(x) = OC,x/mx for the maximal ideal mx, we get

k(x)
`−→ k(x) −→

{
0 if x 6∈ |D|
k(x) if x ∈ |D|

}
−→ 0.

This shows |D| = {x ∈ C|`(x) = 0}. We know

I(D) = L−1 and OD = (L/OC) ⊗OC L−1.

We can recover all the data defining the divisor D out of the pair (L, `). Therefore we have

(4.11)
{
Effective Cartier divisors on C/S

}

∼=
[
(L, `)

∣∣L: invertible, ` ∈ Γ(C,L), f∗(L/`OC) is locally OS–free
]
,

where [ ] = { }/ ∼=: the set of isomorphism classes of pairs (L, `). Hereafter we identify the two
sides of (4.11).

If U = Spec(A) is affine open in C, and if L|U ∼= OU , we have the following commutative diagram
with exact rows:

0 → OU `−→ L|U −→ (L/OC)|U → 0
‖ ‖o ‖o

0 → Ã −→̀ Ã −→ Ã/`Ã → 0.

Thus D ∩ U = Spec(A/`A), and A/`A is flat over B, where Spec(B) is affine open in S such that
f−1(Spec(B)) ⊃ U .

If D and D′ are effective Cartier divisors, we define D + D′ by one of the following equivalent
conditions:

(a) D ↔ (L, `) and D′ ↔ (L′, `′)⇒ D +D′ ↔ (L ⊗L′, `⊗ `′);
(b) D ↔ I(D) and D′ ↔ I(D′)⇒ D+D′ ↔ I(D) ⊗ I(D′) = I(D)I(D′);
(c) D ↔ (Ui = Spec(Ai), `|Ui) and D′ ↔ (Ui = Spec(Ai), `

′|Ui) ⇒
D +D′ ↔ (Ui = Spec(Ai), ``

′|Ui),

where C =
⋃
iUi is an affine open covering. For each effective divisor D = (L, `), we write L(D) for

L. Then L(D) ∼= I(D)−1 .
We now claim that for three effective divisors D, D′ and D′′,

(4.12) if D +D′ = D +D′′, then D′ = D′′.

Proof. Since the assertion is local, we may assume that D, D′ and D′′ are on Spec(A) defined by
non-zero-divisors f, g, h ∈ A. Thus D = Spec(A/fA), D′ = Spec(A/gA) and D′′ = Spec(A/hA).
The assumption: D +D′ = D +D′′ implies fg ≡ fh mod A×. By the flatness of A/fA, f is not
a zero divisor. Dividing the above equation by f , we get the identity of principal ideals: (g) = (h),
which implies D′ = D′′. �

By (4.12), we can think of the group Div(C/S) formally generated by effective Cartier divisors
relative to S. In other words, Div(C/S) is the quotient module of ⊕D>0ZD by the submodule
generated by

{D −D′ −D′′|D = D′ +D′′ as effective divisors}.
Each D ∈ Div(C/S) can be written as D′ −D′′ for two effective divisors D′ and D′′. Then we can

define L(D) to be L(D′)⊗OCL(D′′)−1. As easily seen, this is well defined independent of the choice of
D′ and D′′. Then the map: D 7→ L(D) gives rise to a group homomorphism: Div(C/S) −→ Pic(C),
where Pic(C) is the group of isomorphism classes of invertible sheaves of C.
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If S = Spec(k) for an algebraically closed field k, k-rational effective divisors can be identified
with positive linear combinations of points on C(k). We have deg(

∑
P mP [P ]) =

∑
P mP . We can

thus think of the group Div(C/k) of all formal linear combinations (including negative coefficients)
of points on C. Then deg : Div(C/k) → Z is a well-defined homomorphism given by the above
formula. In particular, for any divisor D ∈ Div(C/k), we have L(D) = L(D+) ⊗ L(D−)−1 writing
D = D+ −D− for effective divisors D+ and D−, and we can verify deg(L(D)) = deg(D).

4.11. Picard schemes. For any scheme X, we define Pic(X) as the set of all isomorphism classes
of invertible sheaves on X. The association X 7→ Pic(X) is a contravariant functor by the pullback
of invertible sheaves, and Pic(X) is actually a group by tensor product. In short, Pic : SCH → AB
is a contravariant group functor.

Let (C, 0C)
f−→ S be a pointed curve. We define, for each S-scheme φ : T → S,

PicC/S(T ) = Pic(CT )/f∗T Pic(T ).

Since 0C is a section of f , 0∗
C : Pic(C)→ Pic(S) is a section of f∗ : Pic(S) → Pic(C). Thus we have

another expression:

PicC/S(T ) = Ker(0∗
CT

: Pic(CT )→ Pic(T )).

Since invertible sheaves are determined by its restriction to open covering, the functor Pic is local
(in the sense of (4.7)), and hence its subfunctor PicC/S is local, giving a local group functor from
SCH/S into AB.

Lemma 4.33. Suppose that C is smooth irreducible and S = Spec(k) for an algebraically closed
field k. Then there is a canonical group isomorphism Div(C/k)/{div(f)|f ∈ k(C)×} ∼= PicC/k(k).

Proof. Then for any open affine subscheme U ⊂ C and a divisor D =
∑

P mP [P ] ∈ Div(C/k), we
can think of a sheaf U 7→ {f ∈ HomS(U,P1)|vP (f) ≥ −D}, which is the invertible sheaf L(D). Thus
we have a group homomorphism Div(C/k)→ PicC/k(k). Note that HomS(U,P1) = k(C) as long as

U 6= ∅. Thus U 7→ HomS(U,P1) is a constant sheaf k(C) with k(C)(U) = k(C). For any invertible

sheaf L, therefore L ⊗OC k(C) = k(C), and hence L is a subsheaf of k(C). For each maximal P ,

OC,P is a discrete valuation ring with uniformizer tP (i.e., tP generates the maximal ideal of OC,P )

as C is smooth. Then LP ⊂ k(C)P = k(C) is of the form LP = t−mP

P OC,P as LP ∼= OP as OP -
module. Thus putting D =

∑
P mP [P ], we have L ∼= L(D). In other words, Div(C/k)→ PicC/k(k)

is surjective. If L(D) ∼= L(D′), then the isomorphism is induced by multiplication by an element of
k(C)×, and hence we get the desired isomorphism. �

Suppose irreducibility of S. For r ∈ Z, we put PicrC/S(T ) = {Lı PicC/S(T )| degL) = r}.

5. Jacobians of Stable Curves

In this section, we first construct Picard/Jacobian schemes for non-singular smooth curves over
a field, though our statement and definition cover general case of over an integral scheme S. Then
we generalize the construction, essentially, to stable curves, although we give details only for curves
whose bad reduction at some fibers are union of two curves intersecting transversally. At the end,
we study functorial properties of jacobians.

5.1. Non-singular curves. Let f : C → S be the smooth projective curve of genus g ≥ 2. We
suppose that C(S) 6= ∅. We follow Milne’s treatment in [Mi1] in our construction of the jacobian of
C over S. The method is to cover PicrC/S by open subsets of a symmetric product of r copies of the

curve and find a section of the covering for sufficiently large r, where PicrC/S is the relative Picard
functor of degree r line bundles over C/S defined as in Section 4.11:

PicrC/S(T ) =
{
L ∈ Pic(C ×S T )/f∗T Pic(T )

∣∣ deg(L) = r
}

for fT : C ×S T → T . An effective Cartier divisor D over C/T = C ×S T is called split over T/S if
D =

∑
P mP [P ] for P ∈ C(T ). If D = (L, `) is an effective Cartier divisor on C/S , then tensoring

the exact sequence

0→ OC `−−−−→ L → OD → 0
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with OT over OS , we get another exact sequence:

0→ OC/T `⊗1−−−−→ L⊗OS OT → OD ⊗OS OT → 0,

where the injectivity of `⊗1 follows from the local freeness of OD over S (because L is then locally a
direct sum ofOD andOT ). The pullback divisorDT = (L⊗OSOT , `⊗1) is an effective Cartier divisor
on C/T . This correspondence D 7→ DT preserves the degree of divisors and makes an association
DivrC/S : SCH/S → SETS (sending T to the set of all effective Cartier divisors on C/T of degree r)
into a contravariant functor.

We consider the r–fold fiber product: Cr =

r︷ ︸︸ ︷
C ×S C ×S · · · ×S C. Permuting the factors, the

symmetric group S = Sr of degree r acts on Cr. The action obviously has fixed points, for example,
the diagonal image of C. For any affine open U ⊂ C, U r is an affine open in Cr stable under S. For
a given finite set of geometric points x1, . . . , xr in C, we can choose an affine open U of C containing
all the points x1, . . . , xr, and affine open subsets of the form U r covers Cr. Writing U = Spec(A),

then U r = Spec(A⊗r) for A⊗r :=

r︷ ︸︸ ︷
A⊗OS A⊗ · · · ⊗OS A. The symmetric group S acts on A⊗r by

permuting factors. The quotient scheme U r/S = Spec((A⊗r)S) satisfies U r/S(k) = U(k)r/S for all
geometric points Spec(k) ↪→ S. Gluing together, U r/S, we get the quotient scheme C(r) = Cr/S.
See [GME] Proposition 1.8.4 for a more theoretical treatment of quotient scheme by a group action.

We call C(r) the symmetric r-th power of C.
We now claim that the formation of the quotient commutes with base-extension and that C(r)

is actually a geometric quotient. Outside the fixed point of S, the covering Cr → C(r) is étale,
so the quotient process (outside the fixed points) commutes with base extension. We take a closed
point of Cr which is fixed by non-trivial automorphism of S. Thus we assume that the point
x = (P1, . . . , Pr) has several Pi’s repeated. After shrinking S to an open affine subscheme and by an
étale faithfully flat base extension of S, we may assume that Pi ∈ C(S). We may assume further that

x = (

j︷ ︸︸ ︷
P, P, . . . , P , Qj+1, . . . , Qr) with P and the Qk’s all distinct. Then the stabilizer of the point

can be identified with Sj , and Sj acts on the completed stalk: ÔCr ,x = A[[T1, . . . , Tj, Tj+1, . . . , Tr]]

(A = OS,f(x)) by permuting T1, . . . , Tj . Writing π : Cr → C(r) for the projection, we know from
this that

OC(r),π(x) = A[[σ1, . . . , σj, Tj+1, . . . , Tr]]

for the fundamental symmetric polynomials σj of j–variables T1, . . . , Tj. This shows that the forma-

tion of C(r) commutes with base-extension, and π is locally-free of rank r!. Thus C(r) is truly the
quotient of Cr by S (such a quotient is called by Mumford a geometric quotient; see, [GME] §1.8.3).

We note that the discriminant ideal dX/Y for X = ÔCr,x and Y = ÔC(r),π(x) is free, generated by
∏

0<m<n<j

(Tm − Tn)2.

By this we can conclude that Cr � C(r) is locally free of finite rank (i.e., is a finite flat morphism).

Proposition 5.1. Assume C(S) 6= ∅. The functor DivrC/S is represented over SCH/S by C
(r)
/S ,

which is smooth of dimension r.

If S = Spec(k) for an algebraically closed field k and K/k is an algebraicaaly closed field extension

of k, it is plain that DivrC/S(K) = C
(r)
/S (K).

Proof. From the above computation of the stalk of C(r), we see that C
(r)
/S is a smooth scheme over

S. We now define a functorial map ι : DivC/S → C(r). By the very definition of the fiber product,
we have a functorial isomorphism: Cr(T ) ∼= HomSCH/S

(T, C)r . For each split effective divisor

D =
∑r

j=1[Pj] on C/T , we define ι(D) = π ◦ (P1, . . . , Pr), which is by definition independent of the

choice of ordering of Pj. When D is not split, taking a faithfully flat affine covering f : T ′
/S → T/S ,

we get a point h′ = ιT ′(DT ′ ) : T ′ → C
(r)
T ′ . WriteX = C

(r)
T ′ and Y = C

(r)
T for simplicity. ThenX → Y
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is affine faithfully flat. We have a closed immersion h′ : T ′ → X giving rise to OX/J ′ = h′∗OT ′ for
an ideal J ′. For projections pj : X′ = X ×Y X → X and pij : X′′ = X ×Y X ×Y X → X′, we have

the covering datum p∗1J ′
ϕ∼= p∗2J ′ and the descent datum p∗23ϕ ◦ p∗12ϕ = p∗13ϕ. By descent theory in

[GME] §1.11, the sheaf of ideals J ′ descends to a sheaf of ideals J ⊂ OY giving rise to a unique

section ι(D) = h : T → C
(r)
T . This defines ι : DivC/S → C(r). By this definition, injectivity of ιT for

all T is plain, because it is injective over split divisors.
To show the surjectivity of ι, first suppose that T = Spec(R) is affine. Pick a point P ∈ C(r)(R).

Take the completed stalk ÔC(r),P of P . The infinitesimal neighborhood π−1(Spec(ÔC(r),P )) of

π−1(P ) is stable under S. Thus (after a faithfully flat finite extension), we have, supposing the
divisor P has s distinct points of C with multiplicities j1, j2, . . . , js,

ÔCr ,π−1(P)
∼= R[[T1, . . . , Tr ]]

n (n = r!/j1!j2! · · · js!)

for
∑

k jk = r, on which S acts by permuting components and the Tj’s. Then P is given by an
R–algebra homomorphism

ÔC(r),P = R[[σ
(1)
1 , . . . , σ

(1)
j1
, . . . , σ

(s)
1 , . . . , σ

(s)
js

]]→ R

for the fundamental symmetric polynomials σ
(k)
j of T

(k)
1 , . . . , T

(k)
jk

of degree j. We want to lift φ

to Φ : ÔCr,π−1(U) → R′ for a faithfully flat extension R′/R. It is enough to treat each connected
component; so, we only need to lift an R–algebra homomorphism of φ : R[σ1, . . . , σr]] → R to
R[[T1, . . . , Tr]] for r > 1. This may not be possible keeping R, but after a base-change to a faithfully

flat extension R′ again, we can lift it as follows: Let f0(X) =
∑r

j=0 φ(σj)X
r−j
1 ∈ R[X]. We shall

show the existence of an R–algebra R′ free of finite rank over R such that f0(X) splits into a product
of monic linear polynomials in R′[X]. What we need is to take R′ = R[[T1, . . . , Tr ]]⊗R[[σ1,...,σr ]],φ R.

For the image ti of Ti in R′, we have f0(X) =
∏r
j=1(X − ti) in R′[X]. By defining Φ(Tj) =

tj, we have an extension Φ : R′[[T1, . . . , Tr]] → R′ of φ. The morphism Φ gives rise to a point

(P1, . . . , Pr) ∈ Cr(T ′) for T ′ = Spec(R′). Then we have ιT ′(D) ∈ C(r)(T ′) for D =
∑

j[Pj]. The
divisor D as a closed subscheme of CT ′ satisfies p∗1D

∼= p∗2D canonically by construction. Again
by descent argument, we get a closed subscheme D ⊂ C/T . Since OD ⊗OT OT ′ is OT ′–flat, the
faithfully flatness of R′ over R tells us that D is locally-free over T , giving rise to a unique Cartier
divisor such that ιT (D) = P . This solves the problem locally. Since the two functors are local, local
construction glues well, yielding the desired map. �

In the above proof, we have used at many places that the (completed) local ring around a point
in C(A) is given by A[[T ]]. Thus we need the smoothness of C for the validity of the proposition.
However at this moment, we have not used projectivity (i.e., properness) of the curve.

Recall that we have assumed: C(S) 6= ∅. Taking P ∈ C(S), we have

PicrC/S(T ) ∼= Picr+1
C/S(T ) by L 7→ L ⊗L([P ]).

Thus the representability of Pic0 follows from the representability of Picr for sufficiently large r.
Here we assume that r > 2g. We have a morphism of functors: π : D 7→ L(D) from Divr into Picr .

Lemma 5.2. Let F : SCH/S → SETS be a contravariant functor. Suppose that there exists a
scheme X/S with a morphism of functors π : X → F with a functorial section s : F → X (that is,
π ◦ s = 1F ). Then F is representable by a closed subscheme Y of X.

Proof. Let ϕ = s ◦ π. Then ϕ : X → X is a morphism of functors; so, it induces by Key-lemma an
endomorphism of the scheme X. Define Y = X ×X×X X by the following Cartesian diagram:

Y
i−−−−→ X

y
y1X×ϕ

X −−−−→
∆

X ×S X.
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Here ∆ is the diagonal map. By the definition of fiber products, we have

Y (T ) =
{
(a, b) ∈ X(T ) ×X(T )

∣∣a = b and a = ϕ ◦ b
}

=
{
a ∈ X(T )

∣∣a = ϕ(a)
}

=
{
a ∈ X(T )

∣∣a = s(b) ∃b ∈ F (T )
} ∼= F (T ).

Thus F is representable by Y . Since ∆ is a closed immersion, i : Y ↪→ X is a closed immersion. �

We state a ring theoretic lemma, before constructing the jacobian variety. For an integral domain
A with quotient field F and an A–module M of finite type, we write rankAM for dimF M ⊗A F .

Lemma 5.3. Let A be an integral domain with quotient field F and M be an A–module of finite
type. Let d = dimF M ⊗A F . Then

U =
{
p ∈ Spec(A)

∣∣ rankA/p (M ⊗A A/p) = d
}

is a dense open subset of Spec(A), and for p 6∈ U , rankA/p (M ⊗A A/p) > d.

Proof. Since Spec(A) is irreducible, any non-empty open subset is dense; so, we shall prove the
openness of U . Choose a maximal set of A–linearly independent elements b = {x1, . . . , xd} in M .
Then for L = Ax1 + · · ·+Axd, M/L is a torsion A–module of finite type. Thus Vb = Supp(M/L) =
Spec(A/a) for the annihilator a of M/L is a proper closed subset of Spec(A) of positive codimension.
Then obviously U ⊃ Spec(A) −⋂

b Vb, where b runs over all maximal set of A–linearly independent
elements of M . Pick p ∈ ⋂

b Vb. If r = rankA/p(M ⊗ A/p) ≤ d, then choosing a base x1, . . . , xr of
Mp/pMp in the image of M and lifting them to elements xi ∈M so that xi ≡ xi mod pMp, we find
that x1, . . . , xr generate Mp by Nakayama’s lemma. Thus further tensoring Mp by F over Ap, we
find that r = d and p 6∈ Vb for b = {x1, . . . , xd}, a contradiction. Thus r > d as desired. �

We now state

Theorem 5.4. Let S be a scheme reduced and irreducible. Suppose that f : C → S is a smooth
proper curve of positive genus g with C(S) 6= ∅. Then fixing 0 ∈ C(S), the group functor Pic0

C/S is

represented by an abelian scheme J/S of relative dimension g, and the map P 7→ L([P ]− [0]) induces
an embedding of C into J taking 0 to the identity element in J .

Here an abelian scheme over S means a proper smooth geometrically connected group scheme
over S. An elliptic curve over S is nothing but an abelian scheme over S of relative dimension 1.

Proof. As before, fix an integer r > 2g. Our strategy of proving the representability of PicrC/S is as

follows: We try to find an open covering of C(r) =
⋃
δ C

δ and PicrC/S =
⋃
δ P

δ such that for each

piece of the covering Cδ, the functor π : Cδ → P δ has a section. Then plainly on P δ ∩ P δ′ , the
schemes Yδ and Yδ′ , representing P δ and P δ

′

respectively, glue each other, and hence we get the
representability of PicrC/S .

As in the proof of Theorem 2.1, the existence of the section 0 ∈ C(S) tells us that PicrC/S is local
with respect to the base S. If we can cover S by affine open subsets so that PicCU/U is representable,
the schemes PicCU/U glue over S by the universality. Thus we may assume that S = Spec(A) for an
integral domain A, and if necessary, we can shrink further S replacing Spec(A) by its localizations.

We pick an element δ ∈ Divr−gC/S(C). For a relative Cartier divisor D on a smooth curve ϕ : C → S
and for each geometric point s ∈ S, writing C(s) for the fiber of C at s, we write `(D(s)) =
dimk(s)H

0(C(s),L(D(s))), where D(s) = D ×S k(s).
By the Riemann-Roch theorem, we have, for D ∈ DivrC/S(T ) and t ∈ T ,

`(D(t) − δT (t)) = dimk(t)(H
0(C(t), (L(−D(t) + δT (t))⊗ ΩC(t)/k(t))) + 1 ≥ 1.

We define a subfunctor Cδ/S of DivC/S by

Cδ/S(T ) =
{
D ∈ DivrC/S(T )

∣∣`(D(t) − δT (t)) = 1 ∀t ∈ T
}
.

If S is a separably closed field, for a given D ∈ DivrC/S(S), `(D) = r + 1 − g. We know that

L(D) ∼= L(D′) for D,D′ ∈ DivrC/S(S) ⇐⇒ there exists φ ∈ H0(C,L(D)) such that D′ = (L(D), φ)
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(or equivalently (φ) = D′−D). Thus the fiber of π : C(r) → PicrC/S over L(D) is as large as a (r−g)–
dimensional projective space. If H0(C,L(D − δ)) ⊂ H0(C,L(D)) is one-dimensional, the divisor
D′ ∈ Cδ with D′ > δ and L(D′) = L(D) is uniquely determined by L(D), that is, D′ = (L(D), `)
for the unique ` ∈ H0(C,L(D − δ)) (up to scalar). Thus π induces a surjection with a canonical
section from Cδ into a subfunctor of PicrC/S .

We admit the fact that that Cδ ⊂ C(r) is a non-empty open subset (this is a bit technical

cohomological computation; see, [GME] §4.1.1). We would like to show C(r) =
⋃
δ C

δ. What we
need to show is that for any geometric point x ∈ S and a sufficiently small affine open neighborhood

Spec(A) of x, Cδ/Spec(A) is a non-empty open subset and moving δ around, they cover C
(r)
/Spec(A). We

may assume that S = Spec(A) and f∗ΩC/A is A–free of rank g.
For a given D ∈ DivrC/S(S), f∗L(D) is locally free of rank r − g + 1 since degD > 2g. Thus for

a closed point s ∈ S, we can find a sufficiently small affine neighborhood U = Spec(A) such that

H0(U, f∗L(D)|U ) =
⊕r−g

j=0 Aej . The ring A is an integral domain by our assumption. Then write

ϕ : C/U ↪→ P
r−g
/U

for the projective embedding (associated to (L(P ), e0, . . . , er−g)) as in §4.9. By the

construction of ϕ, ϕ(ei) gives the coordinate Xi of the projective space. If Im(ϕ) is contained in a
hyper-plane

∑
j ajXj = 0, then

∑
j ajej = 0 on C/U , contradicting to our choice of ej . Thus Im(ϕ)

is not contained in any hyper-plane (defined over any flat extension of A). Then we can choose (after
extending A to a locally free algebra of finite rank over A if necessary) P1, . . . , Pr−g ∈ C(A) such
that the (r− g)× (r− g + 1)–matrix (ei(Pj)(s))i,j has rank r− g over k(s). Then further shrinking

Spec(A) (keeping s ∈ Spec(A)), we have

H0(C/U ,L(D−
∑

[Pj])) =
{∑

aiei
∣∣ ∑

aiei(Pj) = 0(j = 1, . . . , r − g)
}
,

which has rank 1. This shows that for δ =
∑

[Pj], we have D ∈ Cδ, because of Lemma 5.3.

Since C(r) represents the functor DivrC/S , we have a universal divisorDuniv ∈ DivrC×C(r)/C(r)(C(r))

such that for any given D ∈ DivrC/S(T ) on CT = C×S T , there exists a unique t ∈ C(r)(T ) such that

t∗Duniv = D. Consider D = Duniv− p∗1(δ) for the projection p1 : C ×S C(r) → C. Then deg(D) = g
and t∗D = D − δT .

We consider the subfunctor P δ of PicrC/S :

P δ(T ) =
{
L ∈ PicrC/S(T )|`(L(t)⊗ L(δT (t))−1) = 1 ∀t ∈ T

}
.

We have a morphism of functors π : Cδ → P δ given by π(D) = L(D). For any L ∈ P δ(T ),
deg(L) = r > 2g. Under this condition, by Riemann-Roch and cohomological computation, we can
show that f∗L is S–locally-free (see [GME] §4.1.1). After further shrinking S if necessary, we may
assume that f∗L has a section ` so that (L, `) ∈ DivrC/S(T ). Thus L is in the image of Cδ(T ), and the

morphism of functors Cδ → P δ is surjective and has a section. By Lemma 5.2, P δ is representable
by a closed subscheme Jδ of Cδ.

By the universality,

Cδ ∩ Jδ′ ∼= P δ ∩ P δ′ ∼= Cδ
′ ∩ Jδ

canonically as functors. By the Key lemma, this induces gluing data to {Jδ}δ, giving rise to a scheme
J/S representing PicrC/S .

Since Pic0
C/S
∼= J by L 7→ L⊗L(0)⊗r , J has a structure of a group scheme. Since J is a surjective

image of the projective irreducible S–scheme C(r), it is proper and irreducible.
For each geometric point s of S, the fiber J(s) at s is a proper group scheme over the separably

closed field k(s). In the construction of J , we could have assumed r = g. Then we still have
a morphism π : C(s)(g) → J(s). By the same argument, on an open subset of C(g), π is an
isomorphism into an open subset of J(s) whose complement is of positive codimension. Thus J(s)
has an open subset U which is smooth of dimension g over k(s). Since J(s) =

⋃
x∈J (x+ U) by the

group action, and x : U → x + U is an isomorphism, J(s) is smooth irreducible of dimension g.
The above argument is still valid over a small open neighborhood of s, because we find U as above
faithfully flat over the neighborhood. Therefore J is smooth irreducible over S.



ARITHMETIC OF CURVES 41

We define a morphism of functors: C → Pic0
C/S = J by P 7→ L([P ]− [0]), which is injective,

otherwise, we have an isomorphism φ : C → P1 (see the proof of Theorem 2.1). This induces an
immersion ι : C → J , which is closed because C/S is proper. �

5.2. Union of two curves. In this section, first we assume that S = Spec(k) for a field k and
C = C1 ∪ C2 is a union of two smooth irreducible curves intersecting transversally at finite set

of points. The word “transversal” means that for x ∈ C1 ∩ C2, ÔC,x ∼= k[[X, Y ]]/(XY ). Thus

the normalization π : C̃ → C is just the disjoint union C̃ = C1 t C2. Let ij : Cj ↪→ C be the
inclusion. Then for an invertible sheaf L on C, i∗jL is an invertible sheaf on Cj. The correspondence:
L 7→ (i∗1L, i∗2L) induces a functorial map

ι : PicC/S → PicC1/S ×PicC2/S = Pic eC/S .

Let c = C1 ∩ C2 = C1 ×C C2, and put C◦ = C − c and C◦
j = Cj − c. We consider the following

exact sequence: 0 → OC π∗−→ π∗O eC → Oc → 0, where Oc
∼=

⊕
x∈cOS . This induces an exact

sequence: 0→ O×
C

π∗−→ π∗O×
eC → O

×
c → 0. Since the last term is OS–free, we get after tensoring OT

for an S–scheme T , we get another exact sequence

0→ O×
CT

π∗−−−−→ π∗O×
eCT
→⊕

x∈cO×
T → 0.

The associated long exact sequence is

(5.1) 0→ O×
T

∆−→ (O×
eT ×O

×
eT )→

⊕

x∈c

O×
T → H1(CT ,O×

CT
)→ H1(C̃T ,O×

eCT
)→ H1(c,O×

c ).

The last term vanishes, as dim c = 0. Since each Čech 1-cocycle gij on Ui ∩Uj for an open covering

{Ui} can be written as gij = fi

fj
, that is, a Čech coboundary of fj in the function field of C̃,

invertible sheaves Li = f−1
i OUi glue into a global invertible sheaf L on C̃, and we have Pic eC/S(T ) ∼=

H1(C̃T ,O×
eCT

), whose identity connected component is given by the product J1 × J2 of jacobians of

Cj. Similarly we have PicC/S(T ) ∼= H1(CT ,O×
CT

). Taking the identity connected component (or

more precisely, the kernel of the degree maps) of the sequence (5.1), we have the following exact
sequence of fppf abelian sheaves:

0→ Gr−1
m → Pic0

C/S → J1 × J2 → 0,

where r = |c|. For a given invertible sheaf L on C̃, we consider π∗L. Since (π∗L)x ∼= (OC1,x ⊕OC2,x)
for x ∈ c, taking the kernel of OC1,x ⊕OC2,x → k(x) given by (x mod m1) − (y mod m2) for the
maximal ideals mj of OCj,x, we can define an invertible sheaf LC over C. This map L 7→ LC plainly

gives a section of Pic0
C/S → J1 × J2, and hence

Pic0
C/S
∼= Gr−1

m × J1 × J2.

More generally, if C becomes C1 ∪ C2 intersecting transversally after finite extension K of k, by
a descent argument,

Pic0
C/S
∼= T × J1 × J2

for a linear algebraic group T/k with T/K ∼= Gr−1
m . In any case, we have

Theorem 5.5. Let k be a field, and C = C1∪C2 be a union of two proper smooth irreducible curves
over k such that its components intersect transversally over a finite field extension K/k. Then
Pic0

C/k is representable by a smooth connected group scheme isomorphic to a product of a torus T

and the jacobian of the normalization C̃ of C. The torus T becomes isomorphic to Gr−1
m over K for

r = |C1 ∩ C2|.
Suppose now that S = Spec(A) for a Dedekind domain A (such a scheme we call a Dedekind

scheme). Let C/S be a proper flat curve fiber by fiber a smooth curve or a union of two proper
smooth irreducible curves intersecting transversally. Suppose further that C is regular and that C
is smooth over a dense open subset of S. Since two reduced components intersect transversally at

a singular geometric point x of the curve C, we have ÔC,x ∼= W [[X, Y ]]/(XY −$r) for a valuation
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ring W with a prime element $ whose residue field is isomorphic to k(x). By the regularity of the

ring ÔC,x, the exponent r is equal to 1.

Let C◦ be the smooth locus of C. Then DivgC◦/S is representable by X = (C◦)(g) by the remark

after Proposition 5.1. Let Duniv be the universal divisor on CX = C×SX. For each point t ∈ T and
T → X, we write Dt for Duniv×CX t, which is a divisor on Ct = C×X CX . Then by Riemann-Roch
theorem, we have `(Dt) ≥ 1. Let U be the open subset of X defined by

U(T ) = {D ∈ X(T )|`(Dt) = 1 ∀t ∈ T} .
Then by the Riemann-Roch theorem and Lemma 5.3 for CX/X , U is an open subscheme of X
faithfully flat over S.

By the argument in the proof of Theorem 5.4, the natural map: U(T )→ PicgC/S(T ) is an injection

for all T . By Theorem 5.4 and Theorem 5.5, U(s) = U ×S s is an open dense subscheme of the

jacobian Js of Cs for all geometric point s ∈ S. We now identify PicgC/S with Pic0
C/S by using the

smooth section P : S ↪→ C. Since S is quasi compact (it is noetherian), Pic0
C/S is covered by g + U

for finitely many g ∈ PicC/S(T ) for a faithfully flat covering T → S. Fiber by fiber, g+U ∩h+U for
g, h ∈ PicC/S(T ) is a non-trivial open subscheme of each. These schemes {g + U}g glue each other

into a scheme Pic0
CT /T smooth over T of relative dimension g. By a standard descent argument,

Pic0
C/S is representable by a scheme smooth over S of relative dimension g.

Theorem 5.6. Let S be a Dedekind scheme. Let C/S be a proper flat curve of genus g almost
everywhere smooth and whose singular geometric fiber is a union of two proper smooth irreducible
curves intersecting transversally. Suppose further that C(S) is non-empty, having a smooth section
P : S → C and that C is regular. Then the functor Pic0

C/S is representable by a group scheme, fiber
by fiber geometrically connected, smooth over S of relative dimension g.

Results on the representability of PicC/S more general than this theorem can be found in [DeM]
Theorem 2.5 and [NMD] Chapter 9.

Let f : C → S be a proper flat curve of genus g. Suppose that Pic0
C/S is representable by the

jacobian scheme J/S , which is smooth over S of relative dimension g. As before, we suppose the
origin 0 of J is actually a smooth point in C(S). Then let I ⊂ OJ be the sheaf of ideals defining the
identity section 0 of J , that is, I = I(0). The cotangent space 0∗ΩJ/S of J along 0 is isomorphic to

I/I2, and the tangent space along the origin TJ/S is defined by the OS–dual of the cotangent space.

Theorem 5.7. We have TJ/S ∼= R1f∗OC and 0∗ΩJ/S ∼= f∗Ω◦
C/S canonically as O–modules, where

Ω◦
C/S is the dualizing sheaf of C/S.

Proof. By construction, we have a canonical surjective homomorphism I/I2 � 0∗ΩJ/S . Since

J/S is smooth, over an affine open subset U = Spec(A) ⊂ S, ÔU,0 ∼= A[[T1, . . . , Tg]], and thus
I ⊗S A/I2 ⊗S A ∼= Ag. Thus the two locally free modules I/I2 and 0∗ΩJ/S have the same rank.
This shows that the morphism is an isomorphism.

Let OS [e] = OS [X]/(X2), where e is the class of X modulo X2 . The scheme T = SpecS(OS [e])
is an S–scheme, and we have a homomorphism

π : J(T ) = Pic0
C/S(T )→ Pic0

C/S(S).

Obviously,

Ker(π) = HomOS (OJ,0/I2,OS [e]) ∼= HomOS (I/I2,OSe) ∼= TJ/S .
We can rewrite, when S = Spec(k) for a field k,

π : J(T ) ∼= H1(C,O×
CT

)→ H1(C,O×
C) = J(S),

by computing the cohomology groups using Čech cohomology groups.
Since O×

CT

∼= O×
C ⊕OCe, we know that

Ker(π) ∼= H1(C,OCe) ∼= H1(C,OC).



ARITHMETIC OF CURVES 43

Thus for all geometric points s ∈ S, (R1f∗O) ⊗ k(s) ∼= TJ/S ⊗ k(s). Since we have a natural map

(R1f∗O) → TJ/S inducing the local isomorphism by the same (global) reasoning, the local freeness
of the two sides shows the desired isomorphism.

By taking OS–dual, the Serre–Grothendieck duality theorem ([GME] §2.1.2) tells us the identity
for the cotangent space. �

5.3. Functorial properties of Jacobians. Let S = Spec(A) for a Dedekind domain A of charac-
teristic 0. We study functoriality of jacobian varieties for regular flat proper curves C/S. For the mo-
ment, all curves C are supposed to be regular irreducible with smooth section 0 = 0C : S ↪→ C. We
also suppose the existence of the jacobian scheme J = J(C)/S representing Pic0

C/S . Let f : C → C ′

be an S–morphism between two curves taking 0C to 0C′ . Since f∗T : PicC′/S(T ) → PicC/S(T ) is a
morphism of group functors, it induces a homomorphism J(f) : JC′ → JC . This is the contravariant
functoriality of the jacobian scheme. Since f∗L(D) = L(f∗(D)), we have J(f)(πC′ (D)) = πC(f∗(D))
for πC : DivrC/S → PicrC/S

∼= J , where the last isomorphism is given by L 7→ L ⊗L(−[0])⊗r.
Here is a useful ring theoretic lemma (see [GME] Lemma 2.8.1 for a proof):

Lemma 5.8. Let ϕ : (A,m)→ (B, n) be a morphism of local rings (i.e. ϕ−1(n) = m). Suppose the
following two conditions: (i) B is an A–module of finite type, and (ii) A and B are both regular of
dimension n. Then B is A–free.

Suppose that f is constant at one geometric fiber fs : C(s) → C ′(s). Since f is proper, the
image Im(f) is a closed subscheme of C ′. By the assumption, it is of positive codimension. Since
dimS = 1, we have dimC = 2. Since f is an S–morphism taking 0C to 0C′ , dim Im(f) ≥ 1. Thus
dim Im(f) = 1. This shows that f is constant generically. We consider the graph Γf ⊂ C ×S C ′ of
f , that is, Γf = Im(1× f). Since f is constant at the generic point η of S, Γf ×S η is open dense in
Γf and Γf is of the form

⋃
j C ×Pj after finite locally free extension T of S. The closure of this set

in C ×S C ′ is covered by C ×S D for a closed subscheme D of C ′ of relative dimension 0 over S; so,
f is constant at every geometric fiber.

Suppose now that f is non-constant at one geometric fiber. Since f is proper non-constant fiber
by fiber, it is universally surjective. Then by the above argument, f is quasi-finite (that is, its fiber
at every geometric point is finite) with non-empty fiber everywhere. Thus for each geometric point
x ∈ C ′, f induces f# : OC′,x ↪→OC,f−1(x). Since the two sides are regular rings of equal dimension

(= 2), f# is finite flat (see Lemma 5.8). Thus f is locally free. We write deg(f) for the rank of f ,
which is a well defined integer, since C and C ′ are irreducible.

Start with a morphism fη : C(η) → C ′(η) of generic fibers (so, C(η) := C ×S η for the generic
point η of S). Let s be a closed point of S. Since S is Spec(A) for a Dedekind domain A, As = OS,s
is a discrete valuation ring (DVR). Let Cs = C ×S Spec(As). Let x be a point of the generic fiber,
that is, x ∈ C ×S η (η = Spec(K)) for the quotient field K of A. Then by the valuative criterion of
properness (Proposition 4.23), we have a unique point xs = x×S s for the closure x in C. Similarly
fη(x)s is uniquely determined by fη(x). In other words, we have

Γ ∩ (xs ×C ′) = Γ×C×C′ (xs × C ′) = xs × fη(x)s

for the closure Γ of Γfη in C ×S C ′. This shows that the projection p : Γ → C is fiber by fiber an
isomorphism, and therefore, locally free of rank 1 (see [EGA] IV.11.3.10). Thus p is an isomorphism.
We put f = p′◦p−1 for the projection p′ : Γ→ C ′. Then we see Γ = Γf for the morphism f : C → C ′.
It is plain that f is determined uniquely by fη.

We record what we have proven.

Lemma 5.9. Let the notation and assumption be as above. Suppose that C and C ′ are regular
irreducible curves. Then for an S–morphism f : C → C ′, if f is non-constant at one geometric fiber,
then f is locally free of finite rank. If fη : C(η)→ C ′(η) is a morphism of generic fibers, then there is
a unique S–morphism f : C → C ′ inducing fη. Writing fs : C(s)→ C ′(s) for the morphism induced
by f at a closed point s ∈ S, we have the reduction map: HomS(C(η), C ′(η))→ HomS(C(s), C ′(s))
sending fη to fs.
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Let f : C → C ′ be a locally free S–morphism taking 0C to 0C′ . Then for L ∈ PicC/S(T ). We
consider the functors

Ti : QS(T ) 3 F 7→ RifT,∗(L ⊗OCT
f∗TF) ∈ QS(T ).

Since C/C ′ is locally free of relative dimension 0, we can show that fT,∗L is locally free of rank
deg(f) (Exercise 5.13). We then define

Pict(fT )(L) =

deg(f)∧

OS

fT,∗L ∈ PicC′/S(T ).

Obviously Pict(f) is a morphism of group functors; so, taking the identity connected component
to the identity component, and hence it induces an S–morphism J t(f) : J → J ′ of group schemes.
When f : C → C ′ is not locally free, it has to be constant. In this case, we put J t(f) to be the
zero-map.

Theorem 5.10. Let the notation and assumption be as above. In particular, we assume that C
and C ′ are regular. Then for an S–morphism f : C → C ′ taking 0C to 0C′ , J(f) : JC′ → JC
and J t(f) : JC → JC′ satisfy contravariant and covariant functoriality, respectively. This means
J(f ◦ g) = J(g) ◦ J(f) and J t(f ◦ g) = J t(f) ◦ J t(g) when all the morphisms above are well defined.

We would like to prove the following Albanese functoriality:

Theorem 5.11. We suppose that C is smooth over the spectrum S of a Dedekind domain. If
φ : C → A is an S–morphism into an abelian scheme A/S taking 0 to 0A, then there exists a unique
homomorphism J(φ) : JC → A such that J(φ)◦ι = φ for the canonical closed immersion ι : C ↪→ J in
Theorem 5.4. In other words, J represents the covariant functor A 7→ {φ ∈ HomS(C,A)|φ(0) = 0A}
in the category of abelian schemes over S.

Proof. Define Φ : DivgC/S(T ) → A(T ) by Φ(
∑

j [Pj]) =
∑

j φ(Pj). This is a well defined morphism

of functors; so, it induces a morphism: C(g) → A by Proposition 5.1 and the Key lemma. As
we have shown in the proof of Theorem 5.6, we have a dense open subset U ⊂ C(g) such that∑

j[Pj] 7→
∑
j ι(Pj) is an open immersion of U into J . Thus we define J(φ) = Φ|U on U . This Φ

satisfies the desired property on U since PicrC/S
∼= Pic0

C/S by L 7→ L ⊗ L(−r[0]). Suppose J − U
contains an irreducible closed subscheme x of codimension 1. Since J is normal, OJ,x is a normal
local ring of dimension 1 and hence is a discrete valuation ring (see [CRT] Theorem 11.2). Since
the generic point h ∈ Spec(OD,x) is contained in U , Φ is well defined on h. Then by the valuative
criterion (Proposition 4.23) of properness, Φ extend uniquely to x. Thus, J(φ) extends uniquely to

an open set Ũ ⊂ J whose complement is of codimension ≥ 2.
By the lemma following this proof, we then know that J(φ) is actually defined over the entire

J . �

We prove the following lemma used in the above proof:

Lemma 5.12 (A. Weil). Let the notation be as in Theorem 5.11. Let G/S be a group scheme over
S and V/S be a smooth irreducible scheme. If f : U → G is an S–morphism defined over an open
subset U of V with codim(V − U) ≥ 2, then f has a unique extension to V .

Proof. We follow a proof by M. Artin in [A] 1.3. We prove that either f is defined on entire V or
cannot be defined on a closed subset purely of codimension 1.

Write the group law of G as m : G ×S G → G; so, m(x, y) = xy and i : G → G for the inverse.
Define F : V ×S V → G by m ◦ (idG×i) ◦ (f × f) (on the points where the function is well defined).
Thus F (x, y) = f(x)f(y)−1 . We claim that for any point x ∈ V ,

F is defined on (x, x) ⇐⇒ f is defined at x.

The direction: ⇐ is obvious. Suppose F is defined on (x, x). If F cannot be defined at (a, b), F
cannot be defined on any point in the closure of (a, b). Thus the set where F is defined is a non-
empty open subset of V ×S V . For the generic point η of V , F (x, η) is well defined (since (x, x) is
in the closure of (x, η)). Since f is defined on η, f(x) = F (x, η)f(η) is well defined.
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Now supposing that f is not defined on the entire V , we show that it cannot be defined on a closed
subscheme of codimension 1. Let K be the function field of V ×S V . We have φ = F# : OG,e → K,
since F (η, η) = eη for the identity section e : S ↪→ G. For each α ∈ K, regarding α : V ×S V → P1

/S,

we put (α)∞ = α−1(∞). Since V ×S V is normal, (α)∞ is a divisor on V ×S V . Note that

OV×V,(x,x) =
{
α ∈ K

∣∣(x, x) 6∈ (α)∞
}
.

If F is not defined at (x, x), then there exists α ∈ Im(φ) such that (x, x) ∈ (α)∞.
The diagonal image ∆ is a complete intersection locally. Since (α)∞ intersects with ∆ at (x, x),

it adds one more equation (because f is defined at (η, η)); so, the intersection has codimension 1 in
∆. Thus f cannot be defined on Cα = ∆ ∩ (α)∞, which has purely of codimension 1. �

Exercise 5.13. (1) Prove that fT,∗L is locally free of rank deg(f) for L ∈ PicC/S(T ) if f : C →
C ′ is locally free of rank deg(f).

(2) Show that
∧r

OS
L is invertible if L is a locally free sheaf of rank r over a scheme S.

(3) Under the notation of Theorem 5.10, verify J(f◦g) = J(g)◦J(f) and J t(f◦g) = J t(f)◦J t(g).

5.4. Self-duality of Jacobian schemes. Let A be a Dedekind domain. For all abelian schemes X
defined over S = Spec(A), it is known that PicX/S is again representable by a group scheme whose
identity component is an abelian scheme of the same dimension; so, we write X∗ for the abelian
scheme representing the connected component Pic0

A/S . It is called the dual abelian scheme of X.

We admit this fact quoting [ABV] Section 13 (and [NMD] Section 8.2).
For each invertible sheaf L on J , we can pull it back to an invertible sheaf ι∗L on C. This induces

a morphism of group functors ι∗ : PicJ/S → PicC/S and hence induces an S–homomorphism of the
identity components p : J∗ → J .

We would like to prove the following self duality theorem for jacobians.

Theorem 5.14. Let S = Spec(A) for a Dedekind domain A and C/S be a smooth proper curve over
S of genus g. Then J∗ ∼= J by p = ι∗.

Proof. We follow a proof given in [Mi1] Section 6. If ι∗ induces an isomorphism fiber by fiber, it is
locally free of rank 1, and hence globally an isomorphism. Thus we may assume that S = Spec(k)

for an algebraically closed field k. We consider the natural map: C(g−1) = Divg−1
C/S → Picg−1

C/S taking

D to L(D), and write Θ for the image of C(g−1) in J . Thus we have a morphism f : C(g−1) → Θ.
Choose a base ω1, . . . , ωg of ΩC/k, and embed ΩC/k into k(C) (regarded as the constant sheaf over
C), where k(C) is the function field of C. Write e1, . . . , eg for the image of ωj. Let O be the
open set of C on which ej is a well defined morphism into A1

/k. Let P1, . . . , Pr be r–points of C

for r ≤ g. Consider the matrix (ei(Pj)). Since ej are linearly independent over k, on an open

subset U = Ur of O(r) ⊂ C(r), one of the determinants of the r × r-minors of the matrix does
not vanish. Thus on D ∈ U , dimH0(C,ΩC/k ⊗ L(−D)) = g − r. By the Riemann-Roch theorem,

dimH0(C,L(D)) = g − r + r − g + 1 = 1.

Let r = g − 1. Then on U , the map C(g−1) → Θ is injective. Thus dimk Θ = g − 1, and Θ is
an effective divisor on J . Let us explain this fact in more details. For the generic point η of Θ,

A = OU,η is a discrete valuation ring. We have a morphism: Spec(A)
v−→ J . For a sufficiently small

(non-empty) open subset V ⊂ J , the kernel of OU (V )
v#

−−→ A is generated by a single element fV .
Then the sheaf of ideals I(Θ) of the closed subscheme Θ is an invertible sheaf locally generated by fV .
We define L(Θ) = I(Θ)−1 . By the same argument, to each closed subscheme D ⊂ J of codimension
1, we can thus associate its sheaf of ideals I(D) and an invertible sheaf L(D) = I(D)−1 .

We define i : C → J∗ by i(a) = L([ι(a)+Θ])⊗L(−[Θ]), where x+Θ is the image of Θ under the
translation y 7→ y + x in J . By the Albanese functoriality of the jacobian, i extends to i : J → J∗

so that

i(d) = L(
∑

j

[ι(Pj) + Θ])⊗L(−g[Θ])

if d corresponds to D =
∑

j Pj ∈ DivgC/S(k).
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Let D ∈ DivgC/S(S). Consider its image d in J . Let U ′ be the open subset of reduced divisors,

that is, U ′ is obtained from U by removing divisors with multiplicity > 1. Then we claim that

if D ∈ U ′, ι∗L([d+ Θ]) = L(D).

Writing D =
∑

j[Pj], we consider the closed subset ι−1([d+ Θ]). For a point Q ∈ C(k),

Q ∈ ι−1([d+ Θ]) ⇐⇒ ∃Q2, . . . , Qg such that ι(Q) +
∑

j

ι(Qj) = d.

This is equivalent to the linear equivalence ofD to D′ = Q+
∑
j Qj, i.e., dimH0(C,L(D)) ≥ 2, which

is impossible if D and D′ are distinct. Thus D = D′ and hence, set theoretically ι−1([d+ Θ]) = D.
To show that ι∗(L([d+ Θ])) = L(D), we need to show that deg(ι−1([d+Θ])) = g. The natural map

π : Cg → C(g) has degree g! by definition. We shall compute the degree of the map ψ : Θ ×C → J
given by (a, Q) 7→ a+ι(Q). The map π factors into a composite of three maps: π : Cg → Cg−1×C →
Θ × C ψ−→ J , and hence g! = deg(π) = (g − 1)! deg(ψ). This shows that deg(ψ) = g. Since ψ is
proper, it is finite over U ′. Since divisors in U ′ are multiplicity free, we find deg(ι−1([d+ Θ])) = g,
which shows the claim.

By the claim, we find ι∗ ◦ i = idU ′ on U ′. Since U ′ is dense, we find p ◦ i = idJ . Since J∗ and J
are irreducible of equal dimension, this implies that p and i are isomorphisms. �

Corollary 5.15. Let J be the jacobian variety of a smooth proper algebraic curve over an alge-
braically closed field k. Then every effective divisor D on J algebraically equivalent to Θ is of the
form [a+ Θ] for a ∈ J . In particular, they are all irreducible.

Proof. Since J∗ ∼= J , we have L(D) ∼= L(a+Θ); so, we find a unique generator φ of L(−D)⊗L(a+Θ)
up to constant. We may regard φ as a morphism φ : J → P1. Then φ−1(∞) = a+Θ and φ−1(0) = D.
Restricting φ to C, we find (φ|C)−1(0) = D∩C = DC , and from the above argument in the proof of
the theorem, we conclude that D = i(d)+Θ for d ∈ J corresponding to DC (and thus a = i(d)). �

The above proof shows that H0(J,L([a+ Θ])) = k, and the linear equivalence class of a+ Θ (in
the set of effective divisors) is a singleton (that is, a one-element set). This fact also follows from
the dimension formula of H0(J,L([a+ Θ])) in [ABV] Section 16.

5.5. Generality on abelian schemes. We prepare some general results on abelian schemes X,
which we apply to jacobian schemes at the end of this subsection.

Since X∗ represents Pic0
X/S , we have a universal line bundle P/X×SX∗ , called the Poincaré bundle,

such that for any line bundle L overX×ST trivial along the 0–section, we have a unique φ : T → X∗,
φ∗
XP ∼= L, where φX : X ×S T → X ×S X∗. We then have a morphism of functors: X(T ) 3 φ 7→
φ∗
X∗P ∈ PicX∗/S(T ). This induces an S–morphism i : X → (X∗)∗. Since P is trivial over the

zero-section, i takes 0X to 0(X∗)∗ . We would like to show that this map is an isomorphism of group
schemes. This in particular shows that an abelian scheme is associated to a commutative group
functor (so, the group X(T ) is an abelian group for all T/S).

Lemma 5.16. (Rigidity) Let X, Y and Z be reduced irreducible schemes over S = Spec(k) for an
algebraically closed field k. Suppose that X is proper over S. Let f : X ×S Y → Z be a morphism
with f(X × y0) = z0 for two closed points y0 ∈ Y and z0 ∈ Z. Then there exists a morphism
g : Y → Z such that f = g ◦ p for the projection p : X ×S Y → Y .

Proof. We follow [ABV] Section 4. Since X×S Y is irreducible and reduced, if we get a lemma on an
open subscheme of X ×S Y , the identity holds everywhere. Thus we choose an affine neighborhood
U = Spec(A) ⊂ Z of z0, and consider f−1(U). We write F = Z − U , which is closed. Since p is a
closed map because of properness of X, we have W = p(f−1(F )) ⊂ Y is a closed subset (different
from Y : y0 6∈W ). We put V = Y −W , which is an open neighborhood of y0.

Choose a closed point x0 of X. Then Y ∼= x0 ×S Y , we define g by pulling back f through this
isomorphism. For every closed point y ∈ V , f sends the proper irreducible scheme X ×S y into
U = Spec(A); so, the image is a proper irreducible closed subscheme of U , which is Spec(A/a) for
an ideal a. The scheme Spec(A/a) is proper irreducible and reduced only when a is a maximal ideal;
so, the image is a closed point. Thus f(x, y) = f(x0, y) = g ◦ p(x, y), which was to be proven. �
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Corollary 5.17. Let S be an integral scheme (that is, reduced irreducible). Let X and Y be abelian
schemes over S. If an S–morphism f : X → Y sends 0X to 0Y , f is a morphism of group schemes,
that is, a group homomorphism.

By this fact, i : X → (X∗)∗ is a morphism of group schemes.

Proof. Let aZ : Z×SZ → Z be the addition of a general abelian scheme Z/S . Define φ : X×SX → Y
by f ◦aX −aY ◦ (f×f). We need to show that φ is the zero map. Let s ∈ S be any geometric point.
By our assumption, φ(X(s) × 0X(s)) = φ(0X(s) × X(s)) = 0Y (s) for the fibers at s. By the above
lemma, φ is independent of right and left variables; so, a constant. This shows that φ is identically
0 fiber by fiber; so, it is identically 0 over X ×S X. �

Lemma 5.18. Let S be the spectrum of a discrete valuation ring A with quotient field K. Let X/S
and Y/S be abelian schemes. Let fK : XK → YK be a K–homomorphism for XK = X ×S η and

YK = Y ×S η with η = Spec(K). If fK : X(K) → Y (K) is a surjection for an algebraically closed
extension K of K, then there is a unique S–morphism f : X → Y inducing fK . Moreover f is
proper flat, and if X and Y have equal dimension, f is locally free of finite rank.

Proof. Since fK : X(K) → Y (K) is surjective, fK sends an open dense subset of XK to a subset
containing a dense open subset of YK . Thus fK is flat over an open subset U of YK . If fK is not flat at
x ∈ X(K), then we can find x′ ∈ X(K) such that x ∈ −x′ +f−1(U). Since f(x′ +u) = f(x′)+f(u),
we can factor f |x′+f−1(U) as

−x′ + f−1(U)
Tx′−−−−→ f−1(U)

f−−−−→ U
Tf(−x′ )−−−−−→ f(−x′) + U,

where Tx′(t) = t+x′. Since Tx′ and Tf(−x′) are isomorphisms, we know that f is flat over f(−x′)+U .
Thus fK is a flat morphism.

If y ∈ Y (L) for an extension L ofK, f−1
K (y) is a variety defined over L. By Hilbert’s Nullstellensatz

(Hilbert’s zero theorem), it has a point rational over any algebraic closure of L. Thus we may assume
that K is an algebraic closure of K.

If xK is a closed point on XK(K), we have a finite extension L of K such that xK ∈ X(L). Take
a valuation ring B of L over A, by the valuative criterion of properness (see Proposition 4.23), we
have a unique x ∈ X(B) giving rise to xK at the generic fiber. Similarly, we have a unique y ∈ Y (B)
giving rise to f(x). Thus fK extends to an open set of X of codimension ≥ 2. Then by Lemma 5.12,
it extends uniquely to X.

Let s be the closed point of S, and write X(s) and Y (s) for the special fibers at s. Let k = k(s)

be the residue field of A, and take a point ys ∈ Y (k) for an algebraic closure k of k. Since Y/S is
smooth, we can find a valuation ring (unramified over A) such that ys extends to a section y ∈ Y (B).
Since f is surjective, we can find xK ∈ X(K) such that fK (xK) = yK . By extending B further if
necessary, we may assume that x extends uniquely to x ∈ X(B). Then by definition, f(x) = y, and
hence fs : X(k)→ Y (k) is surjective. This implies that fs is flat by the argument at the beginning
of the proof. Thus f is fiber by fiber flat, and hence f itself is flat (see [EGA] IV.11.3.10). By the
surjectivity, f is faithfully flat. The morphism f is proper by Exercise 4.24.

If X and Y have equal dimension, wehave dim f−1(y) = dimX−dimY by [GME] Theorem 1.9.6,
and dim f−1(y) = 0 for each geometric point y ∈ Y , and hence f is quasi finite. By the properness,
f∗(OX) is a coherent OY –module (see [EGA] III.3.2.1) and hence, f is finite. Thus f is locally free
of finite rank. �

We call a morphism of irreducible schemes dominant if the closure of the image is total.

Theorem 5.19. Let A be a Dedekind domain, and write S = Spec(A). Let X/S and Y/S be abelian
schemes over S. Then we have

(1) If f : X → Y is a dominant S–homomorphism, then Im(f) = Y , Ker(f) = X ×Y,0Y S is
a flat proper group scheme, and if f is generically smooth, it is an extension of an abelian
scheme by a finite étale group scheme over an open dense subscheme of S.

(2) If f : X → Y is a dominant S–homomorphism and dimS X = dimS Y , then Ker(f) is a
finite flat group scheme over S, whose Cartier dual is given by Ker(ft : Y ∗ → X∗). Here
X∗ is the dual abelian scheme, and ft(L) = f∗(L) for L ∈ PicY/S.
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(3) If f : X → Y is an S–homomorphism generically smooth, then there exists an abelian
scheme W over a dense open subscheme O of S and S–homomorphisms π : W/O → Y/O and

f̃ : X/O → W/O such that f = π ◦ f̃ , π is finite over Im(π) and f̃ is smooth and faithfully
flat.

Proof. Since f is proper, there exists a unique reduced closed subscheme W = Im(f) such that
|WT | = |fT (XT )| set-theoretically for all S–schemes T . If f is dominant, its image W contains
a generic point of Y , and W = Y (because Im(f) is closed and Y is irreducible). The scheme W
represents a group functor; so, it is a group subscheme of Y . Since X is irreducible, W is irreducible.

Suppose that f is dominant. We have the inclusion f# : OY → f∗OX . We take the integral

closure A of OY in f∗OX , which is the sheaf of OY –algebras. Consider the normalization π : Ỹ =

SpecYA → Y in OX . Then Ỹ is a normal scheme finite affine over Y , and hence proper over S. By

definition, we have f̃ : X → Ỹ with π ◦ f̃ = f . Since the morphism X ×S X → Ỹ ×S Ỹ is dominant,
OeY ⊗OS OeY injects into f∗OX ⊗OS f∗OX , which is a sheaf of integral domains (because X/S is
smooth). It is known that for a field k and integrally closed k–algebras R and R′ whose quotient
fields are separable over k, R ⊗k R′ is integrally closed as long as R ⊗k R′ is an integral domain
(see [BCM] V.1.7). Applying this fact to the quotient field k of OS and replacing S by its dense

open subset, we may assume that Ỹ ×S Ỹ is the normalization of Y ×S Y in X ×S X. Consider the
multiplication m : X ×S X → X. Since f is a homomorphism of group scheme, m# takes OY into

OY ⊗OS OY and hence induces a morphism meY : Ỹ ×S Ỹ → Ỹ to their normalizations. Similarly,

the inverse −1 : Y → Y extends uniquely to Ỹ by the uniqueness of the normalization. The scheme

Ỹ has the 0–section given by f̃ ◦ 0X . Thus Ỹ is a group scheme, and f̃ : X → Ỹ and π : Ỹ → Y are
homomorphisms. By our assumption, generically, the function field of X is a separable extension of

the function field of Ỹ . Thus f̃ is generically smooth.
Let g : T → S be an irreducible group scheme over an irreducible scheme S. Suppose that g is

faithfully flat and that g is generically smooth, fiber by fiber. Since smoothness is a property of
stalks, it is an open property; so, g is smooth over a dense open subset U ⊂ T . Since g is faithfully
flat, we may assume that U is faithfully flat over an open subset O = g(U) ⊂ S. Let x ∈ T be a
non-smooth geometric point of g over O. Then we can find another geometric point u ∈ T such
that x + u ∈ U . Thus writing the translation by u as Tu : T/O ∼= T/O , we find g ◦ Tu = g. Since
Tu is an isomorphism, g is smooth over x ⇔ g is smooth over Tu(x) = u + x. This shows that g is
everywhere smooth over O.

We apply the above argument to g : Ỹ → S. Since the integral closure of OS in OX is equal

to OS (because X is proper smooth), the same is true in OeY . Thus the quotient field of Ỹ is a

separable extension of k, and hence g is generically smooth. Since Ỹ is an irreducible group scheme,
the morphism g is smooth on a dense open subset of S. Thus again replacing S by its dense open

subset if necessary, we may assume that Ỹ → S is smooth; so, Ỹ is an abelian scheme over S.

Since f̃ is generically smooth, f̃ is smooth over an open subset U ⊂ X. Since fibers of X and Ỹ are

smooth, we may assume that U is faithfully flat over a dense open subset O ⊂ S. By Lemma 5.18, f̃

is a flat morphism. Since flat morphisms are open maps, f̃(U) is open. Let x ∈ X be a non-smooth
geometric point of f over O. Then we can find another geometric point u ∈ X such that x+ u ∈ U .
Then on a small neighborhood V of x, f factors as

f̃V : V
T−u−−−−→ U

ef−−−−→ f̃(U)
Tf(u)−−−−→ f̃(V ).

Since the translations are isomorphisms, f̃ itself is smooth over O. This shows that Ker(f̃) is a

smooth proper group scheme over O. Since it is noetherian, Ker(f̃) is a finite union of connected
irreducible components over O. Write G/O for the identity component. Then G is proper smooth
geometrically irreducible; so, it is an abelian scheme over O.

Since f = π ◦ f̃ , Ker(f) contains Ker(f̃). Since f̃ and f are both proper faithfully flat, and

dimS Ỹ = dimS Y , we see that dimS Ker(f̃) = dimS Ker(f). Thus again Ker(f) is a finite disjoint
union of the translation of G. This proves (1).

When dimS X = dimS Y , f is quasi finite. Since f is proper, it is locally free of finite rank by
Lemma 5.8 (and hence affine). Thus Ker(f) is a locally free group scheme of finite rank.
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We construct a non-degenerate pairing 〈 , 〉 : Ker(f) × Ker(ft) → Gm: Let L ∈ Ker(ft) ⊂ Y ∗.
We may assume that 0∗L = OS . Cover Y by affine open sets Ui = Spec(Ai) so that L|Ui =
φ−1
i OUi . Then (φi/φj) ◦ 0Y = 1 for all i and j, and f−1(Ui) = Spec(Bi), because f is affine. Then
f∗L|f−1(Ui) = (ϕi)

−1Of−1(Ui) for ϕi = φi ◦ f , and for every point (P : T → X) ∈ Ker(f)(T ), we
have

(ϕi ◦ P )/(ϕj ◦ P ) = (φi ◦ f ◦ P )/(φj ◦ f ◦ P ) = (φi ◦ 0Y )/(φj ◦ 0Y ) = 1.

This implies that {ϕi ◦ P } glues together giving rise to a section ϕ ∈ Gm/S(T ). We then define
〈P,L〉 = ϕ. If (ϕi|Ker(f))/(ϕj |Ker(f)) = 1 for all i and j, then the sections φi glue to the constant
function 1, and hence L has to be trivial. Thus Ker(ft)(T ) injects into Homgp(Ker(f),Gm) =
(Ker(f))∗(T ) for all S–scheme T . By the Key lemma, we have an immersion Ker(ft) ↪→ (Ker(f))∗,
which is a closed immersion, since Ker(ft) is finite. By the first assertion already proven, ft is
locally free of finite rank, and hence Ker(ft) is a locally-free group scheme. Thus deg(ft) ≤ deg(f).

Since X is a Ker(f)–torsor over Y , we have X ×Y X ∼= Ker(f) ×S Y . Thus for any ζ ∈ Ker(f)∗,
we can find a function φ : Ker(f) ×S Y → P1 such that φ(x + t) = ζ(t)φ(x) for t ∈ Ker(f). The
function gives rise to a divisor D on Y ×S X such that f−1

X D is the divisor of φ. In other words, the
invertible sheaf L = L(D) over Y ×S X satisfies

〈P,L(D)〉 = ζ(P ).

Since the choice of ζ is arbitrary, the pairing induces a surjection Ker(ft)(T ) onto Ker(f)∗(T ) for
all S–scheme T . Thus deg(f) ≤ deg(ft), and hence they are equal: deg(f) = deg(ft). This implies
Ker(ft) ∼= Ker(f)∗. Since Cartier duality is perfect, we get Ker(ft)∗ ∼= Ker(f). This shows the
second assertion.

We now prove (3). Since f is proper, the image of f in the topological space |Y | is associated to
a closed subscheme Im(f). The scheme structure of Im(f) is unique if we require it to be reduced.
We write this scheme as W0. By definition, f factors through W0. Any point P ∈ |W0| comes
from Q ∈ |X|. Thus |W0|+ P = | Im(f ◦ TQ)| = |W0|. By the uniqueness of the reduced structure,
we find that the addition m : Y ×S Y → Y induces an addition m0 : W0 ×S W0 → W0. Thus
W0 is an irreducible group subscheme of Y . Let W be the normalization of W0 in X. Replacing
S by its open subscheme, we can show that W is a group scheme and that π : W → W0 is a

finite S–homomorphism, in the same manner as in the case Ỹ → Y . By definition, we have an

S–homomorphism f̃ : X → W with f = π ◦ f̃ , which is generically smooth. Further shrinking S

if necessary, we may assume that W is an abelian scheme over S. Then generic smoothness of f̃

implies that f̃ is smooth on a dense open subset of S, as desired. �

We assume to have an embedding i∞ : A ↪→ C. LetX/S be an abelian scheme of relative dimension
d. Since X(C) is a commutative complex Lie group, the universal covering space H of X(C) is a
simply connected commutative Lie group of dimension d. It has to be a d–dimensional complex
vector space. Then there exists a lattice L = π1(X(C)) in H , and X(C) ∼= L\H . In particular,
X(C) is a divisible group. This implies the multiplication by a positive integer [N ] : X(C)→ X(C)
is surjective. Then by Lemma 5.18, [N ] : X → X is locally free of finite rank.

Corollary 5.20. Assume that S = Spec(A) with a Dedekind domain A, and let X/S be an abelian
scheme of relative dimension d. Let Spec(k) ↪→ S be a geometric point. Then we have

(1) The multiplication by a positive integer N is a locally free morphism of degree N2d.
(2) If N is invertible over S, X[N ] = Ker(N : X → X) is an étale group scheme of rank N2d.

In general, X[N ] is a locally free group of rank N2d; in particular, X[p∞] is a Barsotti–Tate
group over S.

(3) The group X(k) is divisible.
(4) If p > 0 is the characteristic of a geometric point s : Spec(k) ↪→ S, then X[pn](k) ∼= (Z/pnZ)r

with 0 ≤ r ≤ d. The number r is called the p–rank of X/S at s = Spec(k).

For simplicity, we shall prove the result only for Dedekind domains A inside C (this applies even

to Zp or its finite extension, since we can embed Qp into C). The assertion in the corollary actually
holds without assuming that A is inside C. Only point we use this fact is the computation of deg[N ].
We refer the reader to Mumford’s book [ABV] Sections 6 and 15 for a more general treatment.



ARITHMETIC OF CURVES 50

The morphism i : X → (X∗)∗ induces an isomorphism X[N ] ∼= (X∗)∗[N ] for all positive integer
N by Theorem 5.19 (2). This shows in particular that (ft)t = f . Thus i has to be an isomorphism
at the generic fiber, and hence by Theorem 5.19 (1), X ∼= (X∗)∗ canonically. A more direct (and
cohomological) proof of this fact can be found in [ABV] Section 13.

Proof. Since N : X → X is locally free, we can compute the rank, looking into the fiber over C, and
we get deg[N ] = |π1(X(C))/Nπ1(X(C))| = N2d. This proves (1).

By (1) of Theorem 5.19, X[N ] is proper flat quasi-finite; so, it is a finite flat group scheme. Then
by rank comparison of X[pn] and X[pn+1], we can verify that the group X[p∞] is a Barsotti–Tate
group. Let Tx be the translation by x ∈ X(T ) for an S–scheme T . For each tangent vector ∂ at

0, we define OS–derivation ∂̃ of OX by (∂̃φ)(x) = ∂(φ ◦ T−x). Thus TX/S = f∗(0∗TX/S) for the
tangent bundle T/X . Write f : X → S for the structure morphism. In particular, f∗T/X is a locally
free OS–module of rank d. Taking the dual, f∗ΩX/S is also a locally free OS–module. Take an open
subscheme U of S such that over U , f∗ΩX/S is free of rank d, and f∗ΩX/S is made of translation
invariant differentials. Choose a base ω1, . . . , ωd of f∗ΩX/S |U , Let φ : X → X be a locally free S–
homomorphism. Then φ∗ωi is again a translation invariant differential; so, it is a linear combination
of {ωj}. We then get a matrix λ(φ) ∈ Md(OU ) by φ∗(ω1, . . . , ωd) = (ω1, . . . , ωd)λ(φ). We may
assume U = Spec(B) for a localization B of A. We embed B into C and compute λ(N). Since
over C, X(C) = L\Cd for a lattice L, and invariant differentials are given by dui for the coordinate
(u1, . . . , ud) of Cd. This shows that λ(N) = N . In particular, N : X → X induces multiplication
by N on ΩX/S . Thus if N is invertible on S, the pull back map of N is surjective on differentials,
which shows that N : X → X is étale finite if N is invertible on S. This proves (2).

The assertion (3) follows from the locally freeness of N : X → X, which impliesN : X(k)→ X(k)
is surjective for an algebraically closed field k.

Let p > 0 be the characteristic of k. Consider X[p]/k as a group scheme. Then rankX[p] = p2d.
Since p : X → X induces the zero map on ΩX/k, the cotangent space of X[p]/k at 0 is equal to ΩX/k
(see [GME] Proposition 1.5.4). Thus OX[p]/k

covers surjectively k[T1, . . . , Td]/(T
2
1 , . . . , T

2
d ), where Tj

is the local parameters at 0X . Since the rank ofX[p] is p2d, OX[p]/k
covers k[T1, . . . , Td]/(T

2
1 , . . . , T

2
d ),

and the rank of the connected component C of X[p] is greater than or equal to pd. Since the maximal
étale quotient of X[p] also have p–power order pr, we find that pr × rankC = p2d. This combined
with rankC = ph with h ≥ d shows (4). �

Now assume that S = Spec(A) for a Dedekind domain A inside C. We consider the com-
plex torus X(C) = Cd/L for L = π1(X(C)). We study the complex analytic cohomology group
H1
an(X(C), (OanX )×) for the sheaf OanX of complex analytic functions on X(C), which classifies the

complex analytic line bundles. We have an exact sequence of sheaves of analytic functions:

0→ 2πiZ→ OanX
exp−−−−→ (OanX )× → 0.

The sheaf cohomology sequence attached to this short exact sequence gives another one:

0→ 2πiZ→ C
exp−−→ C× → H1

an(X(C), 2πiZ)→ H1
an(X(C),OanX )

exp−−→ H1
an(X(C), (OanX )×).

The image of the cohomological exponential map gives rise to X∗(C), because all meromorphic
function on X(C) is algebraic (since X(C) is projective: [ABV] Section 3). By using this, if f : X →
Y is a finite homomorphism of abelian schemes, deg(ft) is equal to the index of H1

an(X(C), 2πiZ) in
H1
an(Y (C), 2πiZ). Since these lattices are dual of π1(X(C)) and π1(Y (C)), respectively, we rediscover

deg(f) = deg(ft).
Now assume that X = J is the jacobian scheme for a smooth curve C/S . Since algebraic line bun-

dles are automatically analytic line bundles, we have a natural map: J(C) → H1
an(C(C), (OanC )×).

This map is injective, because any meromorphic function on the compact Riemann surface C(C)
can be considered to be a holomorphic map from C(C) to P1(C), which is algebraic.

We have an exact sequence:

0→ 2πiZ→ OanC
exp−−−−→ (OanC )× → 0.
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The sheaf cohomology sequence attached to this short exact sequence gives another one:

0→ 2πiZ→ C
exp−−→ C× → H1

an(C(C), 2πiZ)→ H1
an(C(C),OanC )

→ H1
an(C(C), (OanC )×)

deg−−→ H1
an(C(C), 2πiZ) ∼= Z→ 0.

Since we have the Hodge exact sequence:

0→ H0
an(C(C),ΩC)→ H1

an(C(C),C)→ H1
an(C(C),OanC )→ 0,

H1
an(C(C),OanC ) is the dual of H0

an(C(C),ΩanC ) by the Poincaré duality; so, we have an isomorphism:
H1
an(C(C),OanC ) ∼= Cg. Comparing complex dimension of the image of J(C) in H1

an(C(C), (OanC )×),
we conclude

(5.2) J(C) ∼= H1
an(C(C),OanC )/H1

an(C(C), 2πiZ),

canonically.
There is a p–adic analog due to Tate of this Hodge decomposition. Let C be a smooth irreducible

curve over S = Spec(W ) for a p–adic valuation ring W finite flat over Zp. We write Cp for the

p–adic completion of Qp. By continuity, G = Gal(Qp/Qp) acts continuously on Cp. Then we have
the following G–linear isomorphism:

(5.3) Hom(Tp(X),Cp) ∼= H1(J,OJ/Cp
) ⊕

(
H0(J,ΩJ/Cp

)⊗Qp Hom(Qp(1),Cp)
)
.

Here Qp(1) is the Galois module (lim←−n µpn(Q))⊗Zp Qp, and we regard these modules as G–modules

letting G act non-trivially on every term which has natural Galois action. Thus σφ = σ ◦ φ ◦ σ−1

for φ ∈ HomZp(Tp(X),Cp), and σ(a ⊗ ϕ) = σ(a) ⊗ (σ ◦ ϕ ◦ σ−1) for a ∈ H0(J/Cp
,ΩJ/Cp

) and
ϕ ∈ Hom(Qp(1),Cp). Actually Tate proved this type of p–adic Hodge decomposition for all abelian
schemes over W and also for Barsotti–Tate groups over W in [T]. Since the proof is a bit involved,
though elementary, we just quote this result for our later use. This type of decomposition, now
called a Hodge-Tate decomposition, has been vastly generalized to general (geometric) p–adic Galois
modules by Fontaine (see [PHT]).

5.6. Endomorphism of abelian schemes. In this subsection, we briefly recall the structure theory
of endomorphism algebras of abelian schemes. More details can be found in Mumford’s book [ABV]
Chapter IV and for the theory of abelian varieties with complex multiplication, we refer to Shimura’s
book [ACM] Chapter II. Here an abelian scheme X/S is called “of CM type” or “with complex

multiplication” if it has a commutative semi-simple subalgebra M ⊂ EndQ
S(X) with [M : Q] =

2 dimS(X). As shown by Tate (cf., Appendix I), an abelian variety X defined over a finite field does
have complex multiplication. For an abelian variety E of dimension 1, that is, an elliptic curve,
this fact follows from the existence of the Frobenius map F ∈ End(E), since F satisfies a quadratic
equation with negative discriminant (see Hasse’s Theorem in [GME] §2.6.3).

Let X and Y be an abelian scheme over S = Spec(A) for a Dedekind domain A. An S–morphism
f : X → Y is called an S–isogeny if f is locally free of finite rank and is a group homomorphism.
Suppose f is an S–isogeny. Then Ker(f) is a locally free group scheme of rank N = deg(f), and
Ker(f)(T ) is always killed by N . In particular, for x ∈ X(T ), Nx depends only on f(x) ∈ Y (T ).

Thus f(x) 7→ Nx is well defined at least on the image of f . For each y ∈ Y (T ), we take a faithfully
flat extension T ′

/T so that y = f(x) with x ∈ X(T ′). Since the ambiguity of x falls in Ker(f), which

is killed by N , by descent, we see Nx ∈ X(T ), and hence the functorial map f ′ : Y → X taking y
to Nx is well defined. This shows that we have an S–isogeny f ′ : Y → X such that f ′ ◦ f = [N ]X.
Since

f ◦ f ′ ◦ f − [N ]Y ◦ f = f ◦ f ′ ◦ f − f ◦ [N ]X = f ◦ f ′ ◦ f − f ◦ f ′ ◦ f = 0Y ,

the generic surjectivity of f tells us that f ◦ f ′ = [N ]Y .
Now suppose for the moment that S = Spec(k) for a perfect field k. We consider a homomorphism

f : X → Y of abelian schemes. Let π′ : W ′ = Im(f) → Spec(k) with reduced scheme structure.

Then W ′ is a proper, reduced and geometrically irreducible group scheme. Thus π∗OW ′ = k̃ for the

integral closure k̃ of k in the function field of W ′. Since W ′ is geometrically irreducible, we see that

k̃/k is purely inseparable. Since k is perfect, we have k̃ = k; so, W ′ is generically smooth. Since W ′
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is a group scheme, it has to be an abelian variety (so it is smooth everywhere). By Theorem 5.19
applied to f : X →W ′, we find an abelian scheme W over k with a finite morphism π : W →W ′ ⊂ Y
and a faithfully flat smooth homomorphism f̃ : Y →W such that f = π ◦ f̃ .

Consider the kernel Ker(f), which is a proper flat group scheme over k. Again by Theorem 5.19,

the identity component V of Ker(f̃) is an abelian variety, and Ker(f̃) is an extension of V by finite

étale group scheme. Suppose that a positive integer N kills the quotient Ker(f̃)/V . Then [N ] ◦ f̃
induces a functorial map: W → W by an argument similar to the proof of the existence of f ′ as

above, and hence a k–isogeny [N ] ◦ f̃ : W →W .

Now assume that X = Y . Consider [N ]◦ f̃ : W →W . By definition, Ker(f̃)×XW ⊂ Ker([N ]◦ f̃ :
W → W ) which is a finite group. Thus V ×X W = V ∩ W is a finite group. We consider the
morphism i : V ×S W → X given by (v, w) 7→ v + π(w). If i(v, w) = 0, then v = −π(w) ∈ X. Thus
Ker(i) ∼= V ×X W ; so, i is an isogeny.

By this argument, any abelian scheme X over a field k is isogenous to a product
∏
jX

ej

j for simple

abelian varieties Xj over k. Here an abelian scheme X/k is k-simple if EndQ
S(X) = EndS(X) ⊗Z Q

is a division algebra. If k is algebraically closed, a k-simple abelian scheme is just called simple.
If X has an abelian subscheme i : V ↪→ X, by taking the dual, we have a morphism i∗ : X∗ → V ∗.

Since X and X∗ are isogenous, having a quotient abelian scheme and having an abelian subscheme
are equivalent. Thus X/k is simple if and only if it does not have non-trivial abelian scheme quotients
or equivalently does not have non-trivial abelian subschemes.

Theorem 5.21. Let S = Spec(A) for a Dedekind domain A whose residue fields are all perfect. For
an abelian scheme X/S , we let O = EndS(X) be the ring of S–endomorphisms of groups schemes.

We put EndQ
S(X) = EndS(X)⊗Z Q. Then B = EndQ

S(X) is a semi-simple algebra of finite dimension
over Q, and O is an order of B (that is a subring which is a lattice of B). We have dimQ B ≤ 4d2

for d = dimS X.

Proof. Take a geometric point s = Spec(k) of S, and choose a prime p so that it is different from the
characteristic of k. Write X(s) for the fiber of X at s. Then X(s)[pn ] is a constant group scheme
over the algebraically closed field k isomorphic to (Z/pnZ)2d, where d = dimS X. The module
Tp(X) = lim←−nX[pn](k) is a free Zp–module of rank 2d (see Corollary 5.20). By Lemma 5.18 (or

Theorem 5.19), EndS(X) injects into Ends(X(s)). Thus we only need to prove the assertion for
X(s).

We claim

(5.4) Os = Ends(X(s)) ⊗Z Zp injects into EndZp(Tp(X)).

Let us prove the claim. If f ∈ Os is mapped to pnT for T ∈ EndZp(Tp(X)). Then f kills G =
X(s)[pn]. Thus we have a commutative diagram for a morphism g : X → X:

X(s)
pn

−−−−→ X(s)

f

y
yg

X(s) X(s),

because X is the quotient of X by the constant finite group G under the translation action (see
[GME] §1.8.3). Thus f = png in Os. This shows that Os/p

nOs injects into EndZp(Tp(X)/pnTp(X)).
Taking the projective limit, we get the claim.

By the claim, we have

rankZ O ≤ rankZp Os ≤ rankZp EndZp(Tp(X)),

which proves the dimension inequality.
Write Bs = EndQ

s (X(s)) for a geometric point s ∈ S. As already seen before stating the theorem,
X(s) is isogenous to

∏
jX

ej

j for simple abelian varieties Xj over s; so, Bs ∼=
∏
jMej(Dj) for an

algebra Dj = EndQ
s (Xj ). Since Xj is simple, Dj is finite dimensional division algebra. Thus Bs is

semi-simple.
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Taking s to be the generic point η of S, by the above expression of Bη , we can find a base
{f1, . . . , fr} of Bη over Q so that fj : X(η) → X(η) is surjective. By Lemma 5.18, fj extends to an

endomorphism of X, and B = EndQ
S(X) coincides with Bη ; so, B is semi-simple. �

For any given semi-simple algebra B over Q, we have a number field K such that

B ⊗Q K ∼=
⊕

i

Mni(K)

for the n × n matrix algebra Mn(K) (see [MFG] 2.1.4). We then define the (reduced) norm map
NB : B → K by NB(xi) =

∏
i det(xi) for xi ∈ Mni(K). We may assume that K/Q is a Galois

extension. Then an element σ ∈ G = Gal(K/Q) acts on B ⊗Q K on the right factor. By definition,
NB(σ(x)) = σ(NB (x)). Since the image of B is fixed by this action, we conclude that the norm
actually has values in Q on B.

Since NB : B → Q is a polynomial map (regarding B as a Q-vector space), we can regard
it as a morphism of Q–schemes. In other words, defining functors B,Q : ALG/Q → SETS by
B(A) = B ⊗A A and Q(A) = A for Q–algebras A, NB induces a morphism of functors: B → Q.
Thus we can think of NB : B(Q[T ])→ Q[T ]. For each α ∈ B, we define its characteristic polynomial
Fα(T ) by NB(T1B − α) ∈ Q[T ]. By definition, we have Fα(α) = 0 in B. Since B is semi-simple,
we can write α = σ + ν for mutually commuting, a semi-simple σ and a nilpotent ν (Jordan
decomposition). Taking a suitable semi-simple commutative subalgebra F of B of dimension

∑
i ni

containing σ, we find

(5.5) Fα(T ) = NF/Q(T − σ).

Now we apply this argument to B = EndQ
S(X) for an abelian scheme X/S . If α ∈ O = EndS(X),

α is integral over Z, and hence Fα(T ) ∈ Z[T ]. Let us choose a geometric point s ∈ S. Then we regard
B as a subalgebra of E = EndZp(Tp(X(s))) ⊗Zp Qp for a prime p different from the characteristic
of s. Choose a commutative semi-simple Q–subalgebra F ′ ⊃ F ⊃ Q(σ) of E with dimQ F

′ = 2d for
d = dimS X. Then we have

(5.6) Pα(T ) = NF ′/Q(T − σ) = det(T − α)

regarding α as an element of E. On the other hand, by (5.5), Pα(T ) = Fα(T )[F
′ :F ] . This shows that

Pα(T ) ∈ Z[T ]. Thus we have the following fact due to A. Weil:

Theorem 5.22. Let the notation be as above. Then the characteristic polynomial Pα(T ) of the
matrix representation of α ∈ EndS(X) on Tp(X(s)) is a monic polynomial in Z[T ] of degree 2d with
d = dimS X and is independent of p and s as long as the characteristic of s is different from p.
Inside EndS(X), we have Pα(α) = 0, and Pα(0) = deg(α).

Proof. All the assertions follow from the last one, since Pα(T ) = N(T1B − α) = deg(T1B − α)
and N(α) = Pα(0). Suppose that deg(α) is a p–power for a prime p. Suppose that p is not
a zero-divisor on S. Writing Tp(α) for the endomorphism of Tp(X(s)) induced by α, we have
Ker(α) ∼= Tp(X(s))/α(Tp(X(s))), and hence | det(Tp(α))|p = | deg(α)|p. Since the two numbers are
integers, we find det(Tp(α)) = Pα(0) = ±deg(α). For general α, we can decompose α =

∏
p αp for

p–isogenies. Thus if deg(α) is prime to the characteristic of A, we have deg(α) = ±Pα(0). This is
enough to conclude the identity, because deg : B → Q is a polynomial map ([ABV] 18.2) and B is
generated over Q by elements with deg prime to a given integer (see [ABV] Theorem 19.4 and [Mi]
Section 12).

There is another argument showing Pα(0) = deg(α): B has a positive involution ξ 7→ tξ (the
positivity means that ξ 7→ Tr(ξtξ) is positive definite; see Remark 5.25, [ABV] Section 21 and
[ACM] Sections 1.3 and 5.1). Thus det(Tp(α)) > 0 if α 6= 0, which shows the identity. �

Remark 5.23. Let F be a finite field of characteristic `. If X/F is a connected smooth group scheme
such thatX ∼= X0×Gr

m for an abelian scheme X0 over a finite extension F′, EndF′(X) = EndF′(X0)×
Mr(Z), because EndF(Gm) = Z. Thus the above argument still works well to produce Pα(T ) ∈ Z[T ]
for α ∈ EndF(X)(⊂ EndF′(X)). In this case, Pα(T ) is of degree 2d0 + r for d0 = dimF′ X0, because
Gm[pn] = µpn and hence Tp(X) ∼= Z2d0+r

p if p 6= `. We still have Pα(0) = deg(α) if α is locally free
of finite rank, and also Pα(α) = 0 in EndF′(X).
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There is a simple way of constructing homomorphisms between jacobian varieties by using covering
of curves. We briefly explain the procedure. Let C/S and C ′

/S be a proper flat irreducible curves with

jacobians J/S and J ′
/S . We suppose that C and C ′ are regular. Another regular proper flat curve

C ′′
/S is called a correspondence if we have non-constant S–morphisms π : C ′′ → C and π′ : C ′′→ C ′.

Thus a correspondence is a triple: T = (C ′′, π : C ′′ → C, π′ : C ′′ → C ′). As we have seen, π
and π′ are locally free. For such a correspondence, we have an associated morphism: T : J → J ′

given by T = J t(π′) ◦ J(π) : J → J ′. If C = C ′ and π = π′, then π∗π∗L ∼= Ldeg(π) by definition
(Exercise 5.24). Thus T = [deg(π)] in this case.

Define T t = (C ′′, π′ : C ′′ → C ′, π : C ′′ → C) by interchanging the role of π and π′. Then
T t = J t(π) ◦ J(π′) : J ′ → J . Since π∗π∗D = deg(π)D and π∗π∗D = deg(π)D for divisors D,
J(π) ◦ J t(π) = [deg(π)] and J t(π) ◦ J(π) = [deg(π)], where [N ] is the multiplication by N ∈ Z on
the jacobian. T ◦ T t = T t ◦ T = [deg(π) deg(π′)].

Exercise 5.24. (1) Prove (5.5).
(2) Give a detailed proof of deg(α) = Pα(0) for α ∈ EndS(X) for an abelian scheme X over a

Dedekind scheme S. Hint: First prove that a morphism: ResF ′/Q(Gm/F ′ )→ Gm/Q of group
schemes is determined by its (complex or p–adic) absolute value, where G = ResF ′/Q(Gm/F ′ )

is a group scheme defined over Q given as a group functor: G(A) = (A⊗QF
′)× for Q–algebras

A.

5.7. `–Adic Galois representations. Let F be a finite field of characteristic p, and take an
abelian variety X/F. Thus F = Fq for q = pf . We consider the relative Frobenius endomor-

phism F : X → X = X(q) induced by φ : OX → OX with φ(a) = aq. The morphism takes 0X to
0X because 0X is a section over F. Therefore, by Corollary 5.17, F is an S–homomorphism. Since

ÔX,0 ∼= F[[T1, . . . , Td]] for d = dimF X and φ induces an endomorphism ÔX,0 taking Tj to T qj , the

degree of F is given by qd. We then have the characteristic polynomial PF (X) ∈ Z[T ]. We pick a
prime ` 6= p and consider T`(X). Since Gal(F/F) acts on X[`n], the Galois group acts on T`(X). We

write this representation as ρ` : Gal(F/F)→ GL(T`(X)). Since the endomorphism ring also acts on
T`(X), we write ρ`(α) to indicate the operator on T`(X) associated to α ∈ EndF(X). The action
of F on the X[`n] coincides with that of the Frobenius element φ in the Galois group. Thus the
reciprocal characteristic polynomial of φ is given by L(T ) = T 2dPF (T−1) = det(1 − ρ(φ)T ). Since
we have Pα(0) = det(ρ(α)) = deg(α), we see L(T ) = deg(1 − FT ).

Remark 5.25. For an invertible sheaf L on X/F, the morphism ϕL : X → PicX/F given by

ϕL(x) = (T ∗
xL) ⊗ L−1 (for the translation Tx : X → X by x) induces a morphism of functors,

and hence a morphism of schemes: X → X∗ which sends 0X to 0X∗ . Thus ϕL is a homomorphism
(Corollary 5.17). If L is ample, it is known that ϕL is an isogeny (e.g. [ABV] Section 6 or [Mi]
Sections 9–10). If further L is symmetric (that is, ϕL = ϕtL ⇐⇒ (−1)∗L ∼= L), then ξt = ϕ−1

L ξϕL
is an element in B = EndQ

F (X). Thus ξ 7→ ξt gives an involution of the semi-simple algebra B (this
involution coincides with the transpose of endomorphisms in the case of jacobian, where we have
taken L = L(Θ)). An important point is that this is a positive involution, that is, the quadratic
form ξ 7→ TrB/Q(ξξt) is positive definite (e.g. [ABV] Section 21). From this, as Weil did, one can

prove that all roots of PF (T ) has complex absolute value q1/2. An algebraic integer whose Galois
conjugates have equal complex absolute value q1/2 = pf/2 is called a Weil p-number of weight f .
Weil numbers have important arithmetic information as they appear as Frobenius eigenvalues of
geometrically constructed Galois representations (see [Ho], [T2], [D1], [L] and [H11]).

If X is the jacobian scheme of a smooth curve C/F, the map F is induced by the Frobenius map

FC : C → C = C(q), that is, F = J t(FC). We put V = J(FC). Then V t = F and F t = V and
FV = V F = q. Thus we have

deg(1− F nC) = deg(1− F n) = |C(Fqn)|.
Let G = Gal(Fp/F), and define the zeta function of C by

(5.7) Lp(s, C) =
∏

x∈C(F)/G

(1−N(x)−s)−1,
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where N(x) = q[F(x);F]. Then, writing L(t) = deg(1 − F t) again, we find a theorem of Weil (see
[GME] §2.7.1):

(5.8) Lp(s, C) = Z(q−s) with Z(t) =
L(t)

(1− t)(1− qt) .

From this, Lp(s, C) is a rational function of q−s and hence is continued analytically to the whole s–
plane with simple poles at 0 and 1. We also conclude the functional equation Lp(s, C) = Lp(1−s, C)
from Remark 5.25.

Now suppose that X is an abelian scheme defined over a Dedekind domain A whose quotient field
is a number field K. We can perform the above construction at each point v ∈ S = Spec(A). If v is
a closed point of characteristic p, writing k(v) = Fq , we have ρv,` : Gal(k(v)/k(v)) → GL(T`(X)).
Out of this, we get Lv(T ) = det(1 − ρv,`(φ)T ) ∈ Z[T ] (` 6= p) which is the reciprocal polynomial of
the characteristic polynomial of the Frobenius map F over k(v).

Let Av = OS,v be the discrete valuation ring of A at v. For any finite extension L of K and a
discrete valuation ring B in L over Av, properness of X tells us X(B) = X(L). Fixing a valuation

ring Av in an algebraic closure K over Av, we have a reduction map:

X(K) = X(Av)→ X(k(v))

taking x ∈ X(Av) to its special fiber. Since X[`n] is locally free over S, any point xv at the special
fiber X[`n] extends to a point x ∈ X[pn](B) for a finite extension B = L ∩Av. Thus the reduction
map ι : X[`n](K)→ X[`n](k(v)) is a surjective homomorphism. If ` 6= p, counting the order of the
two sides, we conclude that ι is an isomorphism. Taking the projective limit, we have an isomorphism
ι : T`(XK) ∼= T`(X(v)), where we have written XK = X ⊗S K. Let

Dv = {σ ∈ Gal(K/K)|σ(Av) ⊂ Av}
be the decomposition group at v. Then we have the natural exact sequence:

1→ Iv → Dv π−−−−→ Gal(k(v)/k(v)) → 1.

By definition, π(σ)((ι(x)) = ι(σ(x)). This shows that the Galois representation ρK,` on T`(XK ) is
unramified at v, that is, ρK,`(Iv) = 1, as long as ` 6= p, and we have, for the Frobenius element φv
of Dv
(5.9) det(1− ρK,`(φv)T ) = Lv(T ) ∈ Z[T ],

which is independent of the choice of Av (and of Dv) as long as p 6= `.
A system of `–adic Galois representations ρ = {ρ`}` is called a compatible system of `–adic Galois

representations of weight w ∈ Z if the following conditions are satisfied:

(1) There is a finite set Σ of primes of K such that ρ` is unramified outside Σ ∪ {`};
(2) the characteristic polynomial of the Frobenius element at v is independent of ` as long as

the prime v 6∈ Σ and v - `;
(3) All the roots of the characteristic polynomial of the Frobenius element have complex absolute

value |k(v)|w/2 for v 6∈ Σ and v - ` (i.e., Weil `-number of weight wf if |k(v)| = `f ).

For a given abelian variety XK defined over K, we embed XK in the projective space PN
/K

(possible: see for example [ABV] Section 17 or [Mi] Section 7). Let OK be the integer ring of K.
Take a closure X of the image in PN

/OK
. Since smoothness is an open property (as it is defined via

stalk), X is smooth over a dense open subscheme S1 = Spec(A1) ⊂ Spec(OK). The ring A1 is given
by removing primes in a finite subset Σ1 of closed points of Spec(OK). Since X is smooth over S1, it
is fiber by fiber irreducible. The multiplicationm : XK ×XK → XK , the inverse i : XK → XK and
the identity section 0 : Spec(K)→ XK extend to an open subscheme of X×SX, whose complement
Z is of codimension at least 2, by the valuative criterion of properness. Since Z does not intersect
XK , its image in S1 is a proper closed subset; so, consisting of another finite set of primes Σ2.
Remove again Σ2 from S1, we get S = Spec(A) for a localization A of OK . Then X/S is an abelian
scheme, and therefore, the system of `–adic representations attached to XK is a compatible system.
There is a finer way to extend X to a smooth group scheme over Spec(OK), which is called the
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Néron model of XK and gives the optimal result (see [NMD] for details of Néron models and [A] for
a brief account).

More generally, let M be a number field. A system of continuous Galois representation ρ = {ρl}
of Gal(K/K) indexed by primes of M on a vector space Vl of (fixed) dimension d over the l–adic field
Ml is called a strictly compatible system of weight w if the following three conditions are satisfied:

(CP1) There is a finite set Σ of primes of K such that ρl is unramified outside Σ ∪ {`}, where
(`) = l ∩ Z;

(CP2) the characteristic polynomialLv,ρ(T ) of the Frobenius element at v onH0(Iv, Vl) is contained
in OM [T ] and is independent of l as long as v - `, where OM is the integer ring of M .

(CP3) There exists an integer w called the weight of ρ such that all the reciprocal root α of Lv,ρ(T )

satisfies |α| = N(v)w/2 for almost all closed points v ∈ S, where N(v) = |k(v)|.
We define an imprimitive L–function of a compatible system ρ by

L(s, ρ) =
∏

v 6∈Σ

Lv,ρ(N(v)−s)−1,

where N(v) = |k(v)|. Here we regard Lv,ρ(T ) ∈ M [T ] as an element of MC[T ] for MC = M ⊗Q C
and have taken the product in MC. For a strictly compatible system, we can define the primitive
L–function by

(5.10) L(s, ρ) =
∏

v

Lv,ρ(N(v)−s)−1,

where v runs over all maximal ideals of OK . When ρ is associated to the compatible system of `–adic
representation of the jacobian of a regular curve C, we write L(s, C) for L(s, ρ). Similarly if ρ is
associated to an abelian scheme X, we write L(s,X) for L(s, ρ). When ρ is associated to an abelian
scheme, by Remark 5.25, the weight of ρ is equal to 1. We can generalize the Hasse-Weil conjecture
in this setting, although we do not make it very precise here, but just say that L(s, ρ) should be
continued to a meromorphic function on the whole complex plane, and when it is primitive of weight
w, it should also satisfy a functional equation of the form: s↔ w+ 1− s. By modularity theorems
(finished by Khare–Wintenberger), the conjecture is now known for 2-dimensional systems of odd
Galois representations.

We give an example of a compatible system with coefficients in a number field M . Start with an
abelian scheme X/S over S = Spec(A) for a Dedekind domain A ⊂ K as above. We suppose that
X has a (big) commutative endomorphism subalgebra O ⊂ EndS(X) invariant under the involution
ξ 7→ ξt such that F + V ∈ O in Endv(X(v)) for every special fiber X(v), where F is the Frobenius
map and V is its dual: V = qF−1 = F t. Consider LO,v(T ) = T 2 − (F + V )T + q ∈ O[T ] for
each special fiber v, where q = |k(v)|. Obviously, LO,v(F ) = LO,v(V ) = 0 in O. For simplicity, we
assume that O is the integer ring of a number field M and that [M : Q] = dimS X. We call such
an abelian variety that “of GL(2)-type”. The Tate module T`(XK) is a torsion-free O–module such
that O` = O ⊗Z Z` acts faithfully (cf. (5.4)). Thus T`(XK) is a projective O`–module. Since K is
a number field, O acts faithfully on X(C) for an embedding K ↪→ C. Thus O acts faithfully on the
lattice L = π1(X(C)) = H1(X(C), 2πZ) in H1

an(X(C),OX). The lattice L is a projective O–module.
This shows that 2d = rankO L = dimM (L ⊗O M) is divisible by [M : Q], that is, 2d = n[M : Q].
By our assumption: [M : Q] = dimS X, n is equal to 2. Since T`(X(C)) ∼= lim←−m L/`

mL ∼= On` , the

isomorphism ι : T`(X(C)) = T`(XK ) ∼= T`(X(v)) tells us that T`(X(v)) is O`–free of rank 2. Thus
we get a two-dimensional compatible system from X having values in GL2(Ml) whose characteristic
polynomial of the Frobenius element at v is given by LO,v(T ). As remarked by Shimura in [IAT]
Theorem 7.14, the jacobian variety J1(N)/Q of the modular curve X1(N)/Q is isogenous to a product
of rational abelian varieties of GL(2)–type. By modularity theorems (in particular, the solution of
Serre’s mod p modularity conjecture by Khare–Wintenberger; see, Chapter 5 of [GME]), such an
abelian variety is essentially a factor of J1(N) for a suitable N . Using étale cohomology groups
Hw(V,Zp) for a projective scheme V/S , we can construct more compatible systems of weight w,
although we will not touch this topic in this course (see [ECH]).
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6. Modular Galois Representations

In this section, we construct Galois representations of cusp forms of weight 2 via the jacobian
variety of modular curves. This is the method employed by Shimura in his book [IAT] and his
earlier papers. Then we study its ramification. Although we have incorporated results obtained
after Shimura’s book was written, for example, those on ramifications of the Galois representation,
our way of construction faithfully follows [IAT].

6.1. Hecke correspondences. We fix an integer N > 0 and consider the coarse moduli scheme
X = X1(N)/Z = MΓ1(N)/Z. The infinity cusp gives a smooth section in X(Z) (by [GME] §2.9.4); so,
we can apply the theory developed in the previous section. The non-singular model of X1(N) over
Q is of genus 0 for all N ≤ 10. Thus we may assume N ≥ 4 when we consider jacobians of X1(N).
When N ≥ 4, X is regular. Let S = Spec(Z[ 1

N ]). Then X is a smooth irreducible curve over S.
We write J for the jacobian variety of X over S. We look into the `–adic Galois representations on
T`(J).

Let p be a prime outside N . Since Y = MΓ0(p),Γ1(N) classifies triples (E, φN , C)/T for locally
free subgroup C of rank p, we can think of an involution of moduli functors τ : (E, φN , C)/T 7→
(E/C, φ′

N , C
⊥)/T , where C⊥ is the kernel of the dual map E/C = (E/C)∗ → E∗ = E of the

projection π : E → E/C, and φ′
N : µN ↪→ E/C is the one satisfying φ′

N = π ◦ φN .
When C is an étale subgroup, the quotient E/C is well defined as a geometric quotient by

the following reason: After an étale faithfully flat base change, C becomes a constant group, the
quotient exists (cf. [GME] §1.8.3). Being geometric quotient is kept under étale base change, we
know, from the uniqueness of the quotient, that the quotient carries a descent datum. By descent,
E/C exists over S (actually the geometric quotient exists over S even if C is connected: see below
and [ABV] Theorem 12.1). Therefore over S[ 1p ] this involution is well defined, giving rise to an

involution τ ∈ End(YS[ 1p ]) by the key lemma. We have two projections: p1, p2 : Y/S[ 1p ] → XS[ 1
p ]

such that p1(E, φN , C) = (E, φN) and p2(E, φN , C) = (E/C, φ′
N). In other words, p2 = p1 ◦ τ . We

get a correspondence (Y, p1 : Y → X, p2 : Y → X) in this way, which induces an endomorphism
T t = T t(p) = J t(p2) ◦ J(p1) and T = T (p) = J t(p1) ◦ J(p2) (see the end of §5.6 for the definition of
correspondences and their action on J). As seen in the proof of Theorem 5.21, we know EndS[ 1p ](J) =

EndS(J) and hence f extends to the entire J/S . Thus T and T t extends to J/S .
We now study the construction of T at the fiber at p. We write X(p) = X⊗SFp and Y (p) = Y ⊗S

Fp. By Eichler-Shimura congruence relation (see [GME] Theorem 2.9.13), Y (p) = X(p) ∪ X(p)(p)

with two components intersecting transversally at super singular points. By the description there,
we still have quotient E/C for ordinary elliptic curves (E, φN , C). When C is étale, the quotient
can be made as above. When C ∼= µp étale locally, we can define E/C by the Frobenius map

F : E → E(p). Then V : E → E( 1
p ) is isomorphic to E/C for C étale. Thus we have well defined

τ : Y (p)◦ → Y (p)◦ for the smooth locus Y (p)◦ of Y (p). This construction using F and V are well
defined even for super-singular curves also. Thus the involution τ : Y (p) → Y (p) is well defined
everywhere. Anyway, as remarked already, the quotient E/C can be made over S; so, τ actually gives
rise to the correspondence (Y, p1, p2) well defined over S. This gives another proof of extensibility
of T and T t to an endomorphism of J/S .

We scrutinize more the maps pj (j = 1, 2). Suppose thatC ⊂ E is connected. Since φN : µN ↪→ E,
we have

φ
(p)
N ◦ F (x) = F ◦ φN(x) = p · φN (x) = φN(px),

where φ
(p)
N is the conjugate of φN by the Frobenius automorphism on the base ring. Thus φ′

N =

τ (φN) = p−1φ
(p)
N by our definition. On the modular curve X(p), the association: (E, φN) 7→

(E(p), φ
(p)
N ) induces the Frobenius map on X(p).

Suppose C is étale. Then FV = p; so, V acts trivially on φN . The first component X(p) of Y (p)
as a correspondence over X(p) gives rise to the map:

(E, φN) 7→ (E(p), p−1φ
(p)
N )
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and the second component gives rise to the map:

(E, φN) 7→ (E(1/p), φ
(1/p)
N ).

We find T t = F 〈p〉−1 + V on J , where 〈p〉 = 〈p〉2 is the automorphism of X sending (E, φN)
to (E, pφN). By taking the dual, T = F + V 〈p〉 in EndFp(J(p)). This relation is also called the

congruence relation of Eichler-Shimura, which is equivalent to the splitting Y = X(p) ∪ X(p)(p).
Thus we have

Theorem 6.1 (G. Shimura). Let S = Spec(Z[ 1
N ]) for N ≥ 4. Let X = X1(N), and write J = J1(N)

for the jacobian scheme of X over S. Let J(p) = J⊗S Fp for each prime p outside N . Then for each
prime p outside N , we have an endomorphism T (p), T t(p) ∈ EndS(J) such that T (p) = Fp + Vp〈p〉
and T t(p) = Fp〈p〉−1 + Vp in EndFp(J(p)) for the Frobenius endomorphism Fp of J(p) and its dual

Vp = F tp. Since FpVp = p, F satisfies the quadratic equation:

x2 − T (p)x+ p〈p〉 = 0

with coefficients in EndS(J).

Since H0(J,ΩJ/S) ∼= H0(X,ΩX/S) by Theorem 5.7, the operator T (p) acts on H0(X,ΩX/S) by
ω|T (p) = T (p)∗ω. We can compute by using the Tate curve at ∞, the effect of the action on the q–
expansion. The Frobenius element just acts by q 7→ qp on the Tate curve, and V corresponds to (the
sum in the jacobian of) p quotients of E∞/Z[[q]] by order p étale subgroups, which are E0,p/Z[[ζpq1/p]]

for each ζp ∈ µp. We then have for ω = f(q)dqq

a(n; f |T (p)) = a(np, f) +
∑

ζ∈µp

ζna(
n

p
; f |〈p〉) = a(np, f) + p · a(n

p
; f |〈p〉),

where a(np ; f |〈p〉) = 0 if p - n.

Now assume that p|N ; so, we split N = N0p
r for N0 prime to p. Let Γ = Γ0(p

r+1) ∩ Γ1(p
r). We

still have Y = MΓ,Γ1(N0) and the projection p1 : Y → X well defined over Z. The modular curve Y

classifies over S = Spec(Z[ 1
N ]) triples (E, φN , C) for a cyclic subgroup C of order pr+1 containing the

image of φp = φN |µpr . We can think of the quotient E/(C[p]). Since C is cyclic, the multiplication
by p induces an isomorphism: i : C/(C[p]) ∼= pC = Im(φp). We then define the level Npr–structure
φ′
N on E/(C[p]) by

(φp ◦ i−1) × (φN |µN0
).

Thus we find another projection: p2 : Y → X induced by (E, φN , C) 7→ (E/(C[p]), φ′
N), getting a

correspondence (Y, p1, p2), which induces U(p) = J t(p1) ◦ J(p2) and U t(p) = J t(p2) ◦ J(p1). We
verify

a(n; f |U(p)) = a(np; f).

Let hk(Γ1(N);A) denote the A–subalgebra of EndA(Sk(Γ1(N);A)) generated by Hecke operators
T (p), U(p) and 〈p〉. The representation of EndC(J(C)) on the cotangent space H0(J(C),ΩJ/C) ∼=
S2(Γ1(N); C) (see Theorem 5.7) is faithful (because of (5.2)). Therefore we find an embedding
θ : h2(Γ1(N); Z) ↪→ EndS(J1(N)) so that θ(h)∗ω = ω|h for h ∈ h2(Γ1(N); Z).

We have the Hodge exact sequence:

0→ H0
an(X(C),ΩX/C)→ H1

an(X(C),C)→ H1
an(X(C),OX)→ 0.

by the well known pairing (f, h) = a(1, f |h) for cusp forms f and Hecke operators h, we find

H0
an(X(C),ΩX/C) ∼= HomC(h2(Γ1(N); C),C)

as Hecke modules. Here the word “as Hecke modules” means the isomorphism is an isomorphism of
modules over the Hecke algebra. By the duality of Serre–Grothendieck,

H0
an(X(C),ΩX/C) ∼= HomC(H1

an(X(C),OX ),C)

as Hecke modules. Thus H1
an(X(C),OX) is h2(Γ1(N); C)–free of rank 1. We compute H1

an(X(C),C)
using harmonic analysis, and get

H1(X(C),Q) ⊗ C ∼= H1
an(X(C),C) ∼= H0

an(X(C),ΩX/C)⊕H0
an(X(C),ΩX/C)
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as Hecke modules (the Hodge decomposition), where ΩX/C is the sheaf of anti-holomorphic differ-
entials. By the same argument, we find

H0
an(X(C),ΩX/C) ∼= HomC(h2(Γ1(N); C),C)

as Hecke modules. This shows, for A = C,

h2(Γ1(N);A) ∼= HomA(h2(Γ1(N);A), A)(6.1)

H1
an(X(C), 2πiA) is h2(Γ1(N);A)–free of rank 2.(6.2)

Since H1
an(X(C), 2πiZ)⊗Z C ∼= H1

an(X(C),C) canonically, the above fact descends to any Q–algebra
A. Since T`(J/Q)⊗Q ∼= H1

an(X(C), 2πiZ) ⊗Q`, we have

(6.3) V` = T`(J/Q)⊗ Q is free of rank 2 over h2(Γ1(N); Q`).

6.2. Galois representations on modular Jacobians. By the Galois action on V`, from (6.3), we
get a two-dimensional Galois representation

ρ` : Gal(Q/Q)→ GL2(h2(Γ1(N); Q`))

unramified outside N`. We would like to show

Theorem 6.2 (G. Shimura). The Galois representation ρ` is unramified outside N`, and the char-
acteristic polynomial of Frobp for p - N` of ρ` is given by

det(T − ρ`(Frobp)) = T 2 − T (p)T + p〈p〉.
This theorem and the following corollary are given in [IAT] Sections 7.5-6 in various different

forms. The unramifiedness outside N` is due to J. Igusa.

Proof. Unramifiedness follows from the fact that J is an abelian scheme over Z[ 1
N ], as already

explained in §5.7.
We follow [IAT] Section 7.5 to prove the rest. We fix a primitive root of unity ζN ∈ µN , and

consider couples (E, φN : µN ↪→ E) classified by X1(N). We write P = φN(ζ). Then we can find
a unique Q ∈ E modulo Im(φN) such that 〈P,Q〉 = ζN . We define φ′

N : µN ↪→ E/ Im(φN) by
φ′
N(ζN ) = Q. This gives an automorphism τ = τζN of X1(N) (taking (E, φN) to (E/ Im(φN), φ′

N))
defined over S[ζN ]. Since F acts on Im(φN) by multiplication by p,

〈P, V (Q)〉 = 〈F (P ), Q〉 = 〈pP,Q〉 = 〈P, pQ〉.
This shows that V (Q) = pQ. Therefore, τ−1T t(p)τ = T (p) and τ−1V τ = V 〈p〉. We can also check
τ−1U t(p)τ = U(p) (see [MFM] Theorem 4.5.5). We recall the pairing

〈 , 〉 : J [`n]× J [`n]→ µ`n

in Theorem 5.19 (2) (because J∗ ∼= J canonically). Taking the projective limit with respect to n,
we get a pairing 〈 , 〉 : V` × V` → Q`(1) such that 〈f(x), y〉 = 〈x, ft(y)〉 for endomorphisms f of J ,
where Q`(1) = lim←−n µ`n ⊗Z Q. We twist this pairing as (x, y) = (x, τ(y)). Then (h(x), y) = (x, h(y))

for Hecke operators h. Write simply h = h2(Γ1(N); Q`). Since HomQ`(h,Q`) ∼= h as we have
already shown, we can lift this pairing to an h–linear non-degenerate pairing [ , ] : V` × V` → h

such that L([x, y]) = (x, y) for a generator L ∈ HomQ`(h,Q`) over h. The adjoint of F under this
new pairing is V 〈p〉; so, F and V ∗ = V 〈p〉 have equal characteristic polynomial over h. Therefore
deth(T − F ) = deth(T − V ∗) in h[T ]. We have

(T − F )(T − V ∗) = T 2 − T (p)T + p〈p〉.
Taking the determinant on both sides, we get

deth(T − F )2 = (T 2 − T (p)T + p〈p〉)2.
Since this is the identity of the square of two monic polynomials in h[T ], we get

det(T − ρ`(Frobp)) = deth(T − F ) = T 2 − T (p)T + p〈p〉.
�
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Corollary 6.3. Let λ : h2(Γ1(N); Z) → Q be an algebra homomorphism, and define a Dirichlet

character χ : (Z/NZ)× → Q
×

by χ(p) = λ(〈p〉). Then for the finite extension Q[λ] generated
over Q by λ(T (n)), there exists a unique compatible system with coefficients in Q[λ] of absolutely
irreducible Galois representations ρλ,l of Gal(Q/Q) into GL2(Qp[il ◦ λ]) (indexed by the embedding

il : Q[λ] ↪→ Q` associated to the place l) such that

(1) ρλ,l is unramified outside N` for the rational prime ` ∈ l;
(2) For a prime p outside N`,

det(1− ρλ,l(Frobp)T ) = 1− λ(T (p))T + pχ(p)T 2;

(3) We have det(ρλ,l(c)) = −1 for each complex conjugation c;
(4) For the `–adic cyclotomic character ν`, we have det ρλ,l = χν`, where we regard χ as a

Galois character by χ(Frobp) = χ(p) for primes outside N`.

Proof. The representation space of ρλ,l is given by

Vl = T`(J1(N))⊗h,il◦λ Q`[il ◦ λ],
where Q`[il ◦ λ] is the finite extension of Q` generated by il ◦ λ(T (n)) for all n. The assertions
(1) and (2) follow from the above theorem. The cyclotomic character ν` is the unique `–adic
character (by class field theory) with ν`(Frobp) = p for primes p outside N`. This shows (4).
Since each elliptic curve E has automorphism −1E , the action of 〈−1〉 on each test object (E, φN)
is trivial; so, as an automorphism of X1(N), 〈−1〉 is the identity. Through the identification:
Gal(Q(µN )/Q) ∼= (Z/NZ)× given by σ 7→ n if ζσN = ζnN , complex conjugation corresponds to −1.
Thus χ(c) = χ(−1) = λ(〈−1〉) = 1. This combined with (4) shows (3).

We shall give a sketch of two proofs of irreducibility. Suppose that ρλ,l is reducible. For the

moment, we assume that ` - N . Then we find two characters ϕ and φ of Gal(Q/Q) unramified
outside N` such that Trρλ,l = ϕ+ φ and ϕφ = ν`χ for the `–adic cyclotomic character ν`. Write C

for the `–adic completion of Q`, on which Gal(Q`/Q) acts by continuity. Let K be a finite extension
of Q` in C and ξ : Gal(Q`/Q`)→ K× be a continuous character. Let G = Gal(Q`/K) act on C by
x 7→ ξ(σ)σ(x), and write this Galois module as C(ξ). By a theorem of Tate (see [T] Theorem 3.3.2),
if ξ|Gal(Q`/K0)

gives an isomorphism of Gal(K∞/K0) ∼= Z` for a finite extension K0/K and totally

ramified extension K∞/K0, we have
H0(G, C(ξ)) = 0.

Again by another theorem of Tate (see (5.3) and [T] Corollary 3.3.2), if ` is outside N , then as
Gal(Q`/Q`)–modules

HomZ`(T`(J), C) ∼= H1(J/C ,OJ/C) ⊕
(
H0(J/C ,ΩJ/C) ⊗Hom(Q`(1), C)

)
,

where σ ∈ Gal(Q`/Q) acts on every term naturally, for example, σ(ω ⊗ φ) = σ(ω) ⊗ σ ◦ φ ◦ σ−1 for
(ω ⊗ φ) ∈

(
H0(J/C ,ΩJ/C)⊗ Hom(Q`(1), C)

)
. Let K = Q`[il ◦ λ], taking the G–invariants, we get

H0(G,HomZ`(T`(J), C)) ∼= H1(J/K ,OJ/K).

Thus one of the two characters, say φ, has to be of finite order on the decomposition group at `. We
consider the restriction of φ to the inertia group of a prime q|N . By local class field theory, we may
regard φ as a character of Z×

q , which is almost q–profinite (that is, it has a q–profinite subgroup of
finite index). Since φ has values in `–profinite group, it has to be of finite order ([MFG] Lemma
2.19). Thus φ is unramified outside N` and of finite order on the inertia group at primes dividing
N`. Then by global class field theory, φ itself is of finite order. Thus ϕ = φ−1χν`. Since φ and χ
are of finite order, we may consider them as complex characters. Then λ(T (p)) = φ(p) + χφ−1(p)p
for all primes outside N`. This is a contradiction, in two ways: one is that the L–function given by

L(s, λ ⊗ χ−1φ) =
∑

n

χ−1φ(n)i∞(λ(T (n)))n−s

(for any complex embedding i∞ : Q[λ] ↪→ C) is known to be an entire function on the whole s–plane,
but is equal to ζ(s− 1)L(s, χ−1φ2), up to finite Euler factor, which has a pole at s = 2. The other
contradiction is against the fact that the two roots of X2 − i∞(λ(T (p)))X + χ(p)p has complex
absolute value p1/2.
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If `|N , we need to use a result of Ribet affirming that if ρλ,l is reducible for one l, every member
of the compatible system is actually reducible ([R2] Corollary 1.6.1).

There is another way to show the irreducibility. For this, we need to assume that Q[λ] is generated
by λ(T (p)) for p prime to N . This is satisfied when λ is primitive in the sense of [MFG] 3.2.1. If
an endomorphism φ of T`(J) commutes with all Galois action, then it commutes with the action

of F = Frobp, and hence commutes with T (p) ∈ Q[F ] ⊂ EndQ
Fp

(J). By a theorem of Faltings ([?]

II.5), EndG(T`(J)) = EndQ(J) ⊗Z Z`, where G = Gal(Q/Q). Thus on V`, we may assume that φ is
induced by a Q–rational endomorphism of the abelian variety A = J⊗h,λO for the integer ring O of

Q[λ]. Since Q[λ] ⊂ EndQ
Q
(A) is generated by T (p) outside N , φ commutes with all elements in Q[λ].

The algebra EndQ
Q(A) acts faithfully on H0(A,ΩA/Q) which is isomorphic to a Q[λ]–vector space of

dimension 1. Thus φ ∈ Q[λ], and by Schur’s lemma (cf. [MFG] Proposition 2.5), ρλ,l is absolutely
irreducible. �

Remark 6.4. Let the notation be as in the above corollary. Let Oλ be the integer ring of Q[λ]. Since
ρλ,l : Gal(Q/Q) → GL2(Q`[il ◦ λ]) is continuous, it has values in the maximal compact subgroup
GL2(Q`[il ◦ λ]). Such a compact subgroup can be brought into GL2(Oλ,l) by conjugation, and we
may assume that ρλ,l has values in GL2(Oλ,l). Thus we may consider ρλ,l = (ρλ,l mod l). It has
been shown, mainly by Ribet, that ρλ,l is absolutely irreducible for almost all primes l (and hence,

by a result of Carayol and Serre, the isomorphism class of ρλ,l : Gal(Q/Q) → GL2(Oλ,l) for such l

is uniquely determined by λ; cf. [MFG] Proposition 2.13).

6.3. Ramification at the level. We keep the notation introduced in the previous section. We
would like to prove the following theorem.

Theorem 6.5. Let λ : h2(Γ1(N),Z) → Q
×

be an algebra homomorphism. Write χ : (Z/NZ)× →
Q

×
for the Dirichlet character given by χ(q) = λ(〈q〉) for primes q. Let p be a prime factor of N ,

and write N = N0p
e with p - N0. Suppose that l - p for a prime ideal l of Q(λ). Then we have

(1) Suppose that the conductor χp = χ|(Z/peZ)× is equal to pe, that is, χp restricted to 1+pe−1Zp
if e > 1 and to Z×

p if e = 1 is non-trivial. Then ρλ,l restricted to the inertia group Ip at p is

isomorphic to σ 7→
(
χp(σ) 0

0 1

)
, where we have regarded χp as a character of the inertia group

by local class field theory. Moreover on the one dimensional subspace of the representation
space of ρλ,l fixed by the inertia group Ip, the Frobenius element at p acts through the
multiplication by λ(U(p)).

(2) Suppose χp = 1, e = 1 and that λ is primitive at p (that is, λ(T (q)) differs from the eigen-
values of the Hecke operator T (q) occurring on S2(Γ1(N0); C) for infinitely many primes q).

Then ρλ,l restricted to the decomposition group at p is isomorphic to σ 7→
(
ν`(σ)η(σ) ∗

0 η(σ)

)
,

where η is an unramified character with η(Frobp) = ±
√
χ(p) = λ(U(p)), regarding χ as a

character modulo N/p.

This theorem for e = 1 was proven by Deligne and Rapoport (after some work by Shimura and
Casselman). A proof under the assumption e = 1 is in [GME] §4.2.3 and see [AME] 14.5.1 for the
general case of e > 1.

Exercise 6.6. For a compatible system of l–adic representations of Gal(Q/Q), suppose that l - p.
Then, is the kernel Ker(ρl|Ip) independent of l?

6.4. Ramification of p–adic representations at p. We now state the ordinarity (first proven by
Deligne and later by Wiles) for ρλ,p at p if λ(T (p)) or λ(U(p)) is a p–adic unit in Qp[ip ◦ λ]. Here
p|p. The proof is in [GME] §4.2.4.

Theorem 6.7. Let the notation be as in Theorem 6.5, p be a prime factor of N = N0p
e (p - N0)

and p be a prime ideal over p of Q[λ].

(1) If λ(T (p)), λ(U(p)) or λ(U t(p)) is a p–adic unit, then the representation space V (ρλ,p), has
one dimensional unramified quotient (that is, fixed by the inertia group at p) on which the
Frobenius element Frobp acts through the multiplication by the unique p–adic unit root of
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X2−λ(T )X+pχ(p(p)) = 0, where T is given by either T (p) or U(p)+U t(p)〈p(p)〉 according
as e = 0 or e > 0.

(2) If χp is trivial, e = 1 and λ is primitive, then ρλ,p restricted to the decomposition group

of Gal(Q/Q) at p is isomorphic to
( νpη ∗

0 η

)
for an unramified character η with η(Frobp) =

±
√
χ(p) = λ(U(p)).
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10 (1958) 1–28

[Sh1] G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math.
78 (1963), 149–192 ([63b] in [CPS] I).

[Sh2] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967),
58–159 ([67b] in [CPS] II).



ARITHMETIC OF CURVES 64

[Sh3] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math.
91 (1970), 144–222; II, 92 (1970), 528–549 ([70a–b] in [CPS] II).

[T] J. Tate, p-divisible groups, Proc. Conf. on local fields, Driebergen 1966, Springer 1967, 158–183.
[T1] J. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Math. 2 (1966), 134–144
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