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1. INTRODUCTION

We give an overview of what we will do in this topic course. Fix a prime p > 5. For a number field
K, by class field theory, the maximal abelian extension H,r unramifeid everywhere has Galois group
canonically isomorphic to the class group Clx of K. So Pontryagin dual of Hom(Clk ,, Qp/Zp) = Cli p
can be Galois cohomologically defined

Seli = Ker(H'(Q/K,Q,/Z,) — [[ H' (11, Qu/Z,)).
l

Writing the induced representation Ind% 1 = 1®x, we have the celebrated class number formula giving
the size |Clk| by the integral part of the value L(1, x) (Artin L-value) up to a canonical transcendental
factor. We have studied in the recent past 207 courses the fundamental question:

When Selx = Clk , is cyclic?

(and therefore, the structure of Selk is determined by by the value L(1, x)). Though we do not require
any knowledge of past courses, here are links to the lecture notes of the relevant past two courses:

e http://www.math.ucla.edu/"hida/207b.1.18s/Lec18s.pdf,
e http://www.math.ucla.edu/"hida/207a.1.18w/Lecl.pdf.

There is one more example of proven such formulas giving the size of Selmer groups. Start with a
modular form f € Si(SL2(Z)) and suppose f is an eigenform of all Hecke operators T'(n); so, f|T(n) =
AT (n))f. Each f has its p-adic irreducible Galois representation p; : Gal(Q/Q) — GL2(Qp[\]), where
Qp[)] is the field generated over the p-adic field @, by the eigenvalues A\(T'(n)). Let Gal(Q/Q) acts on

sla(Qp[A]) = {2 € Ma(Qy[A])|Tr(z) = 0}
by conjugation, which results a 3-dimensional Galois representation Ad(py). In this case, again we have
the formula of |Sel(Ad(ps))| by the L-value L(1, Ad(ps)) (a non-abelian class number formula). We
explore in this courese the question when Sel(Ad(py)) is cyclic over Zy[p¢]?

We cover

(1) How to get the non-abelian “class number” formula,
(2) Properties of Galois representations Ad(py) and py;
(3) Definitions of Sel(Ad(py);

(4) the cyclicity question.

Here is a slightly more detailed sketch of what we are going to do; so, no proofs given (just short
explanation of concepts).

1.1. Hilbert class field. Let K be a number field with integer ring O = Ok embedded in C. Let
H g be the Hilbert class field; i.e., the maximal abelian extension unramified everywhere including real
places. A real place means any real embedding K — R extending to an embedding of H into R.
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Define Clk to be the group of isomorphism classes of rank 1 projective O-modules M (the group
structure is given by tensor product over O). Since M — M ®o K = K, we may identify M with a
fractional O-ideal in K. Then

fractional O-ideals

Il =
Clx principal fractional ideals (a) = aO’

which is known to be finite (so, compact; [LFE, Theorem 1.2.1]). By class field theory, we have

Clg = Gal(H/K) by [+ Froby for primes [.

1.2. Dual class group Cl}, = Hom(Clg,Q/Z). Consider the algebraic closure

K= U E

E/K: finite Galois extension

of K (E is taken in C). Then &, = Gal(K/K) is a compact group as G = @E/K Gal(E/K)
by restriction maps. Consider Hom(& -, Q/Z) = Hom(®%,Q/Z) (Pontryagin dual of the maximal

continuous abelian quotient $492). If ¢ : & - — Q/Z is unramified at a prime [, ¢ is trivial on the inertia
subgroup I of [. Thus

Cly = Gal(H/K)* := Hom(Gal(H/K),Q/Z) = Ker(Hom(6x,Q/Z) — [ [ Hom(I, Q/Z)).
[

1.3. Pontryagin dual. Consider a profinite group G and a continuous G-module X. Assume that X
has either discrete torsion or profinite topology.

For any abelian profinite compact or torsion discrete module X, we define the Pontryagin dual module
X* by X* = Homeont(X,Q/Z) and give X* the topology of uniform convergence on every compact
subgroup of X. The G-action on f € X* is given by of(z) = f(c~'z). Then by Pontryagin duality
theory (e.g., [LFE, 8.3]), we have (X*)* & X canonically. By this fact, if X* is the dual of a profinite
module X = lﬂl X, for finite modules X,, with surjections X,, - X, for m > n, X* = Un Xrisa

discrete module which is a union of finite modules D

1.4. Group cohomology. We denote by H9(G, X) the continuous group cohomology with coefficients
in X. If X is finite, H4(G, X) is as defined in [MFG, 4.3.3]. Thus we have
H°(G,X) = X% = {z € X|go =z for all g € G},
and assuming all maps are continuous,
{G S X|c(or) = ac() + (o) for all 0,7 € G}

HY (G, X) = ; ;
{G = X|b(c) = (6 — 1)z for x € X independent of o}

and H%(G, X) is given by

{G 5 X|e(o,7) + c(oT, p) = oc(r, p) + c(o,7p) for all 0,7, p € G}
{c(o,7)=b(0) + ob(T) —b(oT) for b: G — X} '

Thus if G acts trivially on X, we have H(G, X) = Hom(G, X). If G = Gal(E/K), we often write
HI(E/K,X), and if E = K, we write H7(K, X) for G = &x.

1.5. Compatible system of Galois representations. A (weakly) compatible system of Galois
representations over K with coefficient (number field) T is a system of continuous representation
p={p: g — GL,(Or,)} such that

e There exists a finite set of primes S of K such that p; is unramified outside S and the residual char-
acteristic [ of [;

o The characteristic polynomial of p;(Froby) is in T[X] independent of [ as long as p ¢ S U {{}.
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div

1.6. Selmer group. Let p{" = p; ®z, Q;/Z; as a discrete & g-module. For a datum L of subgroup
Ly C HY(Ky, p%?) for each prime q of K, we define
Selz(p1) = Ker(H' (K, pi™) — [ H' (Kq. p™)/ Lq)-
q
If we take Lq := Ker(H'(Ky, p®*) — H1 (I, ptv)), then

Selz(pr) = Ker(H' (K, pi"") — T[ H' (15, o).
q

If p is made of trivial representation 1 with coefficients in Q,
Selg (1) := Selg(p) = Cljy ®z Z; for the above choice of L.
By class number formula for an imaginary quadratic field K = A[y/—D], we find, if | > 3,
Clie &2 2] = || CliclI = 1Selx (1)] = |L(0, )l
for the Dirichlet character y = (=2). In this case, we can check Ind% 1= Indgf‘( 1=1@y, Selg(1) =
Selg(x) as Selg(1) = 0; so,
Clie 92 7| = ||Cl [ = 1Selg (0] = L(0, V)l

1.7. A variant of Bloch-Kato conjecture. Define the L function of p by L(s,p) = [], det(1 —

pi(Frobp)N(p)~*)~! and assume analytic continuation and functional equation as predicted by Serre if
p is associated top a motive (see [HMI, 1.2.1]). If p is critical (i.e., the L(s, p) does not have a pole at
s = 0 and the T'-factor of L(s, p) and its counter-part of the functional equation are finite at s = 0), we

expect
-1

L(0, pr)
Sel =|—"
[Sel. (o)l ’ period |,
for a suitable transcendental factor “period” and a suitable data £ (depending on how to define

“ M ”
period”).
Thus at least conjecturally we can compute [Selz(pr)|. Our main questions are
e Is there any way to determine the structure of Sel.(pr)?
e Or at least, is there any way to compute the number of generators of Sel.(p() over Or,?

2. CONGRUENCE MODULES

Start with an n-dimensional compatible system p = {p;} of &x. For simplicity, we assume that
its coefficient field T" is Q. Pick a prime p and its member p, (since & is compact, p, has values in
the maximal compact subgroup GL,(Z,) up to conjugation). Let 5 = p, mod p; &x — GL,(F,). A
deformation ¢ : &x — GL,(A) for a local Z,-algebra A is such that ¢ mod m4 = p. The universal
deformation ring with some specific property P parameterizes all deformations with P. In other words,
there exists a universal deformation p : & x — GL, (R) with property P such that for any deformation
¢ as above, there exists a Z,-algebra homomorphism ¢ : R — A such that ¢ o p = ¢. We study the
relation between the module of differential Qg,/z, and a certain Selmer group Selp(Ad(p)). We start
studying differentials for general rings.

2.1. Set up.
o W: the base ring which is a DVR over Z, with finite residue field F for a prime p > 2.

e For a local W-algebra A sharing same residue field F with W (i.e., A/ma = F), we write
CLy4 the category of complete local A-algebras R with R/mpr = F for its maximal ideal mpg.
Morphisms of C'L 4 are local A-algebra homomorphisms. If A is noetherian, CN L4 is the full
subcategory of C'L 4 of noetherian local rings.

e Fix R € CNLy. For a continuous R-module M with continuous R-action, define continuous
A-derivations by

Der(R,M)={0:R— M € Homa(R, M)|8: continuous, §(ab) = ad(b) + bd(a) (a,b € R)}.
Here the A-linearity of a derivation ¢ is equivalent to §(A) = 0. The association M

Dera(R, M) is a covariant functor from the category MOD,p of continuous R-modules to
modules MOD.
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2.2. Differentials. The differential R-module Qr,4 is defined as follows: The multiplication a®b +— ab
induces a A-algebra homomorphism m : R® 4R — R taking a ® b to ab. We put I = Ker(m), which
is an ideal of R®4R. Then we define Qr/a = I/I?. Tt is an easy exercise to check that the map
d: R — Qpa given by d(a) =a® 1 —1®a mod I? is a continuous A-derivation. Indeed
a-db)+b-da) —d(ab) =ab®1—-a®b—-bQ@a+ba®1—-—ab®1+1®ab
—ab®1-a®b-bRa+1®ab=(a®1-1®a)(b®1-1®b)=0 mod I
We have a morphism of functors:

Hompg(Qr/a,?) — Dera(R,?): ¢ +— ¢pod.
2.3. Universality.

Proposition 2.1. The above morphism of two functors
M — HOmR(QR/A, M)

and M — Dera(R, M) is an isomorphism, where M runs over the category of continuous R-modules.
In other words, for each A-derivation § : R — M, there exists a unique R-linear homomorphism

¢:Qrja — M such that 6 = ¢od.

Proof. The ideal I is generated over R by d(a). Indeed, if >, , m(a,b)ab =0 (i.e., > , ,m(a,b)a®b € I),
then

Zm(a, bla® b= Zm(a, bla®b— Zm(a, b)ab® 1
a,b a,b a,b
_Z a(1@b)—b®1) == m(a,b)d(b)
a,b

Define ¢ : R x R — M by (x,y) — zd(y) for § € DeTA(R ). f a,c € Rand b € A, ¢(ab,c) =
abd(c) = a(bd(c)) = bop(a,c) and ¢(a,bec) = ad(be) = abd(c) = blad(c )) = bop(a,c). Thus ¢ gives a
continuous A-bilinear map.

By the universality of the tensor product, ¢ : Rx R — M extends to a A-linear map ¢ : R®4R — M.
Now we see that

Ppla®1l—-1®a)=ad(l) —d(a) = —d(a)
and
P(a®1-1®a)b®1-1®D)=¢(ab®1-a®b—-b®a+1® ab) = —ad(b) — bd(a) + §(ab) = 0.
This shows that ¢|;-factors through I/I1? = Qg 4 and § = ¢ o d, as desired. The map ¢ is unique as
d(R) generates Qp/a. O
2.4. Functoriality.

Corollary 2.2 (Second fundamental exact sequence).
Let m: R — C be a surjective morphism in C Ly, and write J = Ker(w). Then we have the following
natural exact sequence:

T/ 2 Qp a®RrC — Qcya — 0.
Moreover if A= C, then J/J? = Qp 4@rC.

Proof. By assumption, we have algebra morphism A — R — C = R/J. By the Yoneda’s lemma, we
only need to prove that

Dera(C,M) —2—  Dera(R,M)  —2— Home(J/J?, M)

| | 1]
Homu (Qcya, M) —— HOmA(QR/A&X\)RC, M) ——— Hom¢(J/J? M)
is exact for all continuous C—modules M. The first « is the pull back map. Thus the injectivity of « is
obvious.

The map [ is defined as follows: For a given A-derivation D : R — M, we regard D as a A-linear
map of J into M. Since J kills the C-module M, D(jj') = jD(j') + 7’ D(j) = 0 for j, 5’ € J. Thus D
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induces C-linear map: J/J? — M. Then for b € R and z € J, D(bx) = bD(x) + 2D(b) = bD(z). Thus
D is C-linear, and 5(D) = D] ;.

Now prove the exactness at the mid-term of the second exact sequence. The fact foa = 0 is obvious.
If 5(D) = 0, then D kills J and hence is a derivation well defined on C' = R/J. This shows that D is
in the image of a.

Now suppose that A = C. To show injectivity of 5%, we create a surjective C-linear map: -~ :
Qr/a ® C — J/J? such that yo g* = id.

Let m : R — C be the projection and ¢ : A = C — R be the structure homomorphism giving the
A-algebra structure on R. We first look at the map & : R — J/J? given by §(a) = a — P(a) mod J?
for P =1tom. Then

ad(b) + bd(a) — d(ab) = a(b — P(b)) + b(a — P(a)) — ab+ P(ab)
PED=E@PO) b aP(b) + ba — bP(a) — ab + P(a)P(b) = (a — P(a))(b— P(b)) =0 mod J.
Thus § is a A-derivation.
By the universality of Qr,4, we have an R-linear map

¢:Qpra— J/J?

such that ¢ o d = §. By definition, §(.J) generates J/J? over R, and hence ¢ is surjective.
Since J kills J/J?, the surjection ¢ factors through Qg 4 ®r C and induces 7. Note that S(d®@1¢) =
d ® 1¢|; for the identity 1o of C; so, v o 8* = id as desired. O

Corollary 2.3. Let the notation and the assumption be as in Corollary 2.2. If we restrict the functor
M +— Ders(R,M) to the category MOD,c of C-modules, QR/A&X\)RC represents MOD,c > M +—
Dera (R, M).

We often write C (m; C) := Qp/a®rC (which is called the differential module of 7).

Proof. By Proposition 2.1, for each § € Dera(R, M), we find a unique ¢ € Hompg(Q2g,4, M) such that
¢pod=4. If M is a C-module, ¢ factors through Qr/a/JQr/a = Qr/a @r C.

Conversely, if ¢ € Home(Q2z/4 ®rC, M) for a C-module M, plainly § = ¢o(d®1) gives Dera (R, M);
so, the result follows. O

2.5. An algebra structure on R & M and derivation. For any continuous R-module M, we write
R[M] for the R-algebra with square zero ideal M. Thus R[M]= R & M with the multiplication given
by

rox)(r®2)=r'"® (ra’ +1r'z).
It is easy to see that R[M] € CN Ly, if M is of finite type, and R[M] € CLy if M is a p-profinite
R-module. By definition,

Der (R, M) = {¢ € Homa_q4(R, R[M])|¢ mod M =id},

where the map is given by ¢ — (a — (a ® §(a)).
Note that i : R — R®aR given by i(a) = a ® 1 is a section of m : R®& 4R — R. We sce easily that
R®AR/I? = R[Qg/a] by  — m(z) & (z — i(m(z))). Note that d(a) = 1 ® a — i(a) for a € R.

2.6. Congruence modules. We assume that A is a domain and R is a reduced finite flat A-algebra.
Let ¢ : R — A be an onto A-algebra homomorphism. Then the total quotient ring Frac(R) can be
decomposed uniquely

Frac(R) = Frac(Im(¢)) x X

as an algebra direct product. Write 14 for the idempotent of Frac(Im(¢)) in Frac(R). Let a = Ker(R —
X) = (14RNR), S =Im(R — X) and b = Ker(¢). Here the intersection 1,R N R is taken in
Frac(R) = Frac(Im(¢)) x X. First note that a = RN (A x 0) and b = (0 x X) N R. Put

Co(¢; A) = (R/a) @r,e Im(¢) = Im(¢)/(¢(a)) = A/a= R/(a®b) = S/b and C1($;C) := Qr/a®rC.

The module Cy(¢; A) is called the congruence module of ¢ but is actually a ring. The module C1(¢; A)
is called the differential module of ¢.

Write K = Frac(A). Fix an algebraic closure K of K. Since the spectrum Spec(Cp(¢; A)) of the
congruence ring Cy(¢; A) is the scheme theoretic intersection of Spec(Im(¢)) and Spec(R/a) in Spec(R):

Spec(Co(A; A)) = Spec(Im(¢)) N Spec(R/a),
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we conclude that

Proposition 2.4. Let the notation be as above. Then a prime p is in the support of Co(¢; A) if and only
if there exists an A-algebra homomorphism ¢' : R — K factoring through R/a such that ¢(a) = ¢'(a)
mod p for all a € R.

Since ¢ is onto, we see Ci(¢; A) = b/b%. We could define C,, = b"/b"Tt. Then C(¢;A) =
D, Cn(¢; A) is a graded algebra. If b is principal, this is a polynomial ring Co(¢; A)[T].

Proposition 2.5. If A is a noetherian domain, we have Supp4(Co(¢; A)) = Supp4(Ci(¢; A)) and
Assa(Co(; A)) = Assa(Ci(¢; 4))-

For an A-module M, Supp (M) is defined by a Zariski closed subset {P € Spec(A)|Mp # 0} of
Spec(A). Writing Anng(M) = {x € AjJxzM = 0} (the annihilator ideal of M), we find Supp, (M) =
{P D Anns(M)|P € Spec(A)} if M is finitely generated over A as an A-module (see [CRT, §4]).
The set Assa (M) of associated primes of M is defined to be the set of prime ideals P of A such that
P = Anny(Az) for some x € M.

Proof. For simplicity, we write C; for C;(¢; A). Note that C; p = C, ®4 Ap = Qr/a ®r Ap =
Qrp/ap @rp Ap by [CRT, Exercise 25.4]. Thus if C; p = 0, by Nakayama’s lemma Qg /4, = 0;
so, Rp is étale over Ap [CRT, §25]. Therefore Rp = Ap ® Sp as Rp — Ap splits, and hence
Coyp =Co®aAp = Sp RRp,¢ Ap = 0. Thus SuppA(Co) C SuppA(Cl).

If Co,p = 0, then Spec(Ap)NSpec(Sp) = 0; therefore, Rp = Ap ®Sp, and hence Qg /4, = Qsp/ap-
and hence Cq p = 0. Thus shows the reverse inclusion Supp4(Co) D Supp,4(C1), and we conclude
Suppa(Co) = Supp4(C1).

Since the sub set of minimal primes of Anng(M) is equal to the subset of minimal primes in
Supp 4 (M) (see [CRT, Theorem 6.5 (iii)]), the identity Supp 4(Co) = Supp 4(C1) implies the identity of
associated primes. ([

3. GALOIS DEFORMATION THEORY FOR G,,

We study the universal deformation ring in the case of characters (i.e., representation into GL1) and
computes congruence modules Cy and C;. As before, we fix an odd prime p.

3.1. Deformation of a character. Let F//Q be a number field with integer ring O. We fix a set P of
properties of Galois characters. The property P is often unramified outside p, or in addition, deformed
characters has prime-to-p conductor a factor of a fixed ideal ¢ prime to p. Fix a continuous character
p: Gal(Q/F) — F* with the property P.

A character p : Gal(Q/Q) — A* for A € CLy is called a P-deformation of p if (p mod m4) = p
and p satisfies P.

A couple (R, p) (universal couple) made of an object R of C' Ly and a character p : Gal(Q/F) — R*
satisfying P is called a universal couple for p if for any P-deformation p : Gal(Q/F) — A* of p, we
have a unique morphism ¢, : R — A in CLy (so it is a local W-algebra homomorphism) such that
¢, 0 p = p. By the universality, if exists, the couple (R, p) is determined uniquely up to isomorphisms.

3.2. Ray class groups of finite level. Fix an O-ideal ¢. Recall

{fractional O-ideals prime to c}
CZF(C) = >
{(a)]a =1 mod™cco}

3

Here o = 1 mod™¢ means that a = a/b for a,b € O is totally positive (i.e., o(a) > 0 for all real
embedding F' % R) such that (b) + ¢ =0 and a =b mod ¢ (or equivalently, for all primes I|c, o € O
and o =1 mod [(¢®) if the [-primary factor of ¢ has exponent v((c) (if [|oo, it just means « is positive
at [).

Write Hpn /F for the ray class field modulo ¢p™. In other words, there exists a unique abelian
extension Hpn/F only ramified at cpoo exists such that we can identify Gal(Hp»/F') with the strict
ray class group Clp(cp™) by sending a class of prime [ in Clp(cp™) to the Frobenius element Froby €
Gal(H¢pn /F). This isomorphism is called the Artin symbol.
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3.3. Ray class group of infinite level. The group Clpr(cp™) is finite as we have an exact sequence:

(O/ep")

for the strict class group Cl} (we write the usual class group without condition at co as Clr). Note
that |Cl}|/|Clp| is a factor of 2¢ for the number e of real embeddings of F'.

Sending a class [a] € Clp(cp™) to the class [a] € Clp(cp™) for m > n, we have a projective system
{Clp(ep™)}n. Put Clp(ep™) =lim Clp(cp™). Then for Hepee = U,, Hepn, Clp(ep™) = Gal(Hep /F)
by [I] — Froby for primes [{ cp.

If F=Qand c= (N)for 0 < N € Z, we have Hpn is the cyclotomic field Q[unpn] for the group
pnpn of Np™-th roots of unity; so, Clg(cp™) = (Z/Np"Z)* and Cly(cp™>) = (Z/NZ)* x ZL,*.

% a—(a)

Clp(cp™) — Clf — 1

3.4. Groups algebra is universal. For a profinite abelian group G with the maximal p-profinite (p-
Sylow) quotient Gy, consider the group algebra W[[G,]| = lim WG] writing G, = lim G,, with finite
Gp. For example, A = W[[[']] (I' = 1+ pZ, = (1 +p)?») (the Iwasawa algebra) is isomorphic to W[[T7]
by 14+ p <t =1+T. Suppose that G, is finite. Fix a character ¥ : ¢ — F*. Since F* — WX,
we may regard X as a character xo : G — W (Teichmiiller lift of %). Define k : G — W{[G,]]* by
k(9) = xo(9)gp for the image g, of g in G,. Note that W[G,] is a local ring with residue field F. For
any continuous deformation x : G — A* of X, ¢ : W[Gy] 3 > agg — >, agxxo (g9) € A gives a
unique W-algebra homomorphism such that ¢ o k = x. If G, is infinite and A = @n A, for finite
A, with A,, = A/m,,, xn := anl mod m,, : G — A has to factor through G,,.,) by continuity, and
we get @, @ W(Gpmn)] — An such that ¢, o & = p,. Passing to the limit, we have p o k = p for
¢ =lim ¢, W[[G]] — A.

3.5. Universal deformation ring for a Galois character p. Let Cr(cp®) for the maximal p-
profinite quotient of Clp(cp®). If p has prime-to-p conductor equal to ¢, we define a deformation p to
satisfy P if p is unramified outside ¢p and has prime-to-p conductor a factor of ¢ (i.e., p factors through
Gal(H¢p /F)).

For the Teichmiiller lift py of p and the inclusion x : Cp(cp™) — W[[Cp(cp*>)]], we define p(o) :=
po(0)k(c). Then the universality of the group algebra tells us

Theorem 3.1. The couple (W[[Cr(cp™)]], p) is universal among all P-deformations. If p is unramified
everywhere, (WI[CF]], p) for Cr := Clp,, is universal among everywhere unramified deformations.

3.6. Congruence modules for group algebras. Let H be a finite p-abelian group. If m is a maximal
ideal of W[H], then for the inclusion x : H — W[H]* with k(c) = o, K mod m is trivial as the finite
field W[H]/m has no non-trivial p-power roots of unity; so, m is generated by {0 — 1}peny and myy.
Thus m is unique and W[H] is a local ring.

We have a canonical algebra homomorphism: W[H] — W sending o € H to 1. This homomorphism
is called the augmentation homomorphism of the group algebra. Write this map 7 : W[H] — W. Then
b = Ker(n) is generated by o — 1 for 0 € H. Thus

b="> WI[H](c— 1)W[H].
oeH

We compute the congruence module and the differential module C;(m, W) (j =0, 1).
Theorem 3.2. We have

Co(m; W) 2 W/|H|W and Cy(m;W) = H @z W.
Proof. Let K := Frac(W). Then 7 gives rise to the algebra direct factor Ke C K[H| for the idempotent
€= ﬁ Yoen 0 Thusa=KeNW[H]= (3, cy0) and n(W(H))/a = (¢)/a = W/|H|W.

Consider the functor F : CLy — SETS given by
F(A) = Homgoup(H, A*) = Homy_aig (W[H], A).

Thus R := W[H]| and the character p : H — W[H] (the inclusion: H — W/[H]) are universal among
characters of H with values in A € C'Lyy .

Then for any R-module X, consider R[X] = R® X with algebra structure given by rz = 0 and zy = 0
for all r € R and z,y € X. Thus X is an ideal of R[X] with X? = 0. Define ®(X) = {p € F(R[X])|p
mod X = p}. Write p(0) = p(0) @ u),(o) for u),: H — X.



NON ABELIAN CLASS NUMBER FORMULAS AND ADJOINT SELMER GROUPS 10

Since
p(o7) & uy(o7) = p(oT) = (p(0) & up(0))(p(7) & w, (7)) = p(oT) ® (u,(0)p(7) + plo)u, (7)),
we have u/ (a7) = u/,(0)p(7) + p(o)u),(7), and thus u, := p~!

o p
into X. This shows

uy, » H — X is a homomorphism from H

Hom(H, X) = ®(X).
Any W-algebra homomorphism § : R — R[X] with £ mod X = idg can be aritten as £ = idr ©d¢
with de : R — X. Since (r @ z)(r' @ 2’) = r’ @ ra’ + 'z for r,7/ € R and z.2’ € X, we have
de(rr’) = rde(r") + 1'de(r); so, de € Derw (R, X). By universality of (R, p), we have

O(X) = {{ € Hompy.ag (R, R[X])[{ mod X =id} = Derw (R, X) = Homg(Qr/w, X).
Thus taking X = K/W, we have
Homw (H ®z W, K/W) = Hom(H, K/W) = Homg(Qg,w, K/W) = Homw (Qg/w Qr.» W, K/W).
By taking Pontryagin dual back, we have
H=QOp/w ®@praW = Ci(m; W)
as desired. O

3.7. Class group and Selmer group. Let Indg id =id®x and H = Cp. Then for Qp given basically
by the regulator and some power of (27i),

L)/l = [ICrl,
We can identify C), = Hom(Cr, Q,/Z,) with the Selmer group of x given by

Selg(x) := Ker(H"(Q,V(0)") = [[H' (1, V()"))
l

for the inertia group I; C Gal(Q;/Q;).
3.8. Class number formula.

Theorem 3.3 (Class number formula). Assume that F/Q is a Galois extension and p t [F : Q). For
the augmentation homomorphism 7 : W[Cp] — W, we have, for r(W) = rankz, W,

(W)
I 1,X B _ r(W
’—(QF> = |Gy W]~ = [Colm W)| " = [[Selo(0) [ ™
p

and C1(m; W) =Cp @ W and Co(m; W) = W/|Cp|W.

4. NUMBER OF GENERATORS OF ADJOINT SELMGER GRIOUPS

The dimension d of the tangent space of a local ring R over F gives the number of generators of
the ring . We describe this fact. Using this fact, we prove that Qg is generated by d elements as
R-modules. We fix a generator w of the maximal ideal my, of W.

Hereafter, we fix a finite set S' of rational primes (including infinite places), and we let g denote
the Galois group over Q of the maximal extension unramified outside S.

4.1. Tangent spaces of local rings. To study noetherian property of deformation ring, here is a
useful lemma for an object R in CLyy:

Lemma 4.1. If t}/W =mp/(m% 4+ myy) is a finite dimensional vector space over F, then R € CLy is
noetherian.

The space i3y, is called the co-tangent space of R at mp = (w) € Spec(R) over Spec(W). Define
t5, by mg/m%, which is called the (absolute) co-tangent space of R at mg.

Proof. Since we have an exact sequence:

~ 2 * *
F— my /my, — tp — tpy — 0,
we conclude that t% is of finite dimension over F if ¢7, W is of finite dimensional.
First suppose that mg = 0 for sufficiently large N. Let 21, ..., Ty, be an F-basis of t;. Choosez; € R
so that z; mod m% = ;. and consider the ideal a generated by z;. We have a = >.; Rzj — mp (the

inclusion).
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After tensoring R/mp, we have the surjectivity of the induced linear map: a/mgra =2 a®r R/mpr —
m ®p R/mpr = m/m% because {T1,...,Tm} is an F-basis of ¢},. This shows that mg = a = > Rz
(NAK: Nakayama’s lemma applied to the cokernel of R™ > (a1, ...,am) — >_; a;z; € mg). Therefore
m’f% / m’f%“ is generated by the monomials in x; of degree k as an F-vector space.

In particular, mgfl is generated by the monomials in (xg := @, x1,...2.,) of degree N — 1.
Inductive step: Define m: B = W/[[X1,...,Xn]] = Rby n(f(X1,..., Xm)) = f(x1,...,2m). Since any
monomial of degree > N vanishes after applying 7, 7 is a well defined W-algebra homomorphism. Let
m=mp = (w, X1, -+, X;n) be the maximal ideal of B. By definition,

(MmN =my L
Suppose now that m(mN=7) = m 7, and try to prove the surjectivity of w(mN=9=1) = mpy /71
Since mgﬂfl/mgﬂ is generated by monomials of degree N — j — 1 in x;, for each x € mgﬂfl, we
find a homogeneous polynomial P € m™ =7~ of xy,..., 2, of degree N — j — 1 such that x — m(P) €
mpy 7 = 7(mN=7). This shows m(mN¥=7=1) = m} /7' Thus by induction on j, we get the surjectivity

of m.
General case: Write R = lim R; for Artinian rings R;. The projection maps are onto: thiyy = LRy
Since t%, is of finite dimensional, for sufficiently large i,
t}‘ﬁ#l = t}‘%i'

Thus choosing x; as above in R, we have its image xgi) in R;.

Use x?) to construct m; : W[[Xy,...,Xn]] — R; in place of x;. Then ; is surjective as already
shown, and

W:@m WXy, ..., Xn]] @ R
K2

remains surjective, because projective limit of continuous surjections, if all sets involved are compact
sets, remain surjective; so, R is noetherian as profinite sets are compact. O

4.2. Tangent space as adjoint cohomology group. Let R = Rj be the universal ring for a mod
p-Galois absolutely irreducible representation p: &g — GL,(F).

We identify % y;, with a certain cohomology group H LB, ad(p)) and in this way, we prove finite
dimensionality: dimg ¢} 1y, < oo (and hence Ry is noetherian).

Let M, (F) be the space of n x n matrices with coefficients in F. We let &g acts on M, (F) by
gv = p(g)vp(g)~t. This action is called the adjoint action of &g, and this g-module will be written
as ad(p).

Write Z for the center of M,,(F) and define sl,,(F) = {X € M,,(F)|Tr(X) = 0}. Since Tr(aXa™ ') =
Tr(X), sl,(F) is stable under the adjoint action. This Galois module will be written as Ad(p).

Ifptn, X — 1Tr(X) ® (X — 2Tr(X)) gives rise to M, (F) = Z @ sl,(F) stable under the adjoint
action. So we have ad(p) = 1 ® Ad(p) if p1n, where 1 is the trivial representation.

Lemma 4.2. Let R = Rj; for an absolutely irreducible representation p : &g — G Ly, (F). Then
tryw = Homg(ty y, F) = H' (6q, ad(p)),

where H' (&g, ad(p)) is the continuous first cohomology group of &g with coefficients in the discrete
&g-module V(ad(p)).

The space tr/w is called the tangent space of Spec(R)/w at m. In the following proof of the lemma,
we write G = &g and R = Rj.

Proof. Step. 1, dual number. Let A = F[e] = F[X]/(X?) with X < . Then 2 = 0. We claim:
HomW_alg(R, A) = tR/W-

Construction of the map.
Start with a W-algebra homomorphism ¢ : R — A. Write

¢(r) = go(r) + ¢c(r)e with ¢o(r), ¢c(r) € F.
Then the map is ¢ — €y = Pc|mp-
Step. 2, Well defined-ness of £y. From ¢(ab) = ¢(a)p(b), we get

po(ab) = do(a)po(b) and ¢c(ab) = ¢o(a)pe(b) + do(b)pe(a).
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Thus ¢. € Derw(R,F) = Homp(Qr/w ®r F,F). Since for any derivation 0 € Derw (R,F), ¢’ =
¢o + o¢ € HomW—alg(R; A), we find
HOHIR(QR/W ®RgrF, F) = Derwy (R, A) = HOle_alg(R, A)
and Ker(¢g) = mp because R is local. Since ¢ is W-linear, ¢(a) =a =a mod mp.
Thus ¢ kills m% and takes mp W-linearly into ms = Fe; so, by : t5, = F. Forr € W, 7 =r¢(1l) =
¢(r) =T + ¢<(r)e, and hence ¢ kills W so, by € tr/w.
Step. 3, injectivity of ¢ — f4. Since R shares its residue field F with W, any element a € R can

be written as a = r + x with » € W and * € mg. Thus ¢ is completely determined by the re-
striction £y of ¢. to mg, which factors through 7 W Thus ¢ +— {4 induces an injective linear map
¢ : Homy —aig (R, A) — Homg(t} . F).

Note R/(m% + my) = F @ tryw = Fltk w] with the projection 7 : R — %y, to the direct
summand t7 y,. Indeed, writing 7 = (r mod mg), for the inclusion ¢« : F = W/my — R/(m% + mw),
w(r) =r — (7).

Step. 4, surjectivity of ¢ — Ly. For any £ € Hom]p(t}‘%/w, ), we extend ¢ to R by putting £(r) = ¢(n(r)).
Then we define ¢ : R — A by ¢(r) =T + {(r(r))e. Since €2 = 0 and 7(r)m(s) =0 in Ft% wl, we have

rs=T+x(r)(E+n(s)) =75 +3n(r) +7r(s) 2 75 +3l(m(r))e + Tl(m(s))e = (r)P(s)

is an W-algebra homomorphism. In particular, ¢(¢) = ¢, and hence ¢ is surjective.
By Homg(Qr/w ®r F,F) = Hompy.ag (R, A), we have

HOmR(QR/W ®R F, F) = HOHl]F(tE/W, F);

so, if 17, W is finite dimensional, we get

(4.1) Qryw @rF =ty

Step. 5, use of universality. By the universality, we have
Homw _q19(R, A) = {p: G — GL,(A)lp mod my =p}/ ~.
Write p(g) = p(g) + uy(g)e for p corresponding to ¢ : R — A. From the mutiplicativity, we have
plgh) + ug(gh)e = p(gh) = p(g)p(h) = p(9)p(h) + ((g)ug(h) + ug(9)p(h))e,
Thus as a function v’ : G — M, (F), we have
(4.2) ug(gh) = B(g)ugy(h) + uy(9)p(h).
Step. 6, Getting 1-cocycle. Define a map u, = uy : G — ad(p) by
ug(g) = uy(9)p(g) "
Then by a simple computation, we have
gug(h) = B(g)us(h)p(g) ™"
from the definition of ad(p). Then from the above formula (4.2), we conclude that

[us(gh) = gus(h) + us(g)- |
Thus ug : G — ad(p) is a 1-cocycle. Thus we get an F-linear map
tR/W = HomW—alg(Ra A) - H1(®Qa ad(p))

by £y — [ug]
Step. 7, End of proof. By computation, for x € ad(p)
p~p e pg) +uy(ge = (1+22)(plg) + uy (9)e) (1 — xe)
& up(g) = 2p(g) — P9)z + 1y (9) < up(g) = (1= g)z + up(g).
Thus the cohomology classes of u, and u, are equal if and only if p ~ p’. This shows:

Homg (1%, F) = Homw —aig (R, A) = {p: G — GL,(A)|p mod my =p}/~= HY(G,ad(p)).

In this way, we get a bijection between Homg (t% ;. F) and H Y@, ad(p)). O
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4.3. p-Frattini condition. For each open subgroup H of a profinite group G, we write H, for the
maximal p-profinite quotient. Define p-Frattini quotient ®(H,) of H by ®(H,) = H,/(H,)?(Hp, Hp)
for the the commutator subgroup (Hp, Hp) of H,. We consider the following condition:

(D) For any open subgroup H of G, ®(H,) is a finite group.

Proposition 4.3 (Mazur). By class field theory, ®q satisfies (®), and Rz is a noetherian ring. In
particular, tE/W is finite dimensional over F and is isomorphic to Qp/w @r F (see (4.1)).

By this fact, hereafter we always assume that the deformation functor is defined over CN L /yy.

Proof. Let H = Ker(p). Then the action of H on ad(p) is trivial. By the inflation-restriction sequence
for G = &g, we have the following exact sequence:

0 — H'(G/H,H"(H,ad(p))) — H'(G, ad(p)) — Hom(®(H,), My (F)).
From this, it is clear that
dimp H (G, ad(p)) < oc.
The fact that Bq satisfies () follows from class field theory. Indeed, if F' is the fixed field of H, then

®(H,) fixes the maximal abelian extension M /F unramified outside p. By class field theory, [M : F] is
finite. g

Corollary 4.4. Qg,w is an R-module of finite type, and its minimal number of generators over R is
equal to
dim]p QR/W KR F = dlm]F tR/W-

Proof. For any R-module M, Nakayama’s lemma tells us M ®gr F = 0 = M = 0. Choose a basis
B = {b} of M/mrM = M ®p F and suppose B is finite. Lift b to b € M, and consider the R-linear
map 7 : Py R 3 (ag)zep — D_pagb € M. Tensoring F over R, we find Coker(r) ®r F = 0; so,
Coker(m) = 0. This implies that {b|b € B} is the minimal generators of M over R. Apply this to
M = Qp/w, we get the result by Proposition 4.3. O

5. ADJOINT SELMER GROUPS AND DIFFERENTIALS

We define Sel(Ad(p)) for ordinary deformations p of an absolutely irreducible 2-dimensional Galois
representation p and show that Sel(Ad(p)) = tr/w and Sel(Ad(p)) = Qg w for the universal ordinary
Galois representation p deforming p.

We write I,, for the inertia group of D, = Gal(Q,/Q,).

5.1. p-Ordinarity condition. Let p : &g — GL2(A) (A € CL;w) be a deformation of p : &g —
GLy(F) acting on V(p). We say p is p-ordinary if

(ordy) plp, = (§35) for two characters €,6 : D, — A* distinct modulo ma with § unramified.
So, p = plp, = (g %) with § mod m, = § which is a requirement. We also consider a similar condition
fori e S (I #p):

(ord;) We have a non-trivial character ¢; : I} — W of order prime to p such that p|;, = (LAS’EZ 2),

where g : W — A is the W-algebra structure morphism.
We always impose these two conditions (ord,) and (ord;) for [ € S. In most cases, we fix a character

X : &g — W, we consider
(det) detp=1t40x.
5.2. Ordinary deformation functor. We consider the following functor for a fixed absolutely ir-
reducible representation 5 : g — GLo(F) satisfying (ord,) and (ord;). Then we consider D, D, :
CL,w — SETS given by

D(A) ={p: 6y — GL2(A)|p mod my = p, p satisfies (ord,) and (ord;)}/ =
and
Dy(A) = {p € D(A)|det p = 14 0 1.
Then
Theorem 5.1 (B. Mazur). There exists a universal couple (R°™, p = p°™*) and (Ry, p,) representing
D and D, respectively, so that D(A) = Homyy_a4(R™, A) by p — ¢ with po p°™@ = p (resp. Dy(A) =
Homw _a1g(Ry, A) by p— ¢ with pop, =p).
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For a proof, see [MFG, §2.3.2, §3.2.4].

5.3. Fiber products. Let 7 : CL,yy — SET'S be a covariant functor with |F(F)| = 1. Let C = SET'S
or CLw . For morphisms ¢’ : " — S and ¢" : S — Sin C,

S/ XS S// — {(CL/,CLN) c S/ X S//|¢/(CL/) — ¢N(CLN)}
gives the fiber product of S” and S” over S in C. We assume that
|F(F)| = 1 and F(Fle] xr Fle]) = F(F[e]) x 7w F(Fle])
by two projections.
It is easy to see F = D and D, satisfies this condition. Indeed, noting that Fle| xr Fle] = F[¢'] xf
Fle"] 2 Fle',e"], if p/ € F(F[e']) and p”’ € F(F[e”]), we have p’ X p has values in GLy(F[¢’,£"']) is an
element in F(F[e'] xp F["]).

5.4. Slight generalization. For any A € CL,y and an A-module X, suppose |F(A)| = 1 and
F(A[X] xa A[X]) = F(A[X]) xFa) F(A[X]). Then A[X] x4 A[X] = A[X © X]. The addition
on X and A-linear map o : X — X induces in the same way C'L jy-morphisms +, : A[X © X] — A[X]
by a+ (z@y) — a+x+yand a, : A[X] — A[X] by a+ 2z +— a+ a(z). Thus we have by functoriality.
the “addition”

F(++)
—_—

+: FA[X]) xFa) FA[X]) = F(AX © X]) F(A[X])

and a-action
a: FAX]) 22 Foaix)).

With 0 = Im(F(A) — F(A[X]) for the inclusion A — A[X], this makes F(A[X]) as an A-module.

5.5. Tangent space of deformation functors. Identify Fle] xg F[e] with F[e’,e”] (¢'¢” = 0 and
dimp Fle] xp Fle] = 3 but dimy Fle] @p Fle] = 4). It is easy to see that a +be’ +ce” — a+ (a + c)e gives
an onto CL yy-morphism a : Fle] xp F[e] — F[e] which induces
F(a
+ 1 F(Fl]) x F(Fle]) = F(Fle] xx Fle]) 2% F(F[e]).
Plainly this is associative and commutative, and for the inclusion 0 : F — F[e], we have 0 :=
Im(F(0)(F(F))) € F(Fle]) gives the identity. Thus F(F[e]) is an abelian group.

Similarly, for a € F, a + be +— a + abe is an automorphism of Fle] in C'L,y. This induces a
multiplication on F(F[¢]) by scalar in F. We see that F(F[e]) is an F-vector space, and F(F[¢]) is called
the tangent space of the functor F.

5.6. Tangent space of rings and deformation functor.

Lemma 5.2. Let F = D or Dy and R = R°" or Ry accordingly. Then tp,w = F(F[e]) as F-vector
spaces.

Proof. Write D? : CL,y — SETS for the deformation functor defined by D?(4) = {p : &g —
GLy(A)|(p mod m4) = p}/ ~ without any extra properties. Let Ry be the universal ring for DY. We
have got a canonical bijection in Lemma 5.2:

D' (Fe])

1-1 onto — ~
Tt> H'(8q,ad(p)) = tRy/w

with a vector space isomorphism ¢. We have constructed a cocycle u, from p € F(F[e]) writing p =
P+ uype. Regarding (p, p') € F(Fle]) x F(Fle]) = F(Fle] xr Fle]), we see that +(p, p’) = 0+ (u,p +
uyp)e € F(Fle]); so, 41 is a homomorphism. Similarly, one can check that it is F-linear. O

5.7. Tangent space as cohomology group with local condition. We identify F(F[e]) with a
F-vector subspace of H'(Bg,ad(p)). We want to explicitly determine F(F[e]). Since corresponding
cohomology class corresponds to strict conjugacy class, we may choose by (ord,) a basis (dependent on
I € SU{p}) of V(p) for p € F(F[e]) so that p|p, is upper triangular with quotient character ¢ congruent
to 0 modulo m4. Similarly by (ord;), we choose the basis so that p|;, = € © 1 in this order.

Theorem 5.3. A I-cocycle u gives rise to a class in Dy (Fle]) if and only if w(I;) = 0 for all prime
I € S not equal to p, u|p, is upper triangular, u|, is upper nilpotent and Tr(u) = 0 over &q, where
v=v mod ().

Note that the description of cocycles u is independent of x; so, even if one changes x, the tangent
space tr_,w is independent as a cohomology subgroup as long as F does not change.
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Proof. By (det), 1 = det(pp™') = 1+ upe = 1 + Tr(u,)e; so, (det) < Tr(u) = 0 over Bg. Thus we
trw C H' (&g, Ad(p)).

Choose a generator w € V(e) over Fle]. Then (w,v) is a basis of V(p) over Fle]. Let (w,7) = (w,v)
mod ¢ and identify V(ad(p)) with Mz (F) with this basis. Then defining p by (0w, ov) = (w,v)p(0),

for 0 € D,, we have p(0) = (E(U) y ) (upper triangular). If o € I,, pp~* = 1 + u, with lower right

0 (o)
corner of u, has to vanish as 6 = 1 on I, we have u,(0) € {(§¢)}-
Since ramification at | # p is concentrated to p as p(I;) has order prime to p, (ord;) < u,(I;) = 0.
(ordp) is equivalent to u,, is of the form (§§) but by Tr(u,) = 0, it has to be upper nilpotent. O

5.8. Mod p adjoint Selmer group. For 7 = D or D,, we denote the corresponding local deformation
functor by

Di(A) = {p: Gal(Q;/Q;) — GL2(A)|p mod m4 = p and p satisfies (ord;)},
and D, ;(A) = {p € Di(A)| det(p) = ta o x}. Thus by the proof of Theorem 5.3, we find
Dy(4) = {p: 6g — GLa(4) € DY(A) : plp, € DyalA)}.
Therefore, we have

H*(Qu, Ad(p))

Sel(Ad(p)) :=tr, w = Ker(H' (&g, Ad(p)) — H Dy, (Fle]) 7

leSu{p}

and
H' Qi ad(p))

Sel(ad(p)) := tgorajw = Ker(H' (&g, ad(p)) — [ Dy(F[e])

leSu{p}

).

5.9. R°"? is an algebra over the Iwasawa algebra. The finite order character det(5) factors through
Gal(Q[un,]/Q) for some positive integer Ny. Let Ny be the minimal such integer (called conductor of
det(p)). Write Ny = Np” for N prime to p; so, N is the prime to p-conductor of det(p). Note that
det(p°?) factors through Gal(Q[unp=]/Q) = Z,* x (Z/NZ)*. Write I' & 1 + pZ, be the maximal
p-profinite quotient of Gal(Q[rnp-]/Q). Supposing x|, has values in W*, consider the deformation
functor
D(A) = {p: 6g — A%[pmod ms = det(p), p|r, = va o x|, VI # p}

Plainly this functor is represented by W[[I']] with universal character k(o) = xo(o)[o], where xq is the
restriction of x to (Z/NZ)* and [o] is the restriction of o to Qs with Gal(Qs/Q) =T for a subfield
Qo C Q[up=]. Since det p°™® € D(R°™), we have i = igora : W[[[]] = R°" such that det p@ =i o k.

5.10. Reinterpretation of D. Consider the following deformation functor Dy : CL,y — SETS
D.(A) ={p: &g — GL2(A)|p mod ma = p, p satisfies (ord,), (ord;) and (deta)}/ =,

where writing i4 : A — A for A-algebra structure of A,
(detyp) det(p) =ia 0 k.

Proposition 5.4. We have D,(A) = Homp_q1y( R, A) with universal representation p°™¢ € D(R°™?);
s0,
H' (Qi, Ad(p))

Sel(Ad(p)) = tgorajn = Ker(H' (&g, Ad(p)) — H Dy 1(Fle])

leSu{p}

).

Proof. For any p € Da(A), regard p € D(A). Then we have ¢ € Homyy_a15(R"?, A) such that o prd =
p. Thus ¢ o det(p°"?) = det(p). Since det(p) = i4 o x and det(p°"?) = igora 0 K, we find Y 04 gora = ia,
and hence ¢ € HomA_alg(R‘”d, A). This shows that R°"? also represents D, over A.

As we already remarked, Dy (Fe]) = tgora/n = Mpora/m%,,4 +my is independent as a subgroup of
H (B¢, Ad(p)); so, we get a new expression of Sel(Ad(p)). O

By the proof, Qpora ) ®pgora F = Sel(Ad(p)) = Qgr, yw ®g, F, so the smallest number of generators
of Qpora/y as R -modules and Qg /w as Ry modules is equal. In the same way, the number of
generators of R°"® as A-algebras and R, as W-algebras is equal.
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5.11. Compatible basis of ¢ € F(A). By (ord;) for I € S U {p}, the universal representation p,
is equipped with a basis (v;, w;) so that the matrix representation with respect this basis satisfies
(ord;). By representability, each class ¢ € F(A) has p such that V(p) = V(p,) ®r, , A for a unique
¢ € Homp.aig(Ry, A), we can choose a unique p € c is equipped with a basis {(vy = vy ® Lw; =
w; ®1}; satisfying {(ord;):l € SU {p}} compatible with specialization. We always choose such a specific
representative p for each class ¢ € F(A) hereafter.

Take a finite A-module X and consider the ring A[X] = A @ X with X? = 0. Then A[X] is still
p-profinite. Pick p € F(A[X]) such that p mod X ~ py. By our choice of representative p and py as
above, we may (and do) assume p mod X = py.

5.12. General cocycle construction. Here we allow y = k but if x = &, we assume that A € CLx.
Writing B = W if x has values in W* and A if x = &, the functor F is defined over CL,p. Let pg act
on My(A) and sly(A) = {z € M2(A)|Tr(x) = 0} by conjugation. Write this representation ad(p) and
Ad(p) as before. Let ad(X) = ad(A) ®4 X and Ad(X) = Ad(A) ®4 X and regard them as &g-modules
by the action on ad(A) and Ad(A). Then we define

 {p:6g — GLy(A[X])|(p_mod X) = py, [s] € F(AIX])}
N 1+ My (X) ’
where [p] is the isomorphism class in F(A) containing p and p is assumed to satisfy the lifting property
described in §5.11.

Take X finite as above. For p € ®(X), we can write p = po @ u), letting po acts on Mz(X) by matrix
multiplication from the right. Then as before

po(gh) @ uj,(gh) = (po(g) ® u,(9))(po(h) @ u,(h)) = po(gh) @ (uy,(9)po(h) + po(g)u,(h))

/

produces u),(gh) = u(g)po(h) + po(g)u/,(h) and multiplying by po(gh)~"' from the right, we get the
cocycle relation for u,(g) = u/,(g)po(g)~":

(A[X])

up(gh) = uy(g) + gu,(h) for gu,(h) = p(g)u,(h)po(g)~",

getting the map ®(A[X]) — H'(&q, ad(X)) which factors through H*(8g, Ad(X)). As before this map
is injective A-linear map identifying ®(A[X]) with Sel(Ad(X)).

5.13. General adjoint Selmer group. We see that u, : &g — Ad(X) is a 1-cocycle, and we get an
embedding ®(A[X]) — H'(Qq, Ad(X)) for I € SU{p} by p — [u,]. We consider local version of ®
replacing &g by D;:
_ {p: D1 — GLy(AIX))|F_mod X = po, [o] € F(AIX])}

1+ My (X) ’

Py (A[X]) :

and we define
H'(Qi, Ad(p))

Sel(Ad(X)) = Ker(H' (8¢, Ad(X)) — [] T, (A[X])

leSu{p}

)’

IfX = h_n>11 X; for finite A-modules X;, we just define
Sel(Ad(X)) = lim Sel (Ad(X;)).

K3

Then for finite X,
D(A[X,]) = Sel(Ad(X;)) and lim ®(X;) = Sel(lim Ad(X;)).

K3 K3

5.14. Differentials and Selmer group. For each [pg] € F(A), choose a representative pg = @ o p as
in §5.11. Then we have a map ®(A[X]) — F(A[X]) for each finite A-module X sending p € ®(A[X])
chosen as in §5.11 to the class [p] € F(A[X]). By our choice of p as in §5.11, this map is injective.

Conversely pick a class ¢ € F(A[X]) over [po] € F(A). Then for p € ¢, we have x € 1 + My(my(x))
such that zpz~' mod X = pg. By replacing p by xpz~! and choosing the lifted base, we conclude
D(A[X]) = {[p] € F(A[X])|p mod X ~ pg}; so, for finite X,

Sel(Ad(X)) = ®(A[X]) = {¢ € Homp.aig(Ry, A[X]) : dmod X = o}

— Derp(Ry, X) 2R 22, Hom, (Qp, /5 ®n, 0 4, X).

~
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Thus

(5.1) Sel(Ad(X)) = Hom (/5 ®n, o A, X) |

Theorem 5.5. We have a canonical isomorphism: Sel(Ad(po))” = Qg /B @R, ,» A.
Proof. Take the Pontryagin dual
AY :=Homp(A, BY) = Homg, (A ®p B,Q,/Z,) = Hom(A, Q,/Zy).

Since A = lim_A; for finite i and Q,/Z, = lim p~'Z/Z, AV = lim Hom(A;,Q,/Z,) = lim A} is a
Py — —i i
union of the finite modules AY. We define Sel(Ad(pg)) := h_H)lj Sel(Ad(AY)). Defining ®(A[AY]) =

lim, D (A[AY]), we see from compatibility of cohomology with injective limit

1 (@1, Ad(4Y))
Il =Gy

—

Sel(Ad(po)) = lim Sel(Ad(4})) = limKer(H' (g, Ad(A})) —
i J leSu{p}
By the boxed formula (5.1),

Sel(Ad(po)) = lim Sel(Ad(A;)) = limHompg, (Qr, /5 @r, A, A7)

= HOHlA(QRX/B R, A, AV) = HOHlA(QRX/B R, A, HOmZP(A, Zp))
= Homg, (Ur, /5 ®r, 4,Qp/Zp) = (Ur, /B @R, A)".

Taking Pontryagin dual back, we finally get

Sel(Ad(po))" = Qg /5 ®r, . A and Sel(Ad(p)) = Qp_/p @r, F

as desired. In particular, Sel(Ad(p,))" = Qg /5 (with p, = p° if x = k). O
This is the generalization of the formula

Clr @z W = Qwciy, 1w Owicir,) W-

5.15. p-Local condition. The submodule ®,(A[X]) in the cohomology group H*(Q,, Ad(X)) is made
of classes of 1-cocycles u with u|;, is upper nilpotent and u|p, is upper triangular with respect to the
compatible basis (v, wp). Suppose we have o € I, such that po(c) = (§ §) such that a #  mod ma.

Suppose u is upper nilpotent over I,. Then for 7 € D, we have Ad(po)(T)u(rtor) = (Ad(po)(c) —

Du(r) + u(o). Writing u(r) = (2 2,), we find (Ad(po)(c) — 1)u(r) = ( I <aﬁ’;*1>b). Since
po(7) is upper triangular and u(7~'o7) is upper nilpotent, Ad(po)(7)u(r~to7) is still upper nilpotent;
so, (a7 —1)c = 0 and hence ¢ = 0. Therefore u is forced to be upper triangular over D,. Thus we

get,

Lemma 5.6. If p(o) for at least one o € I, has two distinct eigenvalues, ®,(A[X]) gives rise to the
subgroup of H*(Q,, Ad(X)) made of classes containing a I1-cocycle whose restriction to I, is upper
nilpotent.

6. UPPER BOUND OF THE NUMBER OF SELMER GENERATORS

By Kummer theory, we give an upper bound of the dimension dimtgora;y = dimitg, ,w by the
dimension of the dual Selmer group, which turns out to be often optimal.

6.1. Local class field theory. We summarize facts from local class field theory. Let K/q, be a finite
extension with algebraic closure K with integer ring O. Write D := Gal(K/K) fixing an algebraic
closure K /K. Let D> I be the inertia subgroup and D be its maximal continuous abelian quotient.
oz [z, K]: K* — D% (the local Artin symbol);

e [, K| modulo the inertia subgroup I,; C D is the Frobenius element Frob;

e For any integer 0 < m € Z, K* /(K*)™ = K* ®z Z/mZ = D®/mD by Artin symbol;

e O* = I3, by Artin symbol.
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6.2. Local cohomology. We summarize facts from local cohomology.
o inv: HX(K, jiy(K)) = Z/mZ (the invariant map);
o HYK, ) =2 K*/(K*)™ (Kummer theory valid for any field K O Q).

This follows from the long exact sequence of H* (M) := H’(K, M) associated t0 i, (K) — K
—=x

K

—=X z—z™

X z—z"

HOE™) HE) ——  H'(t) —— H(E)Z0

| | |
KX N K% N KX/(KX)m

™

where the vanishing (x) follows from Hilbert theorem 90.
6.3. Local Tate duality. For any finite (continuous) D-module M killed by 0 < m € Z, let
M*(1) := Hom(M, j1,,, (K))
as Galois module acting by o - ¢(z) = o(¢(c71z)) (called Tate dual). Then
M*(1) @aymz M 3 6 2 $(z) € im

is a Z[D]-morphism inducing a cup product pairing H™(M*(1)) x H2="(M) — H?(jin) 2% Z,/mZ.
Theorem 6.1 (J. Tate). Cohomological dimension of D is equal to 2 and the above pairing is perfect
forr=20,1,2

If M = pm(K), by definition p,, = (Z/mZ)*(1). We know H!(1,,) = K*/(K*)™ and HY(Z/mZ) =
Hom (D% /mD®,Z/mZ). By local class field theory, D /mD = K> /(K*)™; so, the duality in this
case follows. One can deduce the proof of the duality in this special case basically by restricting to
Gal(K/K(M)) for the splitting field K(M) of M (see [MFG, Theorem 4.43]).

6.4. Another example of local Tate duality. Consider Hom(FrobZ, M) C HYK,M) for a finite
Z/mZ-module M on which D acts trivially. Here Frob is the Frobenius element in D/I.

Lemma 6.2. The orthogonal complement ofHorn(FrobZ M) C HY(K, M) in the dual H' (K, M*(1)) =
K> ®z M is given by O* @z M. In particular, the Tate duality between Hl(K tm) and HY (K, Z/mZ)

gives rise to the tautological duality between FrobZ/mFrobZ and Horn(FrobZ Z/mZ).

The result for general M follows from extending scalar to M; so, we may assume M = Z/mZ.

6.5. Inflation-restriction. To prove the lemma, we recall the inflation-restriction sequence. Let G be
a profinite group and H is an open normal subgroup (so, G/H is finite). If M is a G-module, for a
1-cocycle u: H — M, g-u := gu(g~—hg) can be easily checked to be a one cocycle. If u(h) = (h —1)m
we see g-u(h) = g(¢g7 hg—1)m = (hg — g)m = (h—1)(gm); so, this preserves coboundaries, and hence
G/H acts on H'(H, M).

Since H fixes M = HO(H, M), M* is a G/H-module. The inflation restriction exact sequence is

Inf Res

0— HY(G/H,M") = HYG, M) == HY(H,M)“/" - H*(G/H, M),

where Inf(u)(g) = u(g mod H) and Res(u) = u|g for cocycles. For a proof of this, see [MFG, Theo-
rem 4.33].

6.6. Proof of Lemma 6.2. The last statement follows from the construction of pairing between
HY(K, pm) and HY(K,Z/mZ) described in §5.2.
By the inflation-restriction sequence, we have an exact sequence

0 — Hom(D/I,Z/mZ) — Hom(D, Z/mZ) — Hom(I,Z/mZ) — 0

for the inertia group I'>D. Since D/I = Frob?, we have the following commutative diagram with exact
rows:

(0% /(0X)m) —=— (K*/(K*)™) —=—  Frob”/Frob™”

| | |
HY(I,Z/mZ)" —— HY(K,Z/mZ)" —— H'(D/I,Z/mZL)".

Since the image of I in D% is given by O, the result follows. O



NON ABELIAN CLASS NUMBER FORMULAS AND ADJOINT SELMER GROUPS 19

Tr(zy) the Galois modules ad(p) and Ad(p) are
Ad(p)(1). The dual Selmer group of ad(p) and

6.7. Dual Selmer group. By trace pairing (z, y)
self dual; so, ad(p)*(1) = ad(p)(1) and Ad(p)*(1)
Ad(p) is defined as follows:

H'(Q, Ad(p)(1))

Sel*(Ad(p)(1)) := Ker(H (&g, Ad(p)(1)) — H b FEL ),
leSu{p} X
el (ad(7)(1) == Ker(H' (8, ad(p)(1)) — [ - 20dP)L),

i
leSu{p} Dy (F[E])

Here “1” indicates the orthogonal complement under the Tate duality. We have the following bound
due to R. Greenberg and A. Wiles:

Lemma 6.3. dimy Sel(Ad(7)) < dimg Sel*(Ad(5)(1)).
This we admit. For a proof, see [MFG, Proposition 3.40] or [HMI, Proposition 3.29].

6.8. Details of H' (K, u,) = K* ®z F,. Here K is any field. The connection map § of the long exact

sequence HO(K, M) — HO(N) % H'(L) of a short exact sequence L — M —» N is given as follows:
Pick n € H°(K, N) and lift it to m € M. Then for o € Gal(K/K), (¢ — 1)m is sent to (¢ — 1)n = 0 as
n is fixed by 0. Thus we may regard u,, : 0 — (0 — 1)m is a 1-cocycle with values in L. If we choose
another lift m/, then m’ —m =1 € L and hence u,, — u,, = (0 — 1)l which is a coboundary. Thus we
get the map 0 sending m to the class [uy,].

Applying this, the cocycle u, corresponding o € K* /(KX )P = K* ®F, is given by

ualo) = (V).

6.9. Unramifiedness of u, at a prime [ # p. Let K be an [-adic field which is a finite extension
of Q; for a prime ! # p. If a ¢ (K*)?, o/ := "o ¢ (K*)P with K[¢/a] = K[{/a/] and ug = ugr.
Replacing « by o for a sufficiently large N, we may assume that « € O N K*.

The minimal equation of ¥/a is f(X) = X? — a. Since the derivative f'(X) = pX?~!, the different
of K[¢/a]/K is a factor of pg/a” . Thus we find

‘ua is unramified < a € O~ ‘

choosing @ € O N K*. This can be also shown by noting that all conjugates of ¢« is given by
{¢¥/a|¢ € pp} which has p distinct elements modulo [ if and only if o € O*.

6.10. Restriction to the splitting field of Ad := Ad(p). Let F be the splitting field of Ad := Ad(p);
so, F' = @Kcr(Ad), and K := F[u,] is the splitting field of Ad(1). Write G := Gal(F/Q). Let &p =

Ker(Ad|e,). We realize Sel* (Ad(1)) inside H'(F, Ad(1)) = F* ®z Ad. Assume

(CV) HI(F/Q, Ad(1)®%) =0 for j =1,2,

which follows if K = Flu,] # F or pt [F : Q]. If Fu,] # F, we see Ad(1)®F = 0 as Ad is trivial over
&p. If pt[F: Q] = |G|, we note HI(G, M) = 0 for any F[G]-module M [MFG, Prop. 4.21]. Again by

inflation-restriction,
HY(G,Ad(1)®7) — HY(Q, Ad(1)) — HY(F, Ad(1))Y — H?(G, Ad(1)®F).

is exact. So
HY(Q, Ad(1)) = (F* @z Ad)®.

6.11. Kummer theory. We analyze how G acts on F'* ®p, Ad. The action of 7 € G is given by
Tu(g) = Tu(r71gr) = Ad(T)u(r"1g7) (1 € G) for cocycle u giving rise to a class in H'(F, Ad(1)). For a
basis (v1, v2,v3) of Ad giving an identification Ad = F3, and write u = vu for u := (u1, u2, u3) (column
vector) for v = (v, v2,v3) (row vector) as a F3 valued cocycle; so, v = (Tv1,Tva, Tv3) = v'Ad(T).
Since uj(g) = ua,(g) = 97" Yo, for a; € F* @y F, rewriting uq := u, we have T(VTua(t71g7)) =
vt Ad(T)u,_ (g). Thus 7-invariance implies

=, ue . ) = PAd(T) tue & v Ad(T)u, (9) = vug.

a Tay? "Tag? "Tag
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Therefore inside F* @z F, ;s span an F-vector space on which G acts by a factor of Ad = *Ad~!. Thus
we get
(6.1) HY(Q, Ad ® ©) = Homgg)(Ad, F* @7 F) =: (F* @7 F)[Ad].
6.12. Selmer group as a subgroup of F* ®yz F.
Theorem 6.4. Let O be the integer ring of F. If pt hp = |Clp|, we have the following inclusion
Sel* (4d(7)(1)) = 0% &z, FIAd(p)].

We start the proof of the theorem which ends in §6.15. Let [u] € Selt(Ad(p)(1)) for a cocycle
u: ®g — Ad(p)(1). Thus u|e, gives rise to u, for a € F* ®z F[Ad(p)] by Kummer theory. Consider
the fractional ideal (o) = aO[%]. Make a prime decomposition (a) = [], ¢V in O[ ]. Since ug is

unramified at all [ # p, we find | p|e(l) | as otherwise, [ ramifies in F[¢/a]. So (o) = a? for a =[], 1¢(V/P

6.13. l-integrality (I # p). If a local Kummer cocycle u, associated to o € F* ®z F), for v { p is
unramified, then a vanishes in (F/O}) ®z Fp. The local cocycle is trivial if and only if « vanishes in
F) ®z Fp. If a global Kummer cocycle u, for & € F* @z F, is trivial at v| N and unramified outside
p, then the principal ideal aO[%] is a p-power a”.

If pth:= hp = |Clp|, replacing a by o’ does not change the Kummer cocycle up to non-zero scalar.
We do this replacement and write « instead of a”. Then a is replaced by the principal ideal a” = (o),
and we find that a = ea/” for € € O[%]X. Thus ue = ue. Therefore

Sel*(Ad(1)) C (0[%]* ®z F)[Ad).

6.14. Case where p|p is indecomposable for D = Gal(F,/Q,). By indecomposability, the matrix
form of Ad(c) if p(o) = (§%) (a # 0) with respect to the basis {(§§),(§ %), (9 9)} is

@ -2 'a —(€3) " ta?
0 1 e la )
0 0 e

in short, Ad is also an indecomposable D-module without trivial quotient. We have an exact sequence
of D-modules:

0% @ F— O L% g, F ), @ oeqpFp® =51
where e is the order of the class of p in Clp. By Shapiro’s lemma [MFG, Lemma 4.20, (4.27)],
Ind% 1[Ad] = Homp(q)(Ad, Ind§ 1) = Homp(Ad|p,1) = 0 by indecomposability; so, Sel™(Ad(1)) C
(O* @ F)[Ad].

6.15. Case where p|p is completely reducible. In this case, we have
Ind, 1[Ad] = Homg(c|(Ad, Ind 1) = Homp(Ad|p, 1) = F.

If a cocycle u : D, — Ad(1) restricted to the decomposition group D, = Gal(Q/F},) at p project down
non-trivially to F, ® F[1] (i.e., u € H*(Qp, 1p ®F)), by the lemma in §5.4, if u is a dual Selmer cocycle
it corresponds to an element in O, ® F. Since p|p is arbitrary, we conclude again

Sel™ (Ad(1)) € (0> @z F)[Ad].

This finishes the proof of the theorem. (I

6.16. Dirichlet’s unit theorem. Fix a complex conjugation ¢ € G and C be the subgroup generated
by c. Let oo be the set of complex places of F. Dirichlet’s unit theorem is proven by considering

0% P2 r> =T[R

given by Log(e) = (log|e|v)veso and showing Im(Log) ®z R = Ker(R> I, R) for Tr(zy)y = Y, To-
The Galois group G acts by permutation on co = G//C'. Therefore R® = Ind& 1. Thus (0* @ Q) &1 =
Ind Q1.
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If p t |G|, any F[G]-module over F is semi-simple; so, characterized by its trace. Therefore this
descends to O* /u,(F) ®z F and

md& F1 2 (0% /u,,(F) @7 F) & F1.

Theorem 6.5. We have dimy Sel™(Ad(1)) <1 if pt|G|hr.
Proof. By Shapiro’s lemma, we have
(0% /up(F) @z F)[Ad] = Home(Ad, (O™ /pp(F)) @2 F)
=~ Homg (Ad, IndS F1) = Home (Ad| ¢, F1) = F,

since Ad(c) ~ diag[—1,1, —1]. By irreducibility, u,(F)[Ad] = 0; so, (O* @z F)[Ad] = F. By §5.12, we
have
Sel*(Ad(1)) — (O* @z F)[Ad] = F,

we conclude | dimp Sel™(Ad(1)) < 1| 0

Corollary 6.6. If p1|G|hp, then for any deformation p € Dy (A), Sel(Ad(p)) is generated by at most
one element over A.

7. SELMER GROUP OF INDUCED GALOIS REPRESENTATION

Assuming that pg = Ind% ¢ for a quadratic field K = Q[v/D] (with discriminant D) and a character
@ : B — W* of order prime to p, we explore the meaning of the cyclicity of Sel(pg)Y in terms of

Iwasawa theory over K. Write @ := (¢ mod my,) and p = Ind% @. We denote by O the integer ring of
K.

7.1. Induced representation. Let A € CL, and G be a profinite group with a subgroup H of
index 2. Put A := G/H. Let H be a character ¢ : G — A. Let A(p) = A on which H acts
by ¢. Regard the group algebra A[G] as a left and right A[G]-module by multiplication. Define
A(Ind, @) := A[G] ®arm) Alp) (0, (h @ a=E®@ ha =£® p(h)a = p(a)(§{ ® a)) for h € H. and let G
acts on A(Ind% ¢) by (€ ® a) := (g¢) ® a. The resulted G-module A(IndZ ¢) is the induced module.

Similarly we can think of A(ind& ¢) := Hom az1(A[G], A(p)) (so, ¢(h&) = ho(&) = @(h)o(€)) on
which g € G acts by g¢(€) = ¢(£g).

7.2. Matrix form of Indfl . Suppose that ¢ has order prime to p. Then for ¢ € G generating G over
H, ¢, (h) = p(c'ho) is again a character of H. The module Ind% ¢ has a basis 1¢ ® 1 and ¢ ® 1 for
the identity element 1¢ of G and 1 € A = A(yp).

We have
Jlg®1,001)=(g®1,g0®1)
(le®g,o®@0 lgo) = (lc®1,0®1) “"gw%o(g)) if g € H,
N (@019, lc®go)=(1lc®@1,0®1) @(Uqlg)“’(gg)) if go € H,

Thus extending ¢ to G by 0 outside H, we get

(71) Indg <P(g) _ ( »(g) »(go) ) .

007 g) w(o7 " go)

7.3. Two inductions are equal. The induction ind$ ¢ has basis (¢1, ¢5) given by ¢ (£4+€'0) = @(€) €
A= A(p) and g€+ o) = pl€) € A= A(g) for £ € A[H]; 50, (x) 61(€ + €0 1) = g+ €0 1),

Then we have
gOr(€ +E071), 64(6 +E0)
= (¢1(6g + €0 goo ™), do(Eg + &0 goo ™))
CAGREHI N S (g € H),
(61(€'0719),6(¢90)) 2 (61(6), 0(E)) (Lo rp) 97) (90 € H).

G )
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Thus we get

(7.2) md% ¢ = ind% .

7.4. Tensoring o : A = uy. Let J = ((1) ) Extending ¢ to G by 0 outside H, we find

Indfl P ® alg)

»(9) 0 _ »(g) 0 1
( 0 sa(d go)) N ( 0 (o™ 90)) 7 (9 € H),
_( o sa(ga)) ( o w(go)) J1 (g0 € H).
Thus we get
(7.3) (Ind$, ) ® o = J(Ind§, ¢)J = nd% .

Thus Ad(Ind%) = {2 € End 4(Ind% ¢))|Tr(x) = 0} contains i, as Tr(J) = 0.

7.5. Characterization of self-twist. Let 7 := (¢ mod m,). Suppose B, # @. Since Ind% B(H)
contains a diagonal matrices with distinct eigenvalues, its normalizer is Indfl ?(G). Thus the centralizer
Z(Ind% @) = F* (scalar matrices). Since Ind$ (o) interchanges 7 and 3, Ind$, @ is irreducible.
Since Aut(p) = F*, i, for p is unique up to scalars.

Let p : G — GLy(A) be a deformation of Ind$, % with p® « = p. Write jpj ' = p®a. Since a? = 1,
j2 is scalar. We may normalize j = J mod my4 as j mod ms = zJ for a scalar z € A*. Thus j has
two eigenvalues ex with ex = +2 mod m4. Let Ay be ex-eigenspace of j. Since jp|g = pluj, Ax = A
is stable under H. Thus we find a character ¢ : H — A* acting on A;. Plainly H acts on A_ by ¢,.
This shows p = Ind$ ¢ as V(p) = Ay @ p(o)A,.

7.6. Decomposition of adjoint representation.

Theorem 7.1. We have Ad(Ind$; ) = o @ Ind$, ¢~ as representation of G.

Here ¢~ (9) = 0(9)¢;(9) = w0 'g  og) and Ind% ¢~ is irreducible if o~ # @5 = (o) " (i.e.,

¢~ has order > 3).

Proof. On H, p:=Ind$ o = (3 @OU ). Therefore

Ad(1nd$ @) (B) (5 %) = p(h) (2 %) 07 () = (o5, T 0.

—X

and
x o x «\0)x o 22
Ad(nd§ 0)(0) (5 %) = (996D) (2 2 (e o) = (L0603, 2 ).
Thus « is realized on diagonal matrices, and Indg @~ is realized on the anti-diagonal matrices. O

7.7. Irreducibility of Ind%, 7.

Lemma 7.2. Ind$, 3 is irreducible if and only if o~ # 9, = ()t (i.e.,_@f_has order > 3). If g~
has order < 2, then ©~ extends to a character ¢ : G — F* and Indfl YT =B oa.

Proof. Note ¢~ (02) = ¢(02)p(0'0%0) ™" = ¢(1) = 1. The irreducibility of Ind$; 7~ under 7~ # 7,
follows from the argument proving irreducibility of Indfl @ under @ # @, in §7.5. Suppose @~ has order
<2 (so, p~ =P, ). Choose a root ( = +1 of X2 — p-(0?) = X? — 1 in F. Define ¢ = %_ on H and
¢(ch) = (@~ (h). For h, W € H,

Boholl) = BloPo~ hall) = 5~ (0275 (g~ (W) = 5~ (W) = 5 (oh)p™ (o).

Similarly 5(h0h’)_: d(oo heh') = C@U(h)a(ﬁ’) = ¢(h)p(ch'); so, ¢ is a character. Then F[(][G] @p(p
F[¢](@7) 2 F[¢](¢) as G-modules by a ® b +— ¢(a)b. O
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7.8. Ordinarity for residual induced representation. Let o € &g induce a non-trivial field auto-
morphism of K,q. Let p := Ind% © = Indgf‘( @ and assume that p = pp? in O (fixing the factor p so
that @ is unramified at p?). Let ¢ be the conductor of $; so, the ray class field H. g of conductor ¢ is
the smallest ray class field such that @ factors through Gal(H./K). Suppose
(sp) c+¢? =0.
Pick a prime factor [|c. Then [+ [7 = O; so, [ splits in K. In particular, I; = I} C &k (for (I) =[N 2Z),
and $|7, ramifies while ¥ is unramified at 7. Thus p|;, = (EO‘ (?I ) with & = P|; and 6 = P, which is
unramified.

Suppose [|D; so, I is of index 2 in I;. Then $|;, = @, |, = 1. Similarly to §7.7, we find Ind% P, =
Indﬁ ol = ( (g) with & = |z, and 6; = 1. In short, 7 satisfies (ord;) for [ € S := {I|DN(c)p}.

7.9. Identity of two deformation functors. Let y be the Teichmiiller lift of det(p). For any Galois

representation p, let K(p) be the solitting field @Kcr(p) of p. Let K(p)®)/K(p) be the maximal p-

profinite extension unramified outside p. Put G = Gal(K () /Q) and H = Gal(K (p)?)/K). Consider
the deformation functor D; : CL,p — SETS for x and k. Since any deformation factors through G,
we regard p € D7(A) is defined over G. Let

Fu(A) ={p: H— A*|¢ mod my =% unramified outside ¢}

and D?&(A) ={peD:(A)|p®ap,det p=2}/GLy(A). Recall A = G/H and write A = {«, 1} for its
character group.

Lemma 7.3. Let A act on F by p — p® o. Then Fu(A) 3 ¢ — Ind$ ¢ € D(A)” induces an
isomorphism: Fg =2 D?A of the functors if ¢ # @,.

Proof. Note D?& (A) ={p € D:(A)|J(p2a) ™t ~ p}/(1+Ms(my)) (realizing D7 under strict equivalence
and choosing Ind%; ¢ specified (7.1)) as J(F® a)J ! =7 (see §7.4). By the characterization in §7.5, we
find a character ¢ : H — A such that Indfl w=p.

We choose j € GLa(A) with j = J mod my4 asin §7.5. Then Ay = A(yp) for a character p : H — A*.
Note that ¢ mod m4 = P by the construction in §7.5. By (ord;) forl € S, @, acting on A_ is unramified
at [|cp. Thus we conclude Fp = D?&. O

By p— p® a, A acts on D;. For the universal representation p+ € D+(R»), therefore, we have an
involution [a] € Aut paie(R?) such that [a] o p; = p, ® a. Define RF := {x € Ro|[a](z) = £x}.

7.10. Induced Selmer groups. For a character ¢ : H — F*, Let K® be the maximal p-abelian
extension of K unramified outside p. Let T, = Gal(K®) /K) which is a p-profinite abelian group.

Corollary 7.4. We have a canonical isomorphism R /Ry ([o] — 1)R,. = W[[L',]], where R.([a] — 1)R,
is the Ry-ideal generated by [o](z) — x for all x € R,.

If a finite group (v) acts on R € CL,p fixing B, then

Homp_aig (R, A) = Homp_is (R/R(y — 1)R, A).

Indeed, f € Homp.aig(R, A)7, then f o~y = f; so, f(R(y —1)R) = 0. Thus Homp_ag(R, A)? —
Homp aig(R/R(y — 1)R, A). Surjectivity is plain.

Proof. Since Fg = Dg, we find

Fru(A) = Homp aig (R, A)g = Homa.aig(Ri/(Rc([a] — 1)Ry), A).

Thus Fp is represented by R, /(Rx([a] — 1)R.).

Let @g : H — W be the Teichmiiller lift of @. Define ¢ : H — W[[I',]]* by @(h) = wo(h)h|xw €
WIL,]]. We show that (W][I',]],¢) is a universal couple for Fp, which implies the identity of the
corollary. Pick a deformation ¢ € Fg(A). Then (140 o) Ly has values in 1 +m4 unramified outside p
as the ramification at [ € S different from p is absorbed by that of @ by the fact that the inertia group
at [ in H is isomorphihc to the inertia group at [ of Gal(K (%)/K). Thus (14 o ¢o) " t¢ factors through

I',, and induces a unique W-algebra homomorphism W/[[T',]] 2, A with p=¢oep. O
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7.11. What is I',?
Proposition 7.5. If p > 2, we have an exact sequence
1— (1+4pZy) /e Vi Ty — Clg @7 Z, — 1,

where ¢ =1 if K is imaginary, and € is a fundamental unit of K if K is real. Thus I, is finite if K is
real.

Proof. Since I'y = Clg (p™) Qz Zp, the exact sequence is the p-primary part of the exact sequence of
the class field theory:

10 /0" — Clg(p™) — Clg — 1.

Thus tensoring Z, over Z, we get the desired exact sequence, since O, = Z, canonically. Note here
et e 1+ pZ, =1+ p0Oy. O

7.12. Iwasawa theoretic interpretation of Sel(Ad(Ind% ©)). Pick a deformation ¢ € Fr(A). By
Ad(Ind% p)=ad Ind% ¢~ the cohomology is decomposed accordingly:

HY(G, Ad(Ind% »)) = HY(G, ) @ H' (G, Ind% 7).

Since Selmer cocycles are upper triangular over D, and upper nilpotent over I, noting the fact that

o C Ad(Ind$ o) is realized on diagonal matrices, and Ind$ ¢~ is realized on anti-diagonal matrices,
the Selmer condition is compatible with the above factorization; so, we have

Theorem 7.6. We have Sel(Ad(Ind$ ¢)) = Sel(a) @ Sel(Ind$ ¢ ™)), where Sel(a) is made of classes in
HY(G, o) unramified everywhere and Sel(Ind$; ¢ =) is isomorphic to the subgroup Sel(¢~) of H'(H, ™)
made of classes unramified outside p and vanishes over Dyo. In particular,

Sel(a) = HOHl(ClK, AV) = HOHl(ClK KRz A, Qp/Zp).

Proof. Pick a Selmer cocycle u : G — Ad(pg)*. Projecting down to «, it has diagonal form; so,
the projection u, restricted to D, is unramified. Therefore u, factors through Clg. Starting with
an unramified homomorphism v : Clg — AY and regard it as having values in diagonal matrices in
Ad(po)*, its class falls in Sel(Ad(po)).

Similarly, the projection u™4

HI(A, ((Ind$ ¢=)*)) = 0 (j = 1,2), by inflation-restriction sequence,

of u to the factor Indfl ¢~ is anti-diagonal of the form (uo, “0+ ) . Noting

H'(G, (Indf; ¢7)*) = (H'(H, (¢7)") @ H'(H, (p;)")">.

So u=(07tgo) = ut(g) as ¢ € A interchanges H'(H, (p~)*) and H(H, (¢, )*). Moreover u™ is
unramified outside p as an element of H'(H, (¢~)*). Since u~|p, = 0, u™ vanishes on Dyo by
u= (o7 tgo) = ut(g). O

7.13. Anti-cyclotomic p-abelian extension. Regard ¢ : G — W/[[I',]]*. Define K by the maxi-

mal p-abelian anticyclotomic extension unramified outside p (so, oyo =t = y~1). The the fixed subfield
of K(5)® by Ker(¢~)is given by K(¢~)K~. SoT'~ = Gal(K~/K) is the maximal p-abelian quotient of
Im(¢™);ie., Gal(K~/K) 2T~ xGal(K (7, )/K). Note that ¢~ (h) = ¢@(h)p(c " ho) ' € Tyifhe ™.
Thus we have an exotic homomorphism I'™ — I',. We have an exact sequence for 6'\1 K = Clg ®z Ly:

1 — ((1+p0,)/eP~V2)7="1 T~ _, Cly — 1,
which is the “—”-eigenspaces of the action of o on the exact sequence with Clx (p™) 1= Clg (p™) @z Ly:
1 — (14 p0,)/e?P Ve @K(poo) — Clg — 1.

Therefore the above homomorphism induces an isomorphism I'” = I'y, and in this way, we identify
WII~]] with W[[T,]].
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7.14. Iwasawa modules. Let L/K~ (resp. L'/K(p~)) be the maximal p-abelian extension unramified
outside p totally split at p° (so L' C L). Put Y := Gal(L/K~) and A := Gal(K(¢,)/K). By
conjugation, AxT'_ = Gal(K~/K) acts on Y; so, we put Y(p, ) = V @z, [Gal(k (o-)/ K] Po (the maximal
quotient of Y on which A C Gal(K~ /K) acts by ¢y ). Then Y(¢o) is a module over W[[['_]] (an Iwasawa
module). The Galois group Gal(L'/K(¢™)) (resp. Gal(L'/K (¢~ )(¢y ) = Gal(L'/K(¢7) ®z,[a] o ) 18
a quotient of Y (resp. Y(¢o)), and if W[[['7]] - A, Gal(L'/K (¢~ )(vy) = Y@y ) @w(r-1,.- A-

We have an inflation-restriction exact sequence:

HY(E(o7)/K, (¢7)") = H'(H,(¢7)")

— Homga(x (o)) (Gal(K (7)) /K (7)), (¢7)")
— H*(K(¢7)/K, (97)").
Lemma 7.7. Assume that o~ # 1. If T~ is cyclic, we have H (K(o™)/K,(¢7)*) =0 for j = 1,2.
Proof. For a finite cyclic group C generated by
HY(C,M) = Ker(Tr)/Im(y — 1), H*(C, M) = Ker(y — 1)/ Im(Tr),

where Tr(z) = > cocx and (y — 1)(x) = vy — 2 for 2 € M. If C is infinite with M discrete,
HY(C, M) =1lim H9(C/C', M®"). Thus if 37 () # 1 for a generator of I'", we find
HY(K(¢7)/K,(¢7)") =0

* is a bijection. O

asy —1:(¢7)" = (¢7)
By Lemma 7.7, from inflation-restriction sequence, we get
HY(H, (97)) 2 Homga (o) (Gal(K(7) P /K (7)), (67)7).
Then Selmer cocycles factor through Y; so, for G := Gal(K (¢~ )/K),

Sel(¢™) = Homg (¥, (¢™)") = Homypr_y (Vg ), (¢7)") = Homw (Vg ) @wir_jje- A Qo/Zp)-

7.15. Cyclicity of Iwasawa module V(¢ ). Since R./Rx([a] —1)R, = W][[,]] = W[[T'7]], we write
this morphism as 0 : R, — W[[T'7]].

Theorem 7.8. If '™ is cyclic, we have

Sel(¢™) = Homwr_j(V(¢o ), (¢7)"), Qre/a Orex W= V(pg)
as WL ~]]-modules.

This follows from Lemma 7.7.

Since p t [K (g ) : K], the p-Hilbert class field H/K and K (g, ) is linearly disjoint over K; so, we
have [H : K| = [HF, FJ;so, p{ hp implies p { hx. Thus combining the above theorem with the cyclicity
result in Theorem 6.5, we get

Corollary 7.9. If pthr, Y(py ) is a cyclic module over W[[I'"]] if g, # 1.

8. SELMER GROUP OF ARTIN REPRESENTATION

Assuming that p comes from an Artin representation p : &g — GL2(W), we explore a way to
describe the size of its adjoint Selmer group in terms of a global unit of the splitting field F. Let
G = Gal(F/Q) = Im(Ad(p)). Assume p { |G| and irreducibility of p throughout this section. Then
G = Im(Ad(p)) = Im(Ad(p)). We write F for the minimal field of rationality of Ad(p). Noting that
Ad(p) factors through PGLy(F), F is the minimal subfield of F,, with Im(Ad(p)) C PGLy(FF). Then we
take W to be the unramified extension of Z, with W/my =T; so, W = W(F) (the ring of Witt vectors
with coefficients in F). We write O for the integer ring F'. Fix a prime p|p in O. We write D C G for
the decomposition group of p and choose basis so that p|p = (§9) with ¢ unramified.
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8.1. Classification of Artin representations. Identify G with the subgroup Im(Ad(p)) of PGLy(F).
Dickson (in [LGF, §260]; see also [W2, §3]) gave a classification of G C PGLy(F):
Case G: If p||G|, G is conjugate to PGLy(k) or PSLo(k) for a subfield k¥ C F as long as p > 3 (when
p =3, G can be As). Suppose pt |G| (so, p > 5). Then G is given as follows.
Case C: G is cyclic (= Im(p) is abelian).
Case D: G is isomorphic to a dihedral group D, of order 2a (so, p = Ind% @ for a quadratic field), and
F =T,[@ | (the field generated by the values of 77)
Case E: G is either isomorphic to Ay, Sy (F =TF, and W = Z,), or A5 (F = Z,[\/5]/p for a prime p[p by
the character table of As; so, F =F, or F2). These groups does not have quotient isomorphic
to Z/(p — 1)Z for p > 5 (Serre’s book on linear group representation: §5.7-8 and §18.6).

In this section, we study Case E but until §8.8 (except for §8.2), we do not suppose that we are in case
E.

8.2. Ad(p) is absolutely irreducible in Case E. If Ad(p) is reducible, it contain a 1-dimensional
subspace or quotient stable under G-action. We regard p has values in the algebraic closure Fp. Since
Ad(p) is self dual, the dual of the quotient is a subspace; so, always it contains subspace of dimension
1 spanned by 0 # i € Endg_ (p) with Tr(i) = 0. Thus G acts on i by a character a: p(g) o4 o p(g)~*
a(g)i (& poi=1io(p®a)). This implies that i gives an isomorphism p 2 p ® « as p is irreducible.
Taking determinant of this identity, det(p) = det(p)a?; so, a? = 1. If @ = 1, i commutes with absolutley
irreducible p; so, by Schur’s lemma, 7 is a non-zero scalar multiplication, contradicting Tr(i) = 0 (by
p > 2). Thus « is quadratic, and as seen in §6.5, p = Ind% o for a quadratic extension K/Q fixed by
Ker(a). This means we are in Case D or case C. Thus Ad(p) is absolutely irreducible in Case E.

8.3. Lifting p. Since p t |G|, G := Gal(F(p)/Q) = Im(p) fits into an exact sequence for the center Z
(scalar matrices) of GLg:
1-ZF)NG—-G—G—1.

Since |Z(F)| = |F*| is prime to p, we find p t |G|. Under this circumstance, the set of irreducible
representations of G with coefficients in F is in bijection to representations with coefficients in W
irreducible over Frac(WW) by reduction modulo my (cf. [MFG,Corollary 2.7].

Writing p : Gal(Q/Q) — GLy(W) (factoring through G) for the lifted representation, we have
Im(Ad(p)) = Im(Ad(p)) = G. Recall the splitting field F of Ad(p); so, G = Gal(F/Q). In Case E, G
has no abelian cyclic quotient of order p — 1; so, p,(F) = {1}.

8.4. Minkowski unit. Let Of := O*/u,(F). We have shown in §5.16 that (O ©z F) & F1 =
Ind& 1 = F[G/C] by (the proof of) Dirichlet’s unit theorem. Here C' is the subgroup of G generated by
the fixed complex conjugation c. By the same argument, we find (O} ®z mf,/ mpth) @ myy, /mpitl =
mi, /m" TG/ Cl; so, (OF @z W/my,) @ W/mi,1 = W/mf,[G/C]. Passing to the (projective) limit, we
et

i (OF @z W) W1 =WI[G/C]

as G-module. Take W = Z,. Since Z,[G/C]/Zy1 is a cyclic Z,[G]-module, there is a generator
e®1€0f @27y (¢ € OF) over Zp[G]. This unit ¢ is called a Minkowski unit, and we fix one. By
our choice, {e”|oc € G//C} has a unique relation J[,cq,c¢” = 1 and generates a subgroup of OF of
finite index prime to p. For each general W)z , e ® 1 is a generator of O; ®z W over WI[G].

8.5. Ray class groups. Recall Clp(p™) = lim Clp (p™), and we have an exact sequence
0* — (0/p"0)* — Clp(p™) — Clr — 1.

Passing to the limit, we get
1 — 0% = 0f — Clp(p™) — Clp — 1,

where Op =lim O/p"O and O* = lim Im(O* — (O/p"0)*).

Adding “77, we denote the p-profinite part of each groups in the sequence, getting another exact
sequence

1— 0% = 0F — Clp(p™) — Clp — 1,
where we have written simply 0% for OX. Except for Case E, we could have p-torsion in 0% (i.e.,
pp(F) #1) and in Oy (i.e., €/ = w is the Teichmiiller character).
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8.6. Selmer group revisited. We often write simply Ad for Ad(p). Let k®) be the maximal p-profinite

extension of a number field k unramified outside p and put & = Gal(F®)/Q), $ = Gal(F®)/F),

®' = Gal(F(p)® /Q), $ = Gal(F(p)®) /F). Recall

ot Ad*

7(9’ ) 12 @, A%,
PR

Sel(Ad(p)) := Ker(Hl((’j’, Ad*) —

where F't Ad* is a subgroup of H'(Q;, Ad*) made of classes of cocycles upper triangular over the p-
decomposition group and upper nilpotent over the p-inertia group.

Lemma 8.1. We have a canonical inclusion
Sel(Ad(p)) € Homyg, ) (Clr(p™), Ad(p)*).

Proof. For a topological group X, write X for the maximal continuous abelian quotient of X. Let
u : & — Ad* be a Selmer cocycle. Let v/ = ulg : $ — Ad*, which is a homomorphism. By
inflation-restriction, through u — u/,

Sel(Ad(p)) — H' (', Ad*) = Homy, ;) (5™, Ad*),

since H1(G, Ad(p)*) =0for g >0by pt[F : Q).
Since the ramification of a prime [ of O outside p is concentrated in Gal(F(p)/F’), the inertia group
I; injects into Gal(F(p)/F); so, ‘I[ is finite of order prime to p. ‘ This implies w'(I;) = 0 as Ad* is p-

torsion. Thus u’ factors through ﬁ’ab — H% as § is the Galois group over F of the maximal p-profinite
extension F() of F unramified outside p. By class field theory, we know $?° 2 Clp(p>). O

8.7. Galois module structure of p-decomposition groups. Essential part of Cl r(p°°) comes from
5; which is the product of p-inertia subgroup of $; so, we study decomposition group in $H% as
D-modules. Recall the fixed prime factor p|p in O with its decomposition subgroup D C G. Write
simply M, := F, ®z W and U, := 6}@217 W = O, ®z W. Then for each character £ : D — W*, M,
contains as a direct factor the &-eigenspace My[¢] = 1¢M,, for 1¢ = [D|7' 37 ), €71 (g9)g € W[D]. Then

d
o A canonical exact sequence Uy [1] — M,[1] 2, W induced by the valuation ord, : Fy — Z at p,

and Up[1] = W as u,(Fp)[1] = 0.

o M,[¢] is a direct summand of U, if { # 1. Since all other prime factor of p is of the form o(p)
for 0 € G/D, we have M, := F) @z W = nd% M, as G-modules (for F, = F ®g Q,). Put U, :=
Og z, W = O; ®z W.

8.8. Structure of M,[Ad] as a G-module in Case E.. Hereafter we suppose to be in Case E (so, M,
is p-torsion-free). For the idempotent 144 of W[G] corresponding to Ad(p) and a W-free W[G]-module

X, we consider the Ad-isotypical component X[Ad] = 144X. Since M, = Indg M,, by Shapiro’s
lemma, we have for £ = e§—!

Homg(M,, Ad*) = Homp(M,, Ad*|p) = Homp(M,,&* @ 1* @ (£71)*).
Since Mp[¢+1] = Up[€*1] (by € # 1),
(Ind$ U, [¢] @ Ind$ U, [1] ® Ind U, [ 1)) [Ad] = Ade @ Ady @ Ade-,
where Ad, = Ind$?[Ad). This fits into the following exact sequence of G-modules:

Frobenius part

—
(Ind$ W1)[Ad] — 0.

inertia part

0— Adg ® Ad1 @ Adf—l — Mp [Ad]

HUGG/D ordg(p)
inilebl At LSAN

8.9. Selmer group as a subgroup of Homg(a\lp(poo),Ad(p)*). Let Clgf) be the subgroup of Clg
generated by o(p) for o € G. We the define Cpp := Clp/CIP).

Theorem 8.2. Assume that we are in Case E. Then we have an exact sequence

Homg, (6)(Cr, Ad(p)*) — Sel(Ad(p))

—=(p) « BT
—» HomZp[G] (Clp , Ad(p)") @ Homyyp) (Up [ed 1]/<555—1>, WV),
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where € is the fivred Minkowski unit with 0% = Zy[Gle, ec5-1 is the projection of € in the direct summand
Uplep0p '] under O* — Uy, — Up[ed™ Y], and (e.5-1) is the p-adic closure of the subgroup €%_, generated
by Ees—1-

Corollary 8.3. Suppose we are in Case E. Then we have
Sel(Ad(p))]| = |Gl @1, () Ad(p)]|(Ule5~ ) /T,
which s finite.
We start the proof of Theorem 8.2 which ends in §8.14. After finishing the proof of the theorem, we

prove the corollary.

8.10. Proof of Homgz, (g (Cr, Ad*) — Sel(Ad(p)). Elements in Homgz, g (Cr, Ad*) are everywhere un-
ramified and trivial at p; so, they gives rise to a subgroup of Sel(Ad(p)) of classes everywhere unramified
and trivial at p. Indeed, by H'(®, Ad*) = Homgz, g (9, Ad*), any u € Homgz, g (ép,Ad*) extends
uniquely the cocycle u : & — Ad* unramified everywhere over §). Since the inertia group I; C G of any
prime [ € S has order prime to p, u|;, = 0, and hence [u] € Sel(Ad(p)).

Let D, be the decomposition group at p of §?* with inertia subgroup I,. Then

H aDpafl = M, and H alpafl =U,.
0€G/D 0c€G/D

Elements of Sel(Ad(p)) modulo Homgz, g (ép, Ad*) is determined by its restriction to M, as they are
unramified outside p as they factor through Cl r(p>) and p1|1].
8.11. Restriction to Dy. Recall £ = ed~!. We study
Up = u|Dp S HomZp[D] (Dp,Ad*) = HomZp[D] (Mp,Ad*)
for cocycle u : & — Ad*. Since Ad = Ad[¢] @ Ad[1] & Ad[¢~!], we have a decomposition:

upper nilpotent diagonal

Homg, (p)(My, Ad*) = Homg, p)(Up[¢], Ad[¢]") & Homg, (p) (M, [1], Ad[1]")

lower nilpotent

& Homg, 1p) (Uy [€ 1], Ad[ET]").

Thus a Selmer cocycle u projects down to the first two factors:

upper nilpotent diagonal

Homgz, (p)(Uy [¢], Ad[¢]") & Homg, 1p) (M, [1], Ad[1]7) .

Write u;r (resp. ug) for the upper nilpotent projection (resp. the diagonal projection) of u.

8.12. Inertia part u;. We have u : L;[(] = U,[¢] — Ad[¢]* and uj(p) : Us(p) o] — Ad[&o]* for
Dy(py =0Do™ ! Lo, A% given by &, (h) = £(0~ho). Note Ad[&,]* = o(Ad[€]*) and U,y (&) = o(Up[€])

and Uy (p) (h) = up(c~tho). Since u is a cocycle over &, out of each restriction u:(p), we create the map

wei= (l)o s ] oWle) = [I o(adi).

c€G/D 0€G/D

Note [], o(Up[€]) = Ind$ U,[¢] and [], o(Ad[¢])* = Ind$ Ad[¢]* as G-modules. Since u is a cocycle
defined over &, we get a G-equivariant commutative diagram:

Ind$, U, [§] —— Ind$ Ad[¢]*

! l

Uy[Ad) —2 Ad~.
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8.13. Determination of inertia part u|y,. By the above argument, the restriction |y, falls into
Homg, () (Ade, Ad*) induced from uy. Though U,[Ad] = Ad™ for m = 3 if { has order 3 and m = 2 if
¢ has order 2, as Shapiro’s isomorphism

S : Homg () (Ind Uy [€], Ad) = Homp (£, &4 @1 @ E2)

with & = € realized on upper nilpotent matrices and £_ = £ realized on lower nilpotent matrices. The
restriction u|y, only has values in £ ; so, £~ -component does not show up as uly, is upper nilpotent,

we have S(u|y,) € Homyyp)(Uy[¢], €1 ). Since u factors through O /O,
S(ulv,) factors through U, €]/ (ee)-
Starting from u, € Hom(U, €]/ (g¢), £¥), we recreate u = S~ (uy) : Up/ax[Ad] — Ad*; so, we have
Sel(Ad) — Hom(Up[¢]/(e¢), €1)-
8.14. Frobenius part. Note M, /U, = Ind§ W1 = Do(p).0ca/p Wolp) as W[G]-modules with projec-

tion 7 : IndG W1l — (71;1”) ®z, W. If p has order p" in (712”), this induces a surjection Indg W/p"W1 —
Clif) ®z, W, which gives rise to an isomorphism:

(%) (IndS W/p"W1)[Ad) = (C1F @, W)[Ad] = Clv [Ad]

by the irreducibility of Ad(p). Therefore

uo € Homyyie) (C12 [Ad), Ad™) 2 Homyyi) (IndS W/p" W1, Ad¥)

Shaplro s lemma

Homp (W/p"W1, Ad*|p) = W/p"W.

Reversing the argument, the Frobenius part is given by

Homyy i (Cle [Ad), Ad) = Homy, ¢)(Cle, Ad”).

This finishes the proof of the theorem. (I
8.15. Proof of the formula in the corollary. Since Ad* = Ad(p) ®z, Q,/Z, = Homg, (Ad,Q,/Z,)

and ®-Hom adjunction formula, we have
—=(p) o —=(p) N —=(p)
HomZp [G] (CZF y Ad ) = HOHlZP [G] (CZF y HOHlZP (Ad, Qp/Zp)) = HOHlZP (CZF ®Zp [G] Ad, Qp/Zp)
Similarly we have
Homy, (¢)(Cr, Ad*)) = Homg, (61 (Cr, Homz, (Ad, Q,/Z,)) = Homgz, (Cr ®z, ¢ Ad, Qp/Zy).

The W-corank of the Selmer group is positive when ¢.5-1 = 1. If this happens, it is equal to
ranky Up[ed ). Since Up[ed™!] = Oy ®z W(ed '] has the same rank with Op ®z, W(ed '] by D-
equivariance of logarithm, we get ranky (Op ®z, W)[ed '] = 1, since F}, has normal basis over Q.

8.16. Galois action on global units. Recall (0% @z W)@ W1 = Indg W1 = WI[G/C] (as p,(F) =
{1}). Here C is the subgroup of G generated by the fixed complex conjugation ¢. The following lemma
finishes the proof.

Lemma 8.4. We have a W[G]-linear surjective homomorphism
¢: 0" @z W — Ad
and g.5-1 # 1.

Since Ad(p) is irreducible over F, if a W[G]-linear map M — Ad for a W[G]-module M is non-
trivial modulo myy, the map is surjective modulo myy, and by Nakayama’s lemma, the original map is
surjective.

Proof. Since Ad is irreducible of dimension 3 over Frac(W), non-zero homomorphism
(b S HOmw[G] (OX 29/ W & W]., Ad)
has to factors through O* ®; W = W|[GJe. By Shapiro’s lemma, we have, for x : C = {£1},
Homyy g (O™ @z W, Ad) = Homyy (g (Indg W1, Ad)
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Thus we have a W[G]-linear homomorphiosm ¢ : O* @z W — Ad non-zero modulo my,. Therefore, the
W[G]-linear homomorphism ¢ : O* ®z W — Ad is onto, and Ad is generated over W[G] by the image

of €. Since Ad|p = £ D1 ® 7L, the composed &-projection O @z W 2 Ad — Ad[¢] = WE is onto
producing a non-zero multiple of £.5-1 as its image. (I

9. IWASAWA THEORY OVER QUADRATIC FIELDS

Assuming that p = Ind% © for a character @ : g — F*, we describe the size of its adjoint Selmer
group in Case D in terms of a Minkowski unit. Let G = Gal(F/Q) = Im(Ad(p)). Let ¢ be the
Teichmiiller lift of @, and put p = Ind% . Then G =2 Im(Ad(p)) = Im(Ad(p)). We write F for the field

~

generated by the values of $. As seen in §6.6, Ad(p) = a @ Ind% @~ for a = (K—/Q) Then we take

W to be the unramified extension of Z, with W/my = F. We write O (resp. Ok) for the integer ring
F (resp. K). Fix a prime p|p in O and a prime ‘Blp in F(p) = F(p). We write D C G (resp. D’) for
the decomposition group of p (resp. 9B) such that p|pr = (§9) with § = ¢, |p/ unramified. Since G is
dihedral and p splits in K, p,(F) = {1} for p > 3.

9.1. Galois action on global units. Recall (0% @z W)® W1 = IndS W1 2 W[G/C]. Here C is the
subgroup of G generated by the fixed complex conjugation c.

Proposition 9.1. We have

0 if K s real,

I nd% o=, 0% @, W) =
omyy () (Indj ¢ z W) {W if K is imaginary,

W if K is real,

Ho ,O* @z W) =
Mz, [G] (a z W) {() if K is imaginary.

If K is imaginary, €,- # 1 and o, = 1 and if K is real, e # 1 and e, = 1.

We have Homyy (g (Ind% <p*,Indg W1) = Homyyc (Ind% ¢~ |c,W1) and Homg, g (a,Indg 1) =
Homg, ¢)(a|c, 1). The second assertion is clear from the second identity.

Proof. Pick o € G such that o|K is non-trivial. If K is imaginary, Ind% ¢ o = 1®a as Tr(Ind% v )(e) :I
0. Therefore

Homyy (¢ (Ind% ¢ |c, W1) = Homyo)(1® a,1) = W.
Suppose that K is real. Since
Ad(p)(c) ~ diag[~1,1, 1] ~ diag[e™ (c), ale), (¢7) " (e)],
a(c) =1 implies ¢~ (¢) = ¢, (¢) = —1. Therefore
Homyy ¢ (Ind% ¢~ |c, W1) = Hompycj(x © x,1) =0
for x : C' = {£1}. O

9.2. Selmer group and ray class group. Recall Lemma 8.1:

Lemma 9.2. We have a canonical inclusion
Sel(Ad(p)) C Homg ()(Clr(p™), Ad(p)*).

As before, we put $ = Gal(F®) /F), and we study decomposition group in % as D-modules. Recall
the fixed prime factor p|p in O with its decomposition subgroup D C G. Write simply M, := pr Rz W
and Uy := O, ®z, W = Oy ®z W. Then for each character £ : D — W*, M, contains as a direct
factor the -eigenspace M, [¢]. Then writing p,(Fy) /5 = pip(Fy) @z F
w if £ € {1,w},

W@ pp(Fp) e if € =w.
ordy

(M) We have an exact sequence 0 — U,[1] — My[l]] — W — 0 induced by the valuation
ordy : F,* — Z at p, and Uy [1] = W,

(U) My[¢] = Uyl¢] = {



NON ABELIAN CLASS NUMBER FORMULAS AND ADJOINT SELMER GROUPS 31
9.3. Structure of M,[Ad] as a G-module in Case D.. For each irreducible factor ¢ of Ad, we
consider the ¢-isotypical component X[¢], and write p,(Fp)/r = pp(Fy) @z F.
Lemma 9.3. Assume ¢~ |p #1 and p > 5.
HOHlG (M;Da (b*) =

Homp (Uy[p~] @ Uplw, ], (¢lD)*) = W? @ pp(Fy) e[€F'] dimo = 2,
Homp (U, [¢], ) = W ¢ C Indf o™,
Homp(M,[1],1%) = W? ¢ =a,

where £ = ¢~ in the first case.

Proof. Since M,, = Ind$ M,, we have Homg(M,, ¢*) = Homp(M,,¢*|p) by Shapiro’s lemma. If
<P7|D # 15 ¢|D is
e (¢~ @p;)|p when ¢ = Ind% o~ is irreducible (ord(¢™) > 3),

e o~ |p when ¢ C Ind% e~ (ord(p™) =2),

e 1 when ¢ = a.
Let & = ¢~ |p. Since Mp[6¥1] = Uy [¢F1] (by € # 1),
¢ @ Ind3 py(Fy)[¢] if € # ¢ and dim ¢ = 2,
(Ind3 Uy [¢*'])[Ad] = { ¢ @ ¢ if ¢ C Ind o~
0 if (b = Q,
0 if ¢ C Ind% -,

(Ind M, [1])[Ad] = {a Sa ifo=a.

This is because My [£F1] = U, [€31] = W & p,(Fy) /e by (U) and by Shapiro’s lemma

Homg (Ind; ¢, Ind3 Uy [¢]) = Homp (Ind ™ |0, £ ® (1 (F}) @2 F))
=Homp (£ © €1, €@ (np(Fy) @2 F))
as D C Gal(F/K). The second formula follows from (M). O

9.4. Theorem for Sel(Ind% ¢~ ). The representations ® := Ind% ¢~ and «a in Ad(p) fits into the
following exact sequence of G-modules:

inertia part

0 — & @ Ind$(up(Fy) @2 F)[@] @ a® & — My[Ad] — o — 0.

Here ® can be reducible.

Theorem 9.4. Assume that we are in Case D with irreducible Ind% ©. Then we have an evact sequence

Homy, g (Clp, ®*) < Sel(®) — Homy(p) (U e~ ] /ep), WY),

where € is a Minkowski unit, €,- is the projection of € in the direct summand Up[p~] under O* —
Up = Uple™], and (e,-) is the p-adic closure of the subgroup Eé, generated by €, .

Proof. Proof of Homg, (g (@F, ®*) — Sel(®). We proceed as in Case E (in §8.10) replacing Ad by ®.

Since (7123) (surjective image of Indg 1) does not contain & = Ind% ¢~ , we can ignore it and can work
with the entire Cl F. Elements in Homg g (6’\1 r, ®*) are everywhere unramified and trivial at p; so,
they gives rise to a subgroup of Sel(®) of classes everywhere unramified and trivial at p. Indeed, by
HY (&, o) = Homgz, g (9, &%), any u € Homgz, g (ap, ®*) extends uniquely the cocycle u : & — d*
unramified everywhere over §). Since the inertia group I; C G of any prime [ € S has order prime to p,
u|r, =0, and hence [u] € Sel(®).

Elements of Sel(®) modulo Homgz, g (6’\1 r, ®*) is determined by its restriction to M, as they are
unramified outside p as they factor through Cl r(p>) and p1|I].
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Inertia part. Recall £ = e6~! = ¢~. A Selmer cocycle u|gas regarded as a W [['~]]-linear homomorphism
in Homyyp-1(V(¢7), (¢7)*) has values in (¢~)* over U,. Since M, /U, = Ind% W1 does not contain
®, we can ignore M, /U,. By its G-equivariance,

u|Up S HomW[G] (Up, (I)*).

By Shapiro’s lemma,
Homyy(g)(Up, ®*) = Homyyp] (Up [~ ], (¢7)").

Since u factors through O /O, u factors through Up[p~]/(e,-). d
Corollary 9.5. If K is imaginary, we have

1Sel(Ind )| = [Clr @z, (car/x)) ¢~ ||(Uple™1/{E0-))]
which is finite, otherwise it has W-corank 1 (up to finite W-torsion).

Proof. By Proposition 9.1, ,- # 1 only when K is imaginary. Thus the finiteness of the Selmer group
follows. When K is real, we have U, [p~| = W, and therefore from Theorem 9.4, the Selmer group has
corank 1. O

10. “R =T” THEOREM AND ADJOINT SELMER GROUPS

On the way to prove FLT, Wiles and Taylor identified the universal ring R for the deformation
functor D,, with a p-adic Hecke algebra T. The algebra T is known to be free of finite rank over the
Iwasawa algebra, and they also showed that R = T is a local complete intersection over A. We explore
consequences of these result in our study of the adjoint Selmer groups of modular Galois representations.

10.1. Local complete intersection ring. Let B € CL,y be the base ring which is an integral
domain. An object A € CL,p is called a (relative) local complete intersection over B if A is free of
finite rank over B with a presentation A = B[[X1,..., X,]]/(f1,..., fr) for a positive integer r. Then
the following facts are known

e Homp(A, B) is free of rank 1 over B (i.e., A is a Gorenstein ring over B);

e r — f;x is an injection over A/(f1,..., fj—1) forall j = 1,...r (ie., (f1,..., fr) is a regular
sequence;

e If A is generated over B by m elements, the minimal choice of r is m.
For these facts, see [CRT, §21].

Theorem 10.1 (J. Tate). If B is normal noetherian and P : A — B is a B-algebra homomorphism
with A ® g Frac(B) = Frac(B) @ (Ker(P) ®p Frac(B)) as an algebra direct summand, we have

char(Co) = char(Ch),

where Co = Co(P) = A®4 S for the image S of A in the algebra Ker(P) ® pFrac(B) and C; = C1(P) =
Qa/p®apB.

Tate actually proved a finer equality Fitt(Cy) = Fitt(Cy) of Fitting B-ideals for any commutative
algebra B with identity. For Tate’s proof, see the appendix to the paper by Mazur-Robert [MR70].

10.2. Homological dimension. For a noetherian local ring A in CLy, we define the homological
dimension hdimp M of a finitely generated B-module M is the minimum length A of exact sequence
0— Fy — Fp1 — -+ — Fgp — M — 0 made of R-free module F} of finite rank. If R4,p is a local
complete intersection free of finite rank over B, we have a presentation A = B[[T1,...,T.]/(f1,-- ., [r)
for a regular sequence f1,..., f.. Then the 2nd fundamental exact sequence (Corollary 2.2) gives an
exact sequence

(fro-o s f)/(Frse oo )2 5 Qi B @BTy,. 1)) A = QayB-
If further B is a domain of characteristic 0 and A is reduced, Q4,5 is a torsion A-module (as the
extension Frac(A)/ Frac(B) is a finite semi-simple extension). Since (f1,..., f+)/(fi,-.., fr)? = A" as
(f1,..., fr) is a regular sequence, torsion-property of Q4,p tells us that 7 is injective; so, we get from
Qpry,..1)/B OB(1 .. 1)) A = D AdT;

‘ hdimQ,4,p =1 ‘ if A is local complete intersection over B.
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10.3. Taylor-Wiles theorem. Taylor and Wiles proved

Theorem 10.2. Under (ord;) forl € SU{p}, Ry/B is a local complete intersection with presentation
R, = B[[T,...,T;]/(f1,..., fr) for r = dimy Sel(Ad(p)), where B = W if x has values in W* and
B = A if x = k. In particular, we have hdimp Qg /g < 1.

What Taylor-Wiles proved is a bit different from this theorem for the number of variables. There
presentation has the number of variables o possibly slightly bigger than dimp Sel(Ad(p)(1)) > r =
dimp Sel(Ad(p)). Since R, is generated by r elements over B as seen in Lecture No.3, by [CRT,
Theorem 21.2 (ii)], we can change Taylor-Wiles presentation so that it is valid for r. For a proof, see
[TW] and [HMI, §3.2].

10.4. Existence of p-adic L.. Let p: &g — GL2(A) be a deformation of p such that p = Pop, . If
r =1, R, = B[[T1]]/(f1) and we have an exact sequence for (P : Ry, — A) € Homp a1z (Ry, A)

A= (f)/(f})®r, A —— A-dT\ —— Qp_;p®g, A

HTLprl ﬂmdn zT

A-L, —— A  —— Sel(4d(p))V.

If B=W, |L,|;' = [Sel(Ad(p)| and L,(P) := P(L,) = L,. If B= A (x = k), L, gives rise to a p-adic
L-function with

Spec(Ry)(W) 3 P |Ly(P)|, " = [Sel(Ad(P o p))|.
If » > 1, we define

Lo :=det((fi, ... f)/(f1. -, f)* = €D Re - dT}),
j=1
and the outcome is the same.

10.5. Universal modular deformation. Let N be the prime-to-p Artin conductor of p with det 5(c) =
—1. By the solution of Serre’s mod p modularity conjecture, we have Hecke eigenforms f (actually infin-
itely many) whose p-adic Galois representation py is in D, (Ay) for a finite extension Ay of W generated
by Tr(ps). We can define the p-adic Hecke algebra T interpolating all modular Galois representation
py € Dy(Ay) as follows: The algebra T C J[, Ay topologically generated by [];Tr(py(g)) for all
g € g. Then by my old result in 1986, we have a Galois representation pr : &g — GL2(T) such that
pr € D(T) (in particular T € CL/x). The proof of Theorem 10.2 actually produces the following

Corollary 10.3. Suppose (ord;) in §5.1 for 1 € SU{p}. Then we have v : R, = T such that vo p = pr.
See [TW] and [HMI, §3.2].

10.6. Lifting to an extension I of A. Let A: R, =T — I be a A-algebra surjective homomorphism
for an integral domain I finite torsion-free over A. Let Ty := T ®4 I and A be the composite Ty —
T@a T 22229 [ Then for each P € Spec(I)(W) = Homyy_aig (I, W), X induces A — Ty 2 T 25 W by
composition.

Writing pp := P o Ao p. Then det pp is a deformation of detp; so, we have a unique morphism
tp: A — W such that tp o k = det(pp). Since the A-algebra structure ¢ : A — T of T = Ry, is given by
det(p) = det(pr) = ¢ o k, we find out that the above composite is just ¢p.

Let Tp = Ty ®1,p W under the above algebra homomorphism. Note that

Tp=ToAIRp W=T®npr,, W

by associativity of tensor product.

10.7. Modular and admissible points. By construction, we have Ap : Tp — W induced by A. Even
if tp = tpr, Ap may be different from Ap/. If Ap is associated to a Hecke eigenform of weight > 2, we
call P a modular point. If Tp ®w Frac(WW) = Frac(W) & (Ker(Ap) ®w Frac(W)) as algebra direct
sum, we call P admissible. If P is admissible, Cy(Ap) is well defined. If P is modular, it is admissible.

If p € Dy (A) for W-valued x = det(pp), then p € D,(A) and hence p = ¢ o p for ¢ : R, — A. By
definition, ¢ factors through

Ry /R(det(p)(9) — x(9))g B = Ri/R(r(9) — x(9))g B = R @px W.
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This shows that R, = R®a, W for x : A = W[[I']] = W induced by x. Applying this to Tp, we get
Rdct(pp) =Tp.

10.8. Modular adjoint p-adic L: L™°¢. Suppose (ord;) in §5.1 for [ € S U {p}. Here is a theorem I
proved long ago (e.g., [MFG, §5.3.6]) for canonical periods Q¢+ of f:

Theorem 10.4. Let A : T — 1 be a surjective A-algebra homomorphism for a domain 1 containing
A and X : Ty — 1 be its scalar extension to I as in §10.6. Then there ewists L™°? € 1 such that
Co(A) =1/(L™°%) and for each admissible P € Spec(l), Co(Ap) = W/P(A(L™°4)) and if PoXopr & py
for a modular form of weight > 2, we have |Co(Ap)| = |W/P(A(L™?))| = |W|gl (see [MFG,
Corollary 5.31]). o

If f is of weight 2 on a modular curve X, for W = WNQ, we have H (X, W)[Ap] = Ww, (f)EWw_ (f)
(£-eigenspace under the pull-back action of z +— —% on the upper half complex plane) and H!(X,C) =
Co(f) +Co_(f) for 6+ f = f(2)dz F f(—Z)dZ. Then Qs 1w+ (f) = d+(f). We use Eichler-Shimura
isomorphism to define Q4+ for higher weight.

10.9. Sketch of Proof of the existence of L™°. Write X* := Homy(X,I) for an [-module X.
Let S be the image of Ty in B ®; Frac(I) for B = Ker()) in the decomposition T ®x Frac(l) =
Frac(I) ® (B ®p Frac(l)). Let p: Ty — S be the projection and put A = Ker(p). So we have a split
exact sequence B — Ty — I. A local complete intersection Ty over I has such a self-dual pairing (-, -)
with values in I such that (xy, z) = (x,yz) for z,y,z € Tr. Thus B* = T;/I*, and I* C Ty =T} is a
maximal submodule of Ty on which Ty acts through X; so, I* = 2 inside Ty. This implies B* = S; so,
S is I-free. In other words, applying [-dual, we get a reverse exact sequence

r — T —— B*
IR |
? T; S

This shows ? = % = I[* = [; so, 2 is principal to have L™°? € T such that 2A = (L™°%). Note that

Co(A) =1/ (see §2.6).

10.10. Specialization property. We have B* = S and a split exact sequence B — Ty — [; so, B is
an I-direct summand of Ty. Tensoring W over I via P, B ®p W — Tp — W is exact, and we get
Bp =B erp W = Ker(Ap). Since T is A-free of finite rank, Ty is I-free of finite rank. Thus B is
I-projective and hence I-free; so, S = B* is [-free. Tensoring W over I via P, we get
0—-ARp W —=Tp = Srp W — 0.

Thus if P is admissible, Sp := S®p ., W gives rise to the decomposition: T p @y Frac(W) = Frac(W)®
(Sp Rw Frac(W)). By %p = %p ®]LP W = Ker()\p), we get Co()\p) = Sp/%p = (S/%) ®]LP W =
Co(N) ®@1,p W, as desired. O

10.11. Relation between L, and L™°?. Tensoring I with the exact sequence of T-modules:

o df
(Frseees )/ o eeos 2 25 Quiny s mgiya ©aqm,m T = Qo/a
over T, we get an exact sequence

Puar;, 2D P 1Ty — Qg @101 0.
J J

Since Ty = I[[T1, ..., T+]}/(f1, - -, fr)1, we have
On1 @, 5 1= @ 1T/ P Idf; = Qujp @1 L
J J

They have the same characteristic ideals (and Fitting ideals) by Tate’s theorem. Thus in general, we
get,

(A(Lp)) = (A(det(d))) = (det(d @ 1))

T\ Tate

= char(C1(N)) "2° char(Co(X)) = (L™%).
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10.12. Conclusion. Thus we obtain

Corollary 10.5. Let the notation and the assumption be as in Theorem 2. Then we have A\(L,)/L™ €

Ix.

The corollary tells us that Ly,oq € I glues (up to units) well to L, so that the image A(L,) of L, in
I is equal to L™°% of T up to units as long as I contains A as a subalgebra.

As seen in Corollary 2.2, C; = C1(\) = B/B? and Cy = Co(\) = S§/B. If r < 1, C; is cyclic, and
by Nakayama’s lemma, B is generated by an element 6 of S. Since C; = Cy by Tate’s theorem and Cjy
is I-torsion, 6 is a non-zero-divisor of S. Thus the multiplication by 6 gives rise to Cy = C}.
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