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1. Introduction

We give an overview of what we will do in this topic course. Fix a prime p ≥ 5. For a number field
K, by class field theory, the maximal abelian extension H/K unramifeid everywhere has Galois group
canonically isomorphic to the class group ClK of K. So Pontryagin dual of Hom(ClK,p, Qp/Zp) ∼= ClK,p

can be Galois cohomologically defined

SelK = Ker(H1(Q/K, Qp/Zp)→
∏

l

H1(Il, Qp/Zp)).

Writing the induced representation IndQ
K 1 = 1⊕χ, we have the celebrated class number formula giving

the size |ClK | by the integral part of the value L(1, χ) (Artin L-value) up to a canonical transcendental
factor. We have studied in the recent past 207 courses the fundamental question:

When SelK ∼= ClK,p is cyclic?

(and therefore, the structure of SelK is determined by by the value L(1, χ)). Though we do not require
any knowledge of past courses, here are links to the lecture notes of the relevant past two courses:

• http://www.math.ucla.edu/~hida/207b.1.18s/Lec18s.pdf,
• http://www.math.ucla.edu/~hida/207a.1.18w/Lec1.pdf.

There is one more example of proven such formulas giving the size of Selmer groups. Start with a
modular form f ∈ Sk(SL2(Z)) and suppose f is an eigenform of all Hecke operators T (n); so, f |T (n) =

λ(T (n))f . Each f has its p-adic irreducible Galois representation ρf : Gal(Q/Q)→ GL2(Qp[λ]), where

Qp[λ] is the field generated over the p-adic field Qp by the eigenvalues λ(T (n)). Let Gal(Q/Q) acts on

sl2(Qp[λ]) = {x ∈ M2(Qp[λ])|Tr(x) = 0}
by conjugation, which results a 3-dimensional Galois representation Ad(ρf ). In this case, again we have
the formula of |Sel(Ad(ρf ))| by the L-value L(1, Ad(ρf)) (a non-abelian class number formula). We
explore in this courese the question when Sel(Ad(ρf )) is cyclic over Zp[ρf ]?

We cover

(1) How to get the non-abelian “class number” formula;
(2) Properties of Galois representations Ad(ρf ) and ρf ;
(3) Definitions of Sel(Ad(ρf );
(4) the cyclicity question.

Here is a slightly more detailed sketch of what we are going to do; so, no proofs given (just short
explanation of concepts).

1.1. Hilbert class field. Let K be a number field with integer ring O = OK embedded in C. Let
H/K be the Hilbert class field; i.e., the maximal abelian extension unramified everywhere including real
places. A real place means any real embedding K ↪→ R extending to an embedding of H into R.
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Define ClK to be the group of isomorphism classes of rank 1 projective O-modules M (the group
structure is given by tensor product over O). Since M ↪→ M ⊗O K ∼= K, we may identify M with a
fractional O-ideal in K. Then

ClK ∼=
fractional O-ideals

principal fractional ideals (α) = αO
,

which is known to be finite (so, compact; [LFE, Theorem 1.2.1]). By class field theory, we have

ClK ∼= Gal(H/K) by l 7→ Frobl for primes l.

1.2. Dual class group Cl∗K = Hom(ClK , Q/Z). Consider the algebraic closure

K =
⋃

E/K: finite Galois extension

E

of K (E is taken in C). Then GK = Gal(K/K) is a compact group as GK = lim←−E/K
Gal(E/K)

by restriction maps. Consider Hom(GK , Q/Z) = Hom(Gab
K , Q/Z) (Pontryagin dual of the maximal

continuous abelian quotient Gab
K ). If φ : GK → Q/Z is unramified at a prime l, φ is trivial on the inertia

subgroup Il of l. Thus

Cl∗K = Gal(H/K)∗ := Hom(Gal(H/K), Q/Z) = Ker(Hom(GK , Q/Z)→
∏

l

Hom(Il, Q/Z)).

1.3. Pontryagin dual. Consider a profinite group G and a continuous G-module X. Assume that X
has either discrete torsion or profinite topology.

For any abelian profinite compact or torsion discrete module X, we define the Pontryagin dual module
X∗ by X∗ = Homcont(X, Q/Z) and give X∗ the topology of uniform convergence on every compact
subgroup of X. The G-action on f ∈ X∗ is given by σf(x) = f(σ−1x). Then by Pontryagin duality
theory (e.g., [LFE, 8.3]), we have (X∗)∗ ∼= X canonically. By this fact, if X∗ is the dual of a profinite
module X = lim←−n

Xn for finite modules Xn with surjections Xm � Xn for m > n, X∗ =
⋃

n X∗
n is a

discrete module which is a union of finite modules X∗
n.

1.4. Group cohomology. We denote by Hq(G, X) the continuous group cohomology with coefficients
in X. If X is finite, Hq(G, X) is as defined in [MFG, 4.3.3]. Thus we have

H0(G, X) = XG = {x ∈ X|gx = x for all g ∈ G},

and assuming all maps are continuous,

H1(G, X) =
{G c−→ X|c(στ ) = σc(τ ) + c(σ) for all σ, τ ∈ G}

{G b−→ X|b(σ) = (σ − 1)x for x ∈ X independent of σ}
,

and H2(G, X) is given by

{G c−→ X|c(σ, τ ) + c(στ, ρ) = σc(τ, ρ) + c(σ, τρ) for all σ, τ, ρ ∈ G}
{c(σ, τ ) = b(σ) + σb(τ ) − b(στ ) for b : G→ X} .

Thus if G acts trivially on X, we have H1(G, X) = Hom(G, X). If G = Gal(E/K), we often write

Hj(E/K, X), and if E = K, we write Hj(K, X) for G = GK .

1.5. Compatible system of Galois representations. A (weakly) compatible system of Galois
representations over K with coefficient (number field) T is a system of continuous representation
ρ = {ρl : GK → GLn(OT,l)} such that
• There exists a finite set of primes S of K such that ρl is unramified outside S and the residual char-
acteristic l of l;
• The characteristic polynomial of ρl(Frobp) is in T [X] independent of l as long as p 6∈ S ∪ {l}.
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1.6. Selmer group. Let ρdiv
l = ρl ⊗Zl Ql/Zl as a discrete GK-module. For a datum L of subgroup

Lq ⊂ H1(Kq, ρdiv
l ) for each prime q of K, we define

SelL(ρl) = Ker(H1(K, ρdiv
l )→

∏

q

H1(Kq, ρdiv
l )/Lq).

If we take Lq := Ker(H1(Kq, ρdiv
l )→ H1(Iq, ρ

div
l )), then

SelL(ρl) = Ker(H1(K, ρdiv
l )→

∏

q

H1(Iq, ρ
div
l )).

If ρ is made of trivial representation 1 with coefficients in Q,

SelK(1) := SelL(ρl) ∼= Cl∗K ⊗Z Zl for the above choice of L.

By class number formula for an imaginary quadratic field K = A[
√
−D], we find, if l > 3,

|ClK ⊗Z Zl| = ||ClK||−1
l = |SelK(1)| = |L(0, χ)|l

for the Dirichlet character χ =
(
−D

)
. In this case, we can check IndQ

K 1 = Ind
GQ

GK
1 = 1⊕χ, SelK(1) =

SelQ(χ) as SelQ(1) = 0; so,

|ClK ⊗Z Zl| = ||ClK||−1
l = |SelQ(χ)| = |L(0, χ)|l.

1.7. A variant of Bloch-Kato conjecture. Define the L function of ρ by L(s, ρ) =
∏

p det(1 −
ρl(Frobp)N(p)−s)−1 and assume analytic continuation and functional equation as predicted by Serre if
ρ is associated top a motive (see [HMI, 1.2.1]). If ρ is critical (i.e., the L(s, ρ) does not have a pole at
s = 0 and the Γ-factor of L(s, ρ) and its counter-part of the functional equation are finite at s = 0), we
expect

|SelL(ρl)| =
∣∣∣∣
L(0, ρl)

period

∣∣∣∣
−1

l

for a suitable transcendental factor “period” and a suitable data L (depending on how to define
“period”).

Thus at least conjecturally we can compute |SelL(ρl)|. Our main questions are

• Is there any way to determine the structure of SelL(ρl)?
• Or at least, is there any way to compute the number of generators of SelL(ρl) over OTl

?

2. Congruence modules

Start with an n-dimensional compatible system ρ = {ρl} of GK . For simplicity, we assume that
its coefficient field T is Q. Pick a prime p and its member ρp (since GK is compact, ρp has values in
the maximal compact subgroup GLn(Zp) up to conjugation). Let ρ = ρp mod p; GK → GLn(Fp). A
deformation ϕ : GK → GLn(A) for a local Zp-algebra A is such that ϕ mod mA

∼= ρ. The universal
deformation ring with some specific property P parameterizes all deformations with P . In other words,
there exists a universal deformation ρ : GK → GLn(R) with property P such that for any deformation
ϕ as above, there exists a Zp-algebra homomorphism φ : R → A such that φ ◦ ρ ∼= ϕ. We study the
relation between the module of differential ΩR/Zp

and a certain Selmer group SelP (Ad(ρ)). We start
studying differentials for general rings.

2.1. Set up.

• W : the base ring which is a DVR over Zp with finite residue field F for a prime p > 2.

• For a local W -algebra A sharing same residue field F with W (i.e., A/mA = F), we write
CLA the category of complete local A-algebras R with R/mR = F for its maximal ideal mR.
Morphisms of CLA are local A-algebra homomorphisms. If A is noetherian, CNLA is the full
subcategory of CLA of noetherian local rings.

• Fix R ∈ CNLA. For a continuous R-module M with continuous R–action, define continuous
A–derivations by

DerA(R, M) =
{
δ : R→M ∈ HomA(R, M)

∣∣δ: continuous, δ(ab) = aδ(b) + bδ(a) (a, b ∈ R)
}
.

Here the A-linearity of a derivation δ is equivalent to δ(A) = 0. The association M 7→
DerA(R, M) is a covariant functor from the category MOD/R of continuous R-modules to
modules MOD.
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2.2. Differentials. The differential R-module ΩR/A is defined as follows: The multiplication a⊗b 7→ ab

induces a A–algebra homomorphism m : R⊗̂AR → R taking a ⊗ b to ab. We put I = Ker(m), which
is an ideal of R⊗̂AR. Then we define ΩR/A = I/I2 . It is an easy exercise to check that the map

d : R → ΩR/A given by d(a) = a⊗ 1− 1⊗ a mod I2 is a continuous A–derivation. Indeed

a · d(b) + b · d(a)− d(ab) = ab⊗ 1− a⊗ b− b⊗ a + ba⊗ 1− ab⊗ 1 + 1⊗ ab

= ab⊗ 1− a⊗ b− b ⊗ a + 1⊗ ab = (a ⊗ 1− 1⊗ a)(b⊗ 1− 1⊗ b) ≡ 0 mod I2.

We have a morphism of functors:

HomR(ΩR/A, ?)→ DerA(R, ?) : φ 7→ φ ◦ d.

2.3. Universality.

Proposition 2.1. The above morphism of two functors

M 7→ HomR(ΩR/A, M)

and M 7→ DerA(R, M) is an isomorphism, where M runs over the category of continuous R–modules.
In other words, for each A-derivation δ : R → M , there exists a unique R-linear homomorphism
φ : ΩR/A →M such that δ = φ ◦ d.

Proof. The ideal I is generated over R by d(a). Indeed, if
∑

a,b m(a, b)ab = 0 (i.e.,
∑

a,b m(a, b)a⊗b ∈ I),
then

∑

a,b

m(a, b)a⊗ b =
∑

a,b

m(a, b)a⊗ b−
∑

a,b

m(a, b)ab⊗ 1

=
∑

a,b

m(a, b)a(1⊗ b)− b⊗ 1) = −
∑

a,b

m(a, b)d(b).

Define φ : R × R → M by (x, y) 7→ xδ(y) for δ ∈ DerA(R, M). If a, c ∈ R and b ∈ A, φ(ab, c) =
abδ(c) = a(bδ(c)) = bφ(a, c) and φ(a, bc) = aδ(bc) = abδ(c) = b(aδ(c)) = bφ(a, c). Thus φ gives a
continuous A-bilinear map.

By the universality of the tensor product, φ : R×R →M extends to a A-linear map φ : R⊗̂AR →M .
Now we see that

φ(a⊗ 1− 1⊗ a) = aδ(1)− δ(a) = −δ(a)

and

φ((a⊗ 1− 1⊗ a)(b⊗ 1− 1⊗ b)) = φ(ab⊗ 1− a⊗ b− b⊗ a + 1⊗ ab) = −aδ(b) − bδ(a) + δ(ab) = 0.

This shows that φ|I-factors through I/I2 = ΩR/A and δ = φ ◦ d, as desired. The map φ is unique as
d(R) generates ΩR/A. �

2.4. Functoriality.

Corollary 2.2 (Second fundamental exact sequence).
Let π : R � C be a surjective morphism in CLW , and write J = Ker(π). Then we have the following
natural exact sequence:

J/J2 β∗

−→ ΩR/A⊗̂RC −→ ΩC/A → 0.

Moreover if A = C, then J/J2 ∼= ΩR/A⊗̂RC.

Proof. By assumption, we have algebra morphism A → R � C = R/J . By the Yoneda’s lemma, we
only need to prove that

DerA(C, M)
α−−−−→
↪→

DerA(R, M)
β−−−−→ HomC(J/J2, M)

o

y o

y ‖

y

HomA(ΩC/A, M) −−−−→ HomA(ΩR/A⊗̂RC, M) −−−−→ HomC(J/J2, M)

is exact for all continuous C–modules M . The first α is the pull back map. Thus the injectivity of α is
obvious.

The map β is defined as follows: For a given A-derivation D : R → M , we regard D as a A-linear
map of J into M . Since J kills the C-module M , D(jj′) = jD(j′) + j′D(j) = 0 for j, j′ ∈ J . Thus D
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induces C-linear map: J/J2 →M . Then for b ∈ R and x ∈ J , D(bx) = bD(x) + xD(b) = bD(x). Thus
D is C-linear, and β(D) = D|J .

Now prove the exactness at the mid-term of the second exact sequence. The fact β ◦α = 0 is obvious.
If β(D) = 0, then D kills J and hence is a derivation well defined on C = R/J . This shows that D is
in the image of α.

Now suppose that A = C. To show injectivity of β∗, we create a surjective C-linear map: γ :
ΩR/A ⊗C � J/J2 such that γ ◦ β∗ = id.

Let π : R → C be the projection and ι : A = C ↪→ R be the structure homomorphism giving the
A-algebra structure on R. We first look at the map δ : R → J/J2 given by δ(a) = a − P (a) mod J2

for P = ι ◦ π. Then

aδ(b) + bδ(a) − δ(ab) = a(b− P (b)) + b(a− P (a))− ab + P (ab)

P(ab)=P(a)P(b)
= ab− aP (b) + ba− bP (a)− ab + P (a)P (b) = (a − P (a))(b− P (b)) ≡ 0 mod J2.

Thus δ is a A-derivation.
By the universality of ΩR/A, we have an R-linear map

φ : ΩR/A → J/J2

such that φ ◦ d = δ. By definition, δ(J) generates J/J2 over R, and hence φ is surjective.
Since J kills J/J2, the surjection φ factors through ΩR/A⊗R C and induces γ. Note that β(d⊗1C ) =

d⊗ 1C |J for the identity 1C of C; so, γ ◦ β∗ = id as desired. �

Corollary 2.3. Let the notation and the assumption be as in Corollary 2.2. If we restrict the functor
M 7→ DerA(R, M) to the category MOD/C of C-modules, ΩR/A⊗̂RC represents MOD/C 3 M 7→
DerA(R, M).

We often write C1(π; C) := ΩR/A⊗̂RC (which is called the differential module of π).

Proof. By Proposition 2.1, for each δ ∈ DerA(R, M), we find a unique φ ∈ HomR(ΩR/A, M) such that
φ ◦ d = δ. If M is a C-module, φ factors through ΩR/A/JΩR/A = ΩR/A ⊗R C.

Conversely, if φ ∈ HomC(ΩR/A⊗RC, M) for a C-module M , plainly δ = φ◦(d⊗1) gives DerA(R, M);
so, the result follows. �

2.5. An algebra structure on R⊕M and derivation. For any continuous R-module M , we write
R[M ] for the R-algebra with square zero ideal M . Thus R[M ] = R⊕M with the multiplication given
by

(r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ (rx′ + r′x).

It is easy to see that R[M ] ∈ CNLW , if M is of finite type, and R[M ] ∈ CLW if M is a p-profinite
R-module. By definition,

DerA(R, M) ∼=
{
φ ∈ HomA−alg(R, R[M ])

∣∣φ mod M = id
}

,

where the map is given by δ 7→ (a 7→ (a⊕ δ(a)).
Note that i : R → R⊗̂AR given by i(a) = a ⊗ 1 is a section of m : R⊗̂AR → R. We see easily that

R⊗̂AR/I2 ∼= R[ΩR/A] by x 7→ m(x) ⊕ (x− i(m(x))). Note that d(a) = 1⊗ a− i(a) for a ∈ R.

2.6. Congruence modules. We assume that A is a domain and R is a reduced finite flat A-algebra.
Let φ : R � A be an onto A-algebra homomorphism. Then the total quotient ring Frac(R) can be
decomposed uniquely

Frac(R) = Frac(Im(φ))×X

as an algebra direct product. Write 1φ for the idempotent of Frac(Im(φ)) in Frac(R). Let a = Ker(R→
X) = (1φR ∩ R), S = Im(R → X) and b = Ker(φ). Here the intersection 1φR ∩ R is taken in
Frac(R) = Frac(Im(φ)) ×X. First note that a = R ∩ (A × 0) and b = (0×X) ∩R. Put

C0(φ; A) = (R/a)⊗R,φ Im(φ) ∼= Im(φ)/(φ(a)) ∼= A/a ∼= R/(a⊕ b) ∼= S/b and C1(φ; C) := ΩR/A⊗̂RC.

The module C0(φ; A) is called the congruence module of φ but is actually a ring. The module C1(φ; A)
is called the differential module of φ.

Write K = Frac(A). Fix an algebraic closure K of K. Since the spectrum Spec(C0(φ; A)) of the
congruence ring C0(φ; A) is the scheme theoretic intersection of Spec(Im(φ)) and Spec(R/a) in Spec(R):

Spec(C0(λ; A)) = Spec(Im(φ)) ∩ Spec(R/a),
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we conclude that

Proposition 2.4. Let the notation be as above. Then a prime p is in the support of C0(φ; A) if and only
if there exists an A-algebra homomorphism φ′ : R → K factoring through R/a such that φ(a) ≡ φ′(a)
mod p for all a ∈ R.

Since φ is onto, we see C1(φ; A) = b/b2. We could define Cn = bn/bn+1. Then C(φ; A) =⊕
n Cn(φ; A) is a graded algebra. If b is principal, this is a polynomial ring C0(φ; A)[T ].

Proposition 2.5. If A is a noetherian domain, we have SuppA(C0(φ; A)) = SuppA(C1(φ; A)) and
AssA(C0(φ; A)) = AssA(C1(φ; A)).

For an A-module M , SuppA(M) is defined by a Zariski closed subset {P ∈ Spec(A)|MP 6= 0} of
Spec(A). Writing AnnA(M) = {x ∈ A|xM = 0} (the annihilator ideal of M), we find SuppA(M) =
{P ⊃ AnnA(M)|P ∈ Spec(A)} if M is finitely generated over A as an A-module (see [CRT, §4]).
The set AssA(M) of associated primes of M is defined to be the set of prime ideals P of A such that
P = AnnA(Ax) for some x ∈M .

Proof. For simplicity, we write Cj for Cj(φ; A). Note that C1,P = C1 ⊗A AP = ΩR/A ⊗R AP
∼=

ΩRP /AP
⊗RP AP by [CRT, Exercise 25.4]. Thus if C1,P = 0, by Nakayama’s lemma ΩRP /AP

= 0;
so, RP is étale over AP [CRT, §25]. Therefore RP = AP ⊕ SP as RP � AP splits, and hence
C0,P = C0 ⊗A AP = SP ⊗RP ,φ AP = 0. Thus SuppA(C0) ⊂ SuppA(C1).

If C0,P = 0, then Spec(AP )∩Spec(SP ) = ∅; therefore, RP = AP ⊕SP , and hence ΩRP /AP
= ΩSP /AP

,
and hence C1,P = 0. Thus shows the reverse inclusion SuppA(C0) ⊃ SuppA(C1), and we conclude
SuppA(C0) = SuppA(C1).

Since the sub set of minimal primes of AnnA(M) is equal to the subset of minimal primes in
SuppA(M) (see [CRT, Theorem 6.5 (iii)]), the identity SuppA(C0) = SuppA(C1) implies the identity of
associated primes. �

3. Galois deformation theory for Gm

We study the universal deformation ring in the case of characters (i.e., representation into GL1) and
computes congruence modules C0 and C1. As before, we fix an odd prime p.

3.1. Deformation of a character. Let F/Q be a number field with integer ring O. We fix a set P of
properties of Galois characters. The property P is often unramified outside p, or in addition, deformed
characters has prime-to-p conductor a factor of a fixed ideal c prime to p. Fix a continuous character
ρ : Gal(Q/F )→ F× with the property P.

A character ρ : Gal(Q/Q) → A× for A ∈ CLW is called a P-deformation of ρ if (ρ mod mA) = ρ
and ρ satisfies P.

A couple (R, ρ) (universal couple) made of an object R of CLW and a character ρ : Gal(Q/F )→ R×

satisfying P is called a universal couple for ρ if for any P-deformation ρ : Gal(Q/F ) → A× of ρ, we
have a unique morphism φρ : R → A in CLW (so it is a local W -algebra homomorphism) such that
φρ ◦ ρ = ρ. By the universality, if exists, the couple (R, ρ) is determined uniquely up to isomorphisms.

3.2. Ray class groups of finite level. Fix an O-ideal c. Recall

ClF (c) =
{fractional O-ideals prime to c}

{(α)|α ≡ 1 mod×c∞} ,

Here α ≡ 1 mod×c means that α = a/b for a, b ∈ O is totally positive (i.e., σ(α) > 0 for all real

embedding F
σ−→ R) such that (b) + c = O and a ≡ b mod c (or equivalently, for all primes l|c, α ∈ O×

l

and α ≡ 1 mod lvl(c∞) if the l-primary factor of c has exponent vl(c) (if l|∞, it just means α is positive
at l).

Write Hcpn/F for the ray class field modulo cpn. In other words, there exists a unique abelian
extension Hcpn/F only ramified at cp∞ exists such that we can identify Gal(Hcpn/F ) with the strict
ray class group ClF (cpn) by sending a class of prime l in ClF (cpn) to the Frobenius element Frobl ∈
Gal(Hcpn/F ). This isomorphism is called the Artin symbol.
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3.3. Ray class group of infinite level. The group ClF (cpn) is finite as we have an exact sequence:

(O/cpn)×
α 7→(α)−−−−→ ClF (cpn)→ Cl+F → 1

for the strict class group Cl+F (we write the usual class group without condition at ∞ as ClF ). Note

that |Cl+F |/|ClF | is a factor of 2e for the number e of real embeddings of F .
Sending a class [a] ∈ ClF (cpm) to the class [a] ∈ ClF (cpn) for m > n, we have a projective system

{ClF (cpn)}n. Put ClF (cp∞) = lim←−n
ClF (cpn). Then for Hcp∞ =

⋃
n Hcpn , ClF (cp∞) ∼= Gal(Hcp∞/F )

by [l] 7→ Frobl for primes l - cp.
If F = Q and c = (N) for 0 < N ∈ Z, we have Hcpn is the cyclotomic field Q[µNpn ] for the group

µNpn of Npn-th roots of unity; so, ClQ(cpn) ∼= (Z/NpnZ)× and ClQ(cp∞) ∼= (Z/NZ)× × Zp
×.

3.4. Groups algebra is universal. For a profinite abelian group G with the maximal p-profinite (p-
Sylow) quotient Gp, consider the group algebra W [[Gp]] = lim←−n

W [Gn] writing Gp = lim←−n
Gn with finite

Gn. For example, Λ = W [[Γ]] (Γ = 1 + pZp = (1 + p)Zp) (the Iwasawa algebra) is isomorphic to W [[T ]]
by 1 + p ↔ t = 1 + T . Suppose that Gp is finite. Fix a character χ : G → F×. Since F× ↪→ W×,
we may regard χ as a character χ0 : G → W× (Teichmüller lift of χ). Define κ : G → W [[Gp]]

× by
κ(g) = χ0(g)gp for the image gp of g in Gp. Note that W [Gp] is a local ring with residue field F. For

any continuous deformation χ : G → A× of χ, ϕ : W [Gp] 3
∑

g agg 7→ ∑
g agχχ−1

0 (g) ∈ A gives a
unique W -algebra homomorphism such that ϕ ◦ κ = χ. If Gp is infinite and A = lim←−n

An for finite

An with An = A/mn, χn := χχ−1
0 mod mn : G → A×

n has to factor through Gm(n) by continuity, and
we get ϕn : W [Gm(n)] → An such that ϕn ◦ κ = ρn. Passing to the limit, we have ϕ ◦ κ = ρ for
ϕ = lim←−n

ϕn : W [[Gp]]→ A.

3.5. Universal deformation ring for a Galois character ρ. Let CF (cp∞) for the maximal p-
profinite quotient of ClF (cp∞). If ρ has prime-to-p conductor equal to c, we define a deformation ρ to
satisfy P if ρ is unramified outside cp and has prime-to-p conductor a factor of c (i.e., ρ factors through
Gal(Hcp∞/F )).

For the Teichmüller lift ρ0 of ρ and the inclusion κ : CF (cp∞) ↪→ W [[CF (cp∞)]], we define ρ(σ) :=
ρ0(σ)κ(σ). Then the universality of the group algebra tells us

Theorem 3.1. The couple (W [[CF (cp∞)]], ρ) is universal among all P-deformations. If ρ is unramified
everywhere, (W [[CF ]], ρ) for CF := ClF,p is universal among everywhere unramified deformations.

3.6. Congruence modules for group algebras. Let H be a finite p-abelian group. If m is a maximal
ideal of W [H ], then for the inclusion κ : H ↪→ W [H ]× with κ(σ) = σ, κ mod m is trivial as the finite
field W [H ]/m has no non-trivial p-power roots of unity; so, m is generated by {σ − 1}h∈H and mW .
Thus m is unique and W [H ] is a local ring.

We have a canonical algebra homomorphism: W [H ]→W sending σ ∈ H to 1. This homomorphism
is called the augmentation homomorphism of the group algebra. Write this map π : W [H ]→W . Then
b = Ker(π) is generated by σ − 1 for σ ∈ H . Thus

b =
∑

σ∈H

W [H ](σ− 1)W [H ].

We compute the congruence module and the differential module Cj(π, W ) (j = 0, 1).

Theorem 3.2. We have

C0(π; W ) ∼= W/|H |W and C1(π; W ) = H ⊗Z W.

Proof. Let K := Frac(W ). Then π gives rise to the algebra direct factor Kε ⊂ K[H ] for the idempotent
ε = 1

|H|

∑
σ∈H σ. Thus a = Kε ∩W [H ] = (

∑
σ∈H σ) and π(W (H))/a = (ε)/a ∼= W/|H |W .

Consider the functor F : CLW → SETS given by

F(A) = Homgroup(H, A×) = HomW -alg(W [H ], A).

Thus R := W [H ] and the character ρ : H → W [H ] (the inclusion: H ↪→ W [H ]) are universal among
characters of H with values in A ∈ CLW .

Then for any R-module X, consider R[X] = R⊕X with algebra structure given by rx = 0 and xy = 0
for all r ∈ R and x, y ∈ X. Thus X is an ideal of R[X] with X2 = 0. Define Φ(X) = {ρ ∈ F(R[X])|ρ
mod X = ρ}. Write ρ(σ) = ρ(σ)⊕ u′

ρ(σ) for u′
ρ : H → X.
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Since

ρ(στ )⊕ u′
ρ(στ ) = ρ(στ ) = (ρ(σ) ⊕ u′

ρ(σ))(ρ(τ )⊕ u′
ρ(τ )) = ρ(στ )⊕ (u′

ρ(σ)ρ(τ ) + ρ(σ)u′
ρ(τ )),

we have u′
ρ(στ ) = u′

ρ(σ)ρ(τ ) + ρ(σ)u′
ρ(τ ), and thus uρ := ρ

−1u′
ρ : H → X is a homomorphism from H

into X. This shows
Hom(H, X) = Φ(X).

Any W -algebra homomorphism ξ : R → R[X] with ξ mod X = idR can be aritten as ξ = idR⊕dξ

with dξ : R → X. Since (r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ rx′ + r′x for r, r′ ∈ R and x.x′ ∈ X, we have
dξ(rr

′) = rdξ(r
′) + r′dξ(r); so, dξ ∈ DerW (R, X). By universality of (R, ρ), we have

Φ(X) ∼= {ξ ∈ HomW -alg(R, R[X])|ξ mod X = id} = DerW (R, X) = HomR(ΩR/W , X).

Thus taking X = K/W , we have

HomW (H ⊗Z W, K/W ) = Hom(H, K/W ) = HomR(ΩR/W , K/W ) = HomW (ΩR/W ⊗R,π W, K/W ).

By taking Pontryagin dual back, we have

H ∼= ΩR/W ⊗R,π W = C1(π; W )

as desired. �

3.7. Class group and Selmer group. Let IndQ
F id = id⊕χ and H = CF . Then for ΩF given basically

by the regulator and some power of (2πi),

|L(1, χ)/ΩF |p =
∣∣|CF |

∣∣
p
.

We can identify C∨
F = Hom(CF , Qp/Zp) with the Selmer group of χ given by

SelQ(χ) := Ker(H1(Q, V (χ)∗)→
∏

l

H1(Il, V (χ)∗))

for the inertia group Il ⊂ Gal(Ql/Ql).

3.8. Class number formula.

Theorem 3.3 (Class number formula). Assume that F/Q is a Galois extension and p - [F : Q]. For
the augmentation homomorphism π : W [CF ]→W , we have, for r(W ) = rankZp W ,

∣∣∣∣
L(1, χ)

ΩF

∣∣∣∣
r(W)

p

= |C1(π; W )|−1 = |C0(π; W )|−1 =
∣∣|SelQ(χ)|

∣∣r(W)

p

and C1(π; W ) = CF ⊗W and C0(π; W ) = W/|CF |W .

4. Number of generators of adjoint Selmger grioups

The dimension d of the tangent space of a local ring R over F gives the number of generators of
the ring R. We describe this fact. Using this fact, we prove that ΩR/W is generated by d elements as
R-modules. We fix a generator $ of the maximal ideal mW of W .

Hereafter, we fix a finite set S of rational primes (including infinite places), and we let GQ denote
the Galois group over Q of the maximal extension unramified outside S.

4.1. Tangent spaces of local rings. To study noetherian property of deformation ring, here is a
useful lemma for an object R in CLW :

Lemma 4.1. If t∗R/W = mR/(m2
R + mW ) is a finite dimensional vector space over F, then R ∈ CLW is

noetherian.

The space t∗R/W is called the co-tangent space of R at mR = ($) ∈ Spec(R) over Spec(W ). Define

t∗R by mR/m2
R, which is called the (absolute) co-tangent space of R at mR.

Proof. Since we have an exact sequence:

F
∼−−−−→

a7→a$
mW/m2

W −→ t∗R −→ t∗R/W −→ 0,

we conclude that t∗R is of finite dimension over F if t∗R/W is of finite dimensional.

First suppose that mN
R = 0 for sufficiently large N . Let x1, . . . , xm be an F–basis of t∗R. Choose xj ∈ R

so that xj mod m2
R = xj . and consider the ideal a generated by xj. We have a =

∑
j Rxj ↪→ mR (the

inclusion).
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After tensoring R/mR, we have the surjectivity of the induced linear map: a/mRa ∼= a⊗R R/mR →
m ⊗R R/mR

∼= m/m2
R because {x1, . . . , xm} is an F–basis of t∗R. This shows that mR = a =

∑
j Rxj

(NAK: Nakayama’s lemma applied to the cokernel of Rm 3 (a1, . . . , am) 7→∑
j ajxj ∈ mR). Therefore

mk
R/mk+1

R is generated by the monomials in xj of degree k as an F–vector space.

In particular, mN−1
R is generated by the monomials in (x0 := $, x1, . . .xm) of degree N − 1.

Inductive step: Define π : B = W [[X1, . . . , Xm]]→ R by π(f(X1 , . . . , Xm)) = f(x1, . . . , xm). Since any
monomial of degree > N vanishes after applying π, π is a well defined W–algebra homomorphism. Let
m = mB = ($, X1, · · · , Xm) be the maximal ideal of B. By definition,

π(mN−1) = mN−1
R .

Suppose now that π(mN−j) = m
N−j
R , and try to prove the surjectivity of π(mN−j−1) = m

N−j−1
R .

Since m
N−j−1
R /m

N−j
R is generated by monomials of degree N − j − 1 in xj, for each x ∈ m

N−j−1
R , we

find a homogeneous polynomial P ∈ mN−j−1 of x1, . . . , xm of degree N − j − 1 such that x − π(P ) ∈
m

N−j
R = π(mN−j). This shows π(mN−j−1) = m

N−j−1
R . Thus by induction on j, we get the surjectivity

of π.

General case: Write R = lim←−i
Ri for Artinian rings Ri. The projection maps are onto: t∗Ri+1

� t∗Ri
.

Since t∗R is of finite dimensional, for sufficiently large i,

t∗Ri+1
∼= t∗Ri

.

Thus choosing xj as above in R, we have its image x
(i)
j in Ri.

Use x
(i)
j to construct πi : W [[X1, . . . , Xm]] → Ri in place of xj . Then πi is surjective as already

shown, and
π = lim←−

i

πi : W [[X1, . . . , Xm]]→ R

remains surjective, because projective limit of continuous surjections, if all sets involved are compact
sets, remain surjective; so, R is noetherian as profinite sets are compact. �

4.2. Tangent space as adjoint cohomology group. Let R = Rρ be the universal ring for a mod
p-Galois absolutely irreducible representation ρ : GQ → GLn(F).

We identify t∗R/W with a certain cohomology group H1(GQ, ad(ρ)) and in this way, we prove finite

dimensionality: dimF t∗R/W <∞ (and hence Rρ is noetherian).

Let Mn(F) be the space of n × n matrices with coefficients in F. We let GQ acts on Mn(F) by
gv = ρ(g)vρ(g)−1. This action is called the adjoint action of GQ, and this GQ–module will be written
as ad(ρ).

Write Z for the center of Mn(F) and define sln(F) = {X ∈ Mn(F)|Tr(X) = 0}. Since Tr(aXa−1) =
Tr(X), sln(F) is stable under the adjoint action. This Galois module will be written as Ad(ρ).

If p - n, X 7→ 1
nTr(X) ⊕ (X − 1

nTr(X)) gives rise to Mn(F) = Z ⊕ sln(F) stable under the adjoint
action. So we have ad(ρ) = 1⊕Ad(ρ) if p - n, where 1 is the trivial representation.

Lemma 4.2. Let R = Rρ for an absolutely irreducible representation ρ : GQ→ GLn(F). Then

tR/W = HomF(t
∗
R/W , F) ∼= H1(GQ, ad(ρ)),

where H1(GQ, ad(ρ)) is the continuous first cohomology group of GQ with coefficients in the discrete
GQ–module V (ad(ρ)).

The space tR/W is called the tangent space of Spec(R)/W at m. In the following proof of the lemma,
we write G = GQ and R = Rρ.

Proof. Step. 1, dual number. Let A = F[ε] = F[X]/(X2) with X ↔ ε. Then ε2 = 0. We claim:

HomW -alg(R, A) ∼= tR/W .

Construction of the map.
Start with a W -algebra homomorphism φ : R→ A. Write

φ(r) = φ0(r) + φε(r)ε with φ0(r), φε(r) ∈ F.

Then the map is φ 7→ `φ = φε|mR .
Step. 2, Well defined-ness of `φ. From φ(ab) = φ(a)φ(b), we get

φ0(ab) = φ0(a)φ0(b) and φε(ab) = φ0(a)φε(b) + φ0(b)φε(a).
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Thus φε ∈ DerW (R, F) ∼= HomF(ΩR/W ⊗R F, F). Since for any derivation δ ∈ DerW (R, F), φ′ =
φ0 + δε ∈ HomW -alg(R, A), we find

HomR(ΩR/W ⊗R F, F) ∼= DerW (R, A) ∼= HomW -alg(R, A).

and Ker(φ0) = mR because R is local. Since φ is W–linear, φ0(a) = a = a mod mR.
Thus φ kills m2

R and takes mR W–linearly into mA = Fε; so, `φ : t∗R → F. For r ∈ W , r = rφ(1) =
φ(r) = r + φε(r)ε, and hence φε kills W ; so, `φ ∈ tR/W .
Step. 3, injectivity of φ 7→ `φ. Since R shares its residue field F with W , any element a ∈ R can
be written as a = r + x with r ∈ W and x ∈ mR. Thus φ is completely determined by the re-
striction `φ of φε to mR, which factors through t∗R/W . Thus φ 7→ `φ induces an injective linear map

` : HomW−alg(R, A) ↪→ HomF(t∗R/W , F).

Note R/(m2
R + mW ) = F ⊕ t∗R/W = F[t∗R/W ] with the projection π : R � t∗R/W to the direct

summand t∗R/W . Indeed, writing r = (r mod mR), for the inclusion ι : F = W/mW ↪→ R/(m2
R + mW ),

π(r) = r − ι(r).
Step. 4, surjectivity of φ 7→ `φ. For any ` ∈ HomF(t∗R/W , F), we extend ` to R by putting `(r) = `(π(r)).

Then we define φ : R→ A by φ(r) = r + `(π(r))ε. Since ε2 = 0 and π(r)π(s) = 0 in F[t∗R/W ], we have

rs = (r + π(r))(s + π(s)) = rs + sπ(r) + rπ(s)
φ−→ rs + s`(π(r))ε + r`(π(s))ε = φ(r)φ(s)

is an W–algebra homomorphism. In particular, `(φ) = `, and hence ` is surjective.
By HomR(ΩR/W ⊗R F, F) ∼= HomW -alg(R, A), we have

HomR(ΩR/W ⊗R F, F) ∼= HomF(t∗R/W , F);

so, if t∗R/W is finite dimensional, we get

(4.1) ΩR/W ⊗R F ∼= t∗R/W .

Step. 5, use of universality. By the universality, we have

HomW−alg(R, A) ∼= {ρ : G→ GLn(A)|ρ mod mA = ρ}/ ∼ .

Write ρ(g) = ρ(g) + u′
φ(g)ε for ρ corresponding to φ : R→ A. From the mutiplicativity, we have

ρ(gh) + u′
φ(gh)ε = ρ(gh) = ρ(g)ρ(h) = ρ(g)ρ(h) + (ρ(g)u′

φ(h) + u′
φ(g)ρ(h))ε,

Thus as a function u′ : G→ Mn(F), we have

(4.2) u′
φ(gh) = ρ(g)u′

φ(h) + u′
φ(g)ρ(h).

Step. 6, Getting 1-cocycle. Define a map uρ = uφ : G→ ad(ρ) by

uφ(g) = u′
φ(g)ρ(g)−1.

Then by a simple computation, we have

guφ(h) = ρ(g)uφ(h)ρ(g)−1

from the definition of ad(ρ). Then from the above formula (4.2), we conclude that

uφ(gh) = guφ(h) + uφ(g).

Thus uφ : G→ ad(ρ) is a 1–cocycle. Thus we get an F-linear map

tR/W
∼= HomW -alg(R, A)→ H1(GQ, ad(ρ))

by `φ 7→ [uφ]
Step. 7, End of proof. By computation, for x ∈ ad(ρ)

ρ ∼ ρ′ ⇔ ρ(g) + u′
ρ(g)ε = (1 + xε)(ρ(g) + u′

ρ′(g)ε)(1 − xε)

⇔ u′
ρ(g) = xρ(g) − ρ(g)x + u′

ρ′(g) ⇔ uρ(g) = (1− g)x + uρ′(g).

Thus the cohomology classes of uρ and uρ′ are equal if and only if ρ ∼ ρ′. This shows:

HomF(t∗R/W , F) ∼= HomW−alg(R, A) ∼= {ρ : G→ GLn(A)|ρ mod mA = ρ}/∼ ∼= H1(G, ad(ρ)).

In this way, we get a bijection between HomF(t∗R/W , F) and H1(G, ad(ρ)). �
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4.3. p-Frattini condition. For each open subgroup H of a profinite group G, we write Hp for the

maximal p–profinite quotient. Define p-Frattini quotient Φ(Hp) of H by Φ(Hp) = Hp/(Hp)p(Hp, Hp)
for the the commutator subgroup (Hp, Hp) of Hp. We consider the following condition:

(Φ) For any open subgroup H of G, Φ(Hp) is a finite group.

Proposition 4.3 (Mazur). By class field theory, GQ satisfies (Φ) , and Rρ is a noetherian ring. In
particular, t∗R/W is finite dimensional over F and is isomorphic to ΩR/W ⊗R F (see (4.1)).

By this fact, hereafter we always assume that the deformation functor is defined over CNL/W .

Proof. Let H = Ker(ρ). Then the action of H on ad(ρ) is trivial. By the inflation-restriction sequence
for G = GQ, we have the following exact sequence:

0→ H1(G/H, H0(H, ad(ρ)))→ H1(G, ad(ρ))→ Hom(Φ(Hp), Mn(F)).

From this, it is clear that
dimF H1(G, ad(ρ)) <∞.

The fact that GQ satisfies (Φ) follows from class field theory. Indeed, if F is the fixed field of H , then
Φ(Hp) fixes the maximal abelian extension M/F unramified outside p. By class field theory, [M : F ] is
finite. �

Corollary 4.4. ΩR/W is an R-module of finite type, and its minimal number of generators over R is
equal to

dimF ΩR/W ⊗R F = dimF tR/W .

Proof. For any R-module M , Nakayama’s lemma tells us M ⊗R F = 0 ⇒ M = 0. Choose a basis
B = {b} of M/mRM = M ⊗R F and suppose B is finite. Lift b to b ∈ M , and consider the R-linear
map π :

⊕
g∈B R 3 (ab)b∈B 7→

∑
b abb ∈ M . Tensoring F over R, we find Coker(π) ⊗R F = 0; so,

Coker(π) = 0. This implies that {b|b ∈ B} is the minimal generators of M over R. Apply this to
M = ΩR/W , we get the result by Proposition 4.3. �

5. Adjoint Selmer groups and differentials

We define Sel(Ad(ρ)) for ordinary deformations ρ of an absolutely irreducible 2-dimensional Galois
representation ρ and show that Sel(Ad(ρ)) = tR/W and Sel(Ad(ρ)) ∼= ΩR/W for the universal ordinary
Galois representation ρ deforming ρ.

We write Ip for the inertia group of Dp = Gal(Qp/Qp).

5.1. p-Ordinarity condition. Let ρ : GQ → GL2(A) (A ∈ CL/W ) be a deformation of ρ : GQ →
GL2(F) acting on V (ρ). We say ρ is p-ordinary if

(ordp) ρ|Dp
∼= ( ε ∗

0 δ ) for two characters ε, δ : Dp → A× distinct modulo mA with δ unramified.

So, ρ = ρ|Dp
∼=

(
ε ∗
0 δ

)
with δ mod mA = δ which is a requirement. We also consider a similar condition

for l ∈ S (l 6= p):

(ordl) We have a non-trivial character εl : Il → W× of order prime to p such that ρ|Il
∼=

(
ιA◦εl 0

0 1

)
,

where ιA : W → A is the W -algebra structure morphism.

We always impose these two conditions (ordp) and (ordl) for l ∈ S. In most cases, we fix a character
χ : GQ→W×, we consider

(det) det ρ = ιA ◦ χ.

5.2. Ordinary deformation functor. We consider the following functor for a fixed absolutely ir-
reducible representation ρ : GQ → GL2(F) satisfying (ordp) and (ordl). Then we consider D,Dχ :
CL/W → SETS given by

D(A) = {ρ : GQ → GL2(A)|ρ mod mA
∼= ρ, ρ satisfies (ordp) and (ordl)}/ ∼=

and
Dχ(A) = {ρ ∈ D(A)| det ρ = ιA ◦ χ}.

Then

Theorem 5.1 (B. Mazur). There exists a universal couple (Rord, ρ = ρ
ord) and (Rχ, ρχ) representing

D and Dχ, respectively, so that D(A) ∼= HomW -alg(R
ord, A) by ρ 7→ ϕ with ϕ◦ρord = ρ (resp. Dχ(A) ∼=

HomW -alg(Rχ, A) by ρ 7→ ϕ with ϕ ◦ ρχ = ρ).
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For a proof, see [MFG, §2.3.2, §3.2.4].

5.3. Fiber products. Let F : CL/W → SETS be a covariant functor with |F(F)| = 1. Let C = SETS
or CL/W . For morphisms φ′ : S′ → S and φ′′ : S′′ → S in C,

S′ ×S S′′ = {(a′, a′′) ∈ S′ × S′′|φ′(a′) = φ′′(a′′)}
gives the fiber product of S′ and S′′ over S in C. We assume that

|F(F)| = 1 and F(F[ε]×F F[ε]) = F(F[ε])×F(F) F(F[ε])

by two projections.
It is easy to see F = D and Dχ satisfies this condition. Indeed, noting that F[ε]×F F[ε] ∼= F[ε′] ×F

F[ε′′] ∼= F[ε′, ε′′], if ρ′ ∈ F(F[ε′]) and ρ′′ ∈ F(F[ε′′]), we have ρ′ × ρ has values in GL2(F[ε′, ε′′]) is an
element in F(F[ε′]×F F[ε′′]).

5.4. Slight generalization. For any A ∈ CL/W and an A-module X, suppose |F(A)| = 1 and
F(A[X] ×A A[X]) = F(A[X]) ×F(A) F(A[X]). Then A[X] ×A A[X] = A[X ⊕ X]. The addition
on X and A-linear map α : X → X induces in the same way CL/W -morphisms +∗ : A[X ⊕X] → A[X]
by a + (x⊕ y) 7→ a + x + y and α∗ : A[X]→ A[X] by a + x 7→ a + α(x). Thus we have by functoriality.
the “addition”

+ : F(A[X])×F(A) F(A[X]) = F(A[X ⊕X])
F(+∗)−−−−→ F(A[X])

and α-action

α : F(A[X])
F(α∗)−−−−→ F(A[X]).

With 0 = Im(F(A)→ F(A[X]) for the inclusion A ↪→ A[X], this makes F(A[X]) as an A-module.

5.5. Tangent space of deformation functors. Identify F[ε] ×F F[ε] with F[ε′, ε′′] (ε′ε′′ = 0 and
dimF F[ε]×F F[ε] = 3 but dimF F[ε]⊗F F[ε] = 4). It is easy to see that a + bε′ + cε′′ 7→ a + (a + c)ε gives
an onto CL/W -morphism a : F[ε]×F F[ε] � F[ε] which induces

+ : F(F[ε]) ×F(F[ε]) = F(F[ε] ×F F[ε])
F(a)−−−→ F(F[ε]).

Plainly this is associative and commutative, and for the inclusion 0 : F ↪→ F[ε], we have 0 :=
Im(F(0)(F(F))) ∈ F(F[ε]) gives the identity. Thus F(F[ε]) is an abelian group.

Similarly, for α ∈ F, a + bε 7→ a + αbε is an automorphism of F[ε] in CL/W . This induces a
multiplication on F(F[ε]) by scalar in F. We see that F(F[ε]) is an F-vector space, and F(F[ε]) is called
the tangent space of the functor F .

5.6. Tangent space of rings and deformation functor.

Lemma 5.2. Let F = D or Dχ and R = Rord or Rχ accordingly. Then tR/W
∼= F(F[ε]) as F-vector

spaces.

Proof. Write D∅ : CL/W → SETS for the deformation functor defined by D∅(A) = {ρ : GQ →
GL2(A)|(ρ mod mA) = ρ}/ ∼ without any extra properties. Let Rρ be the universal ring for D∅. We
have got a canonical bijection in Lemma 5.2:

D∅(F [ε])
1-1 onto−−−−−→

i1
H1(GQ, ad(ρ))

∼−→
i

tRρ/W

with a vector space isomorphism i. We have constructed a cocycle uρ from ρ ∈ F(F[ε]) writing ρ =
ρ + uρρε. Regarding (ρ, ρ′) ∈ F(F[ε]) × F(F[ε]) = F(F[ε] ×F F[ε]), we see that +(ρ, ρ′) = ρ + (uρρ +
uρ′ρ)ε ∈ F(F[ε]); so, i1 is a homomorphism. Similarly, one can check that it is F-linear. �

5.7. Tangent space as cohomology group with local condition. We identify F(F[ε]) with a
F-vector subspace of H1(GQ, ad(ρ)). We want to explicitly determine F(F[ε]). Since corresponding
cohomology class corresponds to strict conjugacy class, we may choose by (ordp) a basis (dependent on
l ∈ S∪{p}) of V (ρ) for ρ ∈ F(F[ε]) so that ρ|Dp is upper triangular with quotient character δ congruent

to δ modulo mA. Similarly by (ordl), we choose the basis so that ρ|Il = εl ⊕ 1 in this order.

Theorem 5.3. A 1-cocycle u gives rise to a class in Dχ(F[ε]) if and only if u(Il) = 0 for all prime
l ∈ S not equal to p, u|Dp is upper triangular, u|Ip is upper nilpotent and Tr(u) = 0 over GQ, where
v = v mod (ε).

Note that the description of cocycles u is independent of χ; so, even if one changes χ, the tangent
space tRχ/W is independent as a cohomology subgroup as long as F does not change.
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Proof. By (det), 1 = det(ρρ−1) = 1 + uρε = 1 + Tr(uρ)ε; so, (det) ⇔ Tr(u) = 0 over GQ. Thus we
tRχ/W ⊂ H1(GQ, Ad(ρ)).

Choose a generator w ∈ V (ε) over F[ε]. Then (w, v) is a basis of V (ρ) over F[ε]. Let (w, v) = (w, v)
mod ε and identify V (ad(ρ)) with M2(F) with this basis. Then defining ρ by (σw, σv) = (w, v)ρ(σ),

for σ ∈ Dp, we have ρ(σ) =
(

ε(σ) ∗

0 δ(σ)

)
(upper triangular). If σ ∈ Ip, ρρ−1 = 1 + uρ with lower right

corner of uρ has to vanish as δ = 1 on Ip, we have uρ(σ) ∈ {( 0 ∗
0 0 )} .

Since ramification at l 6= p is concentrated to ρ as ρ(Il) has order prime to p, (ordl) ⇔ uρ(Il) = 0.
(ordp) is equivalent to uρ is of the form ( ∗ ∗

0 0 ) but by Tr(uρ) = 0, it has to be upper nilpotent. �

5.8. Mod p adjoint Selmer group. For F = D or Dχ, we denote the corresponding local deformation
functor by

Dl(A) = {ρ : Gal(Ql/Ql)→ GL2(A)|ρ mod mA = ρ and ρ satisfies (ordl)},
and Dχ,l(A) = {ρ ∈ Dl(A)| det(ρ) = ιA ◦ χ}. Thus by the proof of Theorem 5.3, we find

Dχ(A) = {ρ : GQ → GL2(A) ∈ D∅(A) : ρ|Dl ∈ Dχ,l(A)}.
Therefore, we have

Sel(Ad(ρ)) := tRχ/W = Ker(H1(GQ, Ad(ρ))→
∏

l∈S∪{p}

H1(Ql, Ad(ρ))

Dχ,l(F[ε])
),

and

Sel(ad(ρ)) := tRord/W = Ker(H1(GQ, ad(ρ))→
∏

l∈S∪{p}

H1(Ql, ad(ρ))

Dl(F[ε])
).

5.9. Rord is an algebra over the Iwasawa algebra. The finite order character det(ρ) factors through
Gal(Q[µN0 ]/Q) for some positive integer N0. Let N0 be the minimal such integer (called conductor of
det(ρ)). Write N0 = Npν for N prime to p; so, N is the prime to p-conductor of det(ρ). Note that
det(ρord) factors through Gal(Q[µNp∞ ]/Q) ∼= Zp

× × (Z/NZ)×. Write Γ ∼= 1 + pZp be the maximal
p-profinite quotient of Gal(Q[µNp∞ ]/Q). Supposing χ|Il has values in W×, consider the deformation
functor

D(A) = {ϕ : GQ → A×|ϕmod mA = det(ρ), ϕ|Il = ιA ◦ χ|Il ∀l 6= p}
Plainly this functor is represented by W [[Γ]] with universal character κ(σ) = χ0(σ)[σ], where χ0 is the
restriction of χ to (Z/NZ)× and [σ] is the restriction of σ to Q∞ with Gal(Q∞/Q) = Γ for a subfield
Q∞ ⊂ Q[µp∞ ]. Since det ρ

ord ∈ D(Rord), we have i = iRord : W [[Γ]]→ Rord such that det ρ
ord = i ◦ κ.

5.10. Reinterpretation of D. Consider the following deformation functor DΛ : CL/Λ → SETS

Dκ(A) = {ρ : GQ → GL2(A)|ρ mod mA
∼= ρ, ρ satisfies (ordp), (ordl) and (detΛ)}/ ∼=,

where writing iA : Λ→ A for Λ-algebra structure of A,

(detΛ) det(ρ) = iA ◦ κ.

Proposition 5.4. We have Dκ(A) ∼= HomΛ-alg(R
ord, A) with universal representation ρ

ord ∈ D(Rord);
so,

Sel(Ad(ρ)) := tRord/Λ = Ker(H1(GQ, Ad(ρ))→
∏

l∈S∪{p}

H1(Ql, Ad(ρ))

Dχ,l(F[ε])
).

Proof. For any ρ ∈ DΛ(A), regard ρ ∈ D(A). Then we have ϕ ∈ HomW -alg(R
ord, A) such that ϕ◦ρord ∼=

ρ. Thus ϕ ◦ det(ρord) = det(ρ). Since det(ρ) = iA ◦ κ and det(ρord) = iRord ◦ κ, we find ϕ ◦ iRord = iA,
and hence ϕ ∈ HomΛ-alg(R

ord, A). This shows that Rord also represents Dκ over Λ.
As we already remarked, Dκ(F[ε]) = tRord/Λ = mRord/m2

Rord + mΛ is independent as a subgroup of

H1(GQ, Ad(ρ)); so, we get a new expression of Sel(Ad(ρ)). �

By the proof, ΩRord/Λ ⊗Rord F ∼= Sel(Ad(ρ)) ∼= ΩRχ/W ⊗Rχ F, so the smallest number of generators

of ΩRord/Λ as Rord-modules and ΩRχ/W as Rχ modules is equal. In the same way, the number of

generators of Rord as Λ-algebras and Rχ as W -algebras is equal.
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5.11. Compatible basis of c ∈ F(A). By (ordl) for l ∈ S ∪ {p}, the universal representation ρχ

is equipped with a basis (vl, wl) so that the matrix representation with respect this basis satisfies
(ordl). By representability, each class c ∈ F(A) has ρ such that V (ρ) = V (ρχ) ⊗Rχ,ϕ A for a unique
ϕ ∈ HomB-alg(Rχ, A), we can choose a unique ρ ∈ c is equipped with a basis {(vl = vl ⊗ 1, wl =
wl⊗1}l satisfying {(ordl):l ∈ S ∪ {p}} compatible with specialization. We always choose such a specific
representative ρ for each class c ∈ F(A) hereafter.

Take a finite A-module X and consider the ring A[X] = A ⊕ X with X2 = 0. Then A[X] is still
p-profinite. Pick ρ ∈ F(A[X]) such that ρ mod X ∼ ρ0 . By our choice of representative ρ and ρ0 as
above, we may (and do) assume ρ mod X = ρ0.

5.12. General cocycle construction. Here we allow χ = κ but if χ = κ, we assume that A ∈ CLΛ.
Writing B = W if χ has values in W× and Λ if χ = κ, the functor F is defined over CL/B. Let ρ0 act
on M2(A) and sl2(A) = {x ∈ M2(A)|Tr(x) = 0} by conjugation. Write this representation ad(ρ) and
Ad(ρ) as before. Let ad(X) = ad(A)⊗A X and Ad(X) = Ad(A)⊗A X and regard them as GQ-modules
by the action on ad(A) and Ad(A). Then we define

Φ(A[X]) =
{ρ : GQ → GL2(A[X])|(ρ mod X) = ρ0, [ρ] ∈ F(A[X])}

1 + M2(X)
,

where [ρ] is the isomorphism class in F(A) containing ρ and ρ is assumed to satisfy the lifting property
described in §5.11.

Take X finite as above. For ρ ∈ Φ(X), we can write ρ = ρ0 ⊕u′
ρ letting ρ0 acts on M2(X) by matrix

multiplication from the right. Then as before

ρ0(gh)⊕ u′
ρ(gh) = (ρ0(g) ⊕ u′

ρ(g))(ρ0(h) ⊕ u′
ρ(h)) = ρ0(gh) ⊕ (u′

ρ(g)ρ0(h) + ρ0(g)u′
ρ(h))

produces u′
ρ(gh) = u′

ρ(g)ρ0(h) + ρ0(g)u′
ρ(h) and multiplying by ρ0(gh)−1 from the right, we get the

cocycle relation for uρ(g) = u′
ρ(g)ρ0(g)−1:

uρ(gh) = uρ(g) + guρ(h) for guρ(h) = ρ(g)uρ(h)ρ0(g)−1,

getting the map Φ(A[X])→ H1(GQ, ad(X)) which factors through H1(GQ, Ad(X)). As before this map
is injective A-linear map identifying Φ(A[X]) with Sel(Ad(X)).

5.13. General adjoint Selmer group. We see that uρ : GQ → Ad(X) is a 1-cocycle, and we get an
embedding Φ(A[X]) ↪→ H1(Ql, Ad(X)) for l ∈ S ∪ {p} by ρ 7→ [uρ]. We consider local version of Φ
replacing GQ by Dl :

Φl(A[X]) :=
{ρ : Dl → GL2(A[X])|ρ̃ mod X = ρ0, [ρ] ∈ Fl(A[X])}

1 + M2(X)
,

and we define

Sel(Ad(X)) := Ker(H1(GQ, Ad(X))→
∏

l∈S∪{p}

H1(Ql, Ad(ρ))

Φl(A[X])
),

If X = lim−→i
Xi for finite A-modules Xi, we just define

Sel(Ad(X)) = lim−→
i

Sel(Ad(Xi)).

Then for finite Xi,

Φ(A[Xi]) = Sel(Ad(Xi)) and lim−→
i

Φ(Xi) = Sel(lim−→
i

Ad(Xi)).

5.14. Differentials and Selmer group. For each [ρ0] ∈ F(A), choose a representative ρ0 = ϕ ◦ ρ as
in §5.11. Then we have a map Φ(A[X]) → F(A[X]) for each finite A-module X sending ρ ∈ Φ(A[X])
chosen as in §5.11 to the class [ρ] ∈ F(A[X]). By our choice of ρ as in §5.11, this map is injective.

Conversely pick a class c ∈ F(A[X]) over [ρ0] ∈ F(A). Then for ρ ∈ c, we have x ∈ 1 + M2(mA[X])

such that xρx−1 mod X = ρ0. By replacing ρ by xρx−1 and choosing the lifted base, we conclude
Φ(A[X]) ∼= {[ρ] ∈ F(A[X])|ρ mod X ∼ ρ0}; so, for finite X,

Sel(Ad(X)) = Φ(A[X]) = {φ ∈ HomB-alg(Rχ, A[X]) : φmod X = ϕ}

= DerB(Rχ, X)
Corollary 2.3−−−−−−−−→

∼
HomA(ΩRχ/B ⊗Rχ ,ϕ A, X).



NON ABELIAN CLASS NUMBER FORMULAS AND ADJOINT SELMER GROUPS 17

Thus

(5.1) Sel(Ad(X)) ∼= HomA(ΩRχ/B ⊗Rχ,ϕ A, X) .

Theorem 5.5. We have a canonical isomorphism: Sel(Ad(ρ0))
∨ ∼= ΩRχ/B ⊗Rχ,ϕ A.

Proof. Take the Pontryagin dual

A∨ := HomB(A, B∨) = HomZp(A⊗B B, Qp/Zp) = Hom(A, Qp/Zp).

Since A = lim←−i
Ai for finite i and Qp/Zp = lim−→j

p−1Z/Z, A∨ = lim−→i
Hom(Ai, Qp/Zp) = lim−→i

A∨
i is a

union of the finite modules A∨
i . We define Sel(Ad(ρ0)) := lim−→j

Sel(Ad(A∨
i )). Defining Φ(A[A∨]) =

lim−→i
Φl(A[A∨

i ]), we see from compatibility of cohomology with injective limit

Sel(Ad(ρ0)) = lim−→
i

Sel(Ad(A∨
i )) = lim−→

j

Ker(H1(GQ, Ad(A∨
i ))→

∏

l∈S∪{p}

H1(Ql, Ad(A∨
i ))

Φl(A[A∨
i ])

)

By the boxed formula (5.1),

Sel(Ad(ρ0)) = lim−→
i

Sel(Ad(A∨
i )) = lim−→

i

HomRχ(ΩRχ/B ⊗Rχ A, A∨
i )

= HomA(ΩRχ/B ⊗Rχ A, A∨) = HomA(ΩRχ/B ⊗Rχ A, HomZp(A, Zp))

= HomZp(ΩRχ/B ⊗Rχ A, Qp/Zp) = (ΩRχ/B ⊗Rχ A)∨.

Taking Pontryagin dual back, we finally get

Sel(Ad(ρ0))
∨ ∼= ΩRχ/B ⊗Rχ ,ϕ A and Sel(Ad(ρ))∨ ∼= ΩRχ/B ⊗Rχ F

as desired. In particular, Sel(Ad(ρχ))∨ = ΩRχ/B (with ρκ = ρ
ord if χ = κ). �

This is the generalization of the formula

ClF ⊗Z W ∼= ΩW [ClF,p ]/W ⊗W [ClF,p] W.

5.15. p-Local condition. The submodule Φp(A[X]) in the cohomology group H1(Qp, Ad(X)) is made
of classes of 1-cocycles u with u|Ip is upper nilpotent and u|Dp is upper triangular with respect to the

compatible basis (vp, wp). Suppose we have σ ∈ Ip such that ρ0(σ) =
(

α 0
0 β

)
such that α 6≡ β mod mA.

Suppose u is upper nilpotent over Ip. Then for τ ∈ Dp, we have Ad(ρ0)(τ )u(τ−1στ ) = (Ad(ρ0)(σ) −
1)u(τ ) + u(σ). Writing u(τ ) =

(
a b
c −a

)
, we find (Ad(ρ0)(σ) − 1)u(τ ) =

(
0 (αβ−1−1)b

(α−1β−1)c 0

)
. Since

ρ0(τ ) is upper triangular and u(τ−1στ ) is upper nilpotent, Ad(ρ0)(τ )u(τ−1στ ) is still upper nilpotent;
so, (α−1β − 1)c = 0 and hence c = 0. Therefore u is forced to be upper triangular over Dp. Thus we
get

Lemma 5.6. If ρ(σ) for at least one σ ∈ Ip has two distinct eigenvalues, Φp(A[X]) gives rise to the
subgroup of H1(Qp, Ad(X)) made of classes containing a 1-cocycle whose restriction to Ip is upper
nilpotent.

6. Upper bound of the number of Selmer generators

By Kummer theory, we give an upper bound of the dimension dim tRord/Λ = dim tRχ/W by the
dimension of the dual Selmer group, which turns out to be often optimal.

6.1. Local class field theory. We summarize facts from local class field theory. Let K/Qp
be a finite

extension with algebraic closure K with integer ring O. Write D := Gal(K/K) fixing an algebraic
closure K/K. Let D . I be the inertia subgroup and Dab be its maximal continuous abelian quotient.
• x 7→ [x, K] : K× ↪→ Dab (the local Artin symbol);
• [$, K] modulo the inertia subgroup Iab ⊂ Dab is the Frobenius element Frob;
• For any integer 0 < m ∈ Z, K×/(K×)m = K× ⊗Z Z/mZ ∼= Dab/mDab by Artin symbol;
• O× ∼= Iab by Artin symbol.
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6.2. Local cohomology. We summarize facts from local cohomology.

• inv : H2(K, µm(K)) ∼= Z/mZ (the invariant map);
• H1(K, µm) ∼= K×/(K×)m (Kummer theory valid for any field K ⊃ Q).

This follows from the long exact sequence of H?(M) := H?(K, M) associated to µm(K) ↪→K
× x 7→xm

−−−−→
K

×
:

H0(K
×

)
x 7→xm

−−−−→ H0(K
×

) −−−−→ H1(µm) −−−−→ H1(K
×

)
(∗)
= 0

o

y o

y o

y

K× −−−−→
x 7→xm

K× −−−−→ K×/(K×)m,

where the vanishing (∗) follows from Hilbert theorem 90.

6.3. Local Tate duality. For any finite (continuous) D-module M killed by 0 < m ∈ Z, let

M∗(1) := Hom(M, µm(K))

as Galois module acting by σ · φ(x) = σ(φ(σ−1x)) (called Tate dual). Then

M∗(1)⊗Z/mZ M 3 φ⊗ x 7→ φ(x) ∈ µm

is a Z[D]-morphism inducing a cup product pairing Hr(M∗(1))×H2−r(M)→ H2(µm)
inv−−→ Z/mZ.

Theorem 6.1 (J. Tate). Cohomological dimension of D is equal to 2 and the above pairing is perfect
for r = 0, 1, 2.

If M = µm(K), by definition µm = (Z/mZ)∗(1). We know H1(µm) = K×/(K×)m and H1(Z/mZ) =
Hom(Dab/mDab, Z/mZ). By local class field theory, Dab/mDab ∼= K×/(K×)m; so, the duality in this
case follows. One can deduce the proof of the duality in this special case basically by restricting to
Gal(K/K(M)) for the splitting field K(M) of M (see [MFG, Theorem 4.43]).

6.4. Another example of local Tate duality. Consider Hom(Frob
bZ, M) ⊂ H1(K, M) for a finite

Z/mZ-module M on which D acts trivially. Here Frob is the Frobenius element in D/I.

Lemma 6.2. The orthogonal complement of Hom(Frob
bZ, M) ⊂ H1(K, M) in the dual H1(K, M∗(1)) =

K× ⊗Z M is given by O×⊗Z M . In particular, the Tate duality between H1(K, µm) and H1(K, Z/mZ)

gives rise to the tautological duality between Frob
bZ/mFrob

bZ and Hom(Frob
bZ, Z/mZ).

The result for general M follows from extending scalar to M ; so, we may assume M = Z/mZ.

6.5. Inflation-restriction. To prove the lemma, we recall the inflation-restriction sequence. Let G be
a profinite group and H is an open normal subgroup (so, G/H is finite). If M is a G-module, for a
1-cocycle u : H →M , g · u := gu(g−1hg) can be easily checked to be a one cocycle. If u(h) = (h− 1)m,
we see g ·u(h) = g(g−1hg−1)m = (hg−g)m = (h−1)(gm); so, this preserves coboundaries, and hence
G/H acts on H1(H, M).

Since H fixes MH = H0(H, M), MH is a G/H-module. The inflation restriction exact sequence is

0→ H1(G/H, MH)
Inf−−→ H1(G, M)

Res−−→ H1(H, M)G/H → H2(G/H, M),

where Inf(u)(g) = u(g mod H) and Res(u) = u|H for cocycles. For a proof of this, see [MFG, Theo-
rem 4.33].

6.6. Proof of Lemma 6.2. The last statement follows from the construction of pairing between
H1(K, µm) and H1(K, Z/mZ) described in §5.2.

By the inflation-restriction sequence, we have an exact sequence

0→ Hom(D/I, Z/mZ)→ Hom(D, Z/mZ)→ Hom(I, Z/mZ)→ 0

for the inertia group I .D. Since D/I = Frob
bZ, we have the following commutative diagram with exact

rows:
(O×/(O×)m)

↪→−−−−→ (K×/(K×)m)
�−−−−→ Frob

bZ/FrobmbZ

o

y o

y o

y

H1(I, Z/mZ)∨ −−−−→
↪→

H1(K, Z/mZ)∨ −−−−→
�

H1(D/I, Z/mZ)∨.

Since the image of I in Dab is given by O×, the result follows. �
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6.7. Dual Selmer group. By trace pairing (x, y) = Tr(xy) the Galois modules ad(ρ) and Ad(ρ) are
self dual; so, ad(ρ)∗(1) = ad(ρ)(1) and Ad(ρ)∗(1) = Ad(ρ)(1). The dual Selmer group of ad(ρ) and
Ad(ρ) is defined as follows:

Sel⊥(Ad(ρ)(1)) := Ker(H1(GQ, Ad(ρ)(1))→
∏

l∈S∪{p}

H1(Ql, Ad(ρ)(1))

Dχ,l(F[ε])⊥
),

Sel⊥(ad(ρ)(1)) := Ker(H1(GQ, ad(ρ)(1))→
∏

l∈S∪{p}

H1(Ql, ad(ρ)(1))

Dl(F[ε])⊥
).

Here “⊥” indicates the orthogonal complement under the Tate duality. We have the following bound
due to R. Greenberg and A. Wiles:

Lemma 6.3. dimF Sel(Ad(ρ)) ≤ dimF Sel⊥(Ad(ρ)(1)).

This we admit. For a proof, see [MFG, Proposition 3.40] or [HMI, Proposition 3.29].

6.8. Details of H1(K, µp) ∼= K× ⊗Z Fp. Here K is any field. The connection map δ of the long exact

sequence H0(K, M) → H0(N)
δ−→ H1(L) of a short exact sequence L ↪→ M � N is given as follows:

Pick n ∈ H0(K, N) and lift it to m ∈M . Then for σ ∈ Gal(K/K), (σ − 1)m is sent to (σ− 1)n = 0 as
n is fixed by σ. Thus we may regard um : σ 7→ (σ − 1)m is a 1-cocycle with values in L. If we choose
another lift m′, then m′ −m = l ∈ L and hence um′ − um = (σ − 1)l which is a coboundary. Thus we
get the map δ sending m to the class [um].

Applying this, the cocycle uα corresponding α ∈ K×/(K×)p = K× ⊗ Fp is given by

uα(σ) = σ−1( p
√

α).

6.9. Unramifiedness of uα at a prime l 6= p. Let K be an l-adic field which is a finite extension

of Ql for a prime l 6= p. If α 6∈ (K×)p, α′ := lp
N

α 6∈ (K×)p with K[ p
√

α] = K[ p
√

α′] and uα = uα′.
Replacing α by α′ for a sufficiently large N , we may assume that α ∈ O ∩K×.

The minimal equation of p
√

α is f(X) = Xp − α. Since the derivative f ′(X) = pXp−1, the different

of K[ p
√

α]/K is a factor of p p
√

α
p−1

. Thus we find

uα is unramified ⇔ α ∈ O×

choosing α ∈ O ∩ K×. This can be also shown by noting that all conjugates of p
√

α is given by
{ζ p
√

α|ζ ∈ µp} which has p distinct elements modulo l if and only if α ∈ O×.

6.10. Restriction to the splitting field of Ad := Ad(ρ). Let F be the splitting field of Ad := Ad(ρ);

so, F = Q
Ker(Ad)

, and K := F [µp] is the splitting field of Ad(1). Write G := Gal(F/Q). Let GF =

Ker(Ad|GQ
). We realize Sel⊥(Ad(1)) inside H1(F, Ad(1)) = F× ⊗Z Ad. Assume

(CV) Hj(F/Q, Ad(1)GK ) = 0 for j = 1, 2,

which follows if K = F [µp] 6= F or p - [F : Q]. If F [µp] 6= F , we see Ad(1)GF = 0 as Ad is trivial over
GF . If p - [F : Q] = |G|, we note Hq(G, M) = 0 for any F[G]-module M [MFG, Prop. 4.21]. Again by
inflation-restriction,

H1(G, Ad(1)GF ) ↪→ H1(Q, Ad(1))→ H1(F, Ad(1))G→ H2(G, Ad(1)GF ).

is exact. So

H1(Q, Ad(1)) ∼= (F× ⊗Z Ad)G.

6.11. Kummer theory. We analyze how G acts on F× ⊗Fp Ad. The action of τ ∈ G is given by
τu(g) = τu(τ−1gτ ) = Ad(τ )u(τ−1gτ ) (τ ∈ G) for cocycle u giving rise to a class in H1(F, Ad(1)). For a
basis (v1, v2, v3) of Ad giving an identification Ad = F3, and write u = vu for u := t(u1, u2, u3) (column
vector) for v = (v1, v2, v3) (row vector) as a F3 valued cocycle; so, τv = (τv1, τv2, τv3) = vtAd(τ ).
Since uj(g) = uαj(g) = g−1 p

√
αj for αj ∈ F× ⊗Z F, rewriting uα := u, we have τ (vτuα(τ−1gτ )) =

vtAd(τ )uτ α
(g). Thus τ -invariance implies

uτ α
:= t(uτ α1

, uτ α2
, uτα3

) = tAd(τ )−1uα ⇔ vtAd(τ )uτ α
(g) = vuα.
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Therefore inside F×⊗Z F, αjs span an F-vector space on which G acts by a factor of Ad ∼= tAd−1. Thus
we get

(6.1) H1(Q, Ad⊗ ω) ∼= HomF[G](Ad, F× ⊗Z F) =: (F× ⊗Z F)[Ad].

6.12. Selmer group as a subgroup of F× ⊗Z F.

Theorem 6.4. Let O be the integer ring of F . If p - hF = |ClF |, we have the following inclusion

Sel⊥(Ad(ρ)(1)) ↪→ O× ⊗Z F[Ad(ρ)].

We start the proof of the theorem which ends in §6.15. Let [u] ∈ Sel⊥(Ad(ρ)(1)) for a cocycle
u : GQ → Ad(ρ)(1). Thus u|GF gives rise to uα for α ∈ F× ⊗Z F[Ad(ρ)] by Kummer theory. Consider

the fractional ideal (α) = αO[ 1p ]. Make a prime decomposition (α) =
∏

l le(l) in O[ 1p ]. Since uα is

unramified at all l 6= p, we find p|e(l) as otherwise, l ramifies in F [ p
√

α]. So (α) = ap for a =
∏

l l
e(l)/p

6.13. l-integrality (l 6= p). If a local Kummer cocycle uα associated to α ∈ F×
v ⊗Z Fp for v - p is

unramified, then α vanishes in (F×
v /O×

v )⊗Z Fp. The local cocycle is trivial if and only if α vanishes in
F×

v ⊗Z Fp. If a global Kummer cocycle uα for α ∈ F× ⊗Z Fp is trivial at v|N and unramified outside
p, then the principal ideal αO[ 1p ] is a p-power ap.

If p - h := hF = |ClF |, replacing α by αh does not change the Kummer cocycle up to non-zero scalar.
We do this replacement and write α instead of αh. Then a is replaced by the principal ideal ah = (α′),
and we find that α = εα′p for ε ∈ O[ 1p ]×. Thus uα = uε. Therefore

Sel⊥(Ad(1)) ⊂ (O[
1

p
]× ⊗Z F)[Ad].

6.14. Case where ρ|D is indecomposable for D = Gal(Fp/Qp). By indecomposability, the matrix

form of Ad(σ) if ρ(σ) =
(

ε a
0 δ

)
(a 6= 0) with respect to the basis {( 0 1

0 0 ) ,
(

1 0
0 −1

)
, ( 0 0

1 0 )} is
(

εδ
−1

−2δ
−1

a −(εδ)−1a2

0 1 ε−1a
0 0 ε−1δ

)
,

in short, Ad is also an indecomposable D-module without trivial quotient. We have an exact sequence
of D-modules:

O× ⊗Z F ↪→ O[
1

p
]× ⊗Z F

ξ 7→(ξ)−−−−→
�

⊕σ∈G/DFpeσ ∼= IndG
D 1,

where e is the order of the class of p in ClF . By Shapiro’s lemma [MFG, Lemma 4.20, (4.27)],

IndG
D 1[Ad] = HomF[G](Ad, IndG

D 1) = HomD(Ad|D, 1) = 0 by indecomposability; so, Sel⊥(Ad(1)) ⊂
(O× ⊗ F)[Ad].

6.15. Case where ρ|D is completely reducible. In this case, we have

IndG
D 1[Ad] = HomF[G](Ad, IndG

D 1) = HomD(Ad|D, 1) = F.

If a cocycle u : Dp → Ad(1) restricted to the decomposition group Dp = Gal(Q/Fp) at p project down
non-trivially to F×

p ⊗F[1] (i.e., u ∈ H1(Qp, µp⊗F)), by the lemma in §5.4, if u is a dual Selmer cocycle

it corresponds to an element in O×
p ⊗ F. Since p|p is arbitrary, we conclude again

Sel⊥(Ad(1)) ⊂ (O× ⊗Z F)[Ad].

This finishes the proof of the theorem. �

6.16. Dirichlet’s unit theorem. Fix a complex conjugation c ∈ G and C be the subgroup generated
by c. Let ∞ be the set of complex places of F . Dirichlet’s unit theorem is proven by considering

O× Log−−→ R∞ :=
∏

∞

R

given by Log(ε) = (log |ε|v)v∈∞ and showing Im(Log) ⊗Z R = Ker(R∞ Tr−→ R) for Tr(xv)v =
∑

v xv.

The Galois group G acts by permutation on∞ ∼= G/C. Therefore R∞ ∼= IndG
C 1. Thus (O×⊗Q)⊕1 ∼=

IndG
C Q1.
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If p - |G|, any F[G]-module over F is semi-simple; so, characterized by its trace. Therefore this
descends to O×/µp(F )⊗Z F and

IndG
C F1 ∼= (O×/µp(F )⊗Z F) ⊕ F1.

Theorem 6.5. We have dimF Sel⊥(Ad(1)) ≤ 1 if p - |G|hF .

Proof. By Shapiro’s lemma, we have

(O×/µp(F )⊗Z F)[Ad] = HomG(Ad, (O×/µp(F ))⊗Z F)

∼= HomG(Ad, IndG
C F1) ∼= HomC(Ad|C, F1) ∼= F,

since Ad(c) ∼ diag[−1, 1,−1]. By irreducibility, µp(F )[Ad] = 0; so, (O× ⊗Z F)[Ad] ∼= F. By §5.12, we
have

Sel⊥(Ad(1)) ↪→ (O× ⊗Z F)[Ad] ∼= F,

we conclude dimF Sel⊥(Ad(1)) ≤ 1 . �

Corollary 6.6. If p - |G|hF , then for any deformation ρ ∈ Dχ(A), Sel(Ad(ρ)) is generated by at most
one element over A.

7. Selmer group of induced Galois representation

Assuming that ρ0 = IndQ
K ϕ for a quadratic field K = Q[

√
D] (with discriminant D) and a character

ϕ : GK → W× of order prime to p, we explore the meaning of the cyclicity of Sel(ρ0)
∨ in terms of

Iwasawa theory over K. Write ϕ := (ϕ mod mW ) and ρ = IndQ
K ϕ. We denote by O the integer ring of

K.

7.1. Induced representation. Let A ∈ CL/W and G be a profinite group with a subgroup H of
index 2. Put ∆ := G/H . Let H be a character ϕ : G → A. Let A(ϕ) ∼= A on which H acts
by ϕ. Regard the group algebra A[G] as a left and right A[G]-module by multiplication. Define

A(IndG
H ϕ) := A[G]⊗A[H] A(ϕ) (so, ξh ⊗ a = ξ ⊗ ha = ξ ⊗ ϕ(h)a = ϕ(a)(ξ ⊗ a)) for h ∈ H . and let G

acts on A(IndG
H ϕ) by g(ξ ⊗ a) := (gξ) ⊗ a. The resulted G-module A(IndH

G ϕ) is the induced module.

Similarly we can think of A(indH
G ϕ) := HomA[H](A[G], A(ϕ)) (so, φ(hξ) = hφ(ξ) = ϕ(h)φ(ξ)) on

which g ∈ G acts by gφ(ξ) = φ(ξg).

7.2. Matrix form of IndG
H ϕ. Suppose that ϕ has order prime to p. Then for σ ∈ G generating G over

H , ϕσ(h) = ϕ(σ−1hσ) is again a character of H . The module IndG
H ϕ has a basis 1G ⊗ 1 and σ ⊗ 1 for

the identity element 1G of G and 1 ∈ A ∼= A(ϕ).
We have

g(1G ⊗ 1, σ ⊗ 1) = (g ⊗ 1, gσ ⊗ 1)

=





(1G ⊗ g, σ ⊗ σ−1gσ) = (1G ⊗ 1, σ ⊗ 1)
(

ϕ(g) 0
0 ϕσ(g)

)
if g ∈ H ,

(σ ⊗ σ−1g, 1G ⊗ gσ) = (1G ⊗ 1, σ ⊗ 1)
(

0 ϕ(gσ)

ϕ(σ−1g) 0

)
if gσ ∈ H ,

Thus extending ϕ to G by 0 outside H , we get

(7.1) IndG
H ϕ(g) =

(
ϕ(g) ϕ(gσ)

ϕ(σ−1g) ϕ(σ−1gσ)

)
.

7.3. Two inductions are equal. The induction indG
H ϕ has basis (φ1, φσ) given by φ1(ξ+ξ′σ) = ϕ(ξ) ∈

A = A(ϕ) and φσ(ξ + ξ′σ−1) = ϕ(ξ′) ∈ A = A(ϕ) for ξ ∈ A[H ]; so, (∗) φ1(ξ
′ + ξσ−1) = φσ(ξ + ξ′σ−1).

Then we have

g(φ1(ξ + ξ′σ−1), φσ(ξ + ξ′σ−1))

= (φ1(ξg + ξ′σ−1gσσ−1), φσ(ξg + ξ′σ−1gσσ−1))

=





(φ1(ξ), ϕσ(ξ′))
(

ϕ(g) 0
0 ϕσ(g)

)
(g ∈ H),

(φ1(ξ
′σ−1g), φσ(ξgσ))

(∗)
= (φ1(ξ), φσ(ξ′))

(
0 ϕ(gσ)

ϕ(σ−1g) 0

)
(gσ ∈ H).
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Thus we get

(7.2) IndG
H ϕ ∼= indG

H ϕ.

7.4. Tensoring α : ∆ ∼= µ2. Let J =
(

1 0
0 −1

)
. Extending ϕ to G by 0 outside H , we find

IndG
H ϕ⊗ α(g)

=





(
ϕ(g) 0

0 ϕ(σ−1gσ)

)
= J

(
ϕ(g) 0

0 ϕ(σ−1gσ)

)
J−1 (g ∈ H),

−
(

0 ϕ(gσ)

ϕ(σ−1g) 0

)
= J

(
0 ϕ(gσ)

ϕ(σ−1g) 0

)
J−1 (gσ ∈ H).

Thus we get

(7.3) (IndG
H ϕ)⊗ α = J(IndG

H ϕ)J−1 ∼−→
iα

IndG
H ϕ.

Thus Ad(IndG
H) = {x ∈ EndA(IndG

H ϕ))|Tr(x) = 0} contains iα as Tr(J) = 0.

7.5. Characterization of self-twist. Let ϕ := (ϕ mod mA). Suppose ϕσ 6= ϕ. Since IndG
H ϕ(H)

contains a diagonal matrices with distinct eigenvalues, its normalizer is IndG
H ϕ(G). Thus the centralizer

Z(IndG
H ϕ) = F× (scalar matrices). Since IndG

H ϕ(σ) interchanges ϕ and ϕσ, IndG
H ϕ is irreducible.

Since Aut(ρ) = F×, iα for ρ is unique up to scalars.

Let ρ : G→ GL2(A) be a deformation of IndG
H ϕ with ρ⊗α ∼= ρ. Write jρj−1 = ρ⊗α. Since α2 = 1,

j2 is scalar. We may normalize j ≡ J mod mA as j mod mA = zJ for a scalar z ∈ A×. Thus j has
two eigenvalues ε± with ε± ≡ ±z mod mA. Let A± be ε±-eigenspace of j. Since jρ|H = ρ|Hj, A±

∼= A
is stable under H . Thus we find a character ϕ : H → A× acting on A+. Plainly H acts on A− by ϕσ.

This shows ρ ∼= IndG
H ϕ as V (ρ) = A+ ⊕ ρ(σ)A+ .

7.6. Decomposition of adjoint representation.

Theorem 7.1. We have Ad(IndG
H ϕ) ∼= α⊕ IndG

H ϕ− as representation of G.

Here ϕ−(g) = ϕ(g)ϕ−1
σ (g) = ϕ(σ−1g−1σg) and IndG

H ϕ− is irreducible if ϕ− 6= ϕ−
σ = (ϕ−)−1 (i.e.,

ϕ− has order ≥ 3).

Proof. On H , ρ := IndG
H ϕ =

( ϕ 0
0 ϕσ

)
. Therefore

Ad(IndG
H ϕ)(h) (

x y
z −x ) = ρ(h) (

x y
z −x ) ρ−1(h) =

(
x ϕ−(h)y

(ϕ−)−1(h)z −x

)
,

and

Ad(IndG
H ϕ)(σ) (

x y
z −x ) =

(
0 ϕ(σ2)
1 0

)
(

x y
z −x )

(
0 1

ϕ(σ−2) 0

)
=

(
α(σ)x ϕ(σ)2z

ϕ(σ)−2y −α(σ)x

)
.

Thus α is realized on diagonal matrices, and IndG
H ϕ− is realized on the anti-diagonal matrices. �

7.7. Irreducibility of IndG
H ϕ−.

Lemma 7.2. IndG
H ϕ− is irreducible if and only if ϕ− 6= ϕ−

σ = (ϕ−)−1 (i.e., ϕ− has order ≥ 3). If ϕ−

has order ≤ 2, then ϕ− extends to a character φ : G→ F× and IndG
H ϕ− ∼= φ⊕ φα.

Proof. Note ϕ−(σ2) = ϕ(σ2)ϕ(σ−1σ2σ)−1 = ϕ(1) = 1. The irreducibility of IndG
H ϕ− under ϕ− 6= ϕ−

σ

follows from the argument proving irreducibility of IndG
H ϕ under ϕ 6= ϕσ in §7.5. Suppose ϕ− has order

≤ 2 (so, ϕ− = ϕ−
σ ). Choose a root ζ = ±1 of X2 − ϕ−

σ (σ2) = X2 − 1 in F. Define φ = ϕ− on H and

φ(σh) = ζϕ−(h). For h, h′ ∈ H ,

φ(σhσh′) = φ(σ2σ−1hσh′) = ϕ−(σ2))ϕ−
σ (h)ϕ−(h′) = ζ2ϕ−(hh′) = ϕ−(σh)ϕ−(σh′).

Similarly φ(hσh′) = φ(σσ−1hch′) = ζϕσ(h)ϕ(h′) = φ(h)φ(σh′); so, φ is a character. Then F[ζ][G]⊗F[H]

F[ζ](ϕ−) ∼= F[ζ](φ) as G-modules by a⊗ b 7→ φ(a)b. �
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7.8. Ordinarity for residual induced representation. Let σ ∈ GQ induce a non-trivial field auto-

morphism of K/Q. Let ρ := IndQ
K ϕ = Ind

GQ

GK
ϕ and assume that p = ppσ in O (fixing the factor p so

that ϕ is unramified at pσ). Let c be the conductor of ϕ; so, the ray class field Hc/K of conductor c is
the smallest ray class field such that ϕ factors through Gal(Hc/K). Suppose

(sp) c + cσ = O.

Pick a prime factor l|c. Then l + lσ = O; so, l splits in K. In particular, Il = Il ⊂ GK (for (l) = l ∩ Z),

and ϕ|Il
ramifies while ϕ is unramified at lσ. Thus ρ|Il

∼=
(

εl 0
0 δl

)
with εl = ϕ|l and δl = ϕσ which is

unramified.
Suppose l|D; so, Il is of index 2 in Il. Then ϕ|Il

= ϕσ|Il
= 1. Similarly to §7.7, we find IndQ

K ϕ|Il =

IndIl

Il
ϕ|Il

=
(

εl 0
0 δl

)
with εl = α|Il and δl = 1. In short, ρ satisfies (ordl) for l ∈ S := {l|DN(c)p}.

7.9. Identity of two deformation functors. Let χ be the Teichmüller lift of det(ρ). For any Galois

representation ρ, let K(ρ) be the solitting field Q
Ker(ρ)

of ρ. Let K(ρ)(p)/K(ρ) be the maximal p-
profinite extension unramified outside p. Put G = Gal(K(ρ)(p)/Q) and H = Gal(K(ρ)(p)/K). Consider
the deformation functor D? : CL/B → SETS for χ and κ. Since any deformation factors through G,
we regard ρ ∈ D?(A) is defined over G. Let

FH(A) = {ϕ : H → A×|ϕ mod mA = ϕ unramified outside c}
and Db∆

? (A) = {ρ ∈ D?(A)|ρ⊗ α ∼= ρ, det ρ =?}/GL2(A). Recall ∆ = G/H and write ∆̂ = {α, 1} for its
character group.

Lemma 7.3. Let ∆̂ act on F by ρ 7→ ρ ⊗ α. Then FH(A) 3 ϕ 7→ IndG
H ϕ ∈ D(A)

b∆ induces an

isomorphism: FH
∼= Db∆

? of the functors if ϕ 6= ϕc.

Proof. NoteDb∆
? (A) = {ρ ∈ D?(A)|J(ρ⊗α)J−1 ∼ ρ}/(1+M2(mA)) (realizingD? under strict equivalence

and choosing IndG
H ϕ specified (7.1)) as J(ρ⊗α)J−1 = ρ (see §7.4). By the characterization in §7.5, we

find a character ϕ : H → A× such that IndG
H ϕ ∼= ρ.

We choose j ∈ GL2(A) with j ≡ J mod mA as in §7.5. Then A+ = A(ϕ) for a character ϕ : H → A×.
Note that ϕ mod mA = ϕ by the construction in §7.5. By (ordl) for l ∈ S, ϕσ acting on A− is unramified

at l|cp. Thus we conclude FH
∼= Db∆

? . �

By ρ 7→ ρ⊗ α, ∆̂ acts on D?. For the universal representation ρ? ∈ D?(R?), therefore, we have an
involution [α] ∈ AutB-alg(R?) such that [α] ◦ ρ?

∼= ρ? ⊗ α. Define R±
? := {x ∈ R?|[α](x) = ±x}.

7.10. Induced Selmer groups. For a character φ : H → F×, Let K(p) be the maximal p-abelian
extension of K unramified outside p. Let Γp = Gal(K(p)/K) which is a p-profinite abelian group.

Corollary 7.4. We have a canonical isomorphism Rκ/Rκ([α]− 1)Rκ
∼= W [[Γp]], where Rκ([α]− 1)Rκ

is the Rκ-ideal generated by [α](x)− x for all x ∈ Rκ.

If a finite group 〈γ〉 acts on R ∈ CL/B fixing B, then

HomB-alg(R, A)〈γ〉 = HomB-alg(R/R(γ − 1)R, A).

Indeed, f ∈ HomB-alg(R, A)γ , then f ◦ γ = f ; so, f(R(γ − 1)R) = 0. Thus HomB-alg(R, A)γ ↪→
HomB-alg(R/R(γ − 1)R, A). Surjectivity is plain.

Proof. Since FH = Db∆
κ , we find

FH(A) = HomΛ-alg(Rκ, A)
b∆ = HomΛ-alg(Rκ/(Rκ([α]− 1)Rκ), A).

Thus FH is represented by Rκ/(Rκ([α]− 1)Rκ).
Let ϕ0 : H → W× be the Teichmüller lift of ϕ. Define ϕ : H → W [[Γp]]

× by ϕ(h) = ϕ0(h)h|K(p) ∈
W [[Γp]]. We show that (W [[Γp]], ϕ) is a universal couple for FH , which implies the identity of the
corollary. Pick a deformation ϕ ∈ FH(A). Then (ιA ◦ϕ0)

−1ϕ has values in 1+mA unramified outside p

as the ramification at l ∈ S different from p is absorbed by that of ϕ by the fact that the inertia group
at l in H is isomorphihc to the inertia group at l of Gal(K(ϕ)/K). Thus (ιA ◦ ϕ0)

−1ϕ factors through

Γp, and induces a unique W -algebra homomorphism W [[Γp]]
φ−→ A with ϕ = φ ◦ϕ. �
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7.11. What is Γp?

Proposition 7.5. If p > 2, we have an exact sequence

1→ (1 + pZp)/ε(p−1)Zp → Γp → ClK ⊗Z Zp → 1,

where ε = 1 if K is imaginary, and ε is a fundamental unit of K if K is real. Thus Γp is finite if K is
real.

Proof. Since Γp = ClK(p∞) ⊗Z Zp, the exact sequence is the p-primary part of the exact sequence of
the class field theory:

1→ O×
p /O

× → ClK(p∞)→ ClK → 1.

Thus tensoring Zp over Z, we get the desired exact sequence, since Op
∼= Zp canonically. Note here

εp−1 ∈ 1 + pZp = 1 + pOp. �

7.12. Iwasawa theoretic interpretation of Sel(Ad(IndQ
K ϕ)). Pick a deformation ϕ ∈ FH(A). By

Ad(IndQ
K ϕ) = α⊕ IndQ

K ϕ−, the cohomology is decomposed accordingly:

H1(G, Ad(IndQ
K ϕ)) = H1(G, α)⊕H1(G, IndQ

K ϕ−).

Since Selmer cocycles are upper triangular over Dp and upper nilpotent over Ip, noting the fact that

α ⊂ Ad(IndG
H ϕ) is realized on diagonal matrices, and IndG

H ϕ− is realized on anti-diagonal matrices,
the Selmer condition is compatible with the above factorization; so, we have

Theorem 7.6. We have Sel(Ad(IndG
H ϕ)) = Sel(α)⊕Sel(IndG

H ϕ−)), where Sel(α) is made of classes in

H1(G, α) unramified everywhere and Sel(IndG
H ϕ−) is isomorphic to the subgroup Sel(ϕ−) of H1(H, ϕ−)

made of classes unramified outside p and vanishes over Dpσ . In particular,

Sel(α) = Hom(ClK , A∨) = Hom(ClK ⊗Z A, Qp/Zp).

Proof. Pick a Selmer cocycle u : G → Ad(ρ0)
∗. Projecting down to α, it has diagonal form; so,

the projection uα restricted to Dp is unramified. Therefore uα factors through ClK . Starting with
an unramified homomorphism u : ClK → A∨ and regard it as having values in diagonal matrices in
Ad(ρ0)

∗, its class falls in Sel(Ad(ρ0)).

Similarly, the projection uInd of u to the factor IndG
H ϕ− is anti-diagonal of the form

(
0 u+

u− 0

)
. Noting

Hj(∆, ((IndG
H ϕ−)∗)H) = 0 (j = 1, 2), by inflation-restriction sequence,

H1(G, (IndG
H ϕ−)∗) ∼= (H1(H, (ϕ−)∗)⊕H1(H, (ϕ−

σ )∗))∆.

So u−(σ−1gσ) = u+(g) as σ ∈ ∆ interchanges H1(H, (ϕ−)∗) and H1(H, (ϕ−
σ )∗). Moreover u+ is

unramified outside p as an element of H1(H, (ϕ−)∗). Since u−|Dp
= 0, u+ vanishes on Dpσ by

u−(σ−1gσ) = u+(g). �

7.13. Anti-cyclotomic p-abelian extension. Regard ϕ : G → W [[Γp]]
×. Define K−

/K by the maxi-

mal p-abelian anticyclotomic extension unramified outside p (so, σγσ−1 = γ−1). The the fixed subfield
of K(ρ)(p) by Ker(ϕ−) is given by K(ϕ−)K−. So Γ− = Gal(K−/K) is the maximal p-abelian quotient of
Im(ϕ−); i.e., Gal(K−/K) ∼= Γ−×Gal(K(ϕ−

0 )/K). Note that ϕ
−(h) = ϕ(h)ϕ(σ−1hσ)−1 ∈ Γp if h ∈ Γ−.

Thus we have an exotic homomorphism Γ− → Γp. We have an exact sequence for ĈlK := ClK ⊗Z Zp:

1→ ((1 + pOp)/ε(p−1)Zp)σ=−1 → Γ− → ĈlK → 1,

which is the “−”-eigenspaces of the action of σ on the exact sequence with ĈlK(p∞) := ClK(p∞)⊗Z Zp:

1→ (1 + pOp)/ε(p−1)Zp → ĈlK(p∞)→ ĈlK → 1.

Therefore the above homomorphism induces an isomorphism Γ− ∼= Γp, and in this way, we identify
W [[Γ−]] with W [[Γp]].
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7.14. Iwasawa modules. Let L/K− (resp. L′/K(ϕ−)) be the maximal p-abelian extension unramified
outside p totally split at pσ (so L′ ⊂ L). Put Y := Gal(L/K−) and ∆ := Gal(K(ϕ−

0 )/K). By
conjugation, ∆×Γ− = Gal(K−/K) acts on Y; so, we put Y(ϕ−

0 ) = Y⊗Zp [Gal(K(ϕ−)/K]ϕ
−
0 (the maximal

quotient of Y on which ∆ ⊂ Gal(K−/K) acts by ϕ−
0 ). Then Y(ϕ0) is a module over W [[Γ−]] (an Iwasawa

module). The Galois group Gal(L′/K(ϕ−)) (resp. Gal(L′/K(ϕ−)(ϕ−
0 ) = Gal(L′/K(ϕ−) ⊗Zp[∆] ϕ−

0 ) is

a quotient of Y (resp. Y(ϕ0)), and if W [[Γ−]] � A, Gal(L′/K(ϕ−)(ϕ−
0 ) = Y(ϕ−

0 )⊗W [[Γ− ]],ϕ− A.
We have an inflation-restriction exact sequence:

H1(K(ϕ−)/K, (ϕ−)∗) ↪→ H1(H, (ϕ−)∗)

→ HomGal(K(ϕ−)/K)(Gal(K(ρ)(p)/K(ϕ−)), (ϕ−)∗)

→ H2(K(ϕ−)/K, (ϕ−)∗).

Lemma 7.7. Assume that ϕ− 6= 1. If Γ− is cyclic, we have Hj(K(ϕ−)/K, (ϕ−)∗) = 0 for j = 1, 2.

Proof. For a finite cyclic group C generated by γ

H1(C, M) = Ker(Tr)/ Im(γ − 1), H2(C, M) = Ker(γ − 1)/ Im(Tr),

where Tr(x) =
∑

c∈C cx and (γ − 1)(x) = γx − x for x ∈ M . If C is infinite with M discrete,

Hq(C, M) = lim−→C′⊂C
Hq(C/C ′, MC′

). Thus if ϕ−(γ) 6= 1 for a generator of Γ−, we find

Hj(K(ϕ−)/K, (ϕ−)∗) = 0

as γ − 1 : (ϕ−)∗ → (ϕ−)∗ is a bijection. �

By Lemma 7.7, from inflation-restriction sequence, we get

H1(H, (ϕ−)∗) ∼= HomGal(K(ϕ−)/K)(Gal(K(ρ)(p)/K(ϕ−)), (ϕ−)∗).

Then Selmer cocycles factor through Y; so, for G := Gal(K(ϕ−)/K),

Sel(ϕ−) = HomG(Y, (ϕ−)∗) ∼= HomW [[Γ−]](Y(ϕ−
0 ), (ϕ−)∗) ∼= HomW (Y(ϕ−

0 ) ⊗W [[Γ− ]],ϕ− A, Qp/Zp).

7.15. Cyclicity of Iwasawa module Y(ϕ−
0 ). Since Rκ/Rκ([α]−1)Rκ

∼= W [[Γp]] = W [[Γ−]], we write
this morphism as θ : Rκ →W [[Γ−]].

Theorem 7.8. If Γ− is cyclic, we have

Sel(ϕ−) ∼= HomW [[Γ−]](Y(ϕ−
0 ), (ϕ−)∗), ΩRκ/Λ ⊗Rκ,λ W [[Γ−]] ∼= Y(ϕ−

0 )

as W [[Γ−]]-modules.

This follows from Lemma 7.7.
Since p - [K(ϕ−

0 ) : K], the p-Hilbert class field H/K and K(ϕ−
0 ) is linearly disjoint over K; so, we

have [H : K] = [HF, F ]; so, p - hF implies p - hK . Thus combining the above theorem with the cyclicity
result in Theorem 6.5, we get

Corollary 7.9. If p - hF , Y(ϕ−
0 ) is a cyclic module over W [[Γ−]] if ϕ0 6= 1.

8. Selmer group of Artin representation

Assuming that ρ comes from an Artin representation ρ : GQ → GL2(W ), we explore a way to
describe the size of its adjoint Selmer group in terms of a global unit of the splitting field F . Let
G = Gal(F/Q) ∼= Im(Ad(ρ)). Assume p - |G| and irreducibility of ρ throughout this section. Then
G ∼= Im(Ad(ρ)) = Im(Ad(ρ)). We write F for the minimal field of rationality of Ad(ρ). Noting that

Ad(ρ) factors through PGL2(F), F is the minimal subfield of Fp with Im(Ad(ρ)) ⊂ PGL2(F). Then we
take W to be the unramified extension of Zp with W/mW = F; so, W = W (F) (the ring of Witt vectors
with coefficients in F). We write O for the integer ring F . Fix a prime p|p in O. We write D ⊂ G for
the decomposition group of p and choose basis so that ρ|D = ( ε 0

0 δ ) with δ unramified.
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8.1. Classification of Artin representations. Identify G with the subgroup Im(Ad(ρ)) of PGL2(F).
Dickson (in [LGF, §260]; see also [W2, §3]) gave a classification of G ⊂ PGL2(F):

Case G: If p||G|, G is conjugate to PGL2(k) or PSL2(k) for a subfield k ⊂ F as long as p > 3 (when
p = 3, G can be A5). Suppose p - |G| (so, p ≥ 5). Then G is given as follows.

Case C: G is cyclic (⇒ Im(ρ) is abelian).

Case D: G is isomorphic to a dihedral group Da of order 2a (so, ρ = IndQ
K ϕ for a quadratic field), and

F = Fp[ϕ−] (the field generated by the values of ϕ−)

Case E: G is either isomorphic to A4, S4 (F = Fp and W = Zp), or A5 (F ∼= Zp[
√

5]/p for a prime p|p by
the character table of A5; so, F = Fp or Fp2). These groups does not have quotient isomorphic
to Z/(p− 1)Z for p ≥ 5 (Serre’s book on linear group representation: §5.7-8 and §18.6).

In this section, we study Case E but until §8.8 (except for §8.2), we do not suppose that we are in case
E.

8.2. Ad(ρ) is absolutely irreducible in Case E. If Ad(ρ) is reducible, it contain a 1-dimensional

subspace or quotient stable under G-action. We regard ρ has values in the algebraic closure Fp. Since
Ad(ρ) is self dual, the dual of the quotient is a subspace; so, always it contains subspace of dimension
1 spanned by 0 6= i ∈ End

Fp
(ρ) with Tr(i) = 0. Thus G acts on i by a character α: ρ(g) ◦ i ◦ ρ(g)−1 =

α(g)i (⇔ ρ ◦ i = i ◦ (ρ ⊗ α)). This implies that i gives an isomorphism ρ ∼= ρ⊗ α as ρ is irreducible.
Taking determinant of this identity, det(ρ) = det(ρ)α2; so, α2 = 1. If α = 1, i commutes with absolutley
irreducible ρ; so, by Schur’s lemma, i is a non-zero scalar multiplication, contradicting Tr(i) = 0 (by

p > 2). Thus α is quadratic, and as seen in §6.5, ρ = IndQ
K ϕ for a quadratic extension K/Q fixed by

Ker(α). This means we are in Case D or case C. Thus Ad(ρ) is absolutely irreducible in Case E.

8.3. Lifting ρ. Since p - |G|, G := Gal(F (ρ)/Q) ∼= Im(ρ) fits into an exact sequence for the center Z
(scalar matrices) of GL2:

1→ Z(F) ∩ G → G → G→ 1.

Since |Z(F)| = |F×| is prime to p, we find p - |G|. Under this circumstance, the set of irreducible
representations of G with coefficients in F is in bijection to representations with coefficients in W
irreducible over Frac(W ) by reduction modulo mW (cf. [MFG,Corollary 2.7].

Writing ρ : Gal(Q/Q) → GL2(W ) (factoring through G) for the lifted representation, we have
Im(Ad(ρ)) = Im(Ad(ρ)) ∼= G. Recall the splitting field F of Ad(ρ); so, G = Gal(F/Q). In Case E, G
has no abelian cyclic quotient of order p− 1; so, µp(F ) = {1}.
8.4. Minkowski unit. Let O×

f := O×/µp(F ). We have shown in §5.16 that (O×
f ⊗Z F) ⊕ F1 ∼=

IndG
C 1 ∼= F[G/C] by (the proof of) Dirichlet’s unit theorem. Here C is the subgroup of G generated by

the fixed complex conjugation c. By the same argument, we find (O×
f ⊗Z mn

W/mn+1
W ) ⊕ mn

W /mn+1
W 1 ∼=

mn
W /mn+1[G/C]; so, (O×

f ⊗Z W/mn
W )⊕W/mn

W 1 ∼= W/mn
W [G/C]. Passing to the (projective) limit, we

get
(O×

f ⊗Z W )⊕W1 ∼= W [G/C]

as G-module. Take W = Zp. Since Zp[G/C]/Zp1 is a cyclic Zp[G]-module, there is a generator

ε⊗ 1 ∈ O×
f ⊗Z Zp (ε ∈ O×

f ) over Zp[G]. This unit ε is called a Minkowski unit, and we fix one. By

our choice, {εσ |σ ∈ G/C} has a unique relation
∏

σ∈G/C εσ = 1 and generates a subgroup of O×
f of

finite index prime to p. For each general W/Zp
, ε⊗ 1 is a generator of O×

f ⊗Z W over W [G].

8.5. Ray class groups. Recall ClF (p∞) = lim←−n
ClF (pn), and we have an exact sequence

O× → (O/pnO)× → ClF (pn)→ ClF → 1.

Passing to the limit, we get

1→ O× → O×
p → ClF (p∞)→ ClF → 1,

where Op = lim←−n
O/pnO and O× = lim←−n

Im(O× → (O/pnO)×).

Adding “̂”, we denote the p-profinite part of each groups in the sequence, getting another exact
sequence

1→ Ô× → Ô×
p → ĈlF (p∞)→ ĈlF → 1,

where we have written simply Ô× for Ô×. Except for Case E, we could have p-torsion in Ô× (i.e.,

µp(F ) 6= 1) and in Ô×
p (i.e., ε/δ = ω is the Teichmüller character).
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8.6. Selmer group revisited. We often write simply Ad for Ad(ρ). Let k(p) be the maximal p-profinite
extension of a number field k unramified outside p and put G = Gal(F (p)/Q), H = Gal(F (p)/F ),

G′ = Gal(F (ρ)(p)/Q), H′ = Gal(F (ρ)(p)/F ). Recall

Sel(Ad(ρ)) := Ker(H1(G′, Ad∗)→ H1(Ql, Ad∗)

F +
− (Ad∗)

×
∏

l∈S

H1(Il, Ad∗),

where F +
−Ad∗ is a subgroup of H1(Ql, Ad∗) made of classes of cocycles upper triangular over the p-

decomposition group and upper nilpotent over the p-inertia group.

Lemma 8.1. We have a canonical inclusion

Sel(Ad(ρ)) ⊂ HomZp[G](ĈlF (p∞), Ad(ρ)∗).

Proof. For a topological group X, write Xab for the maximal continuous abelian quotient of X. Let
u : G′ → Ad∗ be a Selmer cocycle. Let u′ = u|H′ : H′ → Ad∗, which is a homomorphism. By
inflation-restriction, through u 7→ u′,

Sel(Ad(ρ)) ↪→ H1(G′, Ad∗) ∼= HomZp[G](H
′ab

, Ad∗),

since Hq(G, Ad(ρ)∗) = 0 for q > 0 by p - [F : Q].
Since the ramification of a prime l of O outside p is concentrated in Gal(F (ρ)/F ), the inertia group

Il injects into Gal(F (ρ)/F ); so, Il is finite of order prime to p. This implies u′(Il) = 0 as Ad∗ is p-

torsion. Thus u′ factors through H′ab
� Hab as H is the Galois group over F of the maximal p-profinite

extension F (p) of F unramified outside p. By class field theory, we know Hab ∼= ĈlF (p∞). �

8.7. Galois module structure of p-decomposition groups. Essential part of ĈlF (p∞) comes from

Ô×
p which is the product of p-inertia subgroup of Hab; so, we study decomposition group in Hab as

D-modules. Recall the fixed prime factor p|p in O with its decomposition subgroup D ⊂ G. Write

simply Mp := F×
p ⊗Z W and Up := Ô×

p ⊗Zp W = O×
p ⊗Z W . Then for each character ξ : D →W×, Mp

contains as a direct factor the ξ-eigenspace Mp[ξ] = 1ξMp for 1ξ = |D|−1
∑

g∈D ξ−1(g)g ∈W [D]. Then

• A canonical exact sequence Up[1] ↪→ Mp[1]
ordp−−−→
�

W induced by the valuation ordp : F×
p � Z at p,

and Up[1] ∼= W as µp(Fp)[1] = 0.
• Mp[ξ] is a direct summand of Up if ξ 6= 1. Since all other prime factor of p is of the form σ(p)

for σ ∈ G/D, we have Mp := F×
p ⊗Z W ∼= IndG

D Mp as G-modules (for Fp = F ⊗Q Qp). Put Up :=

Ô×
p ⊗Zp W = O×

p ⊗Z W .

8.8. Structure of Mp[Ad] as a G-module in Case E.. Hereafter we suppose to be in Case E (so, Mp

is p-torsion-free). For the idempotent 1Ad of W [G] corresponding to Ad(ρ) and a W -free W [G]-module

X, we consider the Ad-isotypical component X[Ad] = 1AdX. Since Mp = IndG
D Mp, by Shapiro’s

lemma, we have for ξ = εδ−1

HomG(Mp, Ad∗) = HomD(Mp, Ad∗|D) = HomD(Mp, ξ∗ ⊕ 1∗ ⊕ (ξ−1)∗).

Since Mp[ξ±1] = Up[ξ±1] (by ξ 6= 1),

(IndG
D Up[ξ]⊕ IndG

D Up[1]⊕ IndG
D Up[ξ−1])[Ad] = Adξ ⊕Ad1 ⊕ Adξ−1 ,

where Ad? = IndG
D?[Ad]. This fits into the following exact sequence of G-modules:

0→
inertia part︷ ︸︸ ︷

Adξ ⊕ Ad1 ⊕Adξ−1 →Mp[Ad]

Q
σ∈G/D ordσ(p)−−−−−−−−−−→

Frobenius part︷ ︸︸ ︷
(IndG

D W1)[Ad]→ 0.

8.9. Selmer group as a subgroup of HomG(ĈlF (p∞), Ad(ρ)∗). Let Cl
(p)
F be the subgroup of ClF

generated by σ(p) for σ ∈ G. We the define CF := ClF /Cl
(p)
F .

Theorem 8.2. Assume that we are in Case E. Then we have an exact sequence

HomZp[G](ĈF , Ad(ρ)∗) ↪→ Sel(Ad(ρ))

� HomZp[G](Ĉl
(p)

F , Ad(ρ)∗) ⊕HomW [D](Up[εδ−1]/〈εεδ−1 〉, W∨),
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where ε is the fixed Minkowski unit with Ô× = Zp[G]ε, εεδ−1 is the projection of ε in the direct summand

Up[εpδ
−1
p ] under O× → Up � Up[εδ−1], and 〈εεδ−1 〉 is the p-adic closure of the subgroup εZ

εδ−1 generated
by εεδ−1 .

Corollary 8.3. Suppose we are in Case E. Then we have

|Sel(Ad(ρ))| = |ĈlF ⊗Zp[G] Ad(ρ)||(Up[εδ
−1]/〈εεδ−1 〉)|,

which is finite.

We start the proof of Theorem 8.2 which ends in §8.14. After finishing the proof of the theorem, we
prove the corollary.

8.10. Proof of HomZp[G](ĈF , Ad∗) ↪→ Sel(Ad(ρ)). Elements in HomZp[G](ĈF , Ad∗) are everywhere un-
ramified and trivial at p; so, they gives rise to a subgroup of Sel(Ad(ρ)) of classes everywhere unramified

and trivial at p. Indeed, by H1(G, Ad∗) ∼= HomZp[G](H
ab, Ad∗), any u ∈ HomZp[G](ĈF , Ad∗) extends

uniquely the cocycle u : G→ Ad∗ unramified everywhere over H. Since the inertia group Il ⊂ G of any
prime l ∈ S has order prime to p, u|Il = 0, and hence [u] ∈ Sel(Ad(ρ)).

Let Dp be the decomposition group at p of Hab with inertia subgroup Ip. Then
∏

σ∈G/D

σDpσ−1 ∼= Mp and
∏

σ∈G/D

σIpσ−1 ∼= Up.

Elements of Sel(Ad(ρ)) modulo HomZp[G](ĈF , Ad∗) is determined by its restriction to Mp as they are

unramified outside p as they factor through ĈlF (p∞) and p - |Il|.

8.11. Restriction to Dp. Recall ξ = εδ−1. We study

up = u|Dp
∈ HomZp[D](Dp, Ad∗) = HomZp[D](Mp, Ad∗)

for cocycle u : G→ Ad∗. Since Ad = Ad[ξ]⊕ Ad[1]⊕Ad[ξ−1], we have a decomposition:

HomZp[D](Mp, Ad∗) =

upper nilpotent︷ ︸︸ ︷
HomZp[D](Up[ξ], Ad[ξ]∗)⊕

diagonal︷ ︸︸ ︷
HomZp[D](Mp[1], Ad[1]∗)

⊕
lower nilpotent︷ ︸︸ ︷

HomZp[D](Up[ξ−1], Ad[ξ−1]∗) .

Thus a Selmer cocycle u projects down to the first two factors:

upper nilpotent︷ ︸︸ ︷
HomZp[D](Up[ξ], Ad[ξ]∗)⊕

diagonal︷ ︸︸ ︷
HomZp[D](Mp[1], Ad[1]∗) .

Write u+
p (resp. u0

p) for the upper nilpotent projection (resp. the diagonal projection) of u.

8.12. Inertia part u+. We have u+
p : Ip[ξ] = Up[ξ] → Ad[ξ]∗ and u+

σ(p) : Uσ(p)[ξσ] → Ad[ξσ]∗ for

Dσ(p) = σDσ−1 ξσ−→ A× given by ξσ(h) = ξ(σ−1hσ). Note Ad[ξσ]∗ = σ(Ad[ξ]∗) and Uσ(p)[ξσ] = σ(Up[ξ])

and uσ(p)(h) = up(σ
−1hσ). Since u is a cocycle over G, out of each restriction u+

σ(p), we create the map

u+ := (u+
σ(p))σ :

∏

σ∈G/D

σ(Up[ξ])→
∏

σ∈G/D

σ(Ad[ξ])∗.

Note
∏

σ σ(Up[ξ]) = IndG
D Up[ξ] and

∏
σ σ(Ad[ξ])∗ ∼= IndG

D Ad[ξ]∗ as G-modules. Since u is a cocycle
defined over G, we get a G-equivariant commutative diagram:

IndG
D Up[ξ]

u+−−−−→ IndG
D Ad[ξ]∗

y
y

Up[Ad]
u|Up−−−−→ Ad∗.
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8.13. Determination of inertia part u|Up. By the above argument, the restriction u|Up falls into
HomZp[G](Adξ, Ad∗) induced from u+. Though Up[Ad] ∼= Adm for m = 3 if ξ has order 3 and m = 2 if
ξ has order 2, as Shapiro’s isomorphism

S : HomZp[G](IndG
D Up[ξ], Ad) ∼= HomD(ξ, ξ+ ⊕ 1⊕ ξ−1

− )

with ξ+ = ξ realized on upper nilpotent matrices and ξ− = ξ realized on lower nilpotent matrices. The
restriction u|Up only has values in ξ+; so, ξ−1

− -component does not show up as u|Up
is upper nilpotent,

we have S(u|Up) ∈ HomW [D](Up[ξ], ξ∗+). Since u factors through O×
p /O×,

S(u|Up) factors through Up[ξ]/〈εξ〉.
Starting from up ∈ Hom(Up[ξ]/〈εξ〉, ξ∗), we recreate u = S−1(up) : Up/Ô×[Ad] → Ad∗; so, we have

Sel(Ad) � Hom(Up[ξ]/〈εξ〉, ξ∗+).

8.14. Frobenius part. Note Mp/Up = IndG
D W1 ∼=

⊕
σ(p):σ∈G/D Wσ(p) as W [G]-modules with projec-

tion π : IndG
D W1 � Ĉl

(p)

F ⊗Zp W . If p has order ph in Ĉl
(p)

F , this induces a surjection IndG
D W/phW1→

Ĉl
(p)

F ⊗Zp W , which gives rise to an isomorphism:

(∗) (IndG
D W/phW1)[Ad] ∼= (Ĉl

(p)

F ⊗Zp W )[Ad] =: Ĉl
(p)

F [Ad]

by the irreducibility of Ad(ρ). Therefore

u0 ∈ HomW [G](Ĉl
(p)

F [Ad], Ad∗)
(∗)
= HomW [G](IndG

D W/phW1, Ad∗)

Shapiro’s lemma
= HomD(W/phW1, Ad∗|D) = W/phW.

Reversing the argument, the Frobenius part is given by

HomW [G](Ĉl
(p)

F [Ad], Ad∗) ∼= HomZp[G](Ĉl
(p)

F , Ad∗).

This finishes the proof of the theorem. �

8.15. Proof of the formula in the corollary. Since Ad∗ = Ad(ρ)⊗Zp Qp/Zp
∼= HomZp(Ad, Qp/Zp)

and ⊗-Hom adjunction formula, we have

HomZp[G](Ĉl
(p)

F , Ad∗) ∼= HomZp[G](Ĉl
(p)

F , HomZp(Ad, Qp/Zp)) ∼= HomZp(Ĉl
(p)

F ⊗Zp[G] Ad, Qp/Zp).

Similarly we have

HomZp[G](ĈF , Ad∗)) ∼= HomZp[G](ĈF , HomZp(Ad, Qp/Zp)) ∼= HomZp(ĈF ⊗Zp[G] Ad, Qp/Zp).

The W -corank of the Selmer group is positive when εεδ−1 = 1. If this happens, it is equal to
rankW Up[εδ−1]. Since Up[εδ−1] = O×

p ⊗Z W [εδ−1] has the same rank with Op ⊗Zp W [εδ−1] by D-

equivariance of logarithm, we get rankW (Op ⊗Zp W )[εδ−1] = 1, since Fp has normal basis over Qp.

8.16. Galois action on global units. Recall (O× ⊗Z W )⊕W1 ∼= IndG
C W1 ∼= W [G/C] (as µp(F ) =

{1}). Here C is the subgroup of G generated by the fixed complex conjugation c. The following lemma
finishes the proof.

Lemma 8.4. We have a W [G]-linear surjective homomorphism

φ : O× ⊗Z W � Ad

and εεδ−1 6= 1.

Since Ad(ρ) is irreducible over F, if a W [G]-linear map M → Ad for a W [G]-module M is non-
trivial modulo mW , the map is surjective modulo mW , and by Nakayama’s lemma, the original map is
surjective.

Proof. Since Ad is irreducible of dimension 3 over Frac(W ), non-zero homomorphism

φ ∈ HomW [G](O
× ⊗Z W ⊕W1, Ad)

has to factors through O× ⊗Z W = W [G]ε. By Shapiro’s lemma, we have, for χ : C ∼= {±1},

HomW [G](O
× ⊗Z W, Ad) = HomW [G](IndG

C W1, Ad)

= HomW [C](W1, Ad|C) = HomW [C](W1, χ⊕ 1⊕ χ) = W.
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Thus we have a W [G]-linear homomorphiosm φ : O×⊗Z W → Ad non-zero modulo mW . Therefore, the
W [G]-linear homomorphism φ : O× ⊗Z W → Ad is onto, and Ad is generated over W [G] by the image

of ε. Since Ad|D = ξ ⊕ 1 ⊕ ξ−1, the composed ξ-projection O× ⊗Z W
φ−→ Ad � Ad[ξ] = Wξ is onto

producing a non-zero multiple of εεδ−1 as its image. �

9. Iwasawa theory over quadratic fields

Assuming that ρ = IndQ
K ϕ for a character ϕ : GQ → F×, we describe the size of its adjoint Selmer

group in Case D in terms of a Minkowski unit. Let G = Gal(F/Q) ∼= Im(Ad(ρ)). Let ϕ be the

Teichmüller lift of ϕ, and put ρ = IndQ
K ϕ. Then G ∼= Im(Ad(ρ)) = Im(Ad(ρ)). We write F for the field

generated by the values of ϕ. As seen in §6.6, Ad(ρ) ∼= α ⊕ IndQ
K ϕ− for α =

(
K/Q

)
. Then we take

W to be the unramified extension of Zp with W/mW = F. We write O (resp. OK) for the integer ring
F (resp. K). Fix a prime p|p in O and a prime P|p in F (ϕ) = F (ρ). We write D ⊂ G (resp. D′) for
the decomposition group of p (resp. P) such that ρ|D′ = ( ε 0

0 δ ) with δ = ϕσ |D′ unramified. Since G is
dihedral and p splits in K, µp(F ) = {1} for p ≥ 3.

9.1. Galois action on global units. Recall (O× ⊗Z W )⊕W1 ∼= IndG
C W1 ∼= W [G/C]. Here C is the

subgroup of G generated by the fixed complex conjugation c.

Proposition 9.1. We have

HomW [G](IndQ
K ϕ−, O× ⊗Z W ) =

{
0 if K is real,

W if K is imaginary,

HomZp[G](α, O× ⊗Z W ) =

{
W if K is real,

0 if K is imaginary.

If K is imaginary, εϕ− 6= 1 and εα = 1 and if K is real, εα 6= 1 and εϕ− = 1.

We have HomW [G](IndQ
K ϕ−, IndG

C W1) = HomW [C](IndQ
K ϕ−|C , W1) and HomZp[G](α, IndG

C 1) =
HomZp[C](α|C, 1). The second assertion is clear from the second identity.

Proof. Pick σ ∈ G such that σ|K is non-trivial. If K is imaginary, IndQ
K ϕ−|C = 1⊕α as Tr(IndQ

K ϕ−)(c)) =
0. Therefore

HomW [C](IndQ
K ϕ−|C , W1) = HomW [C](1⊕ α, 1) = W.

Suppose that K is real. Since

Ad(ρ)(c) ∼ diag[−1, 1,−1]∼ diag[ϕ−(c), α(c), (ϕ−)−1(c)],

α(c) = 1 implies ϕ−(c) = ϕ−
σ (c) = −1. Therefore

HomW [C](IndQ
K ϕ−|C, W1) = HomW [C](χ⊕ χ, 1) = 0

for χ : C ∼= {±1}. �

9.2. Selmer group and ray class group. Recall Lemma 8.1:

Lemma 9.2. We have a canonical inclusion

Sel(Ad(ρ)) ⊂ HomZp[G](ĈlF (p∞), Ad(ρ)∗).

As before, we put H = Gal(F (p)/F ), and we study decomposition group in Hab as D-modules. Recall
the fixed prime factor p|p in O with its decomposition subgroup D ⊂ G. Write simply Mp := F×

p ⊗Z W

and Up := Ô×
p ⊗Zp W = O×

p ⊗Z W . Then for each character ξ : D → W×, Mp contains as a direct
factor the ξ-eigenspace Mp[ξ]. Then writing µp(Fp)/F = µp(Fp) ⊗Z F

(U) Mp[ξ] = Up[ξ] ∼=
{

W if ξ 6∈ {1, ω},
W ⊕ µp(Fp)/F if ξ = ω.

(M) We have an exact sequence 0 → Up[1] → Mp[1]
ordp−−−→ W → 0 induced by the valuation

ordp : F×
p � Z at p, and Up[1] ∼= W .
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9.3. Structure of Mp[Ad] as a G-module in Case D.. For each irreducible factor φ of Ad, we
consider the φ-isotypical component X[φ], and write µp(Fp)/F = µp(Fp)⊗Z F.

Lemma 9.3. Assume ϕ−|D 6= 1 and p ≥ 5.

HomG(Mp, φ∗) =




HomD(Up[ϕ−]⊕ Up[ϕ−
σ ], (φ|D)∗) ∼= W 2 ⊕ µp(Fp)/F[ξ±1] dim φ = 2,

HomD(Up[φ], φ∗) ∼= W φ ( IndQ
K ϕ−,

HomD(Mp[1], 1∗) ∼= W 2 φ = α,

where ξ = ϕ− in the first case.

Proof. Since Mp = IndG
D Mp, we have HomG(Mp, φ∗) = HomD(Mp, φ∗|D) by Shapiro’s lemma. If

ϕ−|D 6= 1, φ|D is

• (ϕ− ⊕ ϕ−
σ )|D when φ = IndQ

K ϕ− is irreducible (ord(ϕ−) ≥ 3),

• ϕ−|D when φ ( IndQ
K ϕ− (ord(ϕ−) = 2),

• 1 when φ = α.

Let ξ = ϕ−|D. Since Mp[ξ±1] = Up[ξ±1] (by ξ 6= 1),

(IndG
D Up[ξ±1])[Ad] =





φ⊕ IndG
D µp(Fp)[φ] if ξ 6= ξ−1 and dim φ = 2,

φ⊕ φα if φ ( IndQ
K ϕ−,

0 if φ = α,

(IndG
D Mp[1])[Ad] =

{
0 if φ ⊂ IndQ

K ϕ−,

α⊕ α if φ = α.

This is because Mp[ξ±1] = Up[ξ±1] ∼= W ⊕ µp(Fp)/F by (U) and by Shapiro’s lemma

HomG(IndQ
K ϕ−, IndG

D Up[ξ]) = HomD(IndQ
K ϕ−|D, ξ ⊕ (µp(Fp)⊗Z F))

= HomD(ξ ⊕ ξ−1, ξ ⊕ (µp(Fp)⊗Z F))

as D ⊂ Gal(F/K). The second formula follows from (M). �

9.4. Theorem for Sel(IndQ
K ϕ−). The representations Φ := IndQ

K ϕ− and α in Ad(ρ) fits into the
following exact sequence of G-modules:

0→
inertia part︷ ︸︸ ︷

Φ⊕ IndG
D(µp(Fp) ⊗Z F)[Φ]⊕ α⊕ Φ→Mp[Ad]→ α→ 0.

Here Φ can be reducible.

Theorem 9.4. Assume that we are in Case D with irreducible IndQ
K ϕ. Then we have an exact sequence

HomZp[G](ĈlF , Φ∗) ↪→ Sel(Φ) � HomW [D](Up[ϕ−]/〈εϕ−〉, W∨),

where ε is a Minkowski unit, εϕ− is the projection of ε in the direct summand Up[ϕ−] under O× →
Up � Up[ϕ−], and 〈εϕ−〉 is the p-adic closure of the subgroup εZ

ϕ− generated by εϕ− .

Proof. Proof of HomZp[G](ĈlF , Φ∗) ↪→ Sel(Φ). We proceed as in Case E (in §8.10) replacing Ad by Φ.

Since Ĉl
(p)

F (surjective image of IndG
D 1) does not contain Φ = IndQ

K ϕ−, we can ignore it and can work

with the entire ĈlF . Elements in HomZp[G](ĈlF , Φ∗) are everywhere unramified and trivial at p; so,
they gives rise to a subgroup of Sel(Φ) of classes everywhere unramified and trivial at p. Indeed, by

H1(G, Φ∗) ∼= HomZp[G](H
ab, Φ∗), any u ∈ HomZp[G](ĈlF , Φ∗) extends uniquely the cocycle u : G→ Φ∗

unramified everywhere over H. Since the inertia group Il ⊂ G of any prime l ∈ S has order prime to p,
u|Il = 0, and hence [u] ∈ Sel(Φ).

Elements of Sel(Φ) modulo HomZp[G](ĈlF , Φ∗) is determined by its restriction to Mp as they are

unramified outside p as they factor through ĈlF (p∞) and p - |Il|.
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Inertia part. Recall ξ = εδ−1 = ϕ−. A Selmer cocycle u|Hab regarded as a W [Γ−]]-linear homomorphism

in HomW [[Γ− ]](Y(ϕ−), (ϕ−)∗) has values in (ϕ−)∗ over Up. Since Mp/Up
∼= IndG

D W1 does not contain
Φ, we can ignore Mp/Up. By its G-equivariance,

u|Up ∈ HomW [G](Up, Φ∗).

By Shapiro’s lemma,
HomW [G](Up, Φ∗) ∼= HomW [D](Up[ϕ−], (ϕ−)∗).

Since u factors through O×
p /O×, u factors through Up[ϕ−]/〈εϕ−〉. �

Corollary 9.5. If K is imaginary, we have

|Sel(IndQ
K ϕ−)| = |ĈlF ⊗Zp[Gal(F/K)] ϕ−||(Up[ϕ

−]/〈εϕ−〉)|
which is finite, otherwise it has W -corank 1 (up to finite W -torsion).

Proof. By Proposition 9.1, εϕ− 6= 1 only when K is imaginary. Thus the finiteness of the Selmer group
follows. When K is real, we have Up[ϕ−] ∼= W , and therefore from Theorem 9.4, the Selmer group has
corank 1. �

10. “R = T” theorem and adjoint Selmer groups

On the way to prove FLT, Wiles and Taylor identified the universal ring R for the deformation
functor Dκ with a p-adic Hecke algebra T. The algebra T is known to be free of finite rank over the
Iwasawa algebra, and they also showed that R = T is a local complete intersection over Λ. We explore
consequences of these result in our study of the adjoint Selmer groups of modular Galois representations.

10.1. Local complete intersection ring. Let B ∈ CL/W be the base ring which is an integral
domain. An object A ∈ CL/B is called a (relative) local complete intersection over B if A is free of
finite rank over B with a presentation A ∼= B[[X1, . . . , Xr]]/(f1, . . . , fr) for a positive integer r. Then
the following facts are known

• HomB(A, B) is free of rank 1 over B (i.e., A is a Gorenstein ring over B);

• x 7→ fjx is an injection over A/(f1, . . . , fj−1) for all j = 1, . . .r (i.e., (f1, . . . , fr) is a regular
sequence;

• If A is generated over B by m elements, the minimal choice of r is m.

For these facts, see [CRT, §21].

Theorem 10.1 (J. Tate). If B is normal noetherian and P : A → B is a B-algebra homomorphism
with A ⊗B Frac(B) = Frac(B) ⊕ (Ker(P )⊗B Frac(B)) as an algebra direct summand, we have

char(C0) = char(C1),

where C0 = C0(P ) = A⊗A S for the image S of A in the algebra Ker(P )⊗B Frac(B) and C1 = C1(P ) =
ΩA/B ⊗A,P B.

Tate actually proved a finer equality Fitt(C0) = Fitt(C1) of Fitting B-ideals for any commutative
algebra B with identity. For Tate’s proof, see the appendix to the paper by Mazur–Robert [MR70].

10.2. Homological dimension. For a noetherian local ring A in CL/W , we define the homological
dimension hdimB M of a finitely generated B-module M is the minimum length h of exact sequence
0 → Fh → Fh−1 → · · · → F0 → M → 0 made of R-free module Fj of finite rank. If RA/B is a local
complete intersection free of finite rank over B, we have a presentation A = B[[T1, . . . , Tr ]/(f1, . . . , fr)
for a regular sequence f1, . . . , fr. Then the 2nd fundamental exact sequence (Corollary 2.2) gives an
exact sequence

(f1, . . . , fr)/(f1, . . . , fr)
2 i−→ ΩB[[T1,...,Tr]]/B ⊗B[[T1,...,Tr]] A � ΩA/B.

If further B is a domain of characteristic 0 and A is reduced, ΩA/B is a torsion A-module (as the

extension Frac(A)/ Frac(B) is a finite semi-simple extension). Since (f1, . . . , fr)/(f1, . . . , fr)
2 ∼= Ar as

(f1, . . . , fr) is a regular sequence, torsion-property of ΩA/B tells us that i is injective; so, we get from
ΩB[[T1,...,Tr]]/B ⊗B[[T1 ,...,Tr]] A ∼=

⊕
j AdTj

hdimΩA/B = 1 if A is local complete intersection over B.
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10.3. Taylor-Wiles theorem. Taylor and Wiles proved

Theorem 10.2. Under (ordl) for l ∈ S ∪ {p}, Rχ/B is a local complete intersection with presentation
Rχ = B[[T1, . . . , Tr]/(f1, . . . , fr) for r = dimF Sel(Ad(ρ)), where B = W if χ has values in W× and
B = Λ if χ = κ. In particular, we have hdimB ΩRχ/B ≤ 1.

What Taylor–Wiles proved is a bit different from this theorem for the number of variables. There
presentation has the number of variables r0 possibly slightly bigger than dimF Sel(Ad(ρ)(1)) ≥ r =
dimF Sel(Ad(ρ)). Since Rχ is generated by r elements over B as seen in Lecture No.3, by [CRT,
Theorem 21.2 (ii)], we can change Taylor–Wiles presentation so that it is valid for r. For a proof, see
[TW] and [HMI, §3.2].

10.4. Existence of p-adic L.. Let ρ : GQ → GL2(A) be a deformation of ρ such that ρ ∼= P ◦ ρχ. If
r = 1, Rχ = B[[T1]]/(f1) and we have an exact sequence for (P : Rχ → A) ∈ HomB-alg(Rχ, A)

A = (f1)/(f2
1 )⊗Rχ A −−−−→ A · dT1

�−−−−→ ΩRχ/B ⊗Rχ A

‖

xLρ 7→f1 ‖

x1 7→dT1 o

x

A · Lρ −−−−→ A −−−−→
�

Sel(Ad(ρ))∨.

If B = W , |Lρ|−1
p = |Sel(Ad(ρ)| and Lρ(P ) := P (Lρ) = Lρ. If B = Λ (χ = κ), Lρ gives rise to a p-adic

L-function with

Spec(Rκ)(W ) 3 P 7→ |Lρ(P )|−1
p = |Sel(Ad(P ◦ ρ))|.

If r > 1, we define

Lρ := det((f1, . . . , fr)/(f1, . . . , fr)
2 →

r⊕

j=1

Rκ · dTj),

and the outcome is the same.

10.5. Universal modular deformation. Let N be the prime-to-p Artin conductor of ρ with det ρ(c) =
−1. By the solution of Serre’s mod p modularity conjecture, we have Hecke eigenforms f (actually infin-
itely many) whose p-adic Galois representation ρf is in Dκ(Af ) for a finite extension Af of W generated
by Tr(ρf ). We can define the p-adic Hecke algebra T interpolating all modular Galois representation
ρf ∈ Dκ(Af ) as follows: The algebra T ⊂ ∏

f Af topologically generated by
∏

f Tr(ρf (g)) for all

g ∈ GQ. Then by my old result in 1986, we have a Galois representation ρT : GQ → GL2(T) such that
ρT ∈ Dκ(T) (in particular T ∈ CL/Λ). The proof of Theorem 10.2 actually produces the following

Corollary 10.3. Suppose (ordl) in §5.1 for l ∈ S ∪ {p}. Then we have ι : Rκ
∼= T such that ι ◦ρ ∼= ρT.

See [TW] and [HMI, §3.2].

10.6. Lifting to an extension I of Λ. Let λ : Rκ = T � I be a Λ-algebra surjective homomorphism

for an integral domain I finite torsion-free over Λ. Let TI := T ⊗Λ I and λ̃ be the composite TI �

I ⊗Λ I
a⊗b 7→ab−−−−−→

�

I. Then for each P ∈ Spec(I)(W ) = HomW -alg(I, W ), λ̃ induces Λ ↪→ TI

eλ−→ I
P−→ W by

composition.
Writing ρP := P ◦ λ ◦ ρ. Then det ρP is a deformation of det ρ; so, we have a unique morphism

ιP : Λ→W such that ιP ◦ κ = det(ρP ). Since the Λ-algebra structure ι : Λ→ T of T = Rκ is given by
det(ρ) = det(ρT) = ι ◦ κ, we find out that the above composite is just ιP .

Let TP = TI ⊗I,P W under the above algebra homomorphism. Note that

TP = T⊗Λ I⊗I,P W ∼= T⊗Λ,ιP W

by associativity of tensor product.

10.7. Modular and admissible points. By construction, we have λP : TP →W induced by λ. Even
if ιP = ιP ′ , λP may be different from λP ′ . If λP is associated to a Hecke eigenform of weight ≥ 2, we
call P a modular point. If TP ⊗W Frac(W ) = Frac(W ) ⊕ (Ker(λP ) ⊗W Frac(W )) as algebra direct
sum, we call P admissible. If P is admissible, C0(λP ) is well defined. If P is modular, it is admissible.

If ρ ∈ Dχ(A) for W -valued χ = det(ρP ), then ρ ∈ Dκ(A) and hence ρ = φ ◦ ρ for φ : Rκ → A. By
definition, φ factors through

Rκ/R(det(ρ)(g) − χ(g))gR = Rκ/R(κ(g)− χ(g))gR = R⊗Λ,χ W.
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This shows that Rχ = R⊗Λ,χ W for χ : Λ = W [[Γ]]→ W induced by χ. Applying this to TP , we get
Rdet(ρP ) = TP .

10.8. Modular adjoint p-adic L: Lmod. Suppose (ordl) in §5.1 for l ∈ S ∪ {p}. Here is a theorem I
proved long ago (e.g., [MFG, §5.3.6]) for canonical periods Ωf,± of f :

Theorem 10.4. Let λ : T � I be a surjective Λ-algebra homomorphism for a domain I containing

Λ and λ̃ : TI → I be its scalar extension to I as in §10.6. Then there exists Lmod ∈ I such that
C0(λ) = I/(Lmod) and for each admissible P ∈ Spec(I), C0(λP ) = W/P (λ(Lmod)) and if P ◦λ◦ρT

∼= ρf

for a modular form of weight ≥ 2, we have |C0(λP )| = |W/P (λ(Lmod))| = |L(1,Ad(ρf))
Ωf,+Ωf,−

|−1
p (see [MFG,

Corollary 5.31]).

If f is of weight 2 on a modular curve X, forW = W∩Q, we have H1(X,W)[λP ] =Wω+(f)⊕Wω−(f)
(±-eigenspace under the pull-back action of z 7→ −z on the upper half complex plane) and H1(X, C) =
Cδ+(f) + Cδ−(f) for δ±f = f(z)dz ∓ f(−z)dz. Then Ωf,±ω±(f) = δ±(f). We use Eichler-Shimura
isomorphism to define Ωf,± for higher weight.

10.9. Sketch of Proof of the existence of Lmod. Write X∗ := HomI(X, I) for an I-module X.

Let S be the image of TI in B ⊗I Frac(I) for B = Ker(λ̃) in the decomposition T ⊗Λ Frac(I) =
Frac(I) ⊕ (B ⊗I Frac(I)). Let µ : TI → S be the projection and put A = Ker(µ). So we have a split
exact sequence B ↪→ TI � I. A local complete intersection TI over I has such a self-dual pairing (·, ·)
with values in I such that (xy, z) = (x, yz) for x, y, z ∈ TI. Thus B∗ ∼= T∗

I /I∗, and I∗ ⊂ TI = T∗
I is a

maximal submodule of TI on which TI acts through λ̃; so, I∗ = A inside TI. This implies B∗ ∼= S; so,
S is I-free. In other words, applying I-dual, we get a reverse exact sequence

I∗
↪→−−−−→ T∗

I

�−−−−→ B∗

o

y o

y o

y

? −−−−→ TI −−−−→ S

This shows ? = A ∼= I∗ ∼= I; so, A is principal to have Lmod ∈ I such that A = (Lmod). Note that

C0(λ̃) = I/A (see §2.6).

10.10. Specialization property. We have B∗ = S and a split exact sequence B→ TI → I; so, B is
an I-direct summand of TI. Tensoring W over I via P , B ⊗I,P W → TP → W is exact, and we get
BP = B ⊗I,P W = Ker(λP ). Since T is Λ-free of finite rank, TI is I-free of finite rank. Thus B is
I-projective and hence I-free; so, S ∼= B∗ is I-free. Tensoring W over I via P , we get

0→ A⊗I,P W → TP → S ⊗I,P W → 0.

Thus if P is admissible, SP := S⊗I,λP W gives rise to the decomposition: TP ⊗W Frac(W ) = Frac(W )⊕
(SP ⊗W Frac(W )). By BP = BP ⊗I,P W = Ker(λP ), we get C0(λP ) = SP /BP = (S/B) ⊗I,P W =

C0(λ̃)⊗I,P W , as desired. �

10.11. Relation between Lρ and Lmod. Tensoring I with the exact sequence of T-modules:

(f1, . . . , fr)/(f1, . . . , fr)
2 f 7→df−−−→ ΩΛ[[T1,...,Tr]]/Λ ⊗Λ[[T1,...,Tr]] T � ΩT/Λ

over T, we get an exact sequence
⊕

j

Idfj
d⊗1=λ(d)−−−−−−→

⊕

j

IdTj → ΩT/Λ ⊗T,λ I→ 0.

Since TI = I[[T1, . . . , Tr]]/(f1, . . . , fr)I, we have

ΩTI/I ⊗TI,eλ I =
⊕

j

IdTj/
⊕

j

Idfj = ΩT/Λ ⊗T,λ I.

They have the same characteristic ideals (and Fitting ideals) by Tate’s theorem. Thus in general, we
get

(λ(Lρ)) = (λ(det(d))) = (det(d⊗ 1))

= char(C1(λ̃))
Tate
= char(C0(λ̃)) = (Lmod).
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10.12. Conclusion. Thus we obtain

Corollary 10.5. Let the notation and the assumption be as in Theorem 2. Then we have λ(Lρ)/Lmod ∈
I×.

The corollary tells us that Lmod ∈ I glues (up to units) well to Lρ so that the image λ(Lρ) of Lρ in
I is equal to Lmod of I up to units as long as I contains Λ as a subalgebra.

As seen in Corollary 2.2, C1 = C1(λ̃) = B/B2 and C0 = C0(λ̃) = S/B. If r ≤ 1, C1 is cyclic, and
by Nakayama’s lemma, B is generated by an element θ of S. Since C1

∼= C0 by Tate’s theorem and C0

is I-torsion, θ is a non-zero-divisor of S. Thus the multiplication by θ gives rise to C0
∼= C1.
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