NON ABELIAN CLASS NUMBER FORMULAS AND ADJOINT SELMER GROUPS

HARUZO HIDA

Contents

1. Introduction	3
1.1. Hilbert class field.	3
1.2. Dual class group $Cl_K^* = \operatorname{Hom}(Cl_K, \mathbb{Q}/\mathbb{Z}).$	4
1.3. Pontryagin dual.	4
1.4. Group cohomology.	4
1.5. Compatible system of Galois representations.	4
1.6. Selmer group.	5
1.7. A variant of Bloch-Kato conjecture.	5
2. Congruence modules	5
2.1. Set up.	5
2.2. Differentials.	6
2.3. Universality.	6
2.4. Functoriality.	6
2.5. An algebra structure on $R \oplus M$ and derivation.	7
2.6. Congruence modules.	7
3. Galois deformation theory for \mathbb{G}_m	8
3.1. Deformation of a character.	8
3.2. Ray class groups of finite level.	8
3.3. Ray class group of infinite level.	9
3.4. Groups algebra is universal.	9
3.5. Universal deformation ring for a Galois character $\overline{\rho}$.	9
3.6. Congruence modules for group algebras.	9
3.7. Class group and Selmer group.	10
3.8. Class number formula.	10
4. Number of generators of adjoint Selmger groups	10
4.1. Tangent spaces of local rings	10
4.2. Tangent space as adjoint cohomology group	11
4.3. <i>p</i> -Frattini condition.	13
5. Adjoint Selmer groups and differentials	13
5.1. <i>p</i> -Ordinarity condition	13
5.2. Ordinary deformation functor.	13
5.3. Fiber products.	14
5.4. Slight generalization.	14
5.5. Tangent space of deformation functors.	14
5.6. Tangent space of rings and deformation functor	14
5.7. Tangent space as cohomology group with local condition.	14
5.8. Mod p adjoint Selmer group.	15
5.9. R^{ord} is an algebra over the Iwasawa algebra	15
5.10. Reinterpretation of \mathcal{D}	15
5.11. Compatible basis of $c \in \mathcal{F}(A)$.	16
5.12. General cocycle construction.	16
5.13. General adjoint Selmer group.	16

Date: April 15, 2019.

2010 Mathematics Subject Classification. primary 11R23, 11F25, 11F33, 11F80; secondary 11F11, 11G18, 11F27. The author is partially supported by the NSF grant: DMS 1464106.

5.14. Differentials and Selmer group.	16
5.15. <i>p</i> -Local condition.	17
6. Upper bound of the number of Selmer generators	17
6.1. Local class field theory.	17
6.2. Local cohomology.	18
6.3. Local Tate duality.	18
6.4. Another example of local Tate duality.	18
6.5. Inflation-restriction.	18
6.6. Proof of Lemma 6.2.	18
6.7. Dual Selmer group.	19
6.8. Details of $H^1(K, \mu_p) \cong K^{\times} \otimes_{\mathbb{Z}} \mathbb{F}_p$.	19
6.9. Unramifiedness of u_{α} at a prime $l \neq p$.	19
6.10. Restriction to the splitting field of $Ad := Ad(\overline{\rho})$.	19
6.11. Kummer theory.	19
6.12. Selmer group as a subgroup of $F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$.	20
6.13. <i>l</i> -integrality $(l \neq p)$.	20
6.14. Case where $\overline{\rho} _D$ is indecomposable for $D = \operatorname{Gal}(F_{\mathfrak{p}}/\mathbb{Q}_p)$.	20
6.15. Case where $\overline{\rho} _D$ is completely reducible.	20
6.16. Dirichlet's unit theorem.	20
7. Selmer group of induced Galois representation	21
7.1. Induced representation.	21
7.2. Matrix form of $\operatorname{Ind}_{H}^{G} \varphi$.	21
7.3. Two inductions are equal.	21
7.4. Tensoring $\alpha : \Delta \cong \mu_2$.	22
7.5. Characterization of self-twist	22
7.6. Decomposition of adjoint representation.	22
7.7. Irreducibility of $\operatorname{Ind}_{H}^{\tilde{G}} \overline{\varphi}^{-}$.	22
7.8. Ordinarity for residual induced representation	23
7.9. Identity of two deformation functors.	23
7.10. Induced Selmer groups.	23
7.11. What is $\Gamma_{\mathfrak{p}}$?	24
7.12. Iwasawa theoretic interpretation of Sel($Ad(\operatorname{Ind}_{E}^{\mathbb{Q}} \varphi)$).	24
7.13. Anti-cyclotomic <i>p</i> -abelian extension.	24
7.14. Iwasawa modules.	25
7.15. Cyclicity of Iwasawa module $\mathcal{V}(\varphi_0^-)$.	25
8. Selmer group of Artin representation	25
8.1. Classification of Artin representations.	26
8.2. $Ad(\overline{a})$ is absolutely irreducible in Case E	26
8.3. Lifting $\overline{\rho}$.	26
8.4. Minkowski unit.	26
8.5. Ray class groups.	26
8.6. Selmer group revisited.	27
8.7. Galois module structure of <i>p</i> -decomposition groups.	27
8.8. Structure of $M_p[Ad]$ as a <i>G</i> -module in Case E.	27
8.0 Solmor group as a subgroup of Hom $\alpha(\widehat{Cl}_{\pi}(n^{\infty}), Ad(n)^*)$	 97
8.5. Semici group as a subgroup of $\operatorname{Hom}_G(\mathcal{O}\iota_F(p^{-1}), \operatorname{Au}(p^{-1}))$.	21
8.10. Proof of $\operatorname{Holl}_{\mathbb{Z}_p[G]}(\mathbb{C}_F, Aa) \hookrightarrow \operatorname{Sel}(Aa(\rho)).$	20
8.11. Restriction to $D_{\mathfrak{p}}$.	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28
6.13. Determination of mertia part $u _{U_p}$.	29
0.14. FIODEIIUS Part 9.15 Droof of the formula in the corollow	29
o.15. F1001 01 the formula in the corollary.	29
6.10. Galois action on global units.	29
9. Iwasawa theory over quadratic fields	30
9.1. Galois action on giodal units.	30
9.2. Semmer group and ray class group.	30
9.3. Structure of $M_p[Ad]$ as a G-module in Case D.	31

9.4.	Theorem for $\operatorname{Sel}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}).$	31
10. '	" $R = \mathbb{T}$ " theorem and adjoint Selmer groups	32
10.1.	Local complete intersection ring.	32
10.2.	Homological dimension.	32
10.3.	Taylor-Wiles theorem.	33
10.4.	Existence of p -adic L.	33
10.5.	Universal modular deformation.	33
10.6.	Lifting to an extension \mathbb{I} of Λ .	33
10.7.	Modular and admissible points.	33
10.8.	Modular adjoint <i>p</i> -adic L: L^{mod} .	34
10.9.	Sketch of Proof of the existence of L^{mod} .	34
10.10.	Specialization property.	34
10.11.	Relation between L_{ρ} and L^{mod} .	34
10.12.	Conclusion.	35

References

1. INTRODUCTION

We give an overview of what we will do in this topic course. Fix a prime $p \ge 5$. For a number field K, by class field theory, the maximal abelian extension $H_{/K}$ unramified everywhere has Galois group canonically isomorphic to the class group Cl_K of K. So Pontryagin dual of $\operatorname{Hom}(Cl_{K,p}, \mathbb{Q}_p/\mathbb{Z}_p) \cong Cl_{K,p}$ can be Galois cohomologically defined

$$\operatorname{Sel}_K = \operatorname{Ker}(H^1(\overline{\mathbb{Q}}/K, \mathbb{Q}_p/\mathbb{Z}_p)) \to \prod_l H^1(I_l, \mathbb{Q}_p/\mathbb{Z}_p)).$$

Writing the induced representation $\operatorname{Ind}_{K}^{\mathbb{Q}} \mathbf{1} = \mathbf{1} \oplus \chi$, we have the celebrated class number formula giving the size $|Cl_{K}|$ by the integral part of the value $L(1, \chi)$ (Artin L-value) up to a canonical transcendental factor. We have studied in the recent past 207 courses the fundamental question:

When
$$\operatorname{Sel}_K \cong Cl_{K,p}$$
 is cyclic?

(and therefore, the structure of Sel_K is determined by by the value $L(1,\chi)$). Though we do not require any knowledge of past courses, here are links to the lecture notes of the relevant past two courses:

- http://www.math.ucla.edu/~hida/207b.1.18s/Lec18s.pdf,
- http://www.math.ucla.edu/~hida/207a.1.18w/Lec1.pdf.

There is one more example of proven such formulas giving the size of Selmer groups. Start with a modular form $f \in S_k(\mathrm{SL}_2(\mathbb{Z}))$ and suppose f is an eigenform of all Hecke operators T(n); so, $f|T(n) = \lambda(T(n))f$. Each f has its p-adic irreducible Galois representation $\rho_f : \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathrm{GL}_2(\mathbb{Q}_p[\lambda])$, where $\mathbb{Q}_p[\lambda]$ is the field generated over the p-adic field \mathbb{Q}_p by the eigenvalues $\lambda(T(n))$. Let $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on

$$\mathfrak{sl}_2(\mathbb{Q}_p[\lambda]) = \{x \in M_2(\mathbb{Q}_p[\lambda]) | \operatorname{Tr}(x) = 0\}$$

by conjugation, which results a 3-dimensional Galois representation $Ad(\rho_f)$. In this case, again we have the formula of $|Sel(Ad(\rho_f))|$ by the L-value $L(1, Ad(\rho_f))$ (a non-abelian class number formula). We explore in this course the question when $Sel(Ad(\rho_f))$ is cyclic over $\mathbb{Z}_p[\rho_f]$?

We cover

- (1) How to get the non-abelian "class number" formula;
- (2) Properties of Galois representations $Ad(\rho_f)$ and ρ_f ;
- (3) Definitions of Sel($Ad(\rho_f)$;
- (4) the cyclicity question.

Here is a slightly more detailed sketch of what we are going to do; so, no proofs given (just short explanation of concepts).

1.1. Hilbert class field. Let K be a number field with integer ring $O = O_K$ embedded in \mathbb{C} . Let $H_{/K}$ be the Hilbert class field; i.e., the maximal abelian extension unramified everywhere including real places. A real place means any real embedding $K \hookrightarrow \mathbb{R}$ extending to an embedding of H into \mathbb{R} .

Define Cl_K to be the group of isomorphism classes of rank 1 projective *O*-modules *M* (the group structure is given by tensor product over *O*). Since $M \hookrightarrow M \otimes_O K \cong K$, we may identify *M* with a fractional *O*-ideal in *K*. Then

$$Cl_K \cong \frac{\text{fractional } O\text{-ideals}}{\text{principal fractional ideals } (\alpha) = \alpha O},$$

which is known to be finite (so, compact; [LFE, Theorem 1.2.1]). By class field theory, we have

 $Cl_K \cong \operatorname{Gal}(H/K)$ by $\mathfrak{l} \mapsto \operatorname{Frob}_{\mathfrak{l}}$ for primes \mathfrak{l} .

1.2. Dual class group $Cl_K^* = \operatorname{Hom}(Cl_K, \mathbb{Q}/\mathbb{Z})$. Consider the algebraic closure

$$\overline{K} = \bigcup_{E/K: \text{ finite Galois extension}} E$$

of K (E is taken in \mathbb{C}). Then $\mathfrak{G}_K = \operatorname{Gal}(\overline{K}/K)$ is a compact group as $\mathfrak{G}_K = \varprojlim_{E/K} \operatorname{Gal}(E/K)$ by restriction maps. Consider $\operatorname{Hom}(\mathfrak{G}_K, \mathbb{Q}/\mathbb{Z}) = \operatorname{Hom}(\mathfrak{G}_K^{ab}, \mathbb{Q}/\mathbb{Z})$ (Pontryagin dual of the maximal continuous abelian quotient \mathfrak{G}_K^{ab}). If $\phi : \mathfrak{G}_K \to \mathbb{Q}/\mathbb{Z}$ is unramified at a prime \mathfrak{l}, ϕ is trivial on the inertia subgroup $I_{\mathfrak{l}}$ of \mathfrak{l} . Thus

$$Cl_K^* = \operatorname{Gal}(H/K)^* := \operatorname{Hom}(\operatorname{Gal}(H/K), \mathbb{Q}/\mathbb{Z}) = \operatorname{Ker}(\operatorname{Hom}(\mathfrak{G}_K, \mathbb{Q}/\mathbb{Z}) \to \prod_{\mathfrak{l}} \operatorname{Hom}(I_{\mathfrak{l}}, \mathbb{Q}/\mathbb{Z})).$$

1.3. Pontryagin dual. Consider a profinite group G and a continuous G-module X. Assume that X has either discrete torsion or profinite topology.

For any abelian profinite compact or torsion discrete module X, we define the Pontryagin dual module X^* by $X^* = \operatorname{Hom}_{cont}(X, \mathbb{Q}/\mathbb{Z})$ and give X^* the topology of uniform convergence on every compact subgroup of X. The G-action on $f \in X^*$ is given by $\sigma f(x) = f(\sigma^{-1}x)$. Then by Pontryagin duality theory (e.g., [LFE, 8.3]), we have $(X^*)^* \cong X$ canonically. By this fact, if X^* is the dual of a profinite module $X = \lim_{n \to \infty} X_n$ for finite modules X_n with surjections $X_m \to X_n$ for m > n, $X^* = \bigcup_n X_n^*$ is a discrete module which is a union of finite modules X_n^* .

1.4. Group cohomology. We denote by $H^q(G, X)$ the continuous group cohomology with coefficients in X. If X is finite, $H^q(G, X)$ is as defined in [MFG, 4.3.3]. Thus we have

$$H^0(G, X) = X^G = \{ x \in X | gx = x \text{ for all } g \in G \},\$$

and assuming all maps are continuous,

$$H^{1}(G,X) = \frac{\{G \xrightarrow{c} X | c(\sigma\tau) = \sigma c(\tau) + c(\sigma) \text{ for all } \sigma, \tau \in G\}}{\{G \xrightarrow{b} X | b(\sigma) = (\sigma - 1)x \text{ for } x \in X \text{ independent of } \sigma\}},$$

and $H^2(G, X)$ is given by

$$\frac{\{G \xrightarrow{c} X | c(\sigma, \tau) + c(\sigma\tau, \rho) = \sigma c(\tau, \rho) + c(\sigma, \tau\rho) \text{ for all } \sigma, \tau, \rho \in G\}}{\{c(\sigma, \tau) = b(\sigma) + \sigma b(\tau) - b(\sigma\tau) \text{ for } b : G \to X\}}$$

Thus if G acts trivially on X, we have $H^1(G, X) = \text{Hom}(G, X)$. If G = Gal(E/K), we often write $H^j(E/K, X)$, and if $E = \overline{K}$, we write $H^j(K, X)$ for $G = \mathfrak{G}_K$.

1.5. Compatible system of Galois representations. A (weakly) compatible system of Galois representations over K with coefficient (number field) T is a system of continuous representation $\rho = \{\rho_{\mathfrak{l}} : \mathfrak{G}_K \to \operatorname{GL}_n(O_{T,\mathfrak{l}})\}$ such that

• There exists a finite set of primes S of K such that $\rho_{\mathfrak{l}}$ is unramified outside S and the residual characteristic l of \mathfrak{l} ;

• The characteristic polynomial of $\rho_{\mathfrak{l}}(\operatorname{Frob}_{\mathfrak{p}})$ is in T[X] independent of \mathfrak{l} as long as $\mathfrak{p} \notin S \cup \{l\}$.

1.6. Selmer group. Let $\rho_{\mathfrak{l}}^{div} = \rho_{\mathfrak{l}} \otimes_{\mathbb{Z}_l} \mathbb{Q}_l/\mathbb{Z}_l$ as a discrete \mathfrak{G}_K -module. For a datum \mathcal{L} of subgroup $L_{\mathfrak{q}} \subset H^1(K_{\mathfrak{q}}, \rho_{\mathfrak{l}}^{div})$ for each prime \mathfrak{q} of K, we define

$$\operatorname{Sel}_{\mathcal{L}}(\rho_{\mathfrak{l}}) = \operatorname{Ker}(H^{1}(K, \rho_{\mathfrak{l}}^{div}) \to \prod_{\mathfrak{q}} H^{1}(K_{\mathfrak{q}}, \rho_{\mathfrak{l}}^{div})/L_{\mathfrak{q}}).$$

If we take $L_{\mathfrak{q}} := \operatorname{Ker}(H^1(K_{\mathfrak{q}}, \rho_{\mathfrak{l}}^{div}) \to H^1(I_{\mathfrak{q}}, \rho_{\mathfrak{l}}^{div}))$, then

$$\operatorname{Sel}_{\mathcal{L}}(\rho_{\mathfrak{l}}) = \operatorname{Ker}(H^{1}(K, \rho_{\mathfrak{l}}^{div}) \to \prod_{\mathfrak{q}} H^{1}(I_{\mathfrak{q}}, \rho_{\mathfrak{l}}^{div})).$$

If ρ is made of trivial representation **1** with coefficients in \mathbb{Q} ,

$$\operatorname{Sel}_K(\mathbf{1}) := \operatorname{Sel}_{\mathcal{L}}(\rho_l) \cong Cl_K^* \otimes_{\mathbb{Z}} \mathbb{Z}_l$$
 for the above choice of \mathcal{L} .

By class number formula for an imaginary quadratic field $K = \mathbb{A}[\sqrt{-D}]$, we find, if l > 3,

$$|Cl_K \otimes_{\mathbb{Z}} \mathbb{Z}_l| = ||Cl_K||_l^{-1} = |\mathrm{Sel}_K(\mathbf{1})| = |L(0,\chi)|_l$$

for the Dirichlet character $\chi = \left(\frac{-D}{2}\right)$. In this case, we can check $\operatorname{Ind}_{K}^{\mathbb{Q}} \mathbf{1} = \operatorname{Ind}_{\mathfrak{G}_{K}}^{\mathfrak{G}_{\mathbb{Q}}} \mathbf{1} = \mathbf{1} \oplus \chi$, $\operatorname{Sel}_{K}(\mathbf{1}) = \operatorname{Sel}_{\mathbb{Q}}(\chi)$ as $\operatorname{Sel}_{\mathbb{Q}}(\mathbf{1}) = 0$; so,

$$|Cl_K \otimes_{\mathbb{Z}} \mathbb{Z}_l| = ||Cl_K||_l^{-1} = |\operatorname{Sel}_{\mathbb{Q}}(\chi)| = |L(0,\chi)|_l.$$

1.7. A variant of Bloch-Kato conjecture. Define the L function of ρ by $L(s, \rho) = \prod_{\mathfrak{p}} \det(1 - \rho_{\mathfrak{l}}(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s})^{-1}$ and assume analytic continuation and functional equation as predicted by Serre if ρ is associated top a motive (see [HMI, 1.2.1]). If ρ is critical (i.e., the $L(s, \rho)$ does not have a pole at s = 0 and the Γ -factor of $L(s, \rho)$ and its counter-part of the functional equation are finite at s = 0), we expect

$$\operatorname{Sel}_{\mathcal{L}}(\rho_{\mathfrak{l}}) = \left| \frac{L(0, \rho_{\mathfrak{l}})}{\operatorname{period}} \right|_{l}^{-1}$$

for a suitable transcendental factor "**period**" and a suitable data \mathcal{L} (depending on how to define "period").

Thus at least conjecturally we can compute $|\operatorname{Sel}_{\mathcal{L}}(\rho_{\mathfrak{l}})|$. Our main questions are

- Is there any way to determine the structure of $\operatorname{Sel}_{\mathcal{L}}(\rho_{\mathfrak{l}})$?
- Or at least, is there any way to compute the number of generators of $\operatorname{Sel}_{\mathcal{L}}(\rho_{1})$ over $O_{T_{1}}$?

2. Congruence modules

Start with an *n*-dimensional compatible system $\rho = \{\rho_l\}$ of \mathfrak{G}_K . For simplicity, we assume that its coefficient field T is \mathbb{Q} . Pick a prime p and its member ρ_p (since \mathfrak{G}_K is compact, ρ_p has values in the maximal compact subgroup $\operatorname{GL}_n(\mathbb{Z}_p)$ up to conjugation). Let $\overline{\rho} = \rho_p \mod p$; $\mathfrak{G}_K \to \operatorname{GL}_n(\mathbb{F}_p)$. A deformation $\varphi : \mathfrak{G}_K \to \operatorname{GL}_n(A)$ for a local \mathbb{Z}_p -algebra A is such that $\varphi \mod \mathfrak{m}_A \cong \overline{\rho}$. The universal deformation ring with some specific property P parameterizes all deformations with P. In other words, there exists a universal deformation $\rho : \mathfrak{G}_K \to \operatorname{GL}_n(R)$ with property P such that for any deformation φ as above, there exists a \mathbb{Z}_p -algebra homomorphism $\phi : R \to A$ such that $\phi \circ \rho \cong \varphi$. We study the relation between the module of differential Ω_{R/\mathbb{Z}_p} and a certain Selmer group $\operatorname{Sel}_P(Ad(\rho))$. We start studying differentials for general rings.

2.1. Set up.

- W: the base ring which is a DVR over \mathbb{Z}_p with finite residue field \mathbb{F} for a prime p > 2.
- For a local W-algebra A sharing same residue field \mathbb{F} with W (i.e., $A/\mathfrak{m}_A = \mathbb{F}$), we write CL_A the category of complete local A-algebras R with $R/\mathfrak{m}_R = \mathbb{F}$ for its maximal ideal \mathfrak{m}_R . Morphisms of CL_A are local A-algebra homomorphisms. If A is noetherian, CNL_A is the full subcategory of CL_A of noetherian local rings.
- Fix $R \in CNL_A$. For a continuous *R*-module *M* with continuous *R*-action, define continuous *A*-derivations by

 $Der_A(R, M) = \{\delta : R \to M \in Hom_A(R, M) | \delta: \text{ continuous, } \delta(ab) = a\delta(b) + b\delta(a) \ (a, b \in R) \}.$

Here the A-linearity of a derivation δ is equivalent to $\delta(A) = 0$. The association $M \mapsto Der_A(R, M)$ is a covariant functor from the category $MOD_{/R}$ of continuous R-modules to modules MOD.

2.2. **Differentials.** The differential *R*-module $\Omega_{R/A}$ is defined as follows: The multiplication $a \otimes b \mapsto ab$ induces a *A*-algebra homomorphism $m : R \widehat{\otimes}_A R \to R$ taking $a \otimes b$ to ab. We put I = Ker(m), which is an ideal of $R \widehat{\otimes}_A R$. Then we define $\Omega_{R/A} = I/I^2$. It is an easy exercise to check that the map $d : R \to \Omega_{R/A}$ given by $d(a) = a \otimes 1 - 1 \otimes a \mod I^2$ is a continuous *A*-derivation. Indeed

$$\begin{aligned} a \cdot d(b) + b \cdot d(a) - d(ab) &= ab \otimes 1 - a \otimes b - b \otimes a + ba \otimes 1 - ab \otimes 1 + 1 \otimes ab \\ &= ab \otimes 1 - a \otimes b - b \otimes a + 1 \otimes ab = (a \otimes 1 - 1 \otimes a)(b \otimes 1 - 1 \otimes b) \equiv 0 \mod I^2. \end{aligned}$$

We have a morphism of functors:

$$\operatorname{Hom}_R(\Omega_{R/A},?) \to Der_A(R,?): \phi \mapsto \phi \circ d.$$

2.3. Universality.

Proposition 2.1. The above morphism of two functors

$$M \mapsto \operatorname{Hom}_R(\Omega_{R/A}, M)$$

and $M \mapsto Der_A(R, M)$ is an isomorphism, where M runs over the category of continuous R-modules. In other words, for each A-derivation $\delta : R \to M$, there exists a unique R-linear homomorphism $\phi : \Omega_{R/A} \to M$ such that $\delta = \phi \circ d$.

Proof. The ideal I is generated over R by d(a). Indeed, if $\sum_{a,b} m(a,b)ab = 0$ (i.e., $\sum_{a,b} m(a,b)a \otimes b \in I$), then

$$\sum_{a,b} m(a,b)a \otimes b = \sum_{a,b} m(a,b)a \otimes b - \sum_{a,b} m(a,b)ab \otimes 1$$
$$= \sum_{a,b} m(a,b)a(1 \otimes b) - b \otimes 1) = -\sum_{a,b} m(a,b)d(b).$$

Define $\phi : R \times R \to M$ by $(x, y) \mapsto x\delta(y)$ for $\delta \in Der_A(R, M)$. If $a, c \in R$ and $b \in A$, $\phi(ab, c) = ab\delta(c) = a(b\delta(c)) = b\phi(a, c)$ and $\phi(a, bc) = a\delta(bc) = ab\delta(c) = b(a\delta(c)) = b\phi(a, c)$. Thus ϕ gives a continuous A-bilinear map.

By the universality of the tensor product, $\phi : R \times R \to M$ extends to a A-linear map $\phi : R \widehat{\otimes}_A R \to M$. Now we see that

$$\phi(a \otimes 1 - 1 \otimes a) = a\delta(1) - \delta(a) = -\delta(a)$$

and

 $\phi((a \otimes 1 - 1 \otimes a)(b \otimes 1 - 1 \otimes b)) = \phi(ab \otimes 1 - a \otimes b - b \otimes a + 1 \otimes ab) = -a\delta(b) - b\delta(a) + \delta(ab) = 0.$

This shows that $\phi|_{I}$ -factors through $I/I^2 = \Omega_{R/A}$ and $\delta = \phi \circ d$, as desired. The map ϕ is unique as d(R) generates $\Omega_{R/A}$.

2.4. Functoriality.

Corollary 2.2 (Second fundamental exact sequence).

Let $\pi : R \twoheadrightarrow C$ be a surjective morphism in CL_W , and write $J = Ker(\pi)$. Then we have the following natural exact sequence:

$$J/J^2 \xrightarrow{\beta^*} \Omega_{R/A} \widehat{\otimes}_R C \longrightarrow \Omega_{C/A} \to 0.$$

Moreover if A = C, then $J/J^2 \cong \Omega_{R/A} \widehat{\otimes}_R C$.

Proof. By assumption, we have algebra morphism $A \to R \twoheadrightarrow C = R/J$. By the Yoneda's lemma, we only need to prove that

is exact for all continuous C-modules M. The first α is the pull back map. Thus the injectivity of α is obvious.

The map β is defined as follows: For a given A-derivation $D: R \to M$, we regard D as a A-linear map of J into M. Since J kills the C-module M, D(jj') = jD(j') + j'D(j) = 0 for $j, j' \in J$. Thus D

induces C-linear map: $J/J^2 \to M$. Then for $b \in R$ and $x \in J$, D(bx) = bD(x) + xD(b) = bD(x). Thus D is C-linear, and $\beta(D) = D|_J$.

Now prove the exactness at the mid-term of the second exact sequence. The fact $\beta \circ \alpha = 0$ is obvious. If $\beta(D) = 0$, then D kills J and hence is a derivation well defined on C = R/J. This shows that D is in the image of α .

Now suppose that A = C. To show injectivity of β^* , we create a surjective C-linear map: $\gamma : \Omega_{R/A} \otimes C \twoheadrightarrow J/J^2$ such that $\gamma \circ \beta^* = id$.

Let $\pi : R \to C$ be the projection and $\iota : A = C \hookrightarrow R$ be the structure homomorphism giving the *A*-algebra structure on *R*. We first look at the map $\delta : R \to J/J^2$ given by $\delta(a) = a - P(a) \mod J^2$ for $P = \iota \circ \pi$. Then

$$a\delta(b) + b\delta(a) - \delta(ab) = a(b - P(b)) + b(a - P(a)) - ab + P(ab)$$

= $P^{(ab)=P(a)P(b)} = ab - aP(b) + ba - bP(a) - ab + P(a)P(b) = (a - P(a))(b - P(b)) \equiv 0 \mod J^2$

Thus δ is a A-derivation.

By the universality of $\Omega_{R/A}$, we have an *R*-linear map

$$\phi: \Omega_{R/A} \to J/J^2$$

such that $\phi \circ d = \delta$. By definition, $\delta(J)$ generates J/J^2 over R, and hence ϕ is surjective.

Since J kills J/J^2 , the surjection ϕ factors through $\Omega_{R/A} \otimes_R C$ and induces γ . Note that $\beta(d \otimes 1_C) = d \otimes 1_C|_J$ for the identity 1_C of C; so, $\gamma \circ \beta^* = \text{id}$ as desired.

Corollary 2.3. Let the notation and the assumption be as in Corollary 2.2. If we restrict the functor $M \mapsto Der_A(R, M)$ to the category $MOD_{/C}$ of C-modules, $\Omega_{R/A} \widehat{\otimes}_R C$ represents $MOD_{/C} \ni M \mapsto Der_A(R, M)$.

We often write $C_1(\pi; C) := \Omega_{R/A} \widehat{\otimes}_R C$ (which is called the differential module of π).

Proof. By Proposition 2.1, for each $\delta \in Der_A(R, M)$, we find a unique $\phi \in Hom_R(\Omega_{R/A}, M)$ such that $\phi \circ d = \delta$. If M is a C-module, ϕ factors through $\Omega_{R/A}/J\Omega_{R/A} = \Omega_{R/A} \otimes_R C$.

Conversely, if $\phi \in \text{Hom}_C(\Omega_{R/A} \otimes_R C, M)$ for a *C*-module *M*, plainly $\delta = \phi \circ (d \otimes 1)$ gives $Der_A(R, M)$; so, the result follows.

2.5. An algebra structure on $R \oplus M$ and derivation. For any continuous *R*-module *M*, we write R[M] for the *R*-algebra with square zero ideal *M*. Thus $R[M] = R \oplus M$ with the multiplication given by

$$(r \oplus x)(r' \oplus x') = rr' \oplus (rx' + r'x).$$

It is easy to see that $R[M] \in CNL_W$, if M is of finite type, and $R[M] \in CL_W$ if M is a p-profinite R-module. By definition,

$$Der_A(R, M) \cong \left\{ \phi \in \operatorname{Hom}_{A-alg}(R, R[M]) \middle| \phi \mod M = \operatorname{id} \right\},\$$

where the map is given by $\delta \mapsto (a \mapsto (a \oplus \delta(a)))$.

Note that $i: R \to R \widehat{\otimes}_A R$ given by $i(a) = a \otimes 1$ is a section of $m: R \widehat{\otimes}_A R \to R$. We see easily that $R \widehat{\otimes}_A R/I^2 \cong R[\Omega_{R/A}]$ by $x \mapsto m(x) \oplus (x - i(m(x)))$. Note that $d(a) = 1 \otimes a - i(a)$ for $a \in R$.

2.6. Congruence modules. We assume that A is a domain and R is a reduced finite flat A-algebra. Let $\phi : R \rightarrow A$ be an onto A-algebra homomorphism. Then the total quotient ring Frac(R) can be decomposed uniquely

$$\operatorname{Frac}(R) = \operatorname{Frac}(\operatorname{Im}(\phi)) \times X$$

as an algebra direct product. Write 1_{ϕ} for the idempotent of $\operatorname{Frac}(\operatorname{Im}(\phi))$ in $\operatorname{Frac}(R)$. Let $\mathfrak{a} = \operatorname{Ker}(R \to X) = (1_{\phi}R \cap R)$, $S = \operatorname{Im}(R \to X)$ and $\mathfrak{b} = \operatorname{Ker}(\phi)$. Here the intersection $1_{\phi}R \cap R$ is taken in $\operatorname{Frac}(R) = \operatorname{Frac}(\operatorname{Im}(\phi)) \times X$. First note that $\mathfrak{a} = R \cap (A \times 0)$ and $\mathfrak{b} = (0 \times X) \cap R$. Put

$$C_0(\phi; A) = (R/\mathfrak{a}) \otimes_{R,\phi} \operatorname{Im}(\phi) \cong \operatorname{Im}(\phi)/(\phi(\mathfrak{a})) \cong A/\mathfrak{a} \cong R/(\mathfrak{a} \oplus \mathfrak{b}) \cong S/\mathfrak{b} \quad \text{and} \quad C_1(\phi; C) := \Omega_{R/A} \widehat{\otimes}_R C$$

The module $C_0(\phi; A)$ is called the *congruence* module of ϕ but is actually a ring. The module $C_1(\phi; A)$ is called the *differential* module of ϕ .

Write K = Frac(A). Fix an algebraic closure \overline{K} of K. Since the spectrum $\text{Spec}(C_0(\phi; A))$ of the congruence ring $C_0(\phi; A)$ is the scheme theoretic intersection of $\text{Spec}(\text{Im}(\phi))$ and $\text{Spec}(R/\mathfrak{a})$ in Spec(R):

$$\operatorname{Spec}(C_0(\lambda; A)) = \operatorname{Spec}(\operatorname{Im}(\phi)) \cap \operatorname{Spec}(R/\mathfrak{a})$$

we conclude that

Proposition 2.4. Let the notation be as above. Then a prime \mathfrak{p} is in the support of $C_0(\phi; A)$ if and only if there exists an A-algebra homomorphism $\phi': R \to \overline{K}$ factoring through R/\mathfrak{a} such that $\phi(a) \equiv \phi'(a) \mod \mathfrak{p}$ for all $a \in R$.

Since ϕ is onto, we see $C_1(\phi; A) = \mathfrak{b}/\mathfrak{b}^2$. We could define $C_n = \mathfrak{b}^n/\mathfrak{b}^{n+1}$. Then $C(\phi; A) = \bigoplus_n C_n(\phi; A)$ is a graded algebra. If \mathfrak{b} is principal, this is a polynomial ring $C_0(\phi; A)[T]$.

Proposition 2.5. If A is a noetherian domain, we have $\operatorname{Supp}_A(C_0(\phi; A)) = \operatorname{Supp}_A(C_1(\phi; A))$ and $\operatorname{Ass}_A(C_0(\phi; A)) = \operatorname{Ass}_A(C_1(\phi; A))$.

For an A-module M, $\operatorname{Supp}_A(M)$ is defined by a Zariski closed subset $\{P \in \operatorname{Spec}(A) | M_P \neq 0\}$ of $\operatorname{Spec}(A)$. Writing $\operatorname{Ann}_A(M) = \{x \in A | xM = 0\}$ (the annihilator ideal of M), we find $\operatorname{Supp}_A(M) = \{P \supset \operatorname{Ann}_A(M) | P \in \operatorname{Spec}(A)\}$ if M is finitely generated over A as an A-module (see [CRT, §4]). The set $\operatorname{Ass}_A(M)$ of associated primes of M is defined to be the set of prime ideals P of A such that $P = \operatorname{Ann}_A(Ax)$ for some $x \in M$.

Proof. For simplicity, we write C_j for $C_j(\phi; A)$. Note that $C_{1,P} = C_1 \otimes_A A_P = \Omega_{R/A} \otimes_R A_P \cong \Omega_{R_P/A_P} \otimes_{R_P} A_P$ by [CRT, Exercise 25.4]. Thus if $C_{1,P} = 0$, by Nakayama's lemma $\Omega_{R_P/A_P} = 0$; so, R_P is étale over A_P [CRT, §25]. Therefore $R_P = A_P \oplus S_P$ as $R_P \twoheadrightarrow A_P$ splits, and hence $C_{0,P} = C_0 \otimes_A A_P = S_P \otimes_{R_P,\phi} A_P = 0$. Thus $\operatorname{Supp}_A(C_0) \subset \operatorname{Supp}_A(C_1)$.

If $C_{0,P} = 0$, then $\operatorname{Spec}(A_P) \cap \operatorname{Spec}(S_P) = \emptyset$; therefore, $R_P = A_P \oplus S_P$, and hence $\Omega_{R_P/A_P} = \Omega_{S_P/A_P}$, and hence $C_{1,P} = 0$. Thus shows the reverse inclusion $\operatorname{Supp}_A(C_0) \supset \operatorname{Supp}_A(C_1)$, and we conclude $\operatorname{Supp}_A(C_0) = \operatorname{Supp}_A(C_1)$.

Since the sub set of minimal primes of $\operatorname{Ann}_A(M)$ is equal to the subset of minimal primes in $\operatorname{Supp}_A(M)$ (see [CRT, Theorem 6.5 (iii)]), the identity $\operatorname{Supp}_A(C_0) = \operatorname{Supp}_A(C_1)$ implies the identity of associated primes.

3. Galois deformation theory for \mathbb{G}_m

We study the universal deformation ring in the case of characters (i.e., representation into GL_1) and computes congruence modules C_0 and C_1 . As before, we fix an odd prime p.

3.1. **Deformation of a character.** Let F/\mathbb{Q} be a number field with integer ring O. We fix a set \mathcal{P} of properties of Galois characters. The property \mathcal{P} is often unramified outside p, or in addition, deformed characters has prime-to-p conductor a factor of a fixed ideal \mathfrak{c} prime to p. Fix a continuous character $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \mathbb{F}^{\times}$ with the property \mathcal{P} .

A character $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to A^{\times}$ for $A \in CL_W$ is called a \mathcal{P} -deformation of $\overline{\rho}$ if $(\rho \mod \mathfrak{m}_A) = \overline{\rho}$ and ρ satisfies \mathcal{P} .

A couple (R, ρ) (universal couple) made of an object R of CL_W and a character $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to R^{\times}$ satisfying \mathcal{P} is called a *universal couple* for $\overline{\rho}$ if for any \mathcal{P} -deformation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to A^{\times}$ of $\overline{\rho}$, we have a unique morphism $\phi_{\rho} : R \to A$ in CL_W (so it is a local W-algebra homomorphism) such that $\phi_{\rho} \circ \rho = \rho$. By the universality, if exists, the couple (R, ρ) is determined uniquely up to isomorphisms.

3.2. Ray class groups of finite level. Fix an O-ideal c. Recall

$$Cl_F(\mathfrak{c}) = \frac{\{\text{fractional } O\text{-ideals prime to } \mathfrak{c}\}}{\{(\alpha) | \alpha \equiv 1 \mod^{\times} \mathfrak{c}\infty\}},$$

Here $\alpha \equiv 1 \mod^{\times} \mathfrak{c}$ means that $\alpha = a/b$ for $a, b \in O$ is totally positive (i.e., $\sigma(\alpha) > 0$ for all real embedding $F \xrightarrow{\sigma} \mathbb{R}$) such that $(b) + \mathfrak{c} = O$ and $a \equiv b \mod \mathfrak{c}$ (or equivalently, for all primes $\mathfrak{l}|\mathfrak{c}, \alpha \in O_{\mathfrak{l}}^{\times}$ and $\alpha \equiv 1 \mod \mathfrak{l}^{v_{\mathfrak{l}}(\mathfrak{c}\infty)}$ if the \mathfrak{l} -primary factor of \mathfrak{c} has exponent $v_{\mathfrak{l}}(\mathfrak{c})$ (if $\mathfrak{l}|\infty$, it just means α is positive at \mathfrak{l}).

Write $H_{\mathfrak{c}p^n}/F$ for the ray class field modulo $\mathfrak{c}p^n$. In other words, there exists a unique abelian extension $H_{\mathfrak{c}p^n}/F$ only ramified at $\mathfrak{c}p\infty$ exists such that we can identify $\operatorname{Gal}(H_{\mathfrak{c}p^n}/F)$ with the strict ray class group $Cl_F(\mathfrak{c}p^n)$ by sending a class of prime \mathfrak{l} in $Cl_F(\mathfrak{c}p^n)$ to the Frobenius element $\operatorname{Frob}_{\mathfrak{l}} \in \operatorname{Gal}(H_{\mathfrak{c}p^n}/F)$. This isomorphism is called the Artin symbol.

3.3. Ray class group of infinite level. The group $Cl_F(\mathfrak{c}p^n)$ is finite as we have an exact sequence:

$$(O/\mathfrak{c}p^n)^{\times} \xrightarrow{\alpha \mapsto (\alpha)} Cl_F(\mathfrak{c}p^n) \to Cl_F^+ \to 1$$

for the strict class group Cl_F^+ (we write the usual class group without condition at ∞ as Cl_F). Note that $|Cl_F^+|/|Cl_F|$ is a factor of 2^e for the number e of real embeddings of F.

Sending a class $[\mathfrak{a}] \in Cl_F(\mathfrak{c}p^m)$ to the class $[\mathfrak{a}] \in Cl_F(\mathfrak{c}p^n)$ for m > n, we have a projective system $\{Cl_F(\mathfrak{c}p^n)\}_n$. Put $Cl_F(\mathfrak{c}p^\infty) = \varprojlim_n Cl_F(\mathfrak{c}p^n)$. Then for $H_{\mathfrak{c}p^\infty} = \bigcup_n H_{\mathfrak{c}p^n}, Cl_F(\mathfrak{c}p^\infty) \cong \operatorname{Gal}(H_{\mathfrak{c}p^\infty}/F)$ by $[\mathfrak{l}] \mapsto \operatorname{Frob}_{\mathfrak{l}}$ for primes $\mathfrak{l} \nmid \mathfrak{c}p$.

If $F = \mathbb{Q}$ and $\mathfrak{c} = (N)$ for $0 < N \in \mathbb{Z}$, we have $H_{\mathfrak{c}p^n}$ is the cyclotomic field $\mathbb{Q}[\mu_{Np^n}]$ for the group μ_{Np^n} of Np^n -th roots of unity; so, $Cl_{\mathbb{Q}}(\mathfrak{c}p^n) \cong (\mathbb{Z}/Np^n\mathbb{Z})^{\times}$ and $Cl_{\mathbb{Q}}(\mathfrak{c}p^\infty) \cong (\mathbb{Z}/N\mathbb{Z})^{\times} \times \mathbb{Z}_p^{\times}$.

3.4. Groups algebra is universal. For a profinite abelian group \mathcal{G} with the maximal *p*-profinite (*p*-Sylow) quotient \mathcal{G}_p , consider the group algebra $W[[\mathcal{G}_p]] = \lim_{k \to n} W[\mathcal{G}_n]$ writing $\mathcal{G}_p = \lim_{k \to n} \mathcal{G}_n$ with finite \mathcal{G}_n . For example, $\Lambda = W[[\Gamma]]$ ($\Gamma = 1 + p\mathbb{Z}_p = (1 + p)^{\mathbb{Z}_p}$) (the Iwasawa algebra) is isomorphic to W[[T]] by $1 + p \leftrightarrow t = 1 + T$. Suppose that \mathcal{G}_p is finite. Fix a character $\overline{\chi} : \mathcal{G} \to \mathbb{F}^{\times}$. Since $\mathbb{F}^{\times} \hookrightarrow W^{\times}$, we may regard $\overline{\chi}$ as a character $\chi_0 : \mathcal{G} \to W^{\times}$ (Teichmüller lift of $\overline{\chi}$). Define $\kappa : \mathcal{G} \to W[[\mathcal{G}_p]]^{\times}$ by $\kappa(g) = \chi_0(g)g_p$ for the image g_p of g in \mathcal{G}_p . Note that $W[\mathcal{G}_p]$ is a local ring with residue field \mathbb{F} . For any continuous deformation $\chi : \mathcal{G} \to A^{\times}$ of $\overline{\chi}, \varphi : W[\mathcal{G}_p] \ni \sum_g a_g g \mapsto \sum_g a_g \chi \chi_0^{-1}(g) \in A$ gives a unique W-algebra homomorphism such that $\varphi \circ \kappa = \chi$. If \mathcal{G}_p is infinite and $A = \lim_{k \to n} A_n$ for finite A_n with $A_n = A/\mathfrak{m}_n, \chi_n := \chi \chi_0^{-1} \mod \mathfrak{m}_n : \mathcal{G} \to A_n^{\times}$ has to factor through $\mathcal{G}_{m(n)}$ by continuity, and we get $\varphi_n : W[\mathcal{G}_p]] \to A_n$ such that $\varphi_n \circ \kappa = \rho_n$. Passing to the limit, we have $\varphi \circ \kappa = \rho$ for $\varphi = \lim_{k \to n} \varphi_n : W[[\mathcal{G}_p]] \to A$.

3.5. Universal deformation ring for a Galois character $\overline{\rho}$. Let $C_F(\mathfrak{c}p^{\infty})$ for the maximal *p*-profinite quotient of $Cl_F(\mathfrak{c}p^{\infty})$. If $\overline{\rho}$ has prime-to-*p* conductor equal to \mathfrak{c} , we define a deformation ρ to satisfy \mathcal{P} if ρ is unramified outside $\mathfrak{c}p$ and has prime-to-*p* conductor a factor of \mathfrak{c} (i.e., ρ factors through $\operatorname{Gal}(H_{\mathfrak{c}p^{\infty}}/F)$).

For the Teichmüller lift ρ_0 of $\overline{\rho}$ and the inclusion $\kappa : C_F(\mathfrak{c}p^{\infty}) \hookrightarrow W[[C_F(\mathfrak{c}p^{\infty})]]$, we define $\rho(\sigma) := \rho_0(\sigma)\kappa(\sigma)$. Then the universality of the group algebra tells us

Theorem 3.1. The couple $(W[[C_F(\mathfrak{c}p^{\infty})]], \rho)$ is universal among all \mathcal{P} -deformations. If $\overline{\rho}$ is unramified everywhere, $(W[[C_F]], \rho)$ for $C_F := Cl_{F,p}$ is universal among everywhere unramified deformations.

3.6. Congruence modules for group algebras. Let H be a finite p-abelian group. If \mathfrak{m} is a maximal ideal of W[H], then for the inclusion $\kappa : H \hookrightarrow W[H]^{\times}$ with $\kappa(\sigma) = \sigma$, $\kappa \mod \mathfrak{m}$ is trivial as the finite field $W[H]/\mathfrak{m}$ has no non-trivial p-power roots of unity; so, \mathfrak{m} is generated by $\{\sigma - 1\}_{h \in H}$ and \mathfrak{m}_W . Thus \mathfrak{m} is unique and W[H] is a local ring.

We have a canonical algebra homomorphism: $W[H] \to W$ sending $\sigma \in H$ to 1. This homomorphism is called the *augmentation* homomorphism of the group algebra. Write this map $\pi : W[H] \to W$. Then $\mathfrak{b} = \operatorname{Ker}(\pi)$ is generated by $\sigma - 1$ for $\sigma \in H$. Thus

$$\mathfrak{b} = \sum_{\sigma \in H} W[H](\sigma - 1)W[H].$$

We compute the congruence module and the differential module $C_i(\pi, W)$ (j = 0, 1).

Theorem 3.2. We have

$$C_0(\pi; W) \cong W/|H|W$$
 and $C_1(\pi; W) = H \otimes_{\mathbb{Z}} W$.

Proof. Let $K := \operatorname{Frac}(W)$. Then π gives rise to the algebra direct factor $K\varepsilon \subset K[H]$ for the idempotent $\varepsilon = \frac{1}{|H|} \sum_{\sigma \in H} \sigma$. Thus $\mathfrak{a} = K\varepsilon \cap W[H] = (\sum_{\sigma \in H} \sigma)$ and $\pi(W(H))/\mathfrak{a} = (\varepsilon)/\mathfrak{a} \cong W/|H|W$. Consider the functor $\mathcal{F} : CL_W \to SETS$ given by

$$\mathcal{F}(A) = \operatorname{Hom}_{\operatorname{group}}(H, A^{\times}) = \operatorname{Hom}_{W-\operatorname{alg}}(W[H], A).$$

Thus R := W[H] and the character $\rho : H \to W[H]$ (the inclusion: $H \hookrightarrow W[H]$) are universal among characters of H with values in $A \in CL_W$.

Then for any *R*-module *X*, consider $R[X] = R \oplus X$ with algebra structure given by rx = 0 and xy = 0for all $r \in R$ and $x, y \in X$. Thus *X* is an ideal of R[X] with $X^2 = 0$. Define $\Phi(X) = \{\rho \in \mathcal{F}(R[X]) | \rho \mod X = \rho\}$. Write $\rho(\sigma) = \rho(\sigma) \oplus u'_{\rho}(\sigma)$ for $u'_{\rho} : H \to X$. Since

$$\boldsymbol{\rho}(\sigma\tau) \oplus u'_{\rho}(\sigma\tau) = \rho(\sigma\tau) = (\boldsymbol{\rho}(\sigma) \oplus u'_{\rho}(\sigma))(\boldsymbol{\rho}(\tau) \oplus u'_{\rho}(\tau)) = \boldsymbol{\rho}(\sigma\tau) \oplus (u'_{\rho}(\sigma)\boldsymbol{\rho}(\tau) + \boldsymbol{\rho}(\sigma)u'_{\rho}(\tau)),$$

we have $u'_{\rho}(\sigma\tau) = u'_{\rho}(\sigma)\rho(\tau) + \rho(\sigma)u'_{\rho}(\tau)$, and thus $u_{\rho} := \rho^{-1}u'_{\rho} : H \to X$ is a homomorphism from H into X. This shows

$$\operatorname{Hom}(H, X) = \Phi(X)$$

Any W-algebra homomorphism $\xi : R \to R[X]$ with $\xi \mod X = \operatorname{id}_R$ can be aritten as $\xi = \operatorname{id}_R \oplus d_{\xi}$ with $d_{\xi} : R \to X$. Since $(r \oplus x)(r' \oplus x') = rr' \oplus rx' + r'x$ for $r, r' \in R$ and $x.x' \in X$, we have $d_{\xi}(rr') = rd_{\xi}(r') + r'd_{\xi}(r)$; so, $d_{\xi} \in Der_W(R, X)$. By universality of (R, ρ) , we have

$$\Phi(X) \cong \{\xi \in \operatorname{Hom}_{W-\operatorname{alg}}(R, R[X]) | \xi \mod X = \operatorname{id}\} = Der_W(R, X) = \operatorname{Hom}_R(\Omega_{R/W}, X).$$

Thus taking X = K/W, we have

 $\operatorname{Hom}_W(H \otimes_{\mathbb{Z}} W, K/W) = \operatorname{Hom}_(H, K/W) = \operatorname{Hom}_R(\Omega_{R/W}, K/W) = \operatorname{Hom}_W(\Omega_{R/W} \otimes_{R,\pi} W, K/W).$

By taking Pontryagin dual back, we have

$$H \cong \Omega_{R/W} \otimes_{R,\pi} W = C_1(\pi; W)$$

as desired.

3.7. Class group and Selmer group. Let $\operatorname{Ind}_F^{\mathbb{Q}} \operatorname{id} = \operatorname{id} \oplus \chi$ and $H = C_F$. Then for Ω_F given basically by the regulator and some power of $(2\pi i)$,

$$|L(1,\chi)/\Omega_F|_p = \left||C_F|\right|_p.$$

We can identify $C_F^{\vee} = \operatorname{Hom}(C_F, \mathbb{Q}_p/\mathbb{Z}_p)$ with the Selmer group of χ given by

$$\operatorname{Sel}_{\mathbb{Q}}(\chi) := \operatorname{Ker}(H^1(\mathbb{Q}, V(\chi)^*) \to \prod_l H^1(I_l, V(\chi)^*))$$

for the inertia group $I_l \subset \operatorname{Gal}(\overline{\mathbb{Q}}_l/\mathbb{Q}_l)$.

3.8. Class number formula.

Theorem 3.3 (Class number formula). Assume that F/\mathbb{Q} is a Galois extension and $p \nmid [F : \mathbb{Q}]$. For the augmentation homomorphism $\pi : W[C_F] \to W$, we have, for $r(W) = \operatorname{rank}_{\mathbb{Z}_n} W$,

$$\left|\frac{L(1,\chi)}{\Omega_F}\right|_p^{r(W)} = |C_1(\pi;W)|^{-1} = |C_0(\pi;W)|^{-1} = \left||\operatorname{Sel}_{\mathbb{Q}}(\chi)|\right|_p^{r(W)}$$

and $C_1(\pi; W) = C_F \otimes W$ and $C_0(\pi; W) = W/|C_F|W$.

4. Number of generators of adjoint Selmger grioups

The dimension d of the tangent space of a local ring R over \mathbb{F} gives the number of generators of the ring R. We describe this fact. Using this fact, we prove that $\Omega_{R/W}$ is generated by d elements as R-modules. We fix a generator ϖ of the maximal ideal \mathfrak{m}_W of W.

Hereafter, we fix a finite set S of rational primes (including infinite places), and we let $\mathfrak{G}_{\mathbb{Q}}$ denote the Galois group over \mathbb{Q} of the maximal extension unramified outside S.

4.1. Tangent spaces of local rings. To study noetherian property of deformation ring, here is a useful lemma for an object R in CL_W :

Lemma 4.1. If $t_{R/W}^* = \mathfrak{m}_R/(\mathfrak{m}_R^2 + \mathfrak{m}_W)$ is a finite dimensional vector space over \mathbb{F} , then $R \in CL_W$ is noetherian.

The space $t_{R/W}^*$ is called the co-tangent space of R at $\mathfrak{m}_R = (\varpi) \in \operatorname{Spec}(R)$ over $\operatorname{Spec}(W)$. Define t_R^* by $\mathfrak{m}_R/\mathfrak{m}_R^2$, which is called the (absolute) co-tangent space of R at \mathfrak{m}_R .

Proof. Since we have an exact sequence:

$$\mathbb{F} \xrightarrow[a \mapsto a\varpi]{\sim} \mathfrak{m}_W/\mathfrak{m}_W^2 \longrightarrow t_R^* \longrightarrow t_{R/W}^* \longrightarrow 0,$$

we conclude that t_R^* is of finite dimension over \mathbb{F} if $t_{R/W}^*$ is of finite dimensional.

First suppose that $\mathfrak{m}_R^N = 0$ for sufficiently large N. Let $\overline{x}_1, \ldots, \overline{x}_m$ be an \mathbb{F} -basis of t_R^* . Choose $x_j \in R$ so that $x_j \mod \mathfrak{m}_R^2 = \overline{x}_j$. and consider the ideal \mathfrak{a} generated by x_j . We have $\mathfrak{a} = \sum_j Rx_j \hookrightarrow \mathfrak{m}_R$ (the inclusion).

 \Box

After tensoring R/\mathfrak{m}_R , we have the surjectivity of the induced linear map: $\mathfrak{a}/\mathfrak{m}_R\mathfrak{a}\cong\mathfrak{a}\otimes_R R/\mathfrak{m}_R\to$ $\mathfrak{m} \otimes_R R/\mathfrak{m}_R \cong \mathfrak{m}/\mathfrak{m}_R^2$ because $\{\overline{x}_1, \ldots, \overline{x}_m\}$ is an \mathbb{F} -basis of t_R^* . This shows that $\mathfrak{m}_R = \mathfrak{a} = \sum_j Rx_j$ (NAK: Nakayama's lemma applied to the cokernel of $R^m \ni (a_1, \ldots, a_m) \mapsto \sum_j a_j x_j \in \mathfrak{m}_R$). Therefore $\mathfrak{m}_R^k/\mathfrak{m}_R^{k+1}$ is generated by the monomials in x_j of degree k as an \mathbb{F} -vector space.

In particular, \mathfrak{m}_R^{N-1} is generated by the monomials in $(x_0 := \varpi, x_1, \dots, x_m)$ of degree N-1. Inductive step: Define $\pi: B = W[[X_1, \ldots, X_m]] \to R$ by $\pi(f(X_1, \ldots, X_m)) = f(x_1, \ldots, x_m)$. Since any monomial of degree > N vanishes after applying π , π is a well defined W-algebra homomorphism. Let $\mathfrak{m} = \mathfrak{m}_B = (\varpi, X_1, \cdots, X_m)$ be the maximal ideal of B. By definition,

$$\pi(\mathfrak{m}^{N-1})=\mathfrak{m}_R^{N-1}$$

Suppose now that $\pi(\mathfrak{m}^{N-j}) = \mathfrak{m}_R^{N-j}$, and try to prove the surjectivity of $\pi(\mathfrak{m}^{N-j-1}) = \mathfrak{m}_R^{N-j-1}$. Since $\mathfrak{m}_R^{N-j-1}/\mathfrak{m}_R^{N-j}$ is generated by monomials of degree N-j-1 in x_j , for each $x \in \mathfrak{m}_R^{N-j-1}$, we find a homogeneous polynomial $P \in \mathfrak{m}^{N-j-1}$ of x_1, \ldots, x_m of degree N-j-1 such that $x - \pi(P) \in \mathfrak{m}_R^{N-j} = \pi(\mathfrak{m}^{N-j})$. This shows $\pi(\mathfrak{m}^{N-j-1}) = \mathfrak{m}_R^{N-j-1}$. Thus by induction on j, we get the surjectivity of π .

General case: Write $R = \lim_{i \to i} R_i$ for Artinian rings R_i . The projection maps are onto: $t^*_{R_{i+1}} \twoheadrightarrow t^*_{R_i}$. Since t_R^* is of finite dimensional, for sufficiently large *i*,

$$t_{R_{i+1}}^* \cong t_{R_i}^*$$

Thus choosing x_j as above in R, we have its image $x_j^{(i)}$ in R_i .

Use $x_i^{(i)}$ to construct $\pi_i : W[[X_1, \ldots, X_m]] \to R_i$ in place of x_j . Then π_i is surjective as already shown, and

$$\pi = \varprojlim_i \pi_i : W[[X_1, \dots, X_m]] \to R$$

remains surjective, because projective limit of continuous surjections, if all sets involved are compact sets, remain surjective; so, R is noetherian as profinite sets are compact.

4.2. Tangent space as adjoint cohomology group. Let $R = R_{\overline{\nu}}$ be the universal ring for a mod p-Galois absolutely irreducible representation $\overline{\rho} : \mathfrak{G}_{\mathbb{O}} \to GL_n(\mathbb{F}).$

We identify $t^*_{R/W}$ with a certain cohomology group $H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$ and in this way, we prove finite dimensionality: $\dim_{\mathbb{F}} t^*_{R/W} < \infty$ (and hence $R_{\overline{\rho}}$ is noetherian).

Let $M_n(\mathbb{F})$ be the space of $n \times n$ matrices with coefficients in \mathbb{F} . We let $\mathfrak{G}_{\mathbb{O}}$ acts on $M_n(\mathbb{F})$ by $gv = \overline{\rho}(g)v\overline{\rho}(g)^{-1}$. This action is called the **adjoint** action of $\mathfrak{G}_{\mathbb{Q}}$, and this $\mathfrak{G}_{\mathbb{Q}}$ -module will be written as $ad(\overline{\rho})$.

Write Z for the center of $M_n(\mathbb{F})$ and define $\mathfrak{sl}_n(\mathbb{F}) = \{X \in M_n(\mathbb{F}) | \operatorname{Tr}(X) = 0\}$. Since $\operatorname{Tr}(aXa^{-1}) =$ $\operatorname{Tr}(X)$, $\mathfrak{sl}_n(\mathbb{F})$ is stable under the adjoint action. This Galois module will be written as $Ad(\overline{\rho})$.

If $p \nmid n, X \mapsto \frac{1}{n} \operatorname{Tr}(X) \oplus (X - \frac{1}{n} \operatorname{Tr}(X))$ gives rise to $M_n(\mathbb{F}) = Z \oplus \mathfrak{sl}_n(\mathbb{F})$ stable under the adjoint action. So we have $ad(\overline{\rho}) = \mathbf{1} \oplus Ad(\overline{\rho})$ if $p \nmid n$, where **1** is the trivial representation.

Lemma 4.2. Let $R = R_{\overline{\rho}}$ for an absolutely irreducible representation $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to GL_n(\mathbb{F})$. Then

$$t_{R/W} = \operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F}) \cong H^1(\mathfrak{G}_{\mathbb{O}}, ad(\overline{\rho})),$$

where $H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$ is the continuous first cohomology group of $\mathfrak{G}_{\mathbb{Q}}$ with coefficients in the discrete $\mathfrak{G}_{\mathbb{O}}$ -module $V(ad(\overline{\rho}))$.

The space $t_{R/W}$ is called the tangent space of $\operatorname{Spec}(R)_{/W}$ at \mathfrak{m} . In the following proof of the lemma, we write $G = \mathfrak{G}_{\mathbb{Q}}$ and $R = R_{\overline{\rho}}$.

Proof. Step. 1, dual number. Let $A = \mathbb{F}[\varepsilon] = \mathbb{F}[X]/(X^2)$ with $X \leftrightarrow \varepsilon$. Then $\varepsilon^2 = 0$. We claim: $\operatorname{Hom}_{W-\operatorname{alg}}(R, A) \cong t_{R/W}.$

Construction of the map.

Start with a W-algebra homomorphism $\phi: R \to A$. Write

$$\phi(r) = \phi_0(r) + \phi_{\varepsilon}(r)\varepsilon \text{ with } \phi_0(r), \phi_{\varepsilon}(r) \in \mathbb{F}.$$

Then the map is $\phi \mapsto \ell_{\phi} = \phi_{\varepsilon}|_{\mathfrak{m}_R}$.

Step. 2, Well defined-ness of ℓ_{ϕ} . From $\phi(ab) = \phi(a)\phi(b)$, we get

$$\phi_0(ab) = \phi_0(a)\phi_0(b)$$
 and $\phi_\varepsilon(ab) = \phi_0(a)\phi_\varepsilon(b) + \phi_0(b)\phi_\varepsilon(a)$

Thus $\phi_{\varepsilon} \in Der_W(R, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}}(\Omega_{R/W} \otimes_R \mathbb{F}, \mathbb{F})$. Since for any derivation $\delta \in Der_W(R, \mathbb{F}), \phi' = \phi_0 + \delta \varepsilon \in \operatorname{Hom}_{W-alg}(R, A)$, we find

$$\operatorname{Hom}_{R}(\Omega_{R/W} \otimes_{R} \mathbb{F}, \mathbb{F}) \cong Der_{W}(R, A) \cong \operatorname{Hom}_{W-\operatorname{alg}}(R, A).$$

and $\operatorname{Ker}(\phi_0) = \mathfrak{m}_R$ because R is local. Since ϕ is W-linear, $\phi_0(a) = \overline{a} = a \mod \mathfrak{m}_R$.

Thus ϕ kills \mathfrak{m}_R^2 and takes $\mathfrak{m}_R W$ -linearly into $\mathfrak{m}_A = \mathbb{F}\varepsilon$; so, $\ell_\phi : t_R^* \to \mathbb{F}$. For $r \in W$, $\overline{r} = r\phi(1) = \phi(r) = \overline{r} + \phi_\varepsilon(r)\varepsilon$, and hence ϕ_ε kills W; so, $\ell_\phi \in t_{R/W}$.

Step. 3, injectivity of $\phi \mapsto \ell_{\phi}$. Since R shares its residue field \mathbb{F} with W, any element $a \in R$ can be written as a = r + x with $r \in W$ and $x \in \mathfrak{m}_R$. Thus ϕ is completely determined by the restriction ℓ_{ϕ} of ϕ_{ε} to \mathfrak{m}_R , which factors through $t^*_{R/W}$. Thus $\phi \mapsto \ell_{\phi}$ induces an injective linear map $\ell : \operatorname{Hom}_{W-alg}(R, A) \hookrightarrow \operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F}).$

Note $R/(\mathfrak{m}_R^2 + \mathfrak{m}_W) = \mathbb{F} \oplus t_{R/W}^* = \mathbb{F}[t_{R/W}^*]$ with the projection $\pi : R \to t_{R/W}^*$ to the direct summand $t_{R/W}^*$. Indeed, writing $\overline{r} = (r \mod \mathfrak{m}_R)$, for the inclusion $\iota : \mathbb{F} = W/\mathfrak{m}_W \hookrightarrow R/(\mathfrak{m}_R^2 + m_W)$, $\pi(r) = r - \iota(\overline{r})$.

Step. 4, surjectivity of $\phi \mapsto \ell_{\phi}$. For any $\ell \in \operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$, we extend ℓ to R by putting $\ell(r) = \ell(\pi(r))$. Then we define $\phi: R \to A$ by $\phi(r) = \overline{r} + \ell(\pi(r))\varepsilon$. Since $\varepsilon^2 = 0$ and $\pi(r)\pi(s) = 0$ in $\mathbb{F}[t^*_{R/W}]$, we have

$$rs = (\overline{r} + \pi(r))(\overline{s} + \pi(s)) = \overline{rs} + \overline{s}\pi(r) + \overline{r}\pi(s) \xrightarrow{\phi} \overline{rs} + \overline{s}\ell(\pi(r))\varepsilon + \overline{r}\ell(\pi(s))\varepsilon = \phi(r)\phi(s)$$

is an W-algebra homomorphism. In particular, $\ell(\phi) = \ell$, and hence ℓ is surjective.

By $\operatorname{Hom}_R(\Omega_{R/W} \otimes_R \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_{W-\operatorname{alg}}(R, A)$, we have

$$\operatorname{Hom}_{R}(\Omega_{R/W} \otimes_{R} \mathbb{F}, \mathbb{F}) \cong \operatorname{Hom}_{\mathbb{F}}(t_{R/W}^{*}, \mathbb{F});$$

so, if $t_{R/W}^*$ is finite dimensional, we get

(4.1)
$$\Omega_{R/W} \otimes_R \mathbb{F} \cong t_{R/W}^*.$$

Step. 5, use of universality. By the universality, we have

$$\operatorname{Hom}_{W-alg}(R,A) \cong \{\rho: G \to GL_n(A) | \rho \mod \mathfrak{m}_A = \overline{\rho}\} / \sim .$$

Write $\rho(g) = \overline{\rho}(g) + u'_{\phi}(g)\varepsilon$ for ρ corresponding to $\phi: R \to A$. From the mutiplicativity, we have

$$\overline{\rho}(gh) + u_{\phi}'(gh)\varepsilon = \rho(gh) = \rho(g)\rho(h) = \overline{\rho}(g)\overline{\rho}(h) + (\overline{\rho}(g)u_{\phi}'(h) + u_{\phi}'(g)\overline{\rho}(h))\varepsilon,$$

Thus as a function $u': G \to M_n(\mathbb{F})$, we have

(4.2)
$$u'_{\phi}(gh) = \overline{\rho}(g)u'_{\phi}(h) + u'_{\phi}(g)\overline{\rho}(h).$$

Step. 6, Getting 1-cocycle. Define a map $u_{\rho} = u_{\phi} : G \to ad(\overline{\rho})$ by

$$u_{\phi}(g) = u'_{\phi}(g)\overline{\rho}(g)^{-1}.$$

Then by a simple computation, we have

$$pu_{\phi}(h) = \overline{\rho}(g)u_{\phi}(h)\overline{\rho}(g)^{-1}$$

from the definition of $ad(\overline{\rho})$. Then from the above formula (4.2), we conclude that

$$u_{\phi}(gh) = gu_{\phi}(h) + u_{\phi}(g).$$

Thus $u_{\phi}: G \to ad(\overline{\rho})$ is a 1-cocycle. Thus we get an \mathbb{F} -linear map

$$t_{R/W} \cong \operatorname{Hom}_{W-\operatorname{alg}}(R, A) \to H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$$

by $\ell_{\phi} \mapsto [u_{\phi}]$

Step. 7, End of proof. By computation, for $x \in ad(\overline{\rho})$

$$\begin{split} \rho \sim \rho' \Leftrightarrow \overline{\rho}(g) + u'_{\rho}(g)\varepsilon &= (1 + x\varepsilon)(\overline{\rho}(g) + u'_{\rho'}(g)\varepsilon)(1 - x\varepsilon) \\ \Leftrightarrow u'_{\rho}(g) &= x\overline{\rho}(g) - \overline{\rho}(g)x + u'_{\rho'}(g) \Leftrightarrow u_{\rho}(g) = (1 - g)x + u_{\rho'}(g). \end{split}$$

Thus the cohomology classes of u_{ρ} and $u_{\rho'}$ are equal if and only if $\rho \sim \rho'$. This shows:

 $\operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F}) \cong \operatorname{Hom}_{W-alg}(R, A) \cong \{\rho : G \to GL_n(A) | \rho \mod \mathfrak{m}_A = \overline{\rho}\} / \sim \cong H^1(G, ad(\overline{\rho})).$ In this way, we get a bijection between $\operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F})$ and $H^1(G, ad(\overline{\rho})).$

4.3. *p*-Frattini condition. For each open subgroup H of a profinite group G, we write H_p for the maximal *p*-profinite quotient. Define *p*-Frattini quotient $\Phi(H_p)$ of H by $\Phi(H_p) = H_p/\overline{(H_p)^p(H_p, H_p)}$ for the the commutator subgroup (H_p, H_p) of H_p . We consider the following condition:

(Φ) For any open subgroup H of G, $\Phi(H_p)$ is a finite group.

Proposition 4.3 (Mazur). By class field theory, $\mathfrak{G}_{\mathbb{Q}}$ satisfies (Φ) , and $R_{\overline{\rho}}$ is a noetherian ring. In particular, $t^*_{R/W}$ is finite dimensional over \mathbb{F} and is isomorphic to $\Omega_{R/W} \otimes_R \mathbb{F}$ (see (4.1)).

By this fact, hereafter we always assume that the deformation functor is defined over $CNL_{/W}$.

Proof. Let $H = \text{Ker}(\overline{\rho})$. Then the action of H on $ad(\overline{\rho})$ is trivial. By the inflation-restriction sequence for $G = \mathfrak{G}_{\mathbb{Q}}$, we have the following exact sequence:

$$0 \to H^1(G/H, H^0(H, ad(\overline{\rho}))) \to H^1(G, ad(\overline{\rho})) \to \operatorname{Hom}(\Phi(H_p), M_n(\mathbb{F})).$$

From this, it is clear that

$$\dim_{\mathbb{F}} H^1(G, ad(\overline{\rho})) < \infty.$$

The fact that $\mathfrak{G}_{\mathbb{Q}}$ satisfies (Φ) follows from class field theory. Indeed, if F is the fixed field of H, then $\Phi(H_p)$ fixes the maximal abelian extension M/F unramified outside p. By class field theory, [M:F] is finite.

Corollary 4.4. $\Omega_{R/W}$ is an *R*-module of finite type, and its minimal number of generators over *R* is equal to

$$\dim_{\mathbb{F}} \Omega_{R/W} \otimes_R \mathbb{F} = \dim_{\mathbb{F}} t_{R/W}.$$

Proof. For any *R*-module *M*, Nakayama's lemma tells us $M \otimes_R \mathbb{F} = 0 \Rightarrow M = 0$. Choose a basis $B = \{\overline{b}\}$ of $M/\mathfrak{m}_R M = M \otimes_R \mathbb{F}$ and suppose *B* is finite. Lift \overline{b} to $b \in M$, and consider the *R*-linear map $\pi : \bigoplus_{g \in B} R \ni (a_{\overline{b}})_{\overline{b} \in B} \mapsto \sum_{\overline{b}} a_{\overline{b}} b \in M$. Tensoring \mathbb{F} over *R*, we find $\operatorname{Coker}(\pi) \otimes_R \mathbb{F} = 0$; so, $\operatorname{Coker}(\pi) = 0$. This implies that $\{b|\overline{b} \in B\}$ is the minimal generators of *M* over *R*. Apply this to $M = \Omega_{R/W}$, we get the result by Proposition 4.3.

5. Adjoint Selmer groups and differentials

We define $\operatorname{Sel}(Ad(\rho))$ for ordinary deformations ρ of an **absolutely irreducible** 2-dimensional Galois representation $\overline{\rho}$ and show that $\operatorname{Sel}(Ad(\overline{\rho})) = t_{R/W}$ and $\operatorname{Sel}(Ad(\rho)) \cong \Omega_{R/W}$ for the universal ordinary Galois representation ρ deforming $\overline{\rho}$.

We write I_p for the inertia group of $D_p = \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

5.1. *p*-Ordinarity condition. Let $\rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(A)$ $(A \in CL_{/W})$ be a deformation of $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F})$ acting on $V(\rho)$. We say ρ is *p*-ordinary if

 $(\operatorname{ord}_p) \ \rho|_{D_p} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ for two characters $\epsilon, \delta : D_p \to A^{\times}$ distinct modulo \mathfrak{m}_A with δ unramified.

So, $\overline{\rho} = \rho|_{D_p} \cong \begin{pmatrix} \overline{\epsilon} & * \\ 0 & \overline{\delta} \end{pmatrix}$ with $\delta \mod \mathfrak{m}_A = \overline{\delta}$ which is a requirement. We also consider a similar condition for $l \in S$ $(l \neq p)$:

(ord_l) We have a non-trivial character $\epsilon_l : I_l \to W^{\times}$ of order prime to p such that $\rho|_{I_l} \cong \begin{pmatrix} \iota_A \circ \epsilon_l & 0 \\ 0 & 1 \end{pmatrix}$, where $\iota_A : W \to A$ is the W-algebra structure morphism.

We always impose these two conditions (ord_p) and (ord_l) for $l \in S$. In most cases, we fix a character $\chi : \mathfrak{G}_{\mathbb{Q}} \to W^{\times}$, we consider

(det)
$$\det \rho = \iota_A \circ \chi.$$

5.2. Ordinary deformation functor. We consider the following functor for a fixed absolutely irreducible representation $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F})$ satisfying (ord_p) and (ord_l) . Then we consider $\mathcal{D}, \mathcal{D}_{\chi} : CL_{/W} \to SETS$ given by

$$\mathcal{D}(A) = \{\rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(A) | \rho \mod \mathfrak{m}_A \cong \overline{\rho}, \rho \text{ satisfies } (\mathrm{ord}_p) \text{ and } (\mathrm{ord}_l) \} / \cong$$

and

$$\mathcal{D}_{\chi}(A) = \{ \rho \in \mathcal{D}(A) | \det \rho = \iota_A \circ \chi \}.$$

Then

Theorem 5.1 (B. Mazur). There exists a universal couple $(R^{ord}, \rho = \rho^{ord})$ and (R_{χ}, ρ_{χ}) representing \mathcal{D} and \mathcal{D}_{χ} , respectively, so that $\mathcal{D}(A) \cong \operatorname{Hom}_{W-alg}(R^{ord}, A)$ by $\rho \mapsto \varphi$ with $\varphi \circ \rho^{ord} = \rho$ (resp. $\mathcal{D}_{\chi}(A) \cong \operatorname{Hom}_{W-alg}(R_{\chi}, A)$ by $\rho \mapsto \varphi$ with $\varphi \circ \rho_{\chi} = \rho$).

For a proof, see $[MFG, \S2.3.2, \S3.2.4]$.

5.3. Fiber products. Let $\mathcal{F} : CL_{/W} \to SETS$ be a covariant functor with $|\mathcal{F}(\mathbb{F})| = 1$. Let $\mathcal{C} = SETS$ or $CL_{/W}$. For morphisms $\phi' : S' \to S$ and $\phi'' : S'' \to S$ in \mathcal{C} ,

$$S' \times_S S'' = \{(a', a'') \in S' \times S'' | \phi'(a') = \phi''(a'') \}$$

gives the fiber product of S' and S'' over S in \mathcal{C} . We assume that

$$\mathcal{F}(\mathbb{F})| = 1 \text{ and } \mathcal{F}(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon]) = \mathcal{F}(\mathbb{F}[\varepsilon]) \times_{\mathcal{F}(\mathbb{F})} \mathcal{F}(\mathbb{F}[\varepsilon])$$

by two projections.

It is easy to see $\mathcal{F} = \mathcal{D}$ and \mathcal{D}_{χ} satisfies this condition. Indeed, noting that $\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] \cong \mathbb{F}[\varepsilon'] \times_{\mathbb{F}} \mathbb{F}[\varepsilon''] \cong \mathbb{F}[\varepsilon', \varepsilon'']$, if $\rho' \in \mathcal{F}(\mathbb{F}[\varepsilon'])$ and $\rho'' \in \mathcal{F}(\mathbb{F}[\varepsilon''])$, we have $\rho' \times \rho$ has values in $\mathrm{GL}_2(\mathbb{F}[\varepsilon', \varepsilon''])$ is an element in $\mathcal{F}(\mathbb{F}[\varepsilon'] \times_{\mathbb{F}} \mathbb{F}[\varepsilon''])$.

5.4. Slight generalization. For any $A \in CL_{/W}$ and an A-module X, suppose $|\mathcal{F}(A)| = 1$ and $\mathcal{F}(A[X] \times_A A[X]) = \mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X])$. Then $A[X] \times_A A[X] = A[X \oplus X]$. The addition on X and A-linear map $\alpha : X \to X$ induces in the same way $CL_{/W}$ -morphisms $+_* : A[X \oplus X] \to A[X]$ by $a + (x \oplus y) \mapsto a + x + y$ and $\alpha_* : A[X] \to A[X]$ by $a + x \mapsto a + \alpha(x)$. Thus we have by functoriality. the "addition"

$$+: \mathcal{F}(A[X]) \times_{\mathcal{F}(A)} \mathcal{F}(A[X]) = \mathcal{F}(A[X \oplus X]) \xrightarrow{\mathcal{F}(+_*)} \mathcal{F}(A[X])$$

and α -action

$$\alpha: \mathcal{F}(A[X]) \xrightarrow{\mathcal{F}(\alpha_*)} \mathcal{F}(A[X]).$$

With $\mathbf{0} = \operatorname{Im}(\mathcal{F}(A) \to \mathcal{F}(A[X]))$ for the inclusion $A \hookrightarrow A[X]$, this makes $\mathcal{F}(A[X])$ as an A-module.

5.5. Tangent space of deformation functors. Identify $\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon]$ with $\mathbb{F}[\varepsilon', \varepsilon'']$ ($\varepsilon'\varepsilon'' = 0$ and $\dim_{\mathbb{F}} \mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] = 3$ but $\dim_{\mathbb{F}} \mathbb{F}[\varepsilon] \otimes_{\mathbb{F}} \mathbb{F}[\varepsilon] = 4$). It is easy to see that $a + b\varepsilon' + c\varepsilon'' \mapsto a + (a + c)\varepsilon$ gives an onto $CL_{/W}$ -morphism $a : \mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon] \to \mathbb{F}[\varepsilon]$ which induces

$$+: \mathcal{F}(\mathbb{F}[\varepsilon]) \times \mathcal{F}(\mathbb{F}[\varepsilon]) = \mathcal{F}(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon]) \xrightarrow{\mathcal{F}(a)} \mathcal{F}(\mathbb{F}[\varepsilon]).$$

Plainly this is associative and commutative, and for the inclusion $0 : \mathbb{F} \hookrightarrow \mathbb{F}[\varepsilon]$, we have $\mathbf{0} := \operatorname{Im}(\mathcal{F}(0)(\mathcal{F}(\mathbb{F}))) \in \mathcal{F}(\mathbb{F}[\varepsilon])$ gives the identity. Thus $\mathcal{F}(\mathbb{F}[\varepsilon])$ is an abelian group.

Similarly, for $\alpha \in \mathbb{F}$, $a + b\varepsilon \mapsto a + \alpha b\varepsilon$ is an automorphism of $\mathbb{F}[\varepsilon]$ in $CL_{/W}$. This induces a multiplication on $\mathcal{F}(\mathbb{F}[\varepsilon])$ by scalar in \mathbb{F} . We see that $\mathcal{F}(\mathbb{F}[\varepsilon])$ is an \mathbb{F} -vector space, and $\mathcal{F}(\mathbb{F}[\varepsilon])$ is called the **tangent space** of the functor \mathcal{F} .

5.6. Tangent space of rings and deformation functor.

Lemma 5.2. Let $\mathcal{F} = \mathcal{D}$ or \mathcal{D}_{χ} and $R = R^{ord}$ or R_{χ} accordingly. Then $t_{R/W} \cong \mathcal{F}(\mathbb{F}[\varepsilon])$ as \mathbb{F} -vector spaces.

Proof. Write $\mathcal{D}^{\emptyset} : CL_{/W} \to SETS$ for the deformation functor defined by $\mathcal{D}^{\emptyset}(A) = \{\rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(A) | (\rho \mod \mathfrak{m}_A) = \overline{\rho} \} / \sim$ without any extra properties. Let $R_{\overline{\rho}}$ be the universal ring for \mathcal{D}^{\emptyset} . We have got a canonical bijection in Lemma 5.2:

$$\mathcal{D}^{\emptyset}(\mathcal{F}[\varepsilon]) \xrightarrow[i_1]{i_1 \text{ onto}} H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho})) \xrightarrow[i]{\sim} t_{R_{\overline{\rho}}/W}$$

with a vector space isomorphism *i*. We have constructed a cocycle u_{ρ} from $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ writing $\rho = \overline{\rho} + u_{\rho}\overline{\rho}\varepsilon$. Regarding $(\rho, \rho') \in \mathcal{F}(\mathbb{F}[\varepsilon]) \times \mathcal{F}(\mathbb{F}[\varepsilon]) = \mathcal{F}(\mathbb{F}[\varepsilon] \times_{\mathbb{F}} \mathbb{F}[\varepsilon])$, we see that $+(\rho, \rho') = \overline{\rho} + (u_{\rho}\overline{\rho} + u_{\rho'}\overline{\rho})\varepsilon \in \mathcal{F}(\mathbb{F}[\varepsilon])$; so, i_1 is a homomorphism. Similarly, one can check that it is \mathbb{F} -linear.

5.7. Tangent space as cohomology group with local condition. We identify $\mathcal{F}(\mathbb{F}[\varepsilon])$ with a \mathbb{F} -vector subspace of $H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$. We want to explicitly determine $\mathcal{F}(\mathbb{F}[\varepsilon])$. Since corresponding cohomology class corresponds to strict conjugacy class, we may choose by (ord_p) a basis (dependent on $l \in S \cup \{p\}$) of $V(\rho)$ for $\rho \in \mathcal{F}(\mathbb{F}[\varepsilon])$ so that $\rho|_{D_p}$ is upper triangular with quotient character δ congruent to $\overline{\delta}$ modulo \mathfrak{m}_A . Similarly by (ord_l) , we choose the basis so that $\rho|_{I_l} = \epsilon_l \oplus \mathbf{1}$ in this order.

Theorem 5.3. A 1-cocycle u gives rise to a class in $\mathcal{D}_{\chi}(\mathbb{F}[\varepsilon])$ if and only if $u(I_l) = 0$ for all prime $l \in S$ not equal to $p, u|_{D_p}$ is upper triangular, $u|_{I_p}$ is upper nilpotent and $\operatorname{Tr}(u) = 0$ over $\mathfrak{G}_{\mathbb{Q}}$, where $\overline{v} = v \mod (\epsilon)$.

Note that the description of cocycles u is independent of χ ; so, even if one changes χ , the tangent space $t_{R_{\chi}/W}$ is independent as a cohomology subgroup as long as \mathbb{F} does not change.

Proof. By (det), $1 = \det(\rho\overline{\rho}^{-1}) = 1 + u_{\rho}\varepsilon = 1 + \operatorname{Tr}(u_{\rho})\varepsilon$; so, (det) \Leftrightarrow $\operatorname{Tr}(u) = 0$ over $\mathfrak{G}_{\mathbb{Q}}$. Thus we $t_{R_{\chi}/W} \subset H^{1}(\mathfrak{G}_{\mathbb{Q}}, Ad(\overline{\rho})).$

Choose a generator $w \in V(\epsilon)$ over $\mathbb{F}[\varepsilon]$. Then (w, v) is a basis of $V(\rho)$ over $\mathbb{F}[\varepsilon]$. Let $(\overline{w}, \overline{v}) = (w, v)$ mod ε and identify $V(ad(\overline{\rho}))$ with $M_2(\mathbb{F})$ with this basis. Then defining $\overline{\rho}$ by $(\sigma \overline{w}, \sigma \overline{v}) = (\overline{w}, \overline{v})\overline{\rho}(\sigma)$, for $\sigma \in D_p$, we have $\overline{\rho}(\sigma) = \begin{pmatrix} \overline{\epsilon}(\sigma) & *\\ 0 & \overline{\delta}(\sigma) \end{pmatrix}$ (upper triangular). If $\sigma \in I_p$, $\rho \overline{\rho}^{-1} = 1 + u_\rho$ with lower right corner of u_ρ has to vanish as $\delta = 1$ on I_p , we have $u_\rho(\sigma) \in \{\begin{pmatrix} 0 & *\\ 0 & 0 \end{pmatrix}\}$.

Since ramification at $l \neq p$ is concentrated to $\overline{\rho}$ as $\rho(I_l)$ has order prime to p, $(\text{ord}_l) \Leftrightarrow u_{\rho}(I_l) = 0$. (ord_p) is equivalent to u_{ρ} is of the form $\begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$ but by $\text{Tr}(u_{\rho}) = 0$, it has to be upper nilpotent. \Box

5.8. Mod p adjoint Selmer group. For $\mathcal{F} = \mathcal{D}$ or \mathcal{D}_{χ} , we denote the corresponding local deformation functor by

$$\mathcal{D}_l(A) = \{\rho : \operatorname{Gal}(\overline{\mathbb{Q}}_l/\mathbb{Q}_l) \to \operatorname{GL}_2(A) | \rho \mod \mathfrak{m}_A = \overline{\rho} \text{ and } \rho \text{ satisfies } (\operatorname{ord}_l) \},\$$

and $\mathcal{D}_{\chi,l}(A) = \{\rho \in \mathcal{D}_l(A) | \det(\rho) = \iota_A \circ \chi\}$. Thus by the proof of Theorem 5.3, we find

$$\mathcal{D}_{\chi}(A) = \{ \rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_{2}(A) \in \mathcal{D}^{\emptyset}(A) : \rho|_{D_{l}} \in \mathcal{D}_{\chi,l}(A) \}$$

Therefore, we have

$$\operatorname{Sel}(Ad(\overline{\rho})) := t_{R_{\chi}/W} = \operatorname{Ker}(H^{1}(\mathfrak{G}_{\mathbb{Q}}, Ad(\overline{\rho})) \to \prod_{l \in S \cup \{p\}} \frac{H^{1}(\mathbb{Q}_{l}, Ad(\overline{\rho}))}{\mathcal{D}_{\chi, l}(\mathbb{F}[\varepsilon])}),$$

and

$$\operatorname{Sel}(ad(\overline{\rho})) := t_{R^{ord}/W} = \operatorname{Ker}(H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho})) \to \prod_{l \in S \cup \{p\}} \frac{H^1(\mathbb{Q}_l, ad(\overline{\rho}))}{\mathcal{D}_l(\mathbb{F}[\varepsilon])}).$$

5.9. R^{ord} is an algebra over the Iwasawa algebra. The finite order character det($\overline{\rho}$) factors through $\operatorname{Gal}(\mathbb{Q}[\mu_{N_0}]/\mathbb{Q})$ for some positive integer N_0 . Let N_0 be the minimal such integer (called conductor of det($\overline{\rho}$)). Write $N_0 = Np^{\nu}$ for N prime to p; so, N is the prime to p-conductor of det($\overline{\rho}$). Note that det(ρ^{ord}) factors through $\operatorname{Gal}(\mathbb{Q}[\mu_{Np^{\infty}}]/\mathbb{Q}) \cong \mathbb{Z}_p^{\times} \times (\mathbb{Z}/N\mathbb{Z})^{\times}$. Write $\Gamma \cong 1 + p\mathbb{Z}_p$ be the maximal p-profinite quotient of $\operatorname{Gal}(\mathbb{Q}[\mu_{Np^{\infty}}]/\mathbb{Q})$. Supposing $\chi|_{I_l}$ has values in W^{\times} , consider the deformation functor

$$D(A) = \{ \varphi : \mathfrak{G}_{\mathbb{Q}} \to A^{\times} | \varphi \mod \mathfrak{m}_{A} = \det(\overline{\rho}), \varphi|_{I_{l}} = \iota_{A} \circ \chi|_{I_{l}} \forall l \neq p \}$$

Plainly this functor is represented by $W[[\Gamma]]$ with universal character $\kappa(\sigma) = \chi_0(\sigma)[\sigma]$, where χ_0 is the restriction of χ to $(\mathbb{Z}/N\mathbb{Z})^{\times}$ and $[\sigma]$ is the restriction of σ to \mathbb{Q}_{∞} with $\operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) = \Gamma$ for a subfield $\mathbb{Q}_{\infty} \subset \mathbb{Q}[\mu_{p^{\infty}}]$. Since det $\rho^{ord} \in D(R^{ord})$, we have $i = i_{R^{ord}} : W[[\Gamma]] \to R^{ord}$ such that det $\rho^{ord} = i \circ \kappa$.

5.10. Reinterpretation of \mathcal{D} . Consider the following deformation functor $\mathcal{D}_{\Lambda} : CL_{/\Lambda} \to SETS$

 $\mathcal{D}_{\kappa}(A) = \{\rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_{2}(A) | \rho \mod \mathfrak{m}_{A} \cong \overline{\rho}, \rho \text{ satisfies } (\mathrm{ord}_{p}), (\mathrm{ord}_{l}) \text{ and } (\mathrm{det}_{\Lambda}) \} / \cong,$

where writing $i_A : \Lambda \to A$ for Λ -algebra structure of A,

$$(\det_{\Lambda}) \qquad \qquad \det(\rho) = i_A \circ \kappa.$$

Proposition 5.4. We have $\mathcal{D}_{\kappa}(A) \cong \operatorname{Hom}_{\Lambda\text{-}alg}(R^{ord}, A)$ with universal representation $\rho^{ord} \in \mathcal{D}(R^{ord})$; so,

$$\operatorname{Sel}(Ad(\overline{\rho})) := t_{R^{ord}/\Lambda} = \operatorname{Ker}(H^1(\mathfrak{G}_{\mathbb{Q}}, Ad(\overline{\rho})) \to \prod_{l \in S \cup \{p\}} \frac{H^1(\mathbb{Q}_l, Ad(\overline{\rho}))}{\mathcal{D}_{\chi, l}(\mathbb{F}[\varepsilon])}).$$

Proof. For any $\rho \in \mathcal{D}_{\Lambda}(A)$, regard $\rho \in \mathcal{D}(A)$. Then we have $\varphi \in \operatorname{Hom}_{W-\operatorname{alg}}(R^{ord}, A)$ such that $\varphi \circ \rho^{ord} \cong \rho$. Thus $\varphi \circ \operatorname{det}(\rho^{ord}) = \operatorname{det}(\rho)$. Since $\operatorname{det}(\rho) = i_A \circ \kappa$ and $\operatorname{det}(\rho^{ord}) = i_{R^{ord}} \circ \kappa$, we find $\varphi \circ i_{R^{ord}} = i_A$, and hence $\varphi \in \operatorname{Hom}_{\Lambda-\operatorname{alg}}(R^{ord}, A)$. This shows that R^{ord} also represents \mathcal{D}_{κ} over Λ .

As we already remarked, $\mathcal{D}_{\kappa}(\mathbb{F}[\varepsilon]) = t_{R^{ord}/\Lambda} = \mathfrak{m}_{R^{ord}}/\mathfrak{m}_{R^{ord}}^2 + \mathfrak{m}_{\Lambda}$ is independent as a subgroup of $H^1(\mathfrak{G}_{\mathbb{Q}}, Ad(\overline{\rho}))$; so, we get a new expression of $Sel(Ad(\overline{\rho}))$.

By the proof, $\Omega_{R^{ord}/\Lambda} \otimes_{R^{ord}} \mathbb{F} \cong \operatorname{Sel}(Ad(\overline{\rho})) \cong \Omega_{R_{\chi}/W} \otimes_{R_{\chi}} \mathbb{F}$, so the smallest number of generators of $\Omega_{R^{ord}/\Lambda}$ as R^{ord} -modules and $\Omega_{R_{\chi}/W}$ as R_{χ} modules is equal. In the same way, the number of generators of R^{ord} as Λ -algebras and R_{χ} as W-algebras is equal.

5.11. Compatible basis of $c \in \mathcal{F}(A)$. By (ord_l) for $l \in S \cup \{p\}$, the universal representation ρ_{χ} is equipped with a basis $(\mathbf{v}_l, \mathbf{w}_l)$ so that the matrix representation with respect this basis satisfies (ord_l) . By representability, each class $c \in \mathcal{F}(A)$ has ρ such that $V(\rho) = V(\rho_{\chi}) \otimes_{R_{\chi},\varphi} A$ for a unique $\varphi \in \operatorname{Hom}_{B-\operatorname{alg}}(R_{\chi}, A)$, we can choose a unique $\rho \in c$ is equipped with a basis $\{(v_l = \mathbf{v}_l \otimes 1, w_l = \mathbf{w}_l \otimes 1\}_l$ satisfying $\{(\operatorname{ord}_l): l \in S \cup \{p\}\}$ compatible with specialization. We always choose such a specific representative ρ for each class $c \in \mathcal{F}(A)$ hereafter.

Take a finite A-module X and consider the ring $A[X] = A \oplus X$ with $X^2 = 0$. Then A[X] is still p-profinite. Pick $\rho \in \mathcal{F}(A[X])$ such that $\rho \mod X \sim \rho_0$. By our choice of representative ρ and ρ_0 as above, we may (and do) assume $\rho \mod X = \rho_0$.

5.12. General cocycle construction. Here we allow $\chi = \kappa$ but if $\chi = \kappa$, we assume that $A \in CL_{\Lambda}$. Writing B = W if χ has values in W^{\times} and Λ if $\chi = \kappa$, the functor \mathcal{F} is defined over $CL_{/B}$. Let ρ_0 act on $M_2(A)$ and $\mathfrak{sl}_2(A) = \{x \in M_2(A) | \operatorname{Tr}(x) = 0\}$ by conjugation. Write this representation $ad(\rho)$ and $Ad(\rho)$ as before. Let $ad(X) = ad(A) \otimes_A X$ and $Ad(X) = Ad(A) \otimes_A X$ and regard them as $\mathfrak{G}_{\mathbb{Q}}$ -modules by the action on ad(A) and Ad(A). Then we define

$$\Phi(A[X]) = \frac{\{\rho : \mathfrak{G}_{\mathbb{Q}} \to \operatorname{GL}_2(A[X]) | (\rho \mod X) = \rho_0, [\rho] \in \mathcal{F}(A[X]) \}}{1 + M_2(X)},$$

where $[\rho]$ is the isomorphism class in $\mathcal{F}(A)$ containing ρ and ρ is assumed to satisfy the lifting property described in §5.11.

Take X finite as above. For $\rho \in \Phi(X)$, we can write $\rho = \rho_0 \oplus u'_{\rho}$ letting ρ_0 acts on $M_2(X)$ by matrix multiplication from the right. Then as before

$$\rho_0(gh) \oplus u'_{\rho}(gh) = (\rho_0(g) \oplus u'_{\rho}(g))(\rho_0(h) \oplus u'_{\rho}(h)) = \rho_0(gh) \oplus (u'_{\rho}(g)\rho_0(h) + \rho_0(g)u'_{\rho}(h))$$

produces $u'_{\rho}(gh) = u'_{\rho}(g)\rho_0(h) + \rho_0(g)u'_{\rho}(h)$ and multiplying by $\rho_0(gh)^{-1}$ from the right, we get the cocycle relation for $u_{\rho}(g) = u'_{\rho}(g)\rho_0(g)^{-1}$:

$$u_{\rho}(gh) = u_{\rho}(g) + gu_{\rho}(h)$$
 for $gu_{\rho}(h) = \rho(g)u_{\rho}(h)\rho_0(g)^{-1}$,

getting the map $\Phi(A[X]) \to H^1(\mathfrak{G}_{\mathbb{Q}}, ad(X))$ which factors through $H^1(\mathfrak{G}_{\mathbb{Q}}, Ad(X))$. As before this map is injective A-linear map identifying $\Phi(A[X])$ with $\operatorname{Sel}(Ad(X))$.

5.13. General adjoint Selmer group. We see that $u_{\rho} : \mathfrak{G}_{\mathbb{Q}} \to Ad(X)$ is a 1-cocycle, and we get an embedding $\Phi(A[X]) \hookrightarrow H^1(\mathbb{Q}_l, Ad(X))$ for $l \in S \cup \{p\}$ by $\rho \mapsto [u_{\rho}]$. We consider local version of Φ replacing $\mathfrak{G}_{\mathbb{Q}}$ by D_l :

$$\Phi_l(A[X]) := \frac{\{\rho : D_l \to \operatorname{GL}_2(A[X]) | \widetilde{\rho} \mod X = \rho_0, [\rho] \in \mathcal{F}_l(A[X]) \}}{1 + M_2(X)},$$

and we define

$$\operatorname{Sel}(Ad(X)) := \operatorname{Ker}(H^1(\mathfrak{G}_{\mathbb{Q}}, Ad(X)) \to \prod_{l \in S \cup \{p\}} \frac{H^1(\mathbb{Q}_l, Ad(\overline{\rho}))}{\Phi_l(A[X])}),$$

If $X = \lim_{i \to i} X_i$ for finite A-modules X_i , we just define

$$\operatorname{Sel}(Ad(X)) = \varinjlim_{i} \operatorname{Sel}(Ad(X_i)).$$

Then for finite X_i ,

$$\Phi(A[X_i]) = \operatorname{Sel}(Ad(X_i)) \text{ and } \varinjlim_i \Phi(X_i) = \operatorname{Sel}(\varinjlim_i Ad(X_i)).$$

5.14. Differentials and Selmer group. For each $[\rho_0] \in \mathcal{F}(A)$, choose a representative $\rho_0 = \varphi \circ \rho$ as in §5.11. Then we have a map $\Phi(A[X]) \to \mathcal{F}(A[X])$ for each finite A-module X sending $\rho \in \Phi(A[X])$ chosen as in §5.11 to the class $[\rho] \in \mathcal{F}(A[X])$. By our choice of ρ as in §5.11, this map is injective.

Conversely pick a class $c \in \mathcal{F}(A[X])$ over $[\rho_0] \in \mathcal{F}(A)$. Then for $\rho \in c$, we have $x \in 1 + M_2(\mathfrak{m}_{A[X]})$ such that $x\rho x^{-1} \mod X = \rho_0$. By replacing ρ by $x\rho x^{-1}$ and choosing the lifted base, we conclude $\Phi(A[X]) \cong \{[\rho] \in \mathcal{F}(A[X]) | \rho \mod X \sim \rho_0\}$; so, for finite X,

$$\operatorname{Sel}(Ad(X)) = \Phi(A[X]) = \{ \phi \in \operatorname{Hom}_{B\operatorname{-alg}}(R_{\chi}, A[X]) : \phi \operatorname{mod} X = \varphi \}$$
$$= \operatorname{Der}_B(R_{\chi}, X) \xrightarrow{\operatorname{Corollary 2.3}} \operatorname{Hom}_A(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}, \varphi} A, X).$$

Thus

(5.1)
$$\operatorname{Sel}(Ad(X)) \cong \operatorname{Hom}_A(\Omega_{R_X/B} \otimes_{R_X,\varphi} A, X)$$

Theorem 5.5. We have a canonical isomorphism: $\operatorname{Sel}(Ad(\rho_0))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi},\varphi} A$.

Proof. Take the Pontryagin dual

$$A^{\vee} := \operatorname{Hom}_B(A, B^{\vee}) = \operatorname{Hom}_{\mathbb{Z}_p}(A \otimes_B B, \mathbb{Q}_p/\mathbb{Z}_p) = \operatorname{Hom}(A, \mathbb{Q}_p/\mathbb{Z}_p).$$

Since $A = \lim_{i \to i} A_i$ for finite i and $\mathbb{Q}_p/\mathbb{Z}_p = \lim_{i \to j} p^{-1}\mathbb{Z}/\mathbb{Z}$, $A^{\vee} = \lim_{i \to i} \operatorname{Hom}(A_i, \mathbb{Q}_p/\mathbb{Z}_p) = \lim_{i \to i} A_i^{\vee}$ is a union of the finite modules A_i^{\vee} . We define $\operatorname{Sel}(Ad(\rho_0)) := \lim_{i \to j} \operatorname{Sel}(Ad(A_i^{\vee}))$. Defining $\Phi(A[A^{\vee}]) = \lim_{i \to i} \Phi_i(A[A_i^{\vee}])$, we see from compatibility of cohomology with injective limit

$$\operatorname{Sel}(Ad(\rho_0)) = \varinjlim_{i} \operatorname{Sel}(Ad(A_i^{\vee})) = \varinjlim_{j} \operatorname{Ker}(H^1(\mathfrak{G}_{\mathbb{Q}}, Ad(A_i^{\vee})) \to \prod_{l \in S \cup \{p\}} \frac{H^1(\mathbb{Q}_l, Ad(A_i^{\vee}))}{\Phi_l(A[A_i^{\vee}])})$$

By the boxed formula (5.1),

$$\begin{aligned} \operatorname{Sel}(Ad(\rho_0)) &= \varinjlim_{i} \operatorname{Sel}(Ad(A_i^{\vee})) = \varinjlim_{i} \operatorname{Hom}_{R_{\chi}}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, A_i^{\vee}) \\ &= \operatorname{Hom}_A(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, A^{\vee}) = \operatorname{Hom}_A(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, \operatorname{Hom}_{\mathbb{Z}_p}(A, \mathbb{Z}_p)) \\ &= \operatorname{Hom}_{\mathbb{Z}_p}(\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A, \mathbb{Q}_p/\mathbb{Z}_p) = (\Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A)^{\vee}. \end{aligned}$$

Taking Pontryagin dual back, we finally get

$$\operatorname{Sel}(Ad(\rho_0))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi},\varphi} A \text{ and } \operatorname{Sel}(Ad(\overline{\rho}))^{\vee} \cong \Omega_{R_{\chi}/B} \otimes_{R_{\chi}} \mathbb{F}$$

as desired. In particular, $\operatorname{Sel}(Ad(\rho_{\chi}))^{\vee} = \Omega_{R_{\chi}/B}$ (with $\rho_{\kappa} = \rho^{ord}$ if $\chi = \kappa$).

This is the generalization of the formula

$$Cl_F \otimes_{\mathbb{Z}} W \cong \Omega_{W[Cl_{F,p}]/W} \otimes_{W[Cl_{F,p}]} W.$$

5.15. *p*-Local condition. The submodule $\Phi_p(A[X])$ in the cohomology group $H^1(\mathbb{Q}_p, Ad(X))$ is made of classes of 1-cocycles u with $u|_{I_p}$ is upper nilpotent and $u|_{D_p}$ is upper triangular with respect to the compatible basis (v_p, w_p) . Suppose we have $\sigma \in I_p$ such that $\rho_0(\sigma) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ such that $\alpha \not\equiv \beta \mod \mathfrak{m}_A$. Suppose u is upper nilpotent over I_p . Then for $\tau \in D_p$, we have $Ad(\rho_0)(\tau)u(\tau^{-1}\sigma\tau) = (Ad(\rho_0)(\sigma) - 1)u(\tau) + u(\sigma)$. Writing $u(\tau) = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, we find $(Ad(\rho_0)(\sigma) - 1)u(\tau) = \begin{pmatrix} 0 & (\alpha\beta^{-1}-1)b \\ (\alpha^{-1}\beta-1)c & 0 \end{pmatrix}$. Since $\rho_0(\tau)$ is upper triangular and $u(\tau^{-1}\sigma\tau)$ is upper nilpotent, $Ad(\rho_0)(\tau)u(\tau^{-1}\sigma\tau)$ is still upper nilpotent; so, $(\alpha^{-1}\beta - 1)c = 0$ and hence c = 0. Therefore u is forced to be upper triangular over D_p . Thus we get

Lemma 5.6. If $\overline{\rho}(\sigma)$ for at least one $\sigma \in I_p$ has two distinct eigenvalues, $\Phi_p(A[X])$ gives rise to the subgroup of $H^1(\mathbb{Q}_p, Ad(X))$ made of classes containing a 1-cocycle whose restriction to I_p is upper nilpotent.

6. Upper bound of the number of Selmer generators

By Kummer theory, we give an upper bound of the dimension $\dim t_{R^{ord}/\Lambda} = \dim t_{R_{\chi}/W}$ by the dimension of the dual Selmer group, which turns out to be often optimal.

6.1. Local class field theory. We summarize facts from local class field theory. Let $K_{\mathbb{Q}_p}$ be a finite extension with algebraic closure \overline{K} with integer ring O. Write $D := \operatorname{Gal}(\overline{K}/K)$ fixing an algebraic closure \overline{K}/K . Let $D \triangleright I$ be the inertia subgroup and D^{ab} be its maximal continuous abelian quotient. • $x \mapsto [x, K] : K^{\times} \hookrightarrow D^{ab}$ (the local Artin symbol);

- $[\varpi, K]$ modulo the inertia subgroup $I_{ab} \subset D^{ab}$ is the Frobenius element Frob;
- For any integer $0 < m \in \mathbb{Z}, K^{\times}/(K^{\times})^m = K^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \cong D^{ab}/mD^{ab}$ by Artin symbol;
- $O^{\times} \cong I_{ab}$ by Artin symbol.

- 6.2. Local cohomology. We summarize facts from local cohomology.
 - $inv: H^2(K, \mu_m(\overline{K})) \cong \mathbb{Z}/m\mathbb{Z}$ (the invariant map);
 - $H^1(K, \mu_m) \cong K^{\times}/(K^{\times})^m$ (Kummer theory valid for any field $K \supset \mathbb{Q}$).

This follows from the long exact sequence of $H^{?}(M) := H^{?}(K, M)$ associated to $\mu_{m}(\overline{K}) \hookrightarrow \overline{K}^{\times} \xrightarrow{x \mapsto x^{m}} \overline{\overline{K}^{\times}}$:

where the vanishing (*) follows from Hilbert theorem 90.

6.3. Local Tate duality. For any finite (continuous) D-module M killed by $0 < m \in \mathbb{Z}$, let

$$M^*(1) := \operatorname{Hom}(M, \mu_m(\overline{K}))$$

as Galois module acting by $\sigma \cdot \phi(x) = \sigma(\phi(\sigma^{-1}x))$ (called Tate dual). Then

$$M^*(1) \otimes_{\mathbb{Z}/m\mathbb{Z}} M \ni \phi \otimes x \mapsto \phi(x) \in \mu_m$$

is a $\mathbb{Z}[D]$ -morphism inducing a cup product pairing $H^r(M^*(1)) \times H^{2-r}(M) \to H^2(\mu_m) \xrightarrow{inv} \mathbb{Z}/m\mathbb{Z}$.

Theorem 6.1 (J. Tate). Cohomological dimension of D is equal to 2 and the above pairing is perfect for r = 0, 1, 2.

If $M = \mu_m(\overline{K})$, by definition $\mu_m = (\mathbb{Z}/m\mathbb{Z})^*(1)$. We know $H^1(\mu_m) = K^{\times}/(K^{\times})^m$ and $H^1(\mathbb{Z}/m\mathbb{Z}) = \text{Hom}(D^{ab}/mD^{ab}, \mathbb{Z}/m\mathbb{Z})$. By local class field theory, $D^{ab}/mD^{ab} \cong K^{\times}/(K^{\times})^m$; so, the duality in this case follows. One can deduce the proof of the duality in this special case basically by restricting to $\text{Gal}(\overline{K}/K(M))$ for the splitting field K(M) of M (see [MFG, Theorem 4.43]).

6.4. Another example of local Tate duality. Consider $\operatorname{Hom}(\operatorname{Frob}^{\mathbb{Z}}, M) \subset H^1(K, M)$ for a finite $\mathbb{Z}/m\mathbb{Z}$ -module M on which D acts trivially. Here Frob is the Frobenius element in D/I.

Lemma 6.2. The orthogonal complement of $\operatorname{Hom}(\operatorname{Frob}^{\widehat{\mathbb{Z}}}, M) \subset H^1(K, M)$ in the dual $H^1(K, M^*(1)) = K^{\times} \otimes_{\mathbb{Z}} M$ is given by $O^{\times} \otimes_{\mathbb{Z}} M$. In particular, the Tate duality between $H^1(K, \mu_m)$ and $H^1(K, \mathbb{Z}/m\mathbb{Z})$ gives rise to the tautological duality between $\operatorname{Frob}^{\widehat{\mathbb{Z}}}/m\operatorname{Frob}^{\widehat{\mathbb{Z}}}$ and $\operatorname{Hom}(\operatorname{Frob}^{\widehat{\mathbb{Z}}}, \mathbb{Z}/m\mathbb{Z})$.

The result for general M follows from extending scalar to M; so, we may assume $M = \mathbb{Z}/m\mathbb{Z}$.

6.5. Inflation-restriction. To prove the lemma, we recall the inflation-restriction sequence. Let G be a profinite group and H is an open normal subgroup (so, G/H is finite). If M is a G-module, for a 1-cocycle $u: H \to M, g \cdot u := gu(g^{-1}hg)$ can be easily checked to be a one cocycle. If u(h) = (h-1)m, we see $g \cdot u(h) = g(g^{-1}hg - 1)m = (hg - g)m = (h - 1)(gm)$; so, this preserves coboundaries, and hence G/H acts on $H^1(H, M)$.

Since H fixes $M^H = H^0(H, M)$, M^H is a G/H-module. The inflation restriction **exact** sequence is

$$0 \to H^1(G/H, M^H) \xrightarrow{\text{Inf}} H^1(G, M) \xrightarrow{\text{Res}} H^1(H, M)^{G/H} \to H^2(G/H, M),$$

where $Inf(u)(g) = u(g \mod H)$ and $Res(u) = u|_H$ for cocycles. For a proof of this, see [MFG, Theorem 4.33].

6.6. **Proof of Lemma 6.2.** The last statement follows from the construction of pairing between $H^1(K, \mu_m)$ and $H^1(K, \mathbb{Z}/m\mathbb{Z})$ described in §5.2.

By the inflation-restriction sequence, we have an exact sequence

$$0 \to \operatorname{Hom}(D/I, \mathbb{Z}/m\mathbb{Z}) \to \operatorname{Hom}(D, \mathbb{Z}/m\mathbb{Z}) \to \operatorname{Hom}(I, \mathbb{Z}/m\mathbb{Z}) \to 0$$

for the inertia group $I \triangleright D$. Since $D/I = \operatorname{Frob}^{\widehat{\mathbb{Z}}}$, we have the following commutative diagram with exact rows:

Since the image of I in D^{ab} is given by O^{\times} , the result follows.

6.7. **Dual Selmer group.** By trace pairing (x, y) = Tr(xy) the Galois modules $ad(\overline{\rho})$ and $Ad(\overline{\rho})$ are self dual; so, $ad(\overline{\rho})^*(1) = ad(\overline{\rho})(1)$ and $Ad(\overline{\rho})^*(1) = Ad(\overline{\rho})(1)$. The dual Selmer group of $ad(\overline{\rho})$ and $Ad(\overline{\rho})$ is defined as follows:

$$\operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1)) := \operatorname{Ker}(H^{1}(\mathfrak{G}_{\mathbb{Q}}, Ad(\overline{\rho})(1)) \to \prod_{l \in S \cup \{p\}} \frac{H^{1}(\mathbb{Q}_{l}, Ad(\overline{\rho})(1))}{\mathcal{D}_{\chi,l}(\mathbb{F}[\varepsilon])^{\perp}}),$$
$$\operatorname{Sel}^{\perp}(ad(\overline{\rho})(1)) := \operatorname{Ker}(H^{1}(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho})(1)) \to \prod_{l \in S \cup \{p\}} \frac{H^{1}(\mathbb{Q}_{l}, ad(\overline{\rho})(1))}{\mathcal{D}_{l}(\mathbb{F}[\varepsilon])^{\perp}}).$$

Here " \perp " indicates the orthogonal complement under the Tate duality. We have the following bound due to R. Greenberg and A. Wiles:

Lemma 6.3. dim_{\mathbb{F}} Sel $(Ad(\overline{\rho})) \leq \dim_{\mathbb{F}} Sel^{\perp}(Ad(\overline{\rho})(1)).$

This we admit. For a proof, see [MFG, Proposition 3.40] or [HMI, Proposition 3.29].

6.8. Details of $H^1(K, \mu_p) \cong K^{\times} \otimes_{\mathbb{Z}} \mathbb{F}_p$. Here K is any field. The connection map δ of the long exact sequence $H^0(K, M) \to H^0(N) \xrightarrow{\delta} H^1(L)$ of a short exact sequence $L \hookrightarrow M \twoheadrightarrow N$ is given as follows: Pick $n \in H^0(K, N)$ and lift it to $m \in M$. Then for $\sigma \in \operatorname{Gal}(\overline{K}/K), (\sigma - 1)m$ is sent to $(\sigma - 1)n = 0$ as n is fixed by σ . Thus we may regard $u_m : \sigma \mapsto (\sigma - 1)m$ is a 1-cocycle with values in L. If we choose another lift m', then $m' - m = l \in L$ and hence $u_{m'} - u_m = (\sigma - 1)l$ which is a coboundary. Thus we get the map δ sending m to the class $[u_m]$.

Applying this, the cocycle u_{α} corresponding $\alpha \in K^{\times}/(K^{\times})^p = K^{\times} \otimes \mathbb{F}_p$ is given by

$$u_{\alpha}(\sigma) = {}^{\sigma-1}(\sqrt[p]{\alpha}).$$

6.9. Unramifiedness of u_{α} at a prime $l \neq p$. Let K be an l-adic field which is a finite extension of \mathbb{Q}_l for a prime $l \neq p$. If $\alpha \notin (K^{\times})^p$, $\alpha' := l^{p^N} \alpha \notin (K^{\times})^p$ with $K[\sqrt[p]{\alpha}] = K[\sqrt[p]{\alpha'}]$ and $u_{\alpha} = u_{\alpha'}$. Replacing α by α' for a sufficiently large N, we may assume that $\alpha \in O \cap K^{\times}$.

The minimal equation of $\sqrt[p]{\alpha}$ is $f(X) = X^p - \alpha$. Since the derivative $f'(X) = pX^{p-1}$, the different of $K[\sqrt[p]{\alpha}]/K$ is a factor of $p\sqrt[p]{\alpha}^{p-1}$. Thus we find

$$u_{\alpha}$$
 is unramified $\Leftrightarrow \alpha \in O^{\times}$

choosing $\alpha \in O \cap K^{\times}$. This can be also shown by noting that all conjugates of $\sqrt[p]{\alpha}$ is given by $\{\zeta \sqrt[p]{\alpha} | \zeta \in \mu_p\}$ which has p distinct elements modulo \mathfrak{l} if and only if $\alpha \in O^{\times}$.

6.10. Restriction to the splitting field of $Ad := Ad(\overline{\rho})$. Let F be the splitting field of $Ad := Ad(\overline{\rho})$; so, $F = \overline{\mathbb{Q}}^{\operatorname{Ker}(Ad)}$, and $K := F[\mu_p]$ is the splitting field of Ad(1). Write $G := \operatorname{Gal}(F/\mathbb{Q})$. Let $\mathfrak{G}_F = \operatorname{Ker}(Ad|_{\mathfrak{G}_0})$. We realize $\operatorname{Sel}^{\perp}(Ad(1))$ inside $H^1(F, Ad(1)) = F^{\times} \otimes_{\mathbb{Z}} Ad$. Assume

(CV)
$$H^{j}(F/\mathbb{Q}, Ad(1)^{\mathfrak{G}_{K}}) = 0 \text{ for } j = 1, 2,$$

which follows if $K = F[\mu_p] \neq F$ or $p \nmid [F : \mathbb{Q}]$. If $F[\mu_p] \neq F$, we see $Ad(1)^{\mathfrak{G}_F} = 0$ as Ad is trivial over \mathfrak{G}_F . If $p \nmid [F : \mathbb{Q}] = |G|$, we note $H^q(G, M) = 0$ for any $\mathbb{F}[G]$ -module M [MFG, Prop. 4.21]. Again by inflation-restriction,

$$H^1(G, Ad(1)^{\mathfrak{G}_F}) \hookrightarrow H^1(\mathbb{Q}, Ad(1)) \to H^1(F, Ad(1))^G \to H^2(G, Ad(1)^{\mathfrak{G}_F}).$$

is exact. So

$$H^1(\mathbb{Q}, Ad(1)) \cong (F^{\times} \otimes_{\mathbb{Z}} Ad)^G.$$

6.11. **Kummer theory.** We analyze how G acts on $F^{\times} \otimes_{\mathbb{F}_p} Ad$. The action of $\tau \in G$ is given by ${}^{\tau}u(g) = \tau u(\tau^{-1}g\tau) = Ad(\tau)u(\tau^{-1}g\tau)$ ($\tau \in G$) for cocycle u giving rise to a class in $H^1(F, Ad(1))$. For a basis (v_1, v_2, v_3) of Ad giving an identification $Ad = \mathbb{F}^3$, and write $u = v\underline{u}$ for $\underline{u} := {}^t(u_1, u_2, u_3)$ (column vector) for $v = (v_1, v_2, v_3)$ (row vector) as a \mathbb{F}^3 valued cocycle; so, $\tau v = (\tau v_1, \tau v_2, \tau v_3) = v^t Ad(\tau)$. Since $u_j(g) = u_{\alpha_j}(g) = {}^{g-1}\sqrt[p]{\alpha_j}$ for $\alpha_j \in F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$, rewriting $u_{\alpha} := \underline{u}$, we have $\tau(v^{\tau}u_{\alpha}(\tau^{-1}g\tau)) = v^t Ad(\tau)u_{\tau_{\alpha}}(g)$. Thus τ -invariance implies

$$u_{\tau_{\alpha}} := {}^t(u_{\tau_{\alpha_1}}, u_{\tau_{\alpha_2}}, u_{\tau_{\alpha_3}}) = {}^tAd(\tau)^{-1}u_{\alpha} \Leftrightarrow v^tAd(\tau)u_{\tau_{\alpha}}(g) = vu_{\alpha}.$$

Therefore inside $F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$, α_j s span an \mathbb{F} -vector space on which G acts by a factor of $Ad \cong {}^tAd^{-1}$. Thus we get

(6.1)
$$H^1(\mathbb{Q}, Ad \otimes \overline{\omega}) \cong \operatorname{Hom}_{\mathbb{F}[G]}(Ad, F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}) =: (F^{\times} \otimes_{\mathbb{Z}} \mathbb{F})[Ad].$$

6.12. Selmer group as a subgroup of $F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}$.

Theorem 6.4. Let O be the integer ring of F. If $p \nmid h_F = |Cl_F|$, we have the following inclusion

$$\operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1)) \hookrightarrow O^{\times} \otimes_{\mathbb{Z}} \mathbb{F}[Ad(\overline{\rho})].$$

We start the proof of the theorem which ends in §6.15. Let $[u] \in \operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1))$ for a cocycle $u : \mathfrak{G}_{\mathbb{Q}} \to Ad(\overline{\rho})(1)$. Thus $u|_{\mathfrak{G}_{F}}$ gives rise to u_{α} for $\alpha \in F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}[Ad(\overline{\rho})]$ by Kummer theory. Consider the fractional ideal $(\alpha) = \alpha O[\frac{1}{p}]$. Make a prime decomposition $(\alpha) = \prod_{\mathfrak{l}} \mathfrak{l}^{e(\mathfrak{l})}$ in $O[\frac{1}{p}]$. Since u_{α} is unramified at all $l \neq p$, we find $p|e(\mathfrak{l})$ as otherwise, \mathfrak{l} ramifies in $F[\sqrt[p]{\alpha}]$. So $(\alpha) = \mathfrak{a}^{p}$ for $\mathfrak{a} = \prod_{\mathfrak{l}} \mathfrak{l}^{e(\mathfrak{l})/p}$

6.13. *l*-integrality $(l \neq p)$. If a local Kummer cocycle u_{α} associated to $\alpha \in F_v^{\times} \otimes_{\mathbb{Z}} \mathbb{F}_p$ for $v \nmid p$ is unramified, then α vanishes in $(F_v^{\times}/O_v^{\times}) \otimes_{\mathbb{Z}} \mathbb{F}_p$. The local cocycle is trivial if and only if α vanishes in $F_v^{\times} \otimes_{\mathbb{Z}} \mathbb{F}_p$. If a global Kummer cocycle u_{α} for $\alpha \in F^{\times} \otimes_{\mathbb{Z}} \mathbb{F}_p$ is trivial at v|N and unramified outside p, then the principal ideal $\alpha O[\frac{1}{p}]$ is a p-power \mathfrak{a}^p .

If $p \nmid h := h_F = |Cl_F|$, replacing α by α^h does not change the Kummer cocycle up to non-zero scalar. We do this replacement and write α instead of α^h . Then \mathfrak{a} is replaced by the principal ideal $\mathfrak{a}^h = (\alpha')$, and we find that $\alpha = \varepsilon \alpha'^p$ for $\varepsilon \in O[\frac{1}{p}]^{\times}$. Thus $u_{\alpha} = u_{\varepsilon}$. Therefore

$$\operatorname{Sel}^{\perp}(Ad(1)) \subset (O[\frac{1}{p}]^{\times} \otimes_{\mathbb{Z}} \mathbb{F})[Ad].$$

6.14. Case where $\overline{\rho}|_D$ is indecomposable for $D = \operatorname{Gal}(F_{\mathfrak{p}}/\mathbb{Q}_p)$. By indecomposability, the matrix form of $Ad(\sigma)$ if $\overline{\rho}(\sigma) = \begin{pmatrix} \overline{\epsilon} & a \\ 0 & \overline{\delta} \end{pmatrix}$ $(a \neq 0)$ with respect to the basis $\{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\}$ is

$$\begin{pmatrix} \overline{\epsilon}\overline{\delta}^{-1} & -2\overline{\delta}^{-1}a & -(\overline{\epsilon}\overline{\delta})^{-1}a^2 \\ 0 & 1 & \overline{\epsilon}^{-1}a \\ 0 & 0 & \overline{\epsilon}^{-1}\overline{\delta} \end{pmatrix},$$

in short, Ad is also an indecomposable D-module without trivial quotient. We have an exact sequence of D-modules:

$$O^{\times} \otimes_{\mathbb{Z}} \mathbb{F} \hookrightarrow O[\frac{1}{p}]^{\times} \otimes_{\mathbb{Z}} \mathbb{F} \xrightarrow{\xi \mapsto (\xi)} \oplus_{\sigma \in G/D} \mathbb{F}\mathfrak{p}^{e\sigma} \cong \operatorname{Ind}_D^G \mathbf{1},$$

where e is the order of the class of \mathfrak{p} in Cl_F . By Shapiro's lemma [MFG, Lemma 4.20, (4.27)], $\operatorname{Ind}_D^G \mathbf{1}[Ad] = \operatorname{Hom}_{\mathbb{F}[G]}(Ad, \operatorname{Ind}_D^G \mathbf{1}) = \operatorname{Hom}_D(Ad|_D, \mathbf{1}) = 0$ by indecomposability; so, $\operatorname{Sel}^{\perp}(Ad(1)) \subset (O^{\times} \otimes \mathbb{F})[Ad]$.

6.15. Case where $\overline{\rho}|_D$ is completely reducible. In this case, we have

$$\operatorname{Ind}_D^G \mathbf{1}[Ad] = \operatorname{Hom}_{\mathbb{F}[G]}(Ad, \operatorname{Ind}_D^G \mathbf{1}) = \operatorname{Hom}_D(Ad|_D, \mathbf{1}) = \mathbb{F}.$$

If a cocycle $u: D_{\mathfrak{p}} \to Ad(1)$ restricted to the decomposition group $D_{\mathfrak{p}} = \operatorname{Gal}(\overline{\mathbb{Q}}/F_{\mathfrak{p}})$ at \mathfrak{p} project down non-trivially to $F_{\mathfrak{p}}^{\times} \otimes \mathbb{F}[\mathbf{1}]$ (i.e., $u \in H^1(\mathbb{Q}_p, \mu_p \otimes \mathbb{F})$), by the lemma in §5.4, if u is a dual Selmer cocycle it corresponds to an element in $O_{\mathfrak{p}}^{\times} \otimes \mathbb{F}$. Since $\mathfrak{p}|p$ is arbitrary, we conclude again

$$\operatorname{Sel}^{\perp}(Ad(1)) \subset (O^{\times} \otimes_{\mathbb{Z}} \mathbb{F})[Ad].$$

This finishes the proof of the theorem.

6.16. Dirichlet's unit theorem. Fix a complex conjugation $c \in G$ and C be the subgroup generated by c. Let ∞ be the set of complex places of F. Dirichlet's unit theorem is proven by considering

$$O^{\times} \xrightarrow{Log} \mathbb{R}^{\infty} := \prod_{\infty} \mathbb{R}$$

given by $Log(\varepsilon) = (\log |\varepsilon|_v)_{v \in \infty}$ and showing $Im(Log) \otimes_{\mathbb{Z}} \mathbb{R} = Ker(\mathbb{R}^{\infty} \xrightarrow{\mathrm{Tr}} \mathbb{R})$ for $Tr(x_v)_v = \sum_v x_v$. The Galois group G acts by permutation on $\infty \cong G/C$. Therefore $\mathbb{R}^{\infty} \cong \mathrm{Ind}_C^G \mathbf{1}$. Thus $(O^{\times} \otimes \mathbb{Q}) \oplus \mathbf{1} \cong \mathrm{Ind}_C^G \mathbb{Q}\mathbf{1}$.

If $p \nmid |G|$, any $\mathbb{F}[G]$ -module over \mathbb{F} is semi-simple; so, characterized by its trace. Therefore this descends to $O^{\times}/\mu_p(F) \otimes_{\mathbb{Z}} \mathbb{F}$ and

$$\operatorname{Ind}_{C}^{G} \mathbb{F} \mathbf{1} \cong (O^{\times} / \mu_{p}(F) \otimes_{\mathbb{Z}} \mathbb{F}) \oplus \mathbb{F} \mathbf{1}.$$

Theorem 6.5. We have $\dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad(1)) \leq 1$ if $p \nmid |G|h_F$.

Proof. By Shapiro's lemma, we have

$$(O^{\times}/\mu_p(F) \otimes_{\mathbb{Z}} \mathbb{F})[Ad] = \operatorname{Hom}_G(Ad, (O^{\times}/\mu_p(F)) \otimes_{\mathbb{Z}} \mathbb{F})$$

$$\cong \operatorname{Hom}_G(Ad, \operatorname{Ind}_C^G \mathbb{F}\mathbf{1}) \cong \operatorname{Hom}_G(Ad|_C, \mathbb{F}\mathbf{1}) \cong \mathbb{F},$$

since $Ad(c) \sim \text{diag}[-1, 1, -1]$. By irreducibility, $\mu_p(F)[Ad] = 0$; so, $(O^{\times} \otimes_{\mathbb{Z}} \mathbb{F})[Ad] \cong \mathbb{F}$. By §5.12, we have

$$\operatorname{Sel}^{\perp}(Ad(1)) \hookrightarrow (O^{\times} \otimes_{\mathbb{Z}} \mathbb{F})[Ad] \cong \mathbb{F},$$
we conclude $\operatorname{dim}_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad(1)) \leq 1$.

Corollary 6.6. If $p \nmid |G|h_F$, then for any deformation $\rho \in \mathcal{D}_{\chi}(A)$, $\operatorname{Sel}(Ad(\rho))$ is generated by at most one element over A.

7. Selmer group of induced Galois representation

Assuming that $\rho_0 = \operatorname{Ind}_K^{\mathbb{Q}} \varphi$ for a quadratic field $K = \mathbb{Q}[\sqrt{D}]$ (with discriminant D) and a character $\varphi : \mathfrak{G}_K \to W^{\times}$ of order prime to p, we explore the meaning of the cyclicity of $\operatorname{Sel}(\rho_0)^{\vee}$ in terms of Iwasawa theory over K. Write $\overline{\varphi} := (\varphi \mod \mathfrak{m}_W)$ and $\overline{\rho} = \operatorname{Ind}_K^{\mathbb{Q}} \overline{\varphi}$. We denote by O the integer ring of K.

7.1. Induced representation. Let $A \in CL_{W}$ and G be a profinite group with a subgroup H of index 2. Put $\Delta := G/H$. Let H be a character $\varphi : G \to A$. Let $A(\varphi) \cong A$ on which H acts by φ . Regard the group algebra A[G] as a left and right A[G]-module by multiplication. Define $A(\operatorname{Ind}_{H}^{G}\varphi) := A[G] \otimes_{A[H]} A(\varphi) \text{ (so, } \xi h \otimes a = \xi \otimes ha = \xi \otimes \varphi(h)a = \varphi(a)(\xi \otimes a)) \text{ for } h \in H. \text{ and let } G$ acts on $A(\operatorname{Ind}_{H}^{G}\varphi)$ by $g(\xi \otimes a) := (g\xi) \otimes a$. The resulted *G*-module $A(\operatorname{Ind}_{G}^{H}\varphi)$ is the induced module. Similarly we can think of $A(\operatorname{ind}_{G}^{H}\varphi) := \operatorname{Hom}_{A[H]}(A[G], A(\varphi))$ (so, $\phi(h\xi) = h\phi(\xi) = \varphi(h)\phi(\xi)$) on

which $q \in G$ acts by $q\phi(\xi) = \phi(\xi q)$.

7.2. Matrix form of $\operatorname{Ind}_{H}^{G} \varphi$. Suppose that φ has order prime to p. Then for $\sigma \in G$ generating G over $H, \varphi_{\sigma}(h) = \varphi(\sigma^{-1}h\sigma)$ is again a character of H. The module $\operatorname{Ind}_{H}^{G} \varphi$ has a basis $1_{G} \otimes 1$ and $\sigma \otimes 1$ for the identity element 1_G of G and $1 \in A \cong A(\varphi)$.

We have

$$\begin{split} g(1_G \otimes 1, \sigma \otimes 1) &= (g \otimes 1, g\sigma \otimes 1) \\ &= \begin{cases} (1_G \otimes g, \sigma \otimes \sigma^{-1}g\sigma) = (1_G \otimes 1, \sigma \otimes 1) \begin{pmatrix} \varphi(g) & 0 \\ 0 & \varphi\sigma(g) \end{pmatrix} & \text{if } g \in H, \\ (\sigma \otimes \sigma^{-1}g, 1_G \otimes g\sigma) = (1_G \otimes 1, \sigma \otimes 1) \begin{pmatrix} 0 & \varphi(g\sigma) \\ \varphi(\sigma^{-1}g) & 0 \end{pmatrix} & \text{if } g\sigma \in H, \end{cases} \end{split}$$

Thus extending φ to G by 0 outside H, we get

(7.1)
$$\operatorname{Ind}_{H}^{G}\varphi(g) = \begin{pmatrix} \varphi(g) & \varphi(g\sigma) \\ \varphi(\sigma^{-1}g) & \varphi(\sigma^{-1}g\sigma) \end{pmatrix}.$$

7.3. Two inductions are equal. The induction $\operatorname{ind}_{H}^{G} \varphi$ has basis $(\phi_{1}, \phi_{\sigma})$ given by $\phi_{1}(\xi + \xi' \sigma) = \varphi(\xi) \in A = A(\varphi)$ and $\phi_{\sigma}(\xi + \xi' \sigma^{-1}) = \varphi(\xi') \in A = A(\varphi)$ for $\xi \in A[H]$; so, (*) $\phi_{1}(\xi' + \xi \sigma^{-1}) = \phi_{\sigma}(\xi + \xi' \sigma^{-1})$. Then we have

$$\begin{split} g(\phi_{1}(\xi + \xi'\sigma^{-1}), \phi_{\sigma}(\xi + \xi'\sigma^{-1})) \\ &= (\phi_{1}(\xi g + \xi'\sigma^{-1}g\sigma\sigma^{-1}), \phi_{\sigma}(\xi g + \xi'\sigma^{-1}g\sigma\sigma^{-1})) \\ &= \begin{cases} (\phi_{1}(\xi), \varphi_{\sigma}(\xi')) \begin{pmatrix} \varphi(g) & 0\\ 0 & \varphi_{\sigma}(g) \end{pmatrix} & (g \in H), \\ (\phi_{1}(\xi'\sigma^{-1}g), \phi_{\sigma}(\xi g\sigma)) \stackrel{(*)}{=} (\phi_{1}(\xi), \phi_{\sigma}(\xi')) \begin{pmatrix} 0 & \varphi(g\sigma)\\ \varphi(\sigma^{-1}g) & 0 \end{pmatrix} & (g\sigma \in H). \end{cases}$$

Thus we get

(7.2)
$$\operatorname{Ind}_{H}^{G}\varphi\cong\operatorname{ind}_{H}^{G}\varphi.$$

7.4. Tensoring $\alpha : \Delta \cong \mu_2$. Let $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Extending φ to G by 0 outside H, we find

 $\operatorname{Ind}_{H}^{G} \varphi \otimes \alpha(g)$

$$= \begin{cases} \begin{pmatrix} \varphi(g) & 0\\ 0 & \varphi(\sigma^{-1}g\sigma) \end{pmatrix} = J \begin{pmatrix} \varphi(g) & 0\\ 0 & \varphi(\sigma^{-1}g\sigma) \end{pmatrix} J^{-1} & (g \in H), \\ - \begin{pmatrix} 0 & \varphi(g\sigma)\\ \varphi(\sigma^{-1}g) & 0 \end{pmatrix} = J \begin{pmatrix} 0 & \varphi(g\sigma)\\ \varphi(\sigma^{-1}g) & 0 \end{pmatrix} J^{-1} & (g\sigma \in H). \end{cases}$$

Thus we get

(7.3)
$$(\operatorname{Ind}_{H}^{G}\varphi)\otimes\alpha = J(\operatorname{Ind}_{H}^{G}\varphi)J^{-1} \xrightarrow[i_{\alpha}]{\sim} \operatorname{Ind}_{H}^{G}\varphi.$$

Thus $Ad(\operatorname{Ind}_{H}^{G}) = \{x \in \operatorname{End}_{A}(\operatorname{Ind}_{H}^{G}\varphi)) | \operatorname{Tr}(x) = 0\}$ contains i_{α} as $\operatorname{Tr}(J) = 0$.

7.5. Characterization of self-twist. Let $\overline{\varphi} := (\varphi \mod \mathfrak{m}_A)$. Suppose $\overline{\varphi}_{\sigma} \neq \overline{\varphi}$. Since $\operatorname{Ind}_H^G \overline{\varphi}(H)$ contains a diagonal matrices with distinct eigenvalues, its normalizer is $\operatorname{Ind}_H^G \overline{\varphi}(G)$. Thus the centralizer $Z(\operatorname{Ind}_H^G \overline{\varphi}) = \mathbb{F}^{\times}$ (scalar matrices). Since $\operatorname{Ind}_H^G \overline{\varphi}(\sigma)$ interchanges $\overline{\varphi}$ and $\overline{\varphi}_{\sigma}$, $\operatorname{Ind}_H^G \overline{\varphi}$ is irreducible. Since $\operatorname{Aut}(\overline{\rho}) = \mathbb{F}^{\times}$, i_{α} for $\overline{\rho}$ is unique up to scalars.

Let $\rho: G \to \operatorname{GL}_2(A)$ be a deformation of $\operatorname{Ind}_H^G \overline{\varphi}$ with $\rho \otimes \alpha \cong \rho$. Write $j\rho j^{-1} = \rho \otimes \alpha$. Since $\alpha^2 = 1$, j^2 is scalar. We may normalize $j \equiv J \mod \mathfrak{m}_A$ as $j \mod \mathfrak{m}_A = zJ$ for a scalar $z \in A^{\times}$. Thus j has two eigenvalues ϵ_{\pm} with $\epsilon_{\pm} \equiv \pm z \mod \mathfrak{m}_A$. Let A_{\pm} be ϵ_{\pm} -eigenspace of j. Since $j\rho|_H = \rho|_H j$, $A_{\pm} \cong A$ is stable under H. Thus we find a character $\varphi: H \to A^{\times}$ acting on A_+ . Plainly H acts on A_- by φ_{σ} . This shows $\rho \cong \operatorname{Ind}_H^G \varphi$ as $V(\rho) = A_+ \oplus \rho(\sigma)A_+$.

7.6. Decomposition of adjoint representation.

Theorem 7.1. We have $Ad(\operatorname{Ind}_{H}^{G} \varphi) \cong \alpha \oplus \operatorname{Ind}_{H}^{G} \varphi^{-}$ as representation of G.

Here $\varphi^-(g) = \varphi(g)\varphi_{\sigma}^{-1}(g) = \varphi(\sigma^{-1}g^{-1}\sigma g)$ and $\operatorname{Ind}_H^G \varphi^-$ is irreducible if $\varphi^- \neq \varphi_{\sigma}^- = (\varphi^-)^{-1}$ (i.e., φ^- has order ≥ 3).

Proof. On H, $\rho := \operatorname{Ind}_{H}^{G} \varphi = \begin{pmatrix} \varphi & 0 \\ 0 & \varphi_{\sigma} \end{pmatrix}$. Therefore

$$Ad(\operatorname{Ind}_{H}^{G}\varphi)(h)\left(\begin{smallmatrix}x&y\\z&-x\end{smallmatrix}\right) = \rho(h)\left(\begin{smallmatrix}x&y\\z&-x\end{smallmatrix}\right)\rho^{-1}(h) = \left(\begin{smallmatrix}x&\varphi^{-}(h)y\\(\varphi^{-})^{-1}(h)z&-x\end{smallmatrix}\right),$$

and

$$Ad(\operatorname{Ind}_{H}^{G}\varphi)(\sigma)\left(\begin{smallmatrix}x&y\\z&-x\end{smallmatrix}\right) = \left(\begin{smallmatrix}0&\varphi(\sigma^{2})\\1&0\end{smallmatrix}\right)\left(\begin{smallmatrix}x&y\\z&-x\end{smallmatrix}\right)\left(\begin{smallmatrix}0&1\\\varphi(\sigma^{-2})&0\end{smallmatrix}\right) = \left(\begin{smallmatrix}\alpha(\sigma)x&\varphi(\sigma)^{2}z\\\varphi(\sigma)^{-2}y&-\alpha(\sigma)x\end{smallmatrix}\right).$$

Thus α is realized on diagonal matrices, and $\operatorname{Ind}_{H}^{G} \varphi^{-}$ is realized on the anti-diagonal matrices.

7.7. Irreducibility of $\operatorname{Ind}_{H}^{G} \overline{\varphi}^{-}$.

Lemma 7.2. Ind_H^G $\overline{\varphi}^-$ is irreducible if and only if $\overline{\varphi}^- \neq \overline{\varphi}_{\overline{\sigma}}^- = (\overline{\varphi}^-)^{-1}$ (i.e., $\overline{\varphi}^-$ has order ≥ 3). If $\overline{\varphi}^-$ has order ≤ 2 , then $\overline{\varphi}^-$ extends to a character $\overline{\phi}: G \to \mathbb{F}^{\times}$ and $\operatorname{Ind}_{H}^{G} \varphi^- \cong \overline{\phi} \oplus \overline{\phi} \alpha$.

Proof. Note $\varphi^{-}(\sigma^{2}) = \varphi(\sigma^{2})\varphi(\sigma^{-1}\sigma^{2}\sigma)^{-1} = \varphi(1) = 1$. The irreducibility of $\operatorname{Ind}_{H}^{G}\overline{\varphi}^{-}$ under $\overline{\varphi}^{-} \neq \overline{\varphi}_{\sigma}^{-}$ follows from the argument proving irreducibility of $\operatorname{Ind}_{H}^{G}\overline{\varphi}$ under $\overline{\varphi} \neq \overline{\varphi}_{\sigma}$ in §7.5. Suppose $\overline{\varphi}^{-}$ has order ≤ 2 (so, $\overline{\varphi}^{-} = \overline{\varphi}_{\sigma}^{-}$). Choose a root $\zeta = \pm 1$ of $X^{2} - \varphi_{\sigma}^{-}(\sigma^{2}) = X^{2} - 1$ in \mathbb{F} . Define $\overline{\phi} = \overline{\varphi}_{-}$ on H and $\overline{\phi}(\sigma h) = \zeta \overline{\varphi}^{-}(h)$. For $h, h' \in H$,

$$\overline{\phi}(\sigma h \sigma h') = \overline{\phi}(\sigma^2 \sigma^{-1} h \sigma h') = \overline{\varphi}^-(\sigma^2))\overline{\varphi}^-_{\sigma}(h)\overline{\varphi}^-(h') = \zeta^2 \overline{\varphi}^-(hh') = \overline{\varphi}^-(\sigma h)\overline{\varphi}^-(\sigma h').$$

Similarly $\overline{\phi}(h\sigma h') = \overline{\phi}(\sigma\sigma^{-1}hch') = \zeta \overline{\varphi}_{\sigma}(h)\overline{\varphi}(h') = \overline{\phi}(h)\overline{\phi}(\sigma h')$; so, $\overline{\phi}$ is a character. Then $\mathbb{F}[\zeta][G] \otimes_{\mathbb{F}[H]} \mathbb{F}[\zeta](\overline{\varphi}^{-}) \cong \mathbb{F}[\zeta](\overline{\phi})$ as G-modules by $a \otimes b \mapsto \overline{\phi}(a)b$.

7.8. Ordinarity for residual induced representation. Let $\sigma \in \mathfrak{G}_{\mathbb{Q}}$ induce a non-trivial field automorphism of $K_{/\mathbb{Q}}$. Let $\overline{\rho} := \operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi} = \operatorname{Ind}_{\mathfrak{G}_{K}}^{\mathfrak{G}_{\mathbb{Q}}} \overline{\varphi}$ and assume that $p = \mathfrak{p}\mathfrak{p}^{\sigma}$ in O (fixing the factor \mathfrak{p} so that $\overline{\varphi}$ is unramified at \mathfrak{p}^{σ}). Let \mathfrak{c} be the conductor of $\overline{\varphi}$; so, the ray class field $H_{\mathfrak{c}/K}$ of conductor \mathfrak{c} is the smallest ray class field such that $\overline{\varphi}$ factors through $\operatorname{Gal}(H_{\mathfrak{c}}/K)$. Suppose

(sp)
$$\mathfrak{c} + \mathfrak{c}^{\sigma} = O.$$

Pick a prime factor $\mathfrak{l}|\mathfrak{c}$. Then $\mathfrak{l} + \mathfrak{l}^{\sigma} = O$; so, \mathfrak{l} splits in K. In particular, $I_l = I_{\mathfrak{l}} \subset \mathfrak{G}_K$ (for $(l) = \mathfrak{l} \cap \mathbb{Z}$), and $\overline{\varphi}|_{I_{\mathfrak{l}}}$ ramifies while $\overline{\varphi}$ is unramified at \mathfrak{l}^{σ} . Thus $\overline{\rho}|_{I_{\mathfrak{l}}} \cong \begin{pmatrix} \overline{\epsilon}_{\mathfrak{l}} & 0\\ 0 & \delta_{\mathfrak{l}} \end{pmatrix}$ with $\overline{\epsilon}_{\mathfrak{l}} = \overline{\varphi}|_{\mathfrak{l}}$ and $\overline{\delta}_{\mathfrak{l}} = \overline{\varphi}_{\sigma}$ which is unramified.

Suppose $\mathfrak{l}|D$; so, $I_{\mathfrak{l}}$ is of index 2 in I_{l} . Then $\overline{\varphi}|_{I_{\mathfrak{l}}} = \overline{\varphi}_{\sigma}|_{I_{\mathfrak{l}}} = \mathbf{1}$. Similarly to §7.7, we find $\operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}|_{I_{l}} = \operatorname{Ind}_{I_{\mathfrak{l}}}^{I_{l}} \overline{\varphi}|_{I_{\mathfrak{l}}} = \left(\frac{\overline{\epsilon}_{\mathfrak{l}}}{\delta_{\mathfrak{l}}}\right)$ with $\overline{\epsilon}_{\mathfrak{l}} = \alpha|_{I_{\mathfrak{l}}}$ and $\overline{\delta}_{\mathfrak{l}} = \mathbf{1}$. In short, $\overline{\rho}$ satisfies (ord_{l}) for $l \in S := \{l|DN(\mathfrak{c})p\}$.

7.9. Identity of two deformation functors. Let χ be the Teichmüller lift of $\det(\overline{\rho})$. For any Galois representation ρ , let $K(\rho)$ be the solitting field $\overline{\mathbb{Q}}^{\operatorname{Ker}(\rho)}$ of ρ . Let $K(\overline{\rho})^{(p)}/K(\overline{\rho})$ be the maximal p-profinite extension unramified outside p. Put $G = \operatorname{Gal}(K(\overline{\rho})^{(p)}/\mathbb{Q})$ and $H = \operatorname{Gal}(K(\overline{\rho})^{(p)}/K)$. Consider the deformation functor $\mathcal{D}_{?}: CL_{/B} \to SETS$ for χ and κ . Since any deformation factors through G, we regard $\rho \in \mathcal{D}_{?}(A)$ is defined over G. Let

 $\mathcal{F}_H(A) = \{ \varphi : H \to A^{\times} | \varphi \mod \mathfrak{m}_A = \overline{\varphi} \text{ unramified outside } \mathfrak{c} \}$

and $\mathcal{D}_{?}^{\widehat{\Delta}}(A) = \{\rho \in \mathcal{D}_{?}(A) | \rho \otimes \alpha \cong \rho, \det \rho = ?\}/\mathrm{GL}_{2}(A)$. Recall $\Delta = G/H$ and write $\widehat{\Delta} = \{\alpha, \mathbf{1}\}$ for its character group.

Lemma 7.3. Let $\widehat{\Delta}$ act on \mathcal{F} by $\rho \mapsto \rho \otimes \alpha$. Then $\mathcal{F}_H(A) \ni \varphi \mapsto \operatorname{Ind}_H^G \varphi \in \mathcal{D}(A)^{\widehat{\Delta}}$ induces an isomorphism: $\mathcal{F}_H \cong \mathcal{D}_?^{\widehat{\Delta}}$ of the functors if $\overline{\varphi} \neq \overline{\varphi}_c$.

Proof. Note $\mathcal{D}_{?}^{\widehat{\Delta}}(A) = \{\rho \in \mathcal{D}_{?}(A) | J(\rho \otimes \alpha) J^{-1} \sim \rho\}/(1+M_{2}(\mathfrak{m}_{A})) \text{ (realizing } \mathcal{D}_{?} \text{ under strict equivalence} and choosing <math>\operatorname{Ind}_{H}^{G} \varphi$ specified (7.1)) as $J(\overline{\rho} \otimes \alpha) J^{-1} = \overline{\rho}$ (see §7.4). By the characterization in §7.5, we find a character $\varphi : H \to A^{\times}$ such that $\operatorname{Ind}_{H}^{G} \varphi \cong \rho$.

We choose $j \in \operatorname{GL}_2(A)$ with $j \equiv J \mod \mathfrak{m}_A$ as in §7.5. Then $A_+ = A(\varphi)$ for a character $\varphi : H \to A^{\times}$. Note that $\varphi \mod \mathfrak{m}_A = \overline{\varphi}$ by the construction in §7.5. By (ord_l) for $l \in S$, $\overline{\varphi}_{\sigma}$ acting on A_- is unramified at $l|\mathfrak{cp}$. Thus we conclude $\mathcal{F}_H \cong \mathcal{D}_2^{\widehat{\Delta}}$.

By $\rho \mapsto \rho \otimes \alpha$, $\widehat{\Delta}$ acts on $\mathcal{D}_{?}$. For the universal representation $\rho_{?} \in \mathcal{D}_{?}(R_{?})$, therefore, we have an involution $[\alpha] \in \operatorname{Aut}_{B-\operatorname{alg}}(R_{?})$ such that $[\alpha] \circ \rho_{?} \cong \rho_{?} \otimes \alpha$. Define $R_{?}^{\pm} := \{x \in R_{?} | [\alpha](x) = \pm x\}$.

7.10. Induced Selmer groups. For a character $\phi : H \to \mathbb{F}^{\times}$, Let $K^{(\mathfrak{p})}$ be the maximal *p*-abelian extension of K unramified outside \mathfrak{p} . Let $\Gamma_{\mathfrak{p}} = \operatorname{Gal}(K^{(\mathfrak{p})}/K)$ which is a *p*-profinite abelian group.

Corollary 7.4. We have a canonical isomorphism $R_{\kappa}/R_{\kappa}([\alpha]-1)R_{\kappa} \cong W[[\Gamma_{\mathfrak{p}}]]$, where $R_{\kappa}([\alpha]-1)R_{\kappa}$ is the R_{κ} -ideal generated by $[\alpha](x) - x$ for all $x \in R_{\kappa}$.

If a finite group $\langle \gamma \rangle$ acts on $R \in CL_{/B}$ fixing B, then

$$\operatorname{Hom}_{B\operatorname{-alg}}(R,A)^{\langle\gamma\rangle} = \operatorname{Hom}_{B\operatorname{-alg}}(R/R(\gamma-1)R,A).$$

Indeed, $f \in \text{Hom}_{B-\text{alg}}(R, A)^{\gamma}$, then $f \circ \gamma = f$; so, $f(R(\gamma - 1)R) = 0$. Thus $\text{Hom}_{B-\text{alg}}(R, A)^{\gamma} \hookrightarrow \text{Hom}_{B-\text{alg}}(R/R(\gamma - 1)R, A)$. Surjectivity is plain.

Proof. Since $\mathcal{F}_H = \mathcal{D}_{\kappa}^{\widehat{\Delta}}$, we find

$$\mathcal{F}_H(A) = \operatorname{Hom}_{\Lambda\operatorname{-alg}}(R_{\kappa}, A)^{\underline{\lambda}} = \operatorname{Hom}_{\Lambda\operatorname{-alg}}(R_{\kappa}/(R_{\kappa}([\alpha] - 1)R_{\kappa}), A)$$

Thus \mathcal{F}_H is represented by $R_{\kappa}/(R_{\kappa}([\alpha]-1)R_{\kappa})$.

Let $\varphi_0 : H \to W^{\times}$ be the Teichmüller lift of $\overline{\varphi}$. Define $\varphi : H \to W[[\Gamma_{\mathfrak{p}}]]^{\times}$ by $\varphi(h) = \varphi_0(h)h|_{K^{(\mathfrak{p})}} \in W[[\Gamma_{\mathfrak{p}}]]$. We show that $(W[[\Gamma_{\mathfrak{p}}]], \varphi)$ is a universal couple for \mathcal{F}_H , which implies the identity of the corollary. Pick a deformation $\varphi \in \mathcal{F}_H(A)$. Then $(\iota_A \circ \varphi_0)^{-1}\varphi$ has values in $1 + \mathfrak{m}_A$ unramified outside \mathfrak{p} as the ramification at $l \in S$ different from p is absorbed by that of $\overline{\varphi}$ by the fact that the inertia group at l in H is isomorphile to the inertia group at l of $\operatorname{Gal}(K(\overline{\varphi})/K)$. Thus $(\iota_A \circ \varphi_0)^{-1}\varphi$ factors through $\Gamma_{\mathfrak{p}}$, and induces a unique W-algebra homomorphism $W[[\Gamma_{\mathfrak{p}}]] \xrightarrow{\phi} A$ with $\varphi = \phi \circ \varphi$.

7.11. What is $\Gamma_{\mathfrak{p}}$?

Proposition 7.5. If p > 2, we have an exact sequence

$$1 \to (1 + p\mathbb{Z}_p) / \varepsilon^{(p-1)\mathbb{Z}_p} \to \Gamma_{\mathfrak{p}} \to Cl_K \otimes_{\mathbb{Z}} \mathbb{Z}_p \to 1,$$

where $\varepsilon = 1$ if K is imaginary, and ε is a fundamental unit of K if K is real. Thus $\Gamma_{\mathfrak{p}}$ is finite if K is real.

Proof. Since $\Gamma_{\mathfrak{p}} = Cl_K(\mathfrak{p}^{\infty}) \otimes_{\mathbb{Z}} \mathbb{Z}_p$, the exact sequence is the *p*-primary part of the exact sequence of the class field theory:

$$1 \to O_{\mathfrak{p}}^{\times} / \overline{O}^{\times} \to Cl_K(\mathfrak{p}^{\infty}) \to Cl_K \to 1.$$

Thus tensoring \mathbb{Z}_p over \mathbb{Z} , we get the desired exact sequence, since $O_{\mathfrak{p}} \cong \mathbb{Z}_p$ canonically. Note here $\varepsilon^{p-1} \in 1 + p\mathbb{Z}_p = 1 + \mathfrak{p}O_{\mathfrak{p}}$.

7.12. Iwasawa theoretic interpretation of $\operatorname{Sel}(Ad(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi))$. Pick a deformation $\varphi \in \mathcal{F}_{H}(A)$. By $Ad(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi) = \alpha \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}$, the cohomology is decomposed accordingly:

$$H^1(G, Ad(\operatorname{Ind}_K^{\mathbb{Q}}\varphi)) = H^1(G, \alpha) \oplus H^1(G, \operatorname{Ind}_K^{\mathbb{Q}}\varphi^-).$$

Since Selmer cocycles are upper triangular over D_p and upper nilpotent over I_p , noting the fact that $\alpha \subset Ad(\operatorname{Ind}_H^G \varphi)$ is realized on diagonal matrices, and $\operatorname{Ind}_H^G \varphi^-$ is realized on anti-diagonal matrices, the Selmer condition is compatible with the above factorization; so, we have

Theorem 7.6. We have $\operatorname{Sel}(\operatorname{Ad}(\operatorname{Ind}_{H}^{G}\varphi)) = \operatorname{Sel}(\alpha) \oplus \operatorname{Sel}(\operatorname{Ind}_{H}^{G}\varphi^{-}))$, where $\operatorname{Sel}(\alpha)$ is made of classes in $H^{1}(G, \alpha)$ unramified everywhere and $\operatorname{Sel}(\operatorname{Ind}_{H}^{G}\varphi^{-})$ is isomorphic to the subgroup $\operatorname{Sel}(\varphi^{-})$ of $H^{1}(H, \varphi^{-})$ made of classes unramified outside \mathfrak{p} and vanishes over $D_{\mathfrak{p}^{\sigma}}$. In particular,

$$\operatorname{Sel}(\alpha) = \operatorname{Hom}(Cl_K, A^{\vee}) = \operatorname{Hom}(Cl_K \otimes_{\mathbb{Z}} A, \mathbb{Q}_p/\mathbb{Z}_p).$$

Proof. Pick a Selmer cocycle $u : G \to Ad(\rho_0)^*$. Projecting down to α , it has diagonal form; so, the projection u_{α} restricted to D_p is unramified. Therefore u_{α} factors through Cl_K . Starting with an unramified homomorphism $u : Cl_K \to A^{\vee}$ and regard it as having values in diagonal matrices in $Ad(\rho_0)^*$, its class falls in Sel $(Ad(\rho_0))$.

Similarly, the projection u^{Ind} of u to the factor $\text{Ind}_H^G \varphi^-$ is anti-diagonal of the form $\begin{pmatrix} 0 & u^+ \\ u^- & 0 \end{pmatrix}$. Noting $H^j(\Delta, ((\text{Ind}_H^G \varphi^-)^*)^H) = 0$ (j = 1, 2), by inflation-restriction sequence,

$$H^1(G, (\operatorname{Ind}_H^G \varphi^-)^*) \cong (H^1(H, (\varphi^-)^*) \oplus H^1(H, (\varphi^-_{\sigma})^*))^{\Delta}.$$

So $u^-(\sigma^{-1}g\sigma) = u^+(g)$ as $\sigma \in \Delta$ interchanges $H^1(H, (\varphi^-)^*)$ and $H^1(H, (\varphi^-)^*)$. Moreover u^+ is unramified outside \mathfrak{p} as an element of $H^1(H, (\varphi^-)^*)$. Since $u^-|_{D_\mathfrak{p}} = 0$, u^+ vanishes on $D_{\mathfrak{p}^\sigma}$ by $u^-(\sigma^{-1}g\sigma) = u^+(g)$.

7.13. Anti-cyclotomic *p*-abelian extension. Regard $\varphi : G \to W[[\Gamma_{\mathfrak{p}}]]^{\times}$. Define $K_{/K}^{-}$ by the maximal *p*-abelian anticyclotomic extension unramified outside p (so, $\sigma\gamma\sigma^{-1} = \gamma^{-1}$). The the fixed subfield of $K(\overline{\rho})^{(p)}$ by $\operatorname{Ker}(\varphi^{-})$ is given by $K(\varphi^{-})K^{-}$. So $\Gamma^{-} = \operatorname{Gal}(K^{-}/K)$ is the maximal *p*-abelian quotient of $\operatorname{Im}(\varphi^{-})$; i.e., $\operatorname{Gal}(K^{-}/K) \cong \Gamma^{-} \times \operatorname{Gal}(K(\overline{\varphi_{0}})/K)$. Note that $\varphi^{-}(h) = \varphi(h)\varphi(\sigma^{-1}h\sigma)^{-1} \in \Gamma_{\mathfrak{p}}$ if $h \in \Gamma^{-}$. Thus we have an exotic homomorphism $\Gamma^{-} \to \Gamma_{\mathfrak{p}}$. We have an exact sequence for $\widehat{Cl}_{K} := Cl_{K} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$:

$$1 \to ((1 + pO_p) / \varepsilon^{(p-1)\mathbb{Z}_p})^{\sigma = -1} \to \Gamma^- \to \widehat{Cl}_K \to 1$$

which is the "-"-eigenspaces of the action of σ on the exact sequence with $\widehat{Cl}_K(p^{\infty}) := Cl_K(p^{\infty}) \otimes_{\mathbb{Z}} \mathbb{Z}_p$:

$$1 \to (1 + pO_p) / \varepsilon^{(p-1)\mathbb{Z}_p} \to \widehat{Cl}_K(p^\infty) \to \widehat{Cl}_K \to 1.$$

Therefore the above homomorphism induces an isomorphism $\Gamma^- \cong \Gamma_{\mathfrak{p}}$, and in this way, we identify $W[[\Gamma^-]]$ with $W[[\Gamma_{\mathfrak{p}}]]$.

25

7.14. Iwasawa modules. Let L/K^- (resp. $L'/K(\varphi^-)$) be the maximal p-abelian extension unramified outside \mathfrak{p} totally split at \mathfrak{p}^{σ} (so $L' \subset L$). Put $\mathcal{Y} := \operatorname{Gal}(L/K^{-})$ and $\Delta := \operatorname{Gal}(K(\varphi_{0}^{-})/K)$. By conjugation, $\Delta \times \Gamma_{-} = \operatorname{Gal}(K^{-}/K)$ acts on \mathcal{Y} ; so, we put $\mathcal{Y}(\varphi_{0}^{-}) = \mathcal{Y} \otimes_{\mathbb{Z}_{p}[\operatorname{Gal}(K(\varphi^{-})/K]} \varphi_{0}^{-}$ (the maximal quotient of \mathcal{Y} on which $\Delta \subset \operatorname{Gal}(K^-/K)$ acts by φ_0^-). Then $\mathcal{Y}(\varphi_0)$ is a module over $W[[\Gamma_-]]$ (an Iwasawa module). The Galois group $\operatorname{Gal}(L'/K(\varphi^{-}))$ (resp. $\operatorname{Gal}(L'/K(\varphi^{-})(\varphi_{0}^{-}) = \operatorname{Gal}(L'/K(\varphi^{-}) \otimes_{\mathbb{Z}_{p}[\Delta]} \varphi_{0}^{-})$ is a quotient of \mathcal{Y} (resp. $\mathcal{Y}(\varphi_0)$), and if $W[[\Gamma^-]] \twoheadrightarrow A$, $\operatorname{Gal}(L'/K(\varphi^-)(\varphi_0^-) = \mathcal{Y}(\varphi_0^-) \otimes_{W[[\Gamma^-]],\varphi^-} A$.

We have an inflation-restriction exact sequence:

$$\begin{aligned} H^{1}(K(\varphi^{-})/K,(\varphi^{-})^{*}) &\hookrightarrow H^{1}(H,(\varphi^{-})^{*}) \\ &\to \operatorname{Hom}_{\operatorname{Gal}(K(\varphi^{-})/K)}(\operatorname{Gal}(K(\overline{\rho})^{(p)}/K(\varphi^{-})),(\varphi^{-})^{*}) \\ &\to H^{2}(K(\varphi^{-})/K,(\varphi^{-})^{*}). \end{aligned}$$

Lemma 7.7. Assume that $\overline{\varphi}^- \neq 1$. If Γ^- is cyclic, we have $H^j(K(\varphi^-)/K, (\varphi^-)^*) = 0$ for j = 1, 2.

Proof. For a finite cyclic group C generated by γ

$$H^{1}(C, M) = \operatorname{Ker}(\operatorname{Tr}) / \operatorname{Im}(\gamma - 1), \ H^{2}(C, M) = \operatorname{Ker}(\gamma - 1) / \operatorname{Im}(\operatorname{Tr}),$$

where $\operatorname{Tr}(x) = \sum_{c \in C} cx$ and $(\gamma - 1)(x) = \gamma x - x$ for $x \in M$. If C is infinite with M discrete, $H^q(C,M) = \lim_{C' \subset C} H^q(C/C', M^{C'})$. Thus if $\overline{\varphi}^-(\gamma) \neq 1$ for a generator of Γ^- , we find

$$H^j(K(\varphi^-)/K, (\varphi^-)^*) = 0$$

as $\gamma - 1 : (\varphi^{-})^* \to (\varphi^{-})^*$ is a bijection.

By Lemma 7.7, from inflation-restriction sequence, we get

$$H^1(H, (\varphi^-)^*) \cong \operatorname{Hom}_{\operatorname{Gal}(K(\varphi^-)/K)}(\operatorname{Gal}(K(\overline{\rho})^{(p)}/K(\varphi^-)), (\varphi^-)^*).$$

Then Selmer cocycles factor through \mathcal{Y} ; so, for $\mathcal{G} := \operatorname{Gal}(K(\varphi^{-})/K)$,

$$\operatorname{Sel}(\varphi^{-}) = \operatorname{Hom}_{\mathcal{G}}(\mathcal{Y}, (\varphi^{-})^{*}) \cong \operatorname{Hom}_{W[[\Gamma_{-}]]}(\mathcal{Y}(\varphi_{0}^{-}), (\varphi^{-})^{*}) \cong \operatorname{Hom}_{W}(\mathcal{Y}(\varphi_{0}^{-}) \otimes_{W[[\Gamma_{-}]], \varphi^{-}} A, \mathbb{Q}_{p}/\mathbb{Z}_{p}).$$

7.15. Cyclicity of Iwasawa module $\mathcal{Y}(\varphi_0^{-})$. Since $R_{\kappa}/R_{\kappa}([\alpha]-1)R_{\kappa} \cong W[[\Gamma_{\mathfrak{p}}]] = W[[\Gamma^{-}]]$, we write this morphism as $\theta : R_{\kappa} \to W[[\Gamma^{-}]].$

Theorem 7.8. If Γ^- is cyclic, we have

$$\operatorname{Sel}(\varphi^{-}) \cong \operatorname{Hom}_{W[[\Gamma_{-}]]}(\mathcal{Y}(\varphi_{0}^{-}), (\varphi^{-})^{*}), \ \Omega_{R_{\kappa}/\Lambda} \otimes_{R_{\kappa},\lambda} W[[\Gamma^{-}]] \cong \mathcal{Y}(\varphi_{0}^{-})$$

as $W[[\Gamma^{-}]]$ -modules.

This follows from Lemma 7.7.

Since $p \nmid [K(\varphi_0^-) : K]$, the *p*-Hilbert class field H/K and $K(\varphi_0^-)$ is linearly disjoint over K; so, we have [H:K] = [HF,F]; so, $p \nmid h_F$ implies $p \nmid h_K$. Thus combining the above theorem with the cyclicity result in Theorem 6.5, we get

Corollary 7.9. If $p \nmid h_F$, $\mathcal{Y}(\varphi_0^-)$ is a cyclic module over $W[[\Gamma^-]]$ if $\overline{\varphi}_0 \neq 1$.

8. Selmer group of Artin Representation

Assuming that $\overline{\rho}$ comes from an Artin representation $\rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(W)$, we explore a way to describe the size of its adjoint Selmer group in terms of a global unit of the splitting field F. Let $G = \operatorname{Gal}(F/\mathbb{Q}) \cong \operatorname{Im}(Ad(\overline{\rho}))$. Assume $p \nmid |G|$ and irreducibility of $\overline{\rho}$ throughout this section. Then $G \cong \operatorname{Im}(Ad(\rho)) = \operatorname{Im}(Ad(\overline{\rho}))$. We write \mathbb{F} for the minimal field of rationality of $Ad(\overline{\rho})$. Noting that $Ad(\overline{\rho})$ factors through $\mathrm{PGL}_2(\mathbb{F})$, \mathbb{F} is the minimal subfield of $\overline{\mathbb{F}}_p$ with $\mathrm{Im}(Ad(\rho)) \subset \mathrm{PGL}_2(\mathbb{F})$. Then we take W to be the unramified extension of \mathbb{Z}_p with $W/\mathfrak{m}_W = \mathbb{F}$; so, $W = W(\mathbb{F})$ (the ring of Witt vectors with coefficients in \mathbb{F}). We write O for the integer ring F. Fix a prime $\mathfrak{p}|p$ in O. We write $D \subset G$ for the decomposition group of **p** and choose basis so that $\rho|_D = \begin{pmatrix} \epsilon & 0 \\ 0 & \delta \end{pmatrix}$ with δ unramified.

8.1. Classification of Artin representations. Identify G with the subgroup $\text{Im}(Ad(\overline{\rho}))$ of $\text{PGL}_2(\mathbb{F})$. Dickson (in [LGF, §260]; see also [W2, §3]) gave a classification of $G \subset \text{PGL}_2(\mathbb{F})$:

- Case G: If p||G|, G is conjugate to $PGL_2(k)$ or $PSL_2(k)$ for a subfield $k \subset \mathbb{F}$ as long as p > 3 (when p = 3, G can be A_5). Suppose $p \nmid |G|$ (so, $p \ge 5$). Then G is given as follows.
- Case C: G is cyclic (\Rightarrow Im($\overline{\rho}$) is abelian).
- Case D: G is isomorphic to a dihedral group D_a of order 2a (so, $\overline{\rho} = \operatorname{Ind}_K^{\mathbb{Q}} \overline{\varphi}$ for a quadratic field), and $\mathbb{F} = \mathbb{F}_p[\overline{\varphi}^-]$ (the field generated by the values of $\overline{\varphi}^-$)
- Case E: G is either isomorphic to A_4 , S_4 ($\mathbb{F} = \mathbb{F}_p$ and $W = \mathbb{Z}_p$), or A_5 ($\mathbb{F} \cong \mathbb{Z}_p[\sqrt{5}]/\mathfrak{p}$ for a prime $\mathfrak{p}|p$ by the character table of A_5 ; so, $\mathbb{F} = \mathbb{F}_p$ or \mathbb{F}_{p^2}). These groups does not have quotient isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$ for $p \ge 5$ (Serre's book on linear group representation: §5.7-8 and §18.6).

In this section, we study Case E but until $\S8.8$ (except for $\S8.2$), we do not suppose that we are in case E.

8.2. $Ad(\overline{\rho})$ is absolutely irreducible in Case E. If $Ad(\overline{\rho})$ is reducible, it contain a 1-dimensional subspace or quotient stable under *G*-action. We regard $\overline{\rho}$ has values in the algebraic closure $\overline{\mathbb{F}}_p$. Since $Ad(\overline{\rho})$ is self dual, the dual of the quotient is a subspace; so, always it contains subspace of dimension 1 spanned by $0 \neq i \in \operatorname{End}_{\overline{\mathbb{F}}_p}(\overline{\rho})$ with $\operatorname{Tr}(i) = 0$. Thus *G* acts on *i* by a character $\alpha: \overline{\rho}(g) \circ i \circ \overline{\rho}(g)^{-1} = \alpha(g)i \ (\Leftrightarrow \overline{\rho} \circ i = i \circ (\overline{\rho} \otimes \alpha))$. This implies that *i* gives an isomorphism $\overline{\rho} \cong \overline{\rho} \otimes \alpha$ as $\overline{\rho}$ is irreducible. Taking determinant of this identity, $\det(\overline{\rho}) = \det(\overline{\rho})\alpha^2$; so, $\alpha^2 = 1$. If $\alpha = 1, i$ commutes with absolutely irreducible $\overline{\rho}$; so, by Schur's lemma, *i* is a non-zero scalar multiplication, contradicting $\operatorname{Tr}(i) = 0$ (by p > 2). Thus α is quadratic, and as seen in §6.5, $\overline{\rho} = \operatorname{Ind}_K^{\mathbb{Q}} \varphi$ for a quadratic extension K/\mathbb{Q} fixed by $\operatorname{Ker}(\alpha)$. This means we are in Case D or case C. Thus $Ad(\overline{\rho})$ is absolutely irreducible in Case E.

8.3. Lifting $\overline{\rho}$. Since $p \nmid |G|$, $\mathcal{G} := \operatorname{Gal}(F(\overline{\rho})/\mathbb{Q}) \cong \operatorname{Im}(\overline{\rho})$ fits into an exact sequence for the center Z (scalar matrices) of GL_2 :

$$1 \to Z(\mathbb{F}) \cap \mathcal{G} \to \mathcal{G} \to G \to 1.$$

Since $|Z(\mathbb{F})| = |\mathbb{F}^{\times}|$ is prime to p, we find $p \nmid |\mathcal{G}|$. Under this circumstance, the set of irreducible representations of \mathcal{G} with coefficients in \mathbb{F} is in bijection to representations with coefficients in W irreducible over $\operatorname{Frac}(W)$ by reduction modulo \mathfrak{m}_W (cf. [MFG,Corollary 2.7].

Writing ρ : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(W)$ (factoring through \mathcal{G}) for the lifted representation, we have $\operatorname{Im}(Ad(\rho)) = \operatorname{Im}(Ad(\overline{\rho})) \cong G$. Recall the splitting field F of $Ad(\overline{\rho})$; so, $G = \operatorname{Gal}(F/\mathbb{Q})$. In Case E, G has no abelian cyclic quotient of order p-1; so, $\mu_p(F) = \{1\}$.

8.4. **Minkowski unit.** Let $O_f^{\times} := O^{\times}/\mu_p(F)$. We have shown in §5.16 that $(O_f^{\times} \otimes_{\mathbb{Z}} \mathbb{F}) \oplus \mathbb{F}\mathbf{1} \cong$ Ind $_C^G \mathbf{1} \cong \mathbb{F}[G/C]$ by (the proof of) Dirichlet's unit theorem. Here C is the subgroup of G generated by the fixed complex conjugation c. By the same argument, we find $(O_f^{\times} \otimes_{\mathbb{Z}} \mathfrak{m}_W^n/\mathfrak{m}_W^{n+1}) \oplus \mathfrak{m}_W^n/\mathfrak{m}_W^{n+1}\mathbf{1} \cong \mathfrak{m}_W^n/\mathfrak{m}_W^{n+1}[G/C]$; so, $(O_f^{\times} \otimes_{\mathbb{Z}} W/\mathfrak{m}_W^n) \oplus W/\mathfrak{m}_W^n \mathbf{1} \cong W/\mathfrak{m}_W^n[G/C]$. Passing to the (projective) limit, we get

$$(O_f^{\times} \otimes_{\mathbb{Z}} W) \oplus W\mathbf{1} \cong W[G/C]$$

as *G*-module. Take $W = \mathbb{Z}_p$. Since $\mathbb{Z}_p[G/C]/\mathbb{Z}_p\mathbf{1}$ is a cyclic $\mathbb{Z}_p[G]$ -module, there is a generator $\varepsilon \otimes 1 \in O_f^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ ($\varepsilon \in O_f^{\times}$) over $\mathbb{Z}_p[G]$. This unit ε is called a **Minkowski unit**, and we fix one. By our choice, $\{\varepsilon^{\sigma} | \sigma \in G/C\}$ has a unique relation $\prod_{\sigma \in G/C} \varepsilon^{\sigma} = 1$ and generates a subgroup of O_f^{\times} of finite index prime to p. For each general $W_{/\mathbb{Z}_p}$, $\varepsilon \otimes 1$ is a generator of $O_f^{\times} \otimes_{\mathbb{Z}} W$ over W[G].

8.5. Ray class groups. Recall $Cl_F(p^{\infty}) = \lim_{n \to \infty} Cl_F(p^n)$, and we have an exact sequence

$$O^{\times} \to (O/p^n O)^{\times} \to Cl_F(p^n) \to Cl_F \to 1.$$

Passing to the limit, we get

$$1 \to \overline{O^{\times}} \to O_p^{\times} \to Cl_F(p^{\infty}) \to Cl_F \to 1,$$

where $O_p = \lim_{n \to \infty} O/p^n O$ and $\overline{O^{\times}} = \lim_{n \to \infty} \operatorname{Im}(O^{\times} \to (O/p^n O)^{\times}).$

Adding " $\overleftarrow{}$ ", we denote the *p*-profinite part of each groups in the sequence, getting another exact sequence

$$1 \to \widehat{O^{\times}} \to \widehat{O_p^{\times}} \to \widehat{Cl}_F(p^{\infty}) \to \widehat{Cl}_F \to 1,$$

where we have written simply $\widehat{O^{\times}}$ for $\overline{\overline{O^{\times}}}$. Except for Case E, we could have *p*-torsion in $\widehat{O^{\times}}$ (i.e., $\mu_p(F) \neq 1$) and in $\widehat{O_p^{\times}}$ (i.e., $\epsilon/\delta = \omega$ is the Teichmüller character).

8.6. Selmer group revisited. We often write simply Ad for $Ad(\rho)$. Let $k^{(p)}$ be the maximal *p*-profinite extension of a number field *k* unramified outside *p* and put $\mathfrak{G} = \operatorname{Gal}(F^{(p)}/\mathbb{Q}), \mathfrak{H} = \operatorname{Gal}(F^{(p)}/F), \mathfrak{G}' = \operatorname{Gal}(F(\overline{\rho})^{(p)}/\mathbb{Q}), \mathfrak{H}' = \operatorname{Gal}(F(\overline{\rho})^{(p)}/F)$. Recall

$$\operatorname{Sel}(Ad(\rho)) := \operatorname{Ker}(H^1(\mathfrak{G}', Ad^*) \to \frac{H^1(\mathbb{Q}_l, Ad^*)}{F_-^+(Ad^*)} \times \prod_{l \in S} H^1(I_l, Ad^*),$$

where $F_{-}^{+}Ad^{*}$ is a subgroup of $H^{1}(\mathbb{Q}_{l}, Ad^{*})$ made of classes of cocycles upper triangular over the *p*-decomposition group and upper nilpotent over the *p*-inertia group.

Lemma 8.1. We have a canonical inclusion

$$\operatorname{Sel}(Ad(\rho)) \subset \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F(p^{\infty}), Ad(\rho)^*).$$

Proof. For a topological group X, write X^{ab} for the maximal continuous abelian quotient of X. Let $u : \mathfrak{G}' \to Ad^*$ be a Selmer cocycle. Let $u' = u|_{\mathfrak{H}'} : \mathfrak{H}' \to Ad^*$, which is a homomorphism. By inflation-restriction, through $u \mapsto u'$,

$$\operatorname{Sel}(Ad(\rho)) \hookrightarrow H^1(\mathfrak{G}', Ad^*) \cong \operatorname{Hom}_{\mathbb{Z}_p[G]}(\mathfrak{H}'^{ab}, Ad^*),$$

since $H^q(G, Ad(\rho)^*) = 0$ for q > 0 by $p \nmid [F : \mathbb{Q}]$.

Since the ramification of a prime \mathfrak{l} of O outside p is concentrated in $\operatorname{Gal}(F(\overline{\rho})/F)$, the inertia group $I_{\mathfrak{l}}$ injects into $\operatorname{Gal}(F(\overline{\rho})/F)$; so, $I_{\mathfrak{l}}$ is finite of order prime to p. This implies $u'(I_{\mathfrak{l}}) = 0$ as Ad^* is p-torsion. Thus u' factors through $\mathfrak{H}'^{ab} \to \mathfrak{H}^{ab}$ as \mathfrak{H} is the Galois group over F of the maximal p-profinite extension $F^{(p)}$ of F unramified outside p. By class field theory, we know $\mathfrak{H}^{ab} \cong \widehat{Cl}_F(p^{\infty})$. \Box

8.7. Galois module structure of *p*-decomposition groups. Essential part of $\widehat{Cl}_F(p^{\infty})$ comes from \widehat{O}_p^{\times} which is the product of *p*-inertia subgroup of \mathfrak{H}^{ab} ; so, we study decomposition group in \mathfrak{H}^{ab} as *D*-modules. Recall the fixed prime factor $\mathfrak{p}|p$ in *O* with its decomposition subgroup $D \subset G$. Write simply $M_{\mathfrak{p}} := F_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}} W$ and $U_{\mathfrak{p}} := \widehat{O}_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}_p} W = O_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}} W$. Then for each character $\xi : D \to W^{\times}, M_{\mathfrak{p}}$ contains as a direct factor the ξ -eigenspace $M_{\mathfrak{p}}[\xi] = \mathfrak{l}_{\xi}M_{\mathfrak{p}}$ for $\mathfrak{l}_{\xi} = |D|^{-1}\sum_{g \in D} \xi^{-1}(g)g \in W[D]$. Then • A canonical exact sequence $U_{\mathfrak{p}}[\mathfrak{1}] \hookrightarrow M_{\mathfrak{p}}[\mathfrak{1}] \xrightarrow{\operatorname{ord}_{\mathfrak{p}}} W$ induced by the valuation $\operatorname{ord}_{\mathfrak{p}} : F_{\mathfrak{p}}^{\times} \twoheadrightarrow \mathbb{Z}$ at \mathfrak{p} , and $U_{\mathfrak{p}}[\mathfrak{1}] \cong W$ as $\mu_p(F_{\mathfrak{p}})[\mathfrak{1}] = 0$.

• $M_{\mathfrak{p}}[\xi]$ is a direct summand of $U_{\mathfrak{p}}$ if $\xi \neq \mathbf{1}$. Since all other prime factor of p is of the form $\sigma(\mathfrak{p})$ for $\sigma \in G/D$, we have $M_p := F_p^{\times} \otimes_{\mathbb{Z}} W \cong \operatorname{Ind}_D^G M_{\mathfrak{p}}$ as G-modules (for $F_p = F \otimes_{\mathbb{Q}} \mathbb{Q}_p$). Put $U_p := \widehat{O_p^{\times}} \otimes_{\mathbb{Z}_p} W = O_p^{\times} \otimes_{\mathbb{Z}} W$.

8.8. Structure of $M_p[Ad]$ as a *G*-module in Case E.. Hereafter we suppose to be in Case E (so, M_p is *p*-torsion-free). For the idempotent 1_{Ad} of W[G] corresponding to $Ad(\rho)$ and a *W*-free W[G]-module X, we consider the *Ad*-isotypical component $X[Ad] = 1_{Ad}X$. Since $M_p = \text{Ind}_D^G M_p$, by Shapiro's lemma, we have for $\xi = \epsilon \delta^{-1}$

$$\operatorname{Hom}_{G}(M_{p}, Ad^{*}) = \operatorname{Hom}_{D}(M_{\mathfrak{p}}, Ad^{*}|_{D}) = \operatorname{Hom}_{D}(M_{\mathfrak{p}}, \xi^{*} \oplus \mathbf{1}^{*} \oplus (\xi^{-1})^{*}).$$

Since $M_{\mathfrak{p}}[\xi^{\pm 1}] = U_{\mathfrak{p}}[\xi^{\pm 1}]$ (by $\xi \neq \mathbf{1}$),

$$(\operatorname{Ind}_D^G U_{\mathfrak{p}}[\xi] \oplus \operatorname{Ind}_D^G U_{\mathfrak{p}}[1] \oplus \operatorname{Ind}_D^G U_{\mathfrak{p}}[\xi^{-1}])[Ad] = Ad_{\xi} \oplus Ad_1 \oplus Ad_{\xi^{-1}},$$

where $Ad_? = \text{Ind}_D^G?[Ad]$. This fits into the following exact sequence of G-modules:

$$0 \to \overbrace{Ad_{\xi} \oplus Ad_{\mathbf{1}} \oplus Ad_{\xi^{-1}}}^{\text{inertia part}} \to M_p[Ad] \xrightarrow{\prod_{\sigma \in G/D} \operatorname{ord}_{\sigma(\mathfrak{p})}} \overbrace{(\operatorname{Ind}_D^G W\mathbf{1})[Ad]}^{\text{Frobenius part}} \to 0.$$

8.9. Selmer group as a subgroup of $\operatorname{Hom}_G(\widehat{Cl}_F(p^{\infty}), Ad(\rho)^*)$. Let $Cl_F^{(p)}$ be the subgroup of Cl_F generated by $\sigma(\mathfrak{p})$ for $\sigma \in G$. We the define $C_F := Cl_F/Cl_F^{(p)}$.

Theorem 8.2. Assume that we are in Case E. Then we have an exact sequence

$$\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad(\rho)^*) \hookrightarrow \operatorname{Sel}(Ad(\rho)) \to \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F^{(p)}, Ad(\rho)^*) \oplus \operatorname{Hom}_{W[D]}(U_{\mathfrak{p}}[\epsilon \delta^{-1}]/\overline{\langle \varepsilon_{\epsilon \delta^{-1}} \rangle}, W^{\vee}),$$

where ε is the fixed Minkowski unit with $\widehat{O}^{\times} = \mathbb{Z}_p[G]\varepsilon$, $\varepsilon_{\epsilon\delta^{-1}}$ is the projection of ε in the direct summand $U_{\mathfrak{p}}[\epsilon_{\mathfrak{p}}\delta_{\mathfrak{p}}^{-1}]$ under $O^{\times} \to U_p \twoheadrightarrow U_{\mathfrak{p}}[\epsilon\delta^{-1}]$, and $\overline{\langle \varepsilon_{\epsilon\delta^{-1}} \rangle}$ is the p-adic closure of the subgroup $\varepsilon_{\epsilon\delta^{-1}}^{\mathbb{Z}}$ generated by $\varepsilon_{\epsilon\delta^{-1}}$.

Corollary 8.3. Suppose we are in Case E. Then we have

$$|\operatorname{Sel}(Ad(\rho))| = |\widehat{Cl}_F \otimes_{\mathbb{Z}_p[G]} Ad(\rho)||(U_{\mathfrak{p}}[\epsilon\delta^{-1}]/\overline{\langle\varepsilon_{\epsilon\delta^{-1}}\rangle})|,$$

which is finite.

We start the proof of Theorem 8.2 which ends in §8.14. After finishing the proof of the theorem, we prove the corollary.

8.10. **Proof of** $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad^*) \hookrightarrow \operatorname{Sel}(Ad(\rho))$. Elements in $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad^*)$ are everywhere unramified and trivial at p; so, they gives rise to a subgroup of $\operatorname{Sel}(Ad(\rho))$ of classes everywhere unramified and trivial at p. Indeed, by $H^1(\mathfrak{G}, Ad^*) \cong \operatorname{Hom}_{\mathbb{Z}_p[G]}(\mathfrak{H}^{ab}, Ad^*)$, any $u \in \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad^*)$ extends uniquely the cocycle $u : \mathfrak{G} \to Ad^*$ unramified everywhere over \mathfrak{H} . Since the inertia group $I_l \subset G$ of any prime $l \in S$ has order prime to p, $u|_{I_l} = 0$, and hence $[u] \in \operatorname{Sel}(Ad(\rho))$.

Let $D_{\mathfrak{p}}$ be the decomposition group at \mathfrak{p} of \mathfrak{H}^{ab} with inertia subgroup $I_{\mathfrak{p}}$. Then

$$\prod_{\sigma \in G/D} \sigma D_{\mathfrak{p}} \sigma^{-1} \cong M_p \text{ and } \prod_{\sigma \in G/D} \sigma I_{\mathfrak{p}} \sigma^{-1} \cong U_p$$

Elements of $\operatorname{Sel}(Ad(\rho))$ modulo $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad^*)$ is determined by its restriction to M_p as they are unramified outside p as they factor through $\widehat{Cl}_F(p^{\infty})$ and $p \nmid |I_l|$.

8.11. Restriction to $D_{\mathfrak{p}}$. Recall $\xi = \epsilon \delta^{-1}$. We study

$$u_{\mathfrak{p}} = u|_{D_{\mathfrak{p}}} \in \operatorname{Hom}_{\mathbb{Z}_p[D]}(D_{\mathfrak{p}}, Ad^*) = \operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}, Ad^*)$$

for cocycle $u: \mathfrak{G} \to Ad^*$. Since $Ad = Ad[\xi] \oplus Ad[\mathbf{1}] \oplus Ad[\xi^{-1}]$, we have a decomposition:

$$\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}, Ad^*) = \underbrace{\operatorname{Hom}_{\mathbb{Z}_p[D]}(U_{\mathfrak{p}}[\xi], Ad[\xi]^*)}_{\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}[\mathbf{1}], Ad[\mathbf{1}]^*)} \oplus \underbrace{\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}[\mathbf{1}], Ad[\mathbf{1}]^*)}_{\operatorname{Hom}_{\mathbb{Z}_p[D]}(U_{\mathfrak{p}}[\xi^{-1}], Ad[\xi^{-1}]^*)}.$$

Thus a Selmer cocycle u projects down to the first two factors:

$$\underbrace{\operatorname{Hom}_{\mathbb{Z}_p[D]}(U_{\mathfrak{p}}[\xi], Ad[\xi]^*)}_{\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}[\mathbf{1}], Ad[\mathbf{1}]^*)} \bigoplus \underbrace{\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}[\mathbf{1}], Ad[\mathbf{1}]^*)}_{\operatorname{Hom}_{\mathbb{Z}_p[D]}(M_{\mathfrak{p}}[\mathbf{1}], Ad[\mathbf{1}]^*)}$$

Write $u_{\mathfrak{p}}^+$ (resp. $u_{\mathfrak{p}}^0$) for the upper nilpotent projection (resp. the diagonal projection) of u.

8.12. Inertia part u_+ . We have $u_{\mathfrak{p}}^+ : I_{\mathfrak{p}}[\xi] = U_{\mathfrak{p}}[\xi] \to Ad[\xi]^*$ and $u_{\sigma(\mathfrak{p})}^+ : U_{\sigma(\mathfrak{p})}[\xi_{\sigma}] \to Ad[\xi_{\sigma}]^*$ for $D_{\sigma(\mathfrak{p})} = \sigma D \sigma^{-1} \xrightarrow{\xi_{\sigma}} A^{\times}$ given by $\xi_{\sigma}(h) = \xi(\sigma^{-1}h\sigma)$. Note $Ad[\xi_{\sigma}]^* = \sigma(Ad[\xi]^*)$ and $U_{\sigma(\mathfrak{p})}[\xi_{\sigma}] = \sigma(U_{\mathfrak{p}}[\xi])$ and $u_{\sigma(\mathfrak{p})}(h) = u_{\mathfrak{p}}(\sigma^{-1}h\sigma)$. Since u is a cocycle over \mathfrak{G} , out of each restriction $u_{\sigma(\mathfrak{p})}^+$, we create the map

$$u_{+} := (u_{\sigma(\mathfrak{p})}^{+})_{\sigma} : \prod_{\sigma \in G/D} \sigma(U_{\mathfrak{p}}[\xi]) \to \prod_{\sigma \in G/D} \sigma(Ad[\xi])^{*}$$

Note $\prod_{\sigma} \sigma(U_{\mathfrak{p}}[\xi]) = \operatorname{Ind}_D^G U_{\mathfrak{p}}[\xi]$ and $\prod_{\sigma} \sigma(Ad[\xi])^* \cong \operatorname{Ind}_D^G Ad[\xi]^*$ as *G*-modules. Since *u* is a cocycle defined over \mathfrak{G} , we get a *G*-equivariant commutative diagram:

8.13. Determination of inertia part $u|_{U_p}$. By the above argument, the restriction $u|_{U_p}$ falls into $\operatorname{Hom}_{\mathbb{Z}_p[G]}(Ad_{\xi}, Ad^*)$ induced from u_+ . Though $U_p[Ad] \cong Ad^m$ for m = 3 if ξ has order 3 and m = 2 if ξ has order 2, as Shapiro's isomorphism

$$S: \operatorname{Hom}_{\mathbb{Z}_p[G]}(\operatorname{Ind}_D^G U_{\mathfrak{p}}[\xi], Ad) \cong \operatorname{Hom}_D(\xi, \xi_+ \oplus \mathbf{1} \oplus \xi_-^{-1})$$

with $\xi_+ = \xi$ realized on upper nilpotent matrices and $\xi_- = \xi$ realized on lower nilpotent matrices. The restriction $u|_{U_p}$ only has values in ξ_+ ; so, ξ_-^{-1} -component does not show up as $u|_{U_p}$ is upper nilpotent, we have $S(u|_{U_p}) \in \operatorname{Hom}_{W[D]}(U_p[\xi], \xi_+^*)$. Since u factors through $O_p^{\times}/\overline{O^{\times}}$,

$$S(u|_{U_p})$$
 factors through $U_{\mathfrak{p}}[\xi]/\overline{\langle \varepsilon_{\xi} \rangle}$

Starting from $u_{\mathfrak{p}} \in \operatorname{Hom}(U_{\mathfrak{p}}[\xi]/\overline{\langle \varepsilon_{\xi} \rangle}, \xi^*)$, we recreate $u = S^{-1}(u_{\mathfrak{p}}) : U_p/\widehat{O}^{\times}[Ad] \to Ad^*$; so, we have $\operatorname{Sel}(Ad) \to \operatorname{Hom}(U_{\mathfrak{p}}[\xi]/\overline{\langle \varepsilon_{\xi} \rangle}, \xi^*)$.

8.14. Frobenius part. Note $M_p/U_p = \operatorname{Ind}_D^G W \mathbf{1} \cong \bigoplus_{\sigma(\mathfrak{p}): \sigma \in G/D} W \sigma(\mathfrak{p})$ as W[G]-modules with projection $\pi : \operatorname{Ind}_D^G W \mathbf{1} \twoheadrightarrow \widehat{Cl}_F^{(p)} \otimes_{\mathbb{Z}_p} W$. If \mathfrak{p} has order p^h in $\widehat{Cl}_F^{(p)}$, this induces a surjection $\operatorname{Ind}_D^G W/p^hW \mathbf{1} \to \widehat{Cl}_F^{(p)} \otimes_{\mathbb{Z}_p} W$, which gives rise to an isomorphism:

$$(*) \qquad (\operatorname{Ind}_D^G W/p^h W \mathbf{1})[Ad] \cong (\widehat{Cl}_F^{(p)} \otimes_{\mathbb{Z}_p} W)[Ad] =: \widehat{Cl}_F^{(p)}[Ad]$$

by the irreducibility of $Ad(\overline{\rho})$. Therefore

$$u_0 \in \operatorname{Hom}_{W[G]}(\widehat{Cl}_F^{(p)}[Ad], Ad^*) \stackrel{(*)}{=} \operatorname{Hom}_{W[G]}(\operatorname{Ind}_D^G W/p^h W \mathbf{1}, Ad^*)$$

$$\overset{\operatorname{Shapiro's \ lemma}}{=} \operatorname{Hom}_D(W/p^h W \mathbf{1}, Ad^*|_D) = W/p^h W.$$

Reversing the argument, the Frobenius part is given by

$$\operatorname{Hom}_{W[G]}(\widehat{Cl}_{F}^{(p)}[Ad], Ad^{*}) \cong \operatorname{Hom}_{\mathbb{Z}_{p}[G]}(\widehat{Cl}_{F}^{(p)}, Ad^{*}).$$

This finishes the proof of the theorem.

8.15. Proof of the formula in the corollary. Since $Ad^* = Ad(\rho) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p \cong \operatorname{Hom}_{\mathbb{Z}_p}(Ad, \mathbb{Q}_p/\mathbb{Z}_p)$ and \otimes -Hom adjunction formula, we have

 $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F^{(p)}, Ad^*) \cong \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F^{(p)}, \operatorname{Hom}_{\mathbb{Z}_p}(Ad, \mathbb{Q}_p/\mathbb{Z}_p)) \cong \operatorname{Hom}_{\mathbb{Z}_p}(\widehat{Cl}_F^{(p)} \otimes_{\mathbb{Z}_p[G]} Ad, \mathbb{Q}_p/\mathbb{Z}_p).$ Similarly we have

$$\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, Ad^*)) \cong \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{C}_F, \operatorname{Hom}_{\mathbb{Z}_p}(Ad, \mathbb{Q}_p/\mathbb{Z}_p)) \cong \operatorname{Hom}_{\mathbb{Z}_p}(\widehat{C}_F \otimes_{\mathbb{Z}_p[G]} Ad, \mathbb{Q}_p/\mathbb{Z}_p).$$

The W-corank of the Selmer group is positive when $\varepsilon_{\epsilon\delta^{-1}} = 1$. If this happens, it is equal to $\operatorname{rank}_W U_{\mathfrak{p}}[\epsilon\delta^{-1}]$. Since $U_{\mathfrak{p}}[\epsilon\delta^{-1}] = O_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}} W[\epsilon\delta^{-1}]$ has the same rank with $O_{\mathfrak{p}} \otimes_{\mathbb{Z}_p} W[\epsilon\delta^{-1}]$ by *D*-equivariance of logarithm, we get $\operatorname{rank}_W (O_{\mathfrak{p}} \otimes_{\mathbb{Z}_p} W)[\epsilon\delta^{-1}] = 1$, since $F_{\mathfrak{p}}$ has normal basis over \mathbb{Q}_p .

8.16. Galois action on global units. Recall $(O^{\times} \otimes_{\mathbb{Z}} W) \oplus W\mathbf{1} \cong \operatorname{Ind}_{C}^{G} W\mathbf{1} \cong W[G/C]$ (as $\mu_{p}(F) = \{1\}$). Here C is the subgroup of G generated by the fixed complex conjugation c. The following lemma finishes the proof.

Lemma 8.4. We have a W[G]-linear surjective homomorphism

$$\phi: O^{\times} \otimes_{\mathbb{Z}} W \twoheadrightarrow Ad$$

and $\varepsilon_{\epsilon\delta^{-1}} \neq 1$.

Since $Ad(\overline{\rho})$ is irreducible over \mathbb{F} , if a W[G]-linear map $M \to Ad$ for a W[G]-module M is non-trivial modulo \mathfrak{m}_W , the map is surjective modulo \mathfrak{m}_W , and by Nakayama's lemma, the original map is surjective.

Proof. Since Ad is irreducible of dimension 3 over Frac(W), non-zero homomorphism

$$\phi \in \operatorname{Hom}_{W[G]}(O^{\times} \otimes_{\mathbb{Z}} W \oplus W\mathbf{1}, Ad)$$

has to factors through $O^{\times} \otimes_{\mathbb{Z}} W = W[G]\varepsilon$. By Shapiro's lemma, we have, for $\chi : C \cong \{\pm 1\}$,

 $\operatorname{Hom}_{W[G]}(O^{\times} \otimes_{\mathbb{Z}} W, Ad) = \operatorname{Hom}_{W[G]}(\operatorname{Ind}_{C}^{G} W\mathbf{1}, Ad)$

$$= \operatorname{Hom}_{W[C]}(W\mathbf{1}, Ad|_C) = \operatorname{Hom}_{W[C]}(W\mathbf{1}, \chi \oplus \mathbf{1} \oplus \chi) = W.$$

Thus we have a W[G]-linear homomorphiosm $\phi: O^{\times} \otimes_{\mathbb{Z}} W \to Ad$ non-zero modulo \mathfrak{m}_W . Therefore, the W[G]-linear homomorphism $\phi: O^{\times} \otimes_{\mathbb{Z}} W \to Ad$ is onto, and Ad is generated over W[G] by the image of ε . Since $Ad|_D = \xi \oplus \mathbf{1} \oplus \xi^{-1}$, the composed ξ -projection $O^{\times} \otimes_{\mathbb{Z}} W \xrightarrow{\phi} Ad \to Ad[\xi] = W\xi$ is onto producing a non-zero multiple of $\varepsilon_{\epsilon\delta^{-1}}$ as its image.

9. IWASAWA THEORY OVER QUADRATIC FIELDS

Assuming that $\overline{\rho} = \operatorname{Ind}_{K}^{\mathbb{Q}} \overline{\varphi}$ for a character $\overline{\varphi} : \mathfrak{G}_{\mathbb{Q}} \to \mathbb{F}^{\times}$, we describe the size of its adjoint Selmer group in Case D in terms of a Minkowski unit. Let $G = \operatorname{Gal}(F/\mathbb{Q}) \cong \operatorname{Im}(Ad(\overline{\rho}))$. Let φ be the Teichmüller lift of $\overline{\varphi}$, and put $\rho = \operatorname{Ind}_{K}^{\mathbb{Q}} \varphi$. Then $G \cong \operatorname{Im}(Ad(\rho)) = \operatorname{Im}(Ad(\overline{\rho}))$. We write \mathbb{F} for the field generated by the values of $\overline{\varphi}$. As seen in §6.6, $Ad(\rho) \cong \alpha \oplus \operatorname{Ind}_{K}^{\mathbb{Q}} \varphi^{-}$ for $\alpha = \left(\frac{K/\mathbb{Q}}{\Phi}\right)$. Then we take W to be the unramified extension of \mathbb{Z}_{p} with $W/\mathfrak{m}_{W} = \mathbb{F}$. We write O (resp. O_{K}) for the integer ring F (resp. K). Fix a prime $\mathfrak{p}|p$ in O and a prime $\mathfrak{P}|\mathfrak{p}$ in $F(\varphi) = F(\overline{\rho})$. We write $D \subset G$ (resp. D') for the decomposition group of \mathfrak{p} (resp. \mathfrak{P}) such that $\rho|_{D'} = \left(\begin{smallmatrix} 6 & 0 \\ 0 & \delta \end{smallmatrix}\right)$ with $\delta = \varphi_{\sigma}|_{D'}$ unramified. Since G is dihedral and p splits in K, $\mu_{p}(F) = \{1\}$ for $p \geq 3$.

9.1. Galois action on global units. Recall $(O^{\times} \otimes_{\mathbb{Z}} W) \oplus W\mathbf{1} \cong \operatorname{Ind}_{C}^{G} W\mathbf{1} \cong W[G/C]$. Here C is the subgroup of G generated by the fixed complex conjugation c.

Proposition 9.1. We have

$$\operatorname{Hom}_{W[G]}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}, O^{\times} \otimes_{\mathbb{Z}} W) = \begin{cases} 0 & \text{if } K \text{ is real,} \\ W & \text{if } K \text{ is imaginary.} \end{cases}$$

$$\operatorname{Hom}_{\mathbb{Z}_p[G]}(\alpha, O^{\times} \otimes_{\mathbb{Z}} W) = \begin{cases} W & \text{if } K \text{ is real,} \\ 0 & \text{if } K \text{ is imaginary} \end{cases}$$

If K is imaginary, $\varepsilon_{\varphi^-} \neq 1$ and $\varepsilon_{\alpha} = 1$ and if K is real, $\varepsilon_{\alpha} \neq 1$ and $\varepsilon_{\varphi^-} = 1$.

We have $\operatorname{Hom}_{W[G]}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}, \operatorname{Ind}_{C}^{G}W\mathbf{1}) = \operatorname{Hom}_{W[C]}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}|_{C}, W\mathbf{1})$ and $\operatorname{Hom}_{\mathbb{Z}_{p}[G]}(\alpha, \operatorname{Ind}_{C}^{G}\mathbf{1}) = \operatorname{Hom}_{\mathbb{Z}_{p}[C]}(\alpha|_{C}, \mathbf{1})$. The second assertion is clear from the second identity.

Proof. Pick $\sigma \in G$ such that $\sigma | K$ is non-trivial. If K is imaginary, $\operatorname{Ind}_{K}^{\mathbb{Q}} \varphi^{-}|_{C} = \mathbf{1} \oplus \alpha$ as $\operatorname{Tr}(\operatorname{Ind}_{K}^{\mathbb{Q}} \varphi^{-})(c)) = 0$. Therefore

$$\operatorname{Hom}_{W[C]}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}|_{C},W\mathbf{1}) = \operatorname{Hom}_{W[C]}(\mathbf{1}\oplus\alpha,\mathbf{1}) = W.$$

Suppose that K is real. Since

$$Ad(\overline{\rho})(c) \sim \operatorname{diag}[-1, 1, -1] \sim \operatorname{diag}[\varphi^{-}(c), \alpha(c), (\varphi^{-})^{-1}(c)],$$

 $\alpha(c) = 1$ implies $\varphi^-(c) = \varphi^-_{\sigma}(c) = -1$. Therefore

$$\operatorname{Hom}_{W[C]}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}|_{C},W\mathbf{1}) = \operatorname{Hom}_{W[C]}(\chi \oplus \chi, \mathbf{1}) = 0$$

for $\chi : C \cong \{\pm 1\}$.

9.2. Selmer group and ray class group. Recall Lemma 8.1:

Lemma 9.2. We have a canonical inclusion

$$\operatorname{Sel}(Ad(\rho)) \subset \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F(p^{\infty}), Ad(\rho)^*).$$

As before, we put $\mathfrak{H} = \operatorname{Gal}(F^{(p)}/F)$, and we study decomposition group in \mathfrak{H}^{ab} as *D*-modules. Recall the fixed prime factor $\mathfrak{p}|p$ in *O* with its decomposition subgroup $D \subset G$. Write simply $M_{\mathfrak{p}} := F_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}} W$ and $U_{\mathfrak{p}} := \widehat{O_{\mathfrak{p}}^{\times}} \otimes_{\mathbb{Z}_p} W = O_{\mathfrak{p}}^{\times} \otimes_{\mathbb{Z}} W$. Then for each character $\xi : D \to W^{\times}$, $M_{\mathfrak{p}}$ contains as a direct factor the ξ -eigenspace $M_{\mathfrak{p}}[\xi]$. Then writing $\mu_p(F_{\mathfrak{p}})_{/\mathbb{F}} = \mu_p(F_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{F}$

(U)
$$M_{\mathfrak{p}}[\xi] = U_{\mathfrak{p}}[\xi] \cong \begin{cases} W & \text{if } \xi \notin \{\mathbf{1}, \omega\}, \\ W \oplus \mu_p(F_{\mathfrak{p}})_{/\mathbb{F}} & \text{if } \xi = \omega. \end{cases}$$

(M) We have an exact sequence $0 \to U_{\mathfrak{p}}[\mathbf{1}] \to M_{\mathfrak{p}}[\mathbf{1}] \xrightarrow{\operatorname{ord}_{\mathfrak{p}}} W \to 0$ induced by the valuation $\operatorname{ord}_{\mathfrak{p}}: F_{\mathfrak{p}}^{\times} \twoheadrightarrow \mathbb{Z}$ at \mathfrak{p} , and $U_{\mathfrak{p}}[\mathbf{1}] \cong W$.

9.3. Structure of $M_p[Ad]$ as a *G*-module in Case D.. For each irreducible factor ϕ of Ad, we consider the ϕ -isotypical component $X[\phi]$, and write $\mu_p(F_p)_{/\mathbb{F}} = \mu_p(F_p) \otimes_{\mathbb{Z}} \mathbb{F}$.

Lemma 9.3. Assume $\varphi^-|_D \neq 1$ and $p \geq 5$.

 $\operatorname{Hom}_G(M_p, \phi^*) =$

$$\begin{cases} \operatorname{Hom}_{D}(U_{\mathfrak{p}}[\varphi^{-}] \oplus U_{\mathfrak{p}}[\varphi_{\sigma}^{-}], (\phi|_{D})^{*}) \cong W^{2} \oplus \mu_{p}(F_{\mathfrak{p}})_{/\mathbb{F}}[\xi^{\pm 1}] & \dim \phi = 2, \\ \operatorname{Hom}_{D}(U_{\mathfrak{p}}[\phi], \phi^{*}) \cong W & \phi \subsetneq \operatorname{Ind}_{K}^{\mathbb{Q}} \varphi^{-}, \\ \operatorname{Hom}_{D}(M_{\mathfrak{p}}[\mathbf{1}], \mathbf{1}^{*}) \cong W^{2} & \phi = \alpha, \end{cases}$$

where $\xi = \varphi^-$ in the first case.

Proof. Since $M_p = \operatorname{Ind}_D^G M_p$, we have $\operatorname{Hom}_G(M_p, \phi^*) = \operatorname{Hom}_D(M_p, \phi^*|_D)$ by Shapiro's lemma. If $\varphi^-|_D \neq \mathbf{1}, \phi|_D$ is

- $(\varphi^- \oplus \varphi_{\sigma}^-)|_D$ when $\phi = \operatorname{Ind}_K^{\mathbb{Q}} \varphi^-$ is irreducible $(\operatorname{ord}(\varphi^-) \ge 3)$,
- $\varphi^-|_D$ when $\phi \subsetneq \operatorname{Ind}_K^{\mathbb{Q}} \varphi^-$ (ord $(\varphi^-) = 2$),
- 1 when $\phi = \alpha$.

Let $\xi = \varphi^{-}|_{D}$. Since $M_{\mathfrak{p}}[\xi^{\pm 1}] = U_{\mathfrak{p}}[\xi^{\pm 1}]$ (by $\xi \neq 1$),

$$(\operatorname{Ind}_D^G U_{\mathfrak{p}}[\xi^{\pm 1}])[Ad] = \begin{cases} \phi \oplus \operatorname{Ind}_D^G \mu_p(F_{\mathfrak{p}})[\phi] & \text{if } \xi \neq \xi^{-1} \text{ and } \dim \phi = 2, \\ \phi \oplus \phi \alpha & \text{if } \phi \subsetneq \operatorname{Ind}_K^{\mathbb{Q}} \varphi^-, \\ 0 & \text{if } \phi = \alpha, \end{cases}$$

$$(\operatorname{Ind}_D^G M_{\mathfrak{p}}[\mathbf{1}])[Ad] = \begin{cases} 0 & \text{if } \phi \subset \operatorname{Ind}_K^{\mathbb{Q}} \varphi^-, \\ \alpha \oplus \alpha & \text{if } \phi = \alpha. \end{cases}$$

This is because $M_{\mathfrak{p}}[\xi^{\pm 1}] = U_{\mathfrak{p}}[\xi^{\pm 1}] \cong W \oplus \mu_p(F_{\mathfrak{p}})_{/\mathbb{F}}$ by (U) and by Shapiro's lemma

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}, \operatorname{Ind}_{D}^{G}U_{\mathfrak{p}}[\xi]) = \operatorname{Hom}_{D}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-}|_{D}, \xi \oplus (\mu_{p}(F_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{F})) = \operatorname{Hom}_{D}(\xi \oplus \xi^{-1}, \xi \oplus (\mu_{p}(F_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{F}))$$

as $D \subset \text{Gal}(F/K)$. The second formula follows from (M).

9.4. Theorem for Sel(Ind^{\mathbb{Q}}_K φ^{-}). The representations $\Phi := \text{Ind}^{\mathbb{Q}}_{K}\varphi^{-}$ and α in $Ad(\rho)$ fits into the following exact sequence of *G*-modules:

$$0 \to \overbrace{\Phi \oplus \operatorname{Ind}_D^G(\mu_p(F_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{F})[\Phi] \oplus \alpha \oplus \Phi}^{\text{inertia part}} \to M_p[Ad] \to \alpha \to 0.$$

Here Φ can be reducible.

Theorem 9.4. Assume that we are in Case D with irreducible $\operatorname{Ind}_{K}^{\mathbb{Q}}\overline{\varphi}$. Then we have an exact sequence

$$\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F, \Phi^*) \hookrightarrow \operatorname{Sel}(\Phi) \twoheadrightarrow \operatorname{Hom}_{W[D]}(U_{\mathfrak{p}}[\varphi^-]/\overline{\langle \varepsilon_{\varphi^-} \rangle}, W^{\vee}),$$

where ε is a Minkowski unit, ε_{φ^-} is the projection of ε in the direct summand $U_{\mathfrak{p}}[\varphi^-]$ under $O^{\times} \to U_p \twoheadrightarrow U_{\mathfrak{p}}[\varphi^-]$, and $\overline{\langle \varepsilon_{\varphi^-} \rangle}$ is the p-adic closure of the subgroup $\varepsilon_{\varphi^-}^{\mathbb{Z}}$ generated by ε_{φ^-} .

Proof. Proof of $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F, \Phi^*) \hookrightarrow \operatorname{Sel}(\Phi)$. We proceed as in Case E (in §8.10) replacing Ad by Φ . Since $\widehat{Cl}_F^{(p)}$ (surjective image of $\operatorname{Ind}_D^G \mathbf{1}$) does not contain $\Phi = \operatorname{Ind}_K^{\mathbb{Q}} \varphi^-$, we can ignore it and can work with the entire \widehat{Cl}_F . Elements in $\operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F, \Phi^*)$ are everywhere unramified and trivial at p; so, they gives rise to a subgroup of $\operatorname{Sel}(\Phi)$ of classes everywhere unramified and trivial at p. Indeed, by $H^1(\mathfrak{G}, \Phi^*) \cong \operatorname{Hom}_{\mathbb{Z}_p[G]}(\mathfrak{H}^{ab}, \Phi^*)$, any $u \in \operatorname{Hom}_{\mathbb{Z}_p[G]}(\widehat{Cl}_F, \Phi^*)$ extends uniquely the cocycle $u : \mathfrak{G} \to \Phi^*$ unramified everywhere over \mathfrak{H} . Since the inertia group $I_l \subset G$ of any prime $l \in S$ has order prime to p, $u|_{I_l} = 0$, and hence $[u] \in \operatorname{Sel}(\Phi)$.

Elements of Sel(Φ) modulo Hom_{$\mathbb{Z}_p[G]$}(\widehat{Cl}_F, Φ^*) is determined by its restriction to M_p as they are unramified outside p as they factor through $\widehat{Cl}_F(p^{\infty})$ and $p \nmid |I_l|$.

Inertia part. Recall $\xi = \epsilon \delta^{-1} = \varphi^-$. A Selmer cocycle $u|_{\mathfrak{H}^{ab}}$ regarded as a $W[\Gamma^-]]$ -linear homomorphism in $\operatorname{Hom}_{W[[\Gamma^-]]}(\mathcal{Y}(\varphi^-), (\varphi^-)^*)$ has values in $(\varphi^-)^*$ over U_p . Since $M_p/U_p \cong \operatorname{Ind}_D^G W\mathbf{1}$ does not contain Φ , we can ignore M_p/U_p . By its *G*-equivariance,

$$u|_{U_p} \in \operatorname{Hom}_{W[G]}(U_p, \Phi^*)$$

By Shapiro's lemma,

$$\operatorname{Hom}_{W[G]}(U_p, \Phi^*) \cong \operatorname{Hom}_{W[D]}(U_{\mathfrak{p}}[\varphi^-], (\varphi^-)^*).$$

Since u factors through $O_p^{\times}/\overline{O^{\times}}$, u factors through $U_{\mathfrak{p}}[\varphi^-]/\overline{\langle \varepsilon_{\varphi^-} \rangle}$.

Corollary 9.5. If K is imaginary, we have

$$|\operatorname{Sel}(\operatorname{Ind}_{K}^{\mathbb{Q}}\varphi^{-})| = |\widehat{Cl}_{F} \otimes_{\mathbb{Z}_{p}[\operatorname{Gal}(F/K)]}\varphi^{-}||(U_{\mathfrak{p}}[\varphi^{-}]/\overline{\langle \varepsilon_{\varphi^{-}} \rangle})|$$

which is finite, otherwise it has W-corank 1 (up to finite W-torsion).

Proof. By Proposition 9.1, $\varepsilon_{\varphi^-} \neq 1$ only when K is imaginary. Thus the finiteness of the Selmer group follows. When K is real, we have $U_{\mathfrak{p}}[\varphi^-] \cong W$, and therefore from Theorem 9.4, the Selmer group has corank 1.

10. " $R = \mathbb{T}$ " Theorem and adjoint Selmer groups

On the way to prove FLT, Wiles and Taylor identified the universal ring R for the deformation functor \mathcal{D}_{κ} with a *p*-adic Hecke algebra \mathbb{T} . The algebra \mathbb{T} is known to be free of finite rank over the Iwasawa algebra, and they also showed that $R = \mathbb{T}$ is a local complete intersection over Λ . We explore consequences of these result in our study of the adjoint Selmer groups of modular Galois representations.

10.1. Local complete intersection ring. Let $B \in CL_{/W}$ be the base ring which is an integral domain. An object $A \in CL_{/B}$ is called a (relative) local complete intersection over B if A is free of finite rank over B with a presentation $A \cong B[[X_1, \ldots, X_r]]/(f_1, \ldots, f_r)$ for a positive integer r. Then the following facts are known

- Hom_B(A, B) is free of rank 1 over B (i.e., A is a Gorenstein ring over B);
- $x \mapsto f_j x$ is an injection over $A/(f_1, \ldots, f_{j-1})$ for all $j = 1, \ldots r$ (i.e., (f_1, \ldots, f_r) is a regular sequence;

• If A is generated over B by m elements, the minimal choice of r is m. For these facts, see [CRT, $\S21$].

Theorem 10.1 (J. Tate). If B is normal noetherian and $P : A \to B$ is a B-algebra homomorphism with $A \otimes_B \operatorname{Frac}(B) = \operatorname{Frac}(B) \oplus (\operatorname{Ker}(P) \otimes_B \operatorname{Frac}(B))$ as an algebra direct summand, we have

$$\operatorname{char}(C_0) = \operatorname{char}(C_1),$$

where $C_0 = C_0(P) = A \otimes_A S$ for the image S of A in the algebra $\operatorname{Ker}(P) \otimes_B \operatorname{Frac}(B)$ and $C_1 = C_1(P) = \Omega_{A/B} \otimes_{A,P} B$.

Tate actually proved a finer equality $Fitt(C_0) = Fitt(C_1)$ of Fitting *B*-ideals for any commutative algebra *B* with identity. For Tate's proof, see the appendix to the paper by Mazur–Robert [MR70].

10.2. Homological dimension. For a noetherian local ring A in $CL_{/W}$, we define the homological dimension hdim_B M of a finitely generated B-module M is the minimum length h of exact sequence $0 \rightarrow F_h \rightarrow F_{h-1} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0$ made of R-free module F_j of finite rank. If $R_{A/B}$ is a local complete intersection free of finite rank over B, we have a presentation $A = B[[T_1, \ldots, T_r]/(f_1, \ldots, f_r)$ for a regular sequence f_1, \ldots, f_r . Then the 2nd fundamental exact sequence (Corollary 2.2) gives an exact sequence

$$(f_1,\ldots,f_r)/(f_1,\ldots,f_r)^2 \xrightarrow{i} \Omega_{B[[T_1,\ldots,T_r]]/B} \otimes_{B[[T_1,\ldots,T_r]]} A \twoheadrightarrow \Omega_{A/B}$$

If further B is a domain of characteristic 0 and A is reduced, $\Omega_{A/B}$ is a torsion A-module (as the extension $\operatorname{Frac}(A)/\operatorname{Frac}(B)$ is a finite semi-simple extension). Since $(f_1, \ldots, f_r)/(f_1, \ldots, f_r)^2 \cong A^r$ as (f_1, \ldots, f_r) is a regular sequence, torsion-property of $\Omega_{A/B}$ tells us that i is injective; so, we get from $\Omega_{B[[T_1,\ldots,T_r]]/B} \otimes_{B[[T_1,\ldots,T_r]]} A \cong \bigoplus_j A dT_j$

hdim $\Omega_{A/B} = 1$ if A is local complete intersection over B.

10.3. Taylor-Wiles theorem. Taylor and Wiles proved

Theorem 10.2. Under (ord_l) for $l \in S \cup \{p\}$, R_{χ}/B is a local complete intersection with presentation $R_{\chi} = B[[T_1, \ldots, T_r]/(f_1, \ldots, f_r)$ for $r = \dim_{\mathbb{F}} \operatorname{Sel}(Ad(\overline{\rho}))$, where B = W if χ has values in W^{\times} and $B = \Lambda$ if $\chi = \kappa$. In particular, we have $\operatorname{hdim}_B \Omega_{R_{\chi}/B} \leq 1$.

What Taylor–Wiles proved is a bit different from this theorem for the number of variables. There presentation has the number of variables r_0 possibly slightly bigger than $\dim_{\mathbb{F}} \text{Sel}(Ad(\overline{\rho})(1)) \ge r = \dim_{\mathbb{F}} \text{Sel}(Ad(\overline{\rho}))$. Since R_{χ} is generated by r elements over B as seen in Lecture No.3, by [CRT, Theorem 21.2 (ii)], we can change Taylor–Wiles presentation so that it is valid for r. For a proof, see [TW] and [HMI, §3.2].

10.4. Existence of *p*-adic L.. Let $\rho : \mathfrak{G}_{\mathbb{Q}} \to \mathrm{GL}_2(A)$ be a deformation of $\overline{\rho}$ such that $\rho \cong P \circ \rho_{\chi}$. If $r = 1, R_{\chi} = B[[T_1]]/(f_1)$ and we have an exact sequence for $(P : R_{\chi} \to A) \in \mathrm{Hom}_{B-\mathrm{alg}}(R_{\chi}, A)$

$$A = (f_1)/(f_1^2) \otimes_{R_{\chi}} A \longrightarrow A \cdot dT_1 \xrightarrow{\twoheadrightarrow} \Omega_{R_{\chi}/B} \otimes_{R_{\chi}} A$$
$$\| \uparrow^{L_{\rho} \mapsto f_1} \qquad \| \uparrow^{1 \mapsto dT_1} \qquad \stackrel{\uparrow}{\longrightarrow} \operatorname{Sel}(Ad(\rho))^{\vee}.$$

If B = W, $|L_{\rho}|_{p}^{-1} = |\text{Sel}(Ad(\rho)| \text{ and } L_{\rho}(P) := P(L_{\rho}) = L_{\rho}$. If $B = \Lambda$ ($\chi = \kappa$), L_{ρ} gives rise to a p-adic L-function with

$$\operatorname{Spec}(R_{\kappa})(W) \ni P \mapsto |L_{\rho}(P)|_{p}^{-1} = |\operatorname{Sel}(Ad(P \circ \rho))|.$$

If r > 1, we define

$$L_{\boldsymbol{\rho}} := \det((f_1, \dots, f_r)/(f_1, \dots, f_r)^2 \to \bigoplus_{j=1}^r R_{\kappa} \cdot dT_j),$$

and the outcome is the same.

10.5. Universal modular deformation. Let N be the prime-to-p Artin conductor of $\overline{\rho}$ with det $\overline{\rho}(c) = -1$. By the solution of Serre's mod p modularity conjecture, we have Hecke eigenforms f (actually infinitely many) whose p-adic Galois representation ρ_f is in $\mathcal{D}_{\kappa}(A_f)$ for a finite extension A_f of W generated by $\operatorname{Tr}(\rho_f)$. We can define the p-adic Hecke algebra \mathbb{T} interpolating all modular Galois representation $\rho_f \in \mathcal{D}_{\kappa}(A_f)$ as follows: The algebra $\mathbb{T} \subset \prod_f A_f$ topologically generated by $\prod_f \operatorname{Tr}(\rho_f(g))$ for all $g \in \mathfrak{G}_{\mathbb{Q}}$. Then by my old result in 1986, we have a Galois representation $\rho_{\mathbb{T}} : \mathfrak{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ such that $\rho_{\mathbb{T}} \in \mathcal{D}_{\kappa}(\mathbb{T})$ (in particular $\mathbb{T} \in CL_{/\Lambda}$). The proof of Theorem 10.2 actually produces the following

Corollary 10.3. Suppose (ord_l) in §5.1 for $l \in S \cup \{p\}$. Then we have $\iota : R_{\kappa} \cong \mathbb{T}$ such that $\iota \circ \rho \cong \rho_{\mathbb{T}}$.

See [TW] and $[HMI, \S 3.2]$.

10.6. Lifting to an extension \mathbb{I} of Λ . Let $\lambda : R_{\kappa} = \mathbb{T} \to \mathbb{I}$ be a Λ -algebra surjective homomorphism for an integral domain \mathbb{I} finite torsion-free over Λ . Let $\mathbb{T}_{\mathbb{I}} := \mathbb{T} \otimes_{\Lambda} \mathbb{I}$ and $\widetilde{\lambda}$ be the composite $\mathbb{T}_{\mathbb{I}} \to \mathbb{T} \otimes_{\Lambda} \mathbb{I} \xrightarrow{a \otimes b \mapsto ab} \mathbb{I}$. Then for each $P \in \operatorname{Spec}(\mathbb{I})(W) = \operatorname{Hom}_{W-\operatorname{alg}}(\mathbb{I}, W)$, $\widetilde{\lambda}$ induces $\Lambda \hookrightarrow \mathbb{T}_{\mathbb{I}} \xrightarrow{\widetilde{\lambda}} \mathbb{I} \xrightarrow{P} W$ by composition.

Writing $\rho_P := P \circ \lambda \circ \rho$. Then det ρ_P is a deformation of det $\overline{\rho}$; so, we have a unique morphism $\iota_P : \Lambda \to W$ such that $\iota_P \circ \kappa = \det(\rho_P)$. Since the Λ -algebra structure $\iota : \Lambda \to \mathbb{T}$ of $\mathbb{T} = R_{\kappa}$ is given by $\det(\rho) = \det(\rho_{\mathbb{T}}) = \iota \circ \kappa$, we find out that the above composite is just ι_P .

Let $\mathbb{T}_P = \mathbb{T}_{\mathbb{I}} \otimes_{\mathbb{I},P} W$ under the above algebra homomorphism. Note that

$$\mathbb{T}_P = \mathbb{T} \otimes_{\Lambda} \mathbb{I} \otimes_{\mathbb{I},P} W \cong \mathbb{T} \otimes_{\Lambda,\iota_P} W$$

by associativity of tensor product.

10.7. Modular and admissible points. By construction, we have $\lambda_P : \mathbb{T}_P \to W$ induced by λ . Even if $\iota_P = \iota_{P'}, \lambda_P$ may be different from $\lambda_{P'}$. If λ_P is associated to a Hecke eigenform of weight ≥ 2 , we call P a modular point. If $\mathbb{T}_P \otimes_W \operatorname{Frac}(W) = \operatorname{Frac}(W) \oplus (\operatorname{Ker}(\lambda_P) \otimes_W \operatorname{Frac}(W))$ as algebra direct sum, we call P admissible. If P is admissible, $C_0(\lambda_P)$ is well defined. If P is modular, it is admissible.

If $\rho \in \mathcal{D}_{\chi}(A)$ for W-valued $\chi = \det(\rho_P)$, then $\rho \in \mathcal{D}_{\kappa}(A)$ and hence $\rho = \phi \circ \rho$ for $\phi : R_{\kappa} \to A$. By definition, ϕ factors through

$$R_{\kappa}/R(\det(\boldsymbol{\rho})(g) - \chi(g))_{g}R = R_{\kappa}/R(\kappa(g) - \chi(g))_{g}R = R \otimes_{\Lambda,\chi} W.$$

This shows that $R_{\chi} = R \otimes_{\Lambda,\chi} W$ for $\chi : \Lambda = W[[\Gamma]] \to W$ induced by χ . Applying this to \mathbb{T}_P , we get $R_{\det(\rho_P)} = \mathbb{T}_P$.

10.8. Modular adjoint *p*-adic L: L^{mod} . Suppose (ord_l) in §5.1 for $l \in S \cup \{p\}$. Here is a theorem I proved long ago (e.g., [MFG, §5.3.6]) for canonical periods $\Omega_{f,\pm}$ of f:

Theorem 10.4. Let $\lambda : \mathbb{T} \to \mathbb{I}$ be a surjective Λ -algebra homomorphism for a domain \mathbb{I} containing Λ and $\widetilde{\lambda} : \mathbb{T}_{\mathbb{I}} \to \mathbb{I}$ be its scalar extension to \mathbb{I} as in §10.6. Then there exists $L^{mod} \in \mathbb{I}$ such that $C_0(\lambda) = \mathbb{I}/(L^{mod})$ and for each admissible $P \in \text{Spec}(\mathbb{I})$, $C_0(\lambda_P) = W/P(\lambda(L^{mod}))$ and if $P \circ \lambda \circ \rho_{\mathbb{T}} \cong \rho_f$ for a modular form of weight ≥ 2 , we have $|C_0(\lambda_P)| = |W/P(\lambda(L^{mod}))| = |\frac{L(1, Ad(\rho_f))}{\Omega_{f, +}\Omega_{f, -}}|_p^{-1}$ (see [MFG, Corollary 5.31]).

If f is of weight 2 on a modular curve X, for $\mathcal{W} = W \cap \overline{\mathbb{Q}}$, we have $H^1(X, \mathcal{W})[\lambda_P] = \mathcal{W}\omega_+(f) \oplus \mathcal{W}\omega_-(f)$ (±-eigenspace under the pull-back action of $z \mapsto -\overline{z}$ on the upper half complex plane) and $H^1(X, \mathbb{C}) = \mathbb{C}\delta_+(f) + \mathbb{C}\delta_-(f)$ for $\delta_{\pm}f = f(z)dz \mp f(-\overline{z})d\overline{z}$. Then $\Omega_{f,\pm}\omega_{\pm}(f) = \delta_{\pm}(f)$. We use Eichler-Shimura isomorphism to define $\Omega_{f,\pm}$ for higher weight.

10.9. Sketch of Proof of the existence of L^{mod} . Write $X^* := \text{Hom}_{\mathbb{I}}(X,\mathbb{I})$ for an \mathbb{I} -module X. Let S be the image of $\mathbb{T}_{\mathbb{I}}$ in $\mathfrak{B} \otimes_{\mathbb{I}} \text{Frac}(\mathbb{I})$ for $\mathfrak{B} = \text{Ker}(\widetilde{\lambda})$ in the decomposition $\mathbb{T} \otimes_{\Lambda} \text{Frac}(\mathbb{I}) = \text{Frac}(\mathbb{I}) \oplus (\mathfrak{B} \otimes_{\mathbb{I}} \text{Frac}(\mathbb{I}))$. Let $\mu : \mathbb{T}_{\mathbb{I}} \to S$ be the projection and put $\mathfrak{A} = \text{Ker}(\mu)$. So we have a split exact sequence $\mathfrak{B} \hookrightarrow \mathbb{T}_{\mathbb{I}} \twoheadrightarrow \mathbb{I}$. A local complete intersection $\mathbb{T}_{\mathbb{I}}$ over \mathbb{I} has such a self-dual pairing (\cdot, \cdot) with values in \mathbb{I} such that (xy, z) = (x, yz) for $x, y, z \in \mathbb{T}_{\mathbb{I}}$. Thus $\mathfrak{B}^* \cong \mathbb{T}_{\mathbb{I}}^*/\mathbb{I}^*$, and $\mathbb{I}^* \subset \mathbb{T}_{\mathbb{I}} = \mathbb{T}_{\mathbb{I}}^*$ is a maximal submodule of $\mathbb{T}_{\mathbb{I}}$ on which $\mathbb{T}_{\mathbb{I}}$ acts through $\widetilde{\lambda}$; so, $\mathbb{I}^* = \mathfrak{A}$ inside $\mathbb{T}_{\mathbb{I}}$. This implies $\mathfrak{B}^* \cong S$; so, S is \mathbb{I} -free. In other words, applying \mathbb{I} -dual, we get a reverse exact sequence

This shows $? = \mathfrak{A} \cong \mathbb{I}^* \cong \mathbb{I}$; so, \mathfrak{A} is principal to have $L^{mod} \in \mathbb{I}$ such that $\mathfrak{A} = (L^{mod})$. Note that $C_0(\widetilde{\lambda}) = \mathbb{I}/\mathfrak{A}$ (see §2.6).

10.10. **Specialization property.** We have $\mathfrak{B}^* = S$ and a split exact sequence $\mathfrak{B} \to \mathbb{T}_{\mathbb{I}} \to \mathbb{I}$; so, \mathfrak{B} is an \mathbb{I} -direct summand of $\mathbb{T}_{\mathbb{I}}$. Tensoring W over \mathbb{I} via P, $\mathfrak{B} \otimes_{\mathbb{I},P} W \to \mathbb{T}_P \to W$ is exact, and we get $\mathfrak{B}_P = \mathfrak{B} \otimes_{\mathbb{I},P} W = \text{Ker}(\lambda_P)$. Since \mathbb{T} is Λ -free of finite rank, $\mathbb{T}_{\mathbb{I}}$ is \mathbb{I} -free of finite rank. Thus \mathfrak{B} is \mathbb{I} -projective and hence \mathbb{I} -free; so, $S \cong \mathfrak{B}^*$ is \mathbb{I} -free. Tensoring W over \mathbb{I} via P, we get

$$0 \to \mathfrak{A} \otimes_{\mathbb{I},P} W \to \mathbb{T}_P \to S \otimes_{\mathbb{I},P} W \to 0.$$

Thus if P is admissible, $S_P := S \otimes_{\mathbb{I},\lambda_P} W$ gives rise to the decomposition: $\mathbb{T}_P \otimes_W \operatorname{Frac}(W) = \operatorname{Frac}(W) \oplus (S_P \otimes_W \operatorname{Frac}(W))$. By $\mathfrak{B}_P = \mathfrak{B}_P \otimes_{\mathbb{I},P} W = \operatorname{Ker}(\lambda_P)$, we get $C_0(\lambda_P) = S_P/\mathfrak{B}_P = (S/\mathfrak{B}) \otimes_{\mathbb{I},P} W = C_0(\widetilde{\lambda}) \otimes_{\mathbb{I},P} W$, as desired.

10.11. Relation between L_{ρ} and L^{mod} . Tensoring I with the exact sequence of T-modules:

$$(f_1,\ldots,f_r)/(f_1,\ldots,f_r)^2 \xrightarrow{f\mapsto df} \Omega_{\Lambda[[T_1,\ldots,T_r]]/\Lambda} \otimes_{\Lambda[[T_1,\ldots,T_r]]} \mathbb{T} \twoheadrightarrow \Omega_{\mathbb{T}/\Lambda}$$

over \mathbb{T} , we get an exact sequence

$$\bigoplus_{j} \mathbb{I} df_{j} \xrightarrow{d \otimes 1 = \lambda(d)} \bigoplus_{j} \mathbb{I} dT_{j} \to \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T},\lambda} \mathbb{I} \to 0.$$

Since $\mathbb{T}_{\mathbb{I}} = \mathbb{I}[[T_1, \ldots, T_r]]/(f_1, \ldots, f_r)_{\mathbb{I}}$, we have

$$\Omega_{\mathbb{T}_{\mathbb{I}}/\mathbb{I}}\otimes_{\mathbb{T}_{\mathbb{I}},\widetilde{\lambda}}\mathbb{I} = \bigoplus_{j}\mathbb{I}dT_{j}/\bigoplus_{j}\mathbb{I}df_{j} = \Omega_{\mathbb{T}/\Lambda}\otimes_{\mathbb{T},\lambda}\mathbb{I}.$$

They have the same characteristic ideals (and Fitting ideals) by Tate's theorem. Thus in general, we get

$$(\lambda(L_{\rho})) = (\lambda(\det(d))) = (\det(d \otimes 1))$$

$$= \operatorname{char}(C_1(\widetilde{\lambda})) \stackrel{\text{Tate}}{=} \operatorname{char}(C_0(\widetilde{\lambda})) = (L^{mod}).$$

10.12. Conclusion. Thus we obtain

Corollary 10.5. Let the notation and the assumption be as in Theorem 2. Then we have $\lambda(L_{\rho})/L^{mod} \in \mathbb{I}^{\times}$.

The corollary tells us that $L_{mod} \in \mathbb{I}$ glues (up to units) well to L_{ρ} so that the image $\lambda(L_{\rho})$ of L_{ρ} in \mathbb{I} is equal to L^{mod} of \mathbb{I} up to units as long as \mathbb{I} contains Λ as a subalgebra.

As seen in Corollary 2.2, $C_1 = C_1(\lambda) = \mathfrak{B}/\mathfrak{B}^2$ and $C_0 = C_0(\lambda) = S/\mathfrak{B}$. If $r \leq 1$, C_1 is cyclic, and by Nakayama's lemma, \mathfrak{B} is generated by an element θ of S. Since $C_1 \cong C_0$ by Tate's theorem and C_0 is \mathbb{I} -torsion, θ is a non-zero-divisor of S. Thus the multiplication by θ gives rise to $C_0 \cong C_1$.

References

Books

- [BCM] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961–83
- [CGP] K. S. Brown, Cohomology of Groups, Graduate texts in Math. 87, Springer, 1982
- [CPI] K. Iwasawa, Collected Papers, Vol. 1-2, Springer, 2001
- [CRT] H. Matsumura, Commutative Ring Theory, Cambridge studies in advanced mathematics 8, Cambridge Univ. Press, 1986
- [HMI] H. Hida, Hilbert modular forms and Iwasawa theory, Oxford University Press, 2006.
- [IAT] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press and Iwanami Shoten, 1971, Princeton-Tokyo
- [ICF] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Text in Mathematics, 83, Springer, 1980
- [LFE] H. Hida, Elementary Theory of L-functions and Eisenstein Series, LMSST 26, Cambridge University Press, Cambridge, 1993
- [LGF] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901.
- [MFG] H. Hida, Modular Forms and Galois Cohomology, Cambridge Studies in Advanced Mathematics **69**, 2000, Cambridge University Press

Articles

- [Du] G. F. D. Duff, Differential forms in manifolds with boundary. Ann. of Math. 56, (1952) 115–127
- [MR70] B. Mazur and L. Robert, Local Euler characteristic, Invent. Math. 9 (1970), 201–234.
- [M] B. Mazur, Courbes elliptiques et symbols modulaires, Sém. Bourbaki Exposé 414 (1972, juin)
- [MS] B. Mazur and H. P. F. Swinnerton-Dyer, Arithmetic of Weil curves, Inventiones Math. 25 (1974), 1–61
- [TW] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995),
 - 553 572.
- [W2] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443–551.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095-1555, U.S.A. *E-mail address*: hida@math.ucla.edu