
MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS

HARUZO HIDA

In this course, assuming basic knowledge of algebraic number theory, commutative al-
gebra and topology, we study non-archimedean deformation theory of modular forms on
GL(2) and modular Galois representations into GL(2). We plan to discuss the following
four topics:

(1) analytic/algebraic theory of elliptic modular forms (at the level of my book
[LFE]),

(2) p-adic deformation theory of modular forms via the theory of p-adic analytic
family of classical/p-adic modular forms,

(3) a description of Galois representation attached to modular forms (not the con-
struction which requires good knowledge, out of the scope of this course, of
functorial algebraic/arithmetic geometry of Grothendieck),

(4) description of the “big” Galois representation attached to a p-adic families of
modular forms (including its construction assuming the item (3)).

If we do not reach the last two items within this quarter, we continue to go in this line
in the Winter quarter 2013. If we finish the objectives listed here within this quarter,
Winter 2013 course will cover slightly more advanced topics.

Here are basic notations and terminology used in this note. Commutative rings R are
all supposed to have a multiplicative identity denoted by 1 = 1R. We write Q, R and C
for the filed of rational numbers, real numbers and complex numbers. We write Q ⊂ C
be the collection of all numbers satisfying a polynomial equations in Q[X]. The subset
Q is actually an algebraically closed field. A number field F is a subfield of Q (possibly
an infinite extension, but often we assume it is a finite extension). By definition, Q/F
is a Galois extension for all number field F (why?). If [F : Q] := dimQ F is finite,
Q/F has infinite dimension over F (so, an infinite Galois extension of F ; why infinite?).
The Galois group Gal(Q/F ) made out of all field automorphisms inducing the identity
map on F is a compact group. Indeed, by the fundamental theorem of Galois theory,
the restriction map Gal(Q/F )/Gal(Q/E) ∼= Gal(E/F ) for any finite Galois extensions
E/F inside Q; so, we have a canonical isomorphism Gal(Q/F ) = lim←−E/F

Gal(E/F )

making Gal(Q/F ) a profinite group which is compact. In particular, open subgroups
of Gal(Q/F ) is Gal(Q/E) for any finite extension E/F inside Q. The subset Z of Q
made up of numbers satisfying a monic integral polynomial in Z[X] is actually a subring
stable under Gal(Q/F ) whose field of fractions is equal to Q. The ring Z is called the
integer ring of Q (which is non-noetherian). The ring OF := Z∩F for a number field F
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is called integer ring of F , and plainly OQ = Z. For a prime ideal P of Z containing a
prime number p, P ∩ OF is a maximal ideal of OF , and we put

DP/p = {σ ∈ Gal(Q/F )|σ(P) = P}, IP/p = {σ ∈ DP/p|xσ ≡ x mod P for all x ∈ Z}.
These closed subgroups of Gal(Q/F ) are called the decomposition group and inertia
group for P/p, respectively (why closed?). As you can find in any book of algebraic
number theory, DP/(p) is isomorphic to Gal(Qp/Qp) for the p-adic field Qp and its alge-

braic closure Qp. Since σ ∈ DP induces an automorphism of Z/P which is an algebraic

closure Fp of Fp, we have an exat sequence of compact groups

1→ IP/p→ DP/p→ Gal(Fp/Fp)→ 1.

for Fp = OF /p. Thus there is a unique generator Frobp of Gal(Fp/Fp) such that
Frobp(x) = xq for q = |Fp|. Write again Frobp for any lift of Frobp ∈ Gal(Fp/Fp) toDP/p

(which is unique modulo IP/p). Also the conjugacy class of DP/p (and IP/p, FrobpIP/p)

in Gal(Q/F ) only depends on p. A continuous homomorphism ρ : Gal(Q/F ) → G
for a topological group G is unramified at p if IP ⊂ Ker(ρ) (for all P inducing p). If
G = GLn(K) for a finite extension K of a p-adic field Qp, ρ is called a p-adic Galois
representation over F . If [F : Q] <∞, ρ is always assumed to have finite set of ramifica-
tion primes (any geometrically made ρ satisfies this condition). Thus if p is unramified
for ρ, the conjugacy class of ρ(Frobp) is well defined and depends only on p.

An affine space of dimension n over a ring A is just the free module An. Actually
we sometimes regard it as a covariant functor sending an algebra A to An. Any algebra
homomorphism σ ∈ HomALG(A,A′) sends (a1, . . . , an) ∈ An to (σ(a1), . . . , σ(an)) ∈ A′n

giving covariant functoriality. When we emphasize that this is a functor, we write it as
Gn

a : ALG→ SETS (and we write Ga when n = 1). Thus Ga(A) = An.
The two-dimensional projective space P2(K) for a field A = K is the set of lines

passing through the origin (0, 0, 0) in the affine spaceK3; therefore, the line ` ⊂ K3 is just
K ·(X, Y, Z) ⊂ K3 for a generator (X, Y, Z) 6= (0, 0, 0). The generator (X, Y, Z) is unique
up to scalar multiplication; so, the ratio really matters; so, we write (X:Y :Z) for the
equivalence class (up to scalar multiplication) of (X, Y, Z). For example, if z 6= 0, (x

z
, y

z
, 1)

is unique; so, writing Dz = Dz(K) = {(x:y:z) ∈ P2(K)|z 6= 0}, Dz
∼= K2, and P2(K) =

Dx∪Dy∪Dz (where if K = C, D? gives a chart of the two dimensional complex manifold
P2(C)). Give yourself a homogeneous equation, say, Y 2Z = 4X3 − g2XZ

2 − g3Z
3 with

gj ∈ K. Note that writing x = X
Z

and y = Y
Z

, the zero set

E(K) := {(X:Y :Z)|Y 2Z = 4X3 − g2XZ
2 − g3Z

3} ⊂ P2(K)

intersected with Dz
∼= G2

a(K) is just {(x, y) ∈ K2|y2 = 4x3 − g2x − g3}. The point
outside E(K) ∩Dz has coordinate (X:Y :0), which implies X = 0 by the equation; so,
E(K) = {(0:1:0)} t (E(K) ∩ Dz). More generally, P j(K) is the set of lines in Kj+1

passing through the origin, and writing the generator as (x0: · · · :xj), we call it the
homogeneous coordinate of Pj(K). In particular, P1(K) = K t {∞} by (x:y) 7→ x/y
(defining x/y =∞ if y = 0).

Fix a base commutative ring B. For a general B-algebra A, a line ` in Aj+1 is first
of all an A-submodule of Aj+1 and secondly is supposed to induce a line generated
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by one element after localization `P = ` ⊗A AP for each maximal ideal P of A (i.e,
`P is AP -free of rank 1 and Aj+1

P /`P is also AP -free). Then again Pj(A) is the set of
such lines in the affine space Aj+1, though each line may not have a single generator
over A. The association A 7→ Pj(A) is a covariant functor from B-algebras into sets.
Here σ ∈ HomALG(A,A′) induces σ : Pj(A) → Pj(A′) by ` 7→ σ(`) giving covariant
functoriality. We define

D?(A) = {` ∈ P2(A)|the projection to ?-coordinate induces a surjection `→ A}
for ? = X, Y, Z. Then ` ∼= A by projection to the ?-coordinate; so, ` has a generator
(X, Y, Z) over A. Thus on D?(A), the homogeneous coordinate has meaning (warning:
P2(A) may not be equal to Dx(A) ∪ Dy(A) ∪ Dz(A) in general). Anyway, assuming
g2, g3 ∈ B, we thus have

(Dz ∩E)(A) = {(x, y, 1)|y2 = 4x3 − g2x− g3},
which is a covariant functor from the category ALG/B of B-algebras into sets. Let
HomALG/B

(R,A) denote the set of B-algebra homomorphisms: R → A for B-algebras
R and A. Then it is easy to see

{(x, y)|y2 = 4x3 − g2x− g3} ∼= HomALG/B
(B[x, y]/(y2− (4x3 − g2x− g3)), A)

by (φ(x), φ(y))↔ φ ∈ HomALG/B
(B[x, y]/(y2− (4x3 − g2x− g3)), A), since

0 = φ(y2 − (4x3 − g2x− g3)) = φ(y2)− 4φ(x)3 + g2φ(x) + g3.

A covariant functor F from the category ALG/B into sets is called representable if
A 7→ F (A) can be identified with A 7→ HomALG/B

(R,A), where HomALG/B
(R,A) is the

set of all B-linear algebra homomorphisms of R into A. This means that we have a
bijection φA : F (A) → hR(A) := HomALG/B

(R,A) for each B-algebra A, and for any
ϕ ∈ HomALG/B

(A,A′), the covariant functorial action F (ϕ) : F (A)→ F (A′) commutes
with that of hR; more precisely, the following diagram is commutative for each triple
(A,A′, ϕ) (ϕ ∈ HomALG/B

(A,A′)):

F (A)
φA−−−→ hR(A)

F (ϕ)

y hR(ϕ)

y

F (A′) −−−→
φA′

hR(A′),

where hR(ϕ)(x) = ϕ ◦ x : R
x−→ A

ϕ−→ A′ (the composite) for x ∈ hR(A). The functor
Gn

a/B is representable by R = B[X1, . . . , Xn] (the n-variable polynomial ring), as

hR(A) = HomALG/B
(B[X1, . . . , Xn], A) ∼= Gn

a(A) by φ 7→ (φ(X1), . . . , φ(Xn)) ∈ An.

Because of this, we write Gn
a/B = Spec(B[X1, . . . , Xn]) as schemes (which just means that

Gn
a is representable by the ring B[X1, . . . , Xn]). Thus A 7→ (Dz ∩E)(A) is representable

by R = B[x, y]/(y2− (4x3 − g2x− g3)); so,

Dz ∩ E = Spec(B[x, y]/(y2− (4x3 − g2x− g3))).
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In this course, Spec(R) just means the covariant functor hR : ALG/B → SETS, nothing
more.

A natural transformation ψ : hR′ → hR is a collection of maps ψA : hR′(A) → hR(A)
indexed by A ∈ ALG/B satisfying the above diagram replacing φA by ψA and F by
hR′. We write HomCOF (hR′, hR) for the collection of all natural transformations. By
Yoneda’s lemma (covered by Math 210 series), ψ ∈ HomCOF (hR′, hR) is induced by
ψ∗ ∈ HomALG/B

(R,R′) in the following way: ψA(x) = x ◦ ψ∗. Thus HomCOF (hR′, hR) is
in bijection with HomALG/B

(R,R′) and hence is a set! This fact we can write as

HomCOF (Spec(R′), Spec(R)) = HomALG/B
(R,R′).

This identification also gives a way of studying HomALG/B
(R,R′) from a quite different

point of view; so, if you have not finished Math 210, just believe Yoneda’s lemma (or
find a proof of it), and please be attentive when your teacher covers Yoneda’s lemma in
Math 210 (as often new graduate students have weak understanding of this tautological
lemma). If you have finished Math 210, take a look again at your notes about the
lemma (possibly stated in a more genral setting) to recall the proof, as this will be used
repeatedly in the course.
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1. Overview

In the first two/three weeks, we describe different definitions of modular forms with-
out going into technical details. We start analytic/classical definition (going back to
Gauss/Eisenstein) and then convert it into an algebraic one valid over any base ring.

Starting with the third or fourth week, we go into the second part dealing with p-
adic deformation theory of modular forms, and we start to fill in more details (try-
ing to be at elementary levels of [LFE]). The word: “elementary level” include good
knowledge of number fields (including its integer ring, Galois theory, ramification theory
and non-archimedean completions; i.e., p-adic integers) and function theory (including
compact/non-compact Riemann surfaces). We follow [LFE] Chapter 5–7.

Let H = {z ∈ C| Im(z) = z−z
2
√
−1

> 0} and

GL1(R) = Gm(R) = R× and GL2(R) =
{
( a b

c d ) |ad− bc ∈ R×}

for each commutative ring R. We embed GL1 into GL2 by sending a to the scalar matrix
( a 0

0 a ) and write its image as Z(R) (the center of GL2(R)). Thus these objects are not just
groups but functors from the category of commutative rings into that of groups (so, group
functors). If you do not know much about functors, for the moment, just take them as
an association sending a ring R to a group (including compatibility with ring homomor-
phisms). Since HomALG(Z[t, t−1], R) = R× by φ 7→ φ(t), we have Gm is representable
and Gm = Spec(Z[t, t−1]) for a variable t. Similarly GL2 = Spec(Z[a, b, c, d, 1

ad−bc
]).

Category theory covered by Math 210 series is sufficient in this course.
Note that by sending ( a b

c d ) to ai+b
ci+d

for i =
√
−1 ∈ H, we have GL2(R)/Z(R)O2(R) =

SL2(R)/SO2(R) ∼= H (check this for yourself). Here O2(R) = {x ∈ GL2(R)|xtx = 1}
and SO2(R) = {x ∈ O2(R)|ad − bc = 1}.

In some sense, class field theory for a given number field F is an analysis of continuous
homomorphisms of π : Gal(Q/F )→ GL1(R) for a profinite ring R. If R is finite and F =
Q, by composing with any homomorphism ϕ : GL1(R) → GL1(C), we get a Dirichlet
character χ = ϕ ◦ π and the associated Dirichlet L-function L(s, χ) =

∑∞
n=1 χ(n)n−s,

regarding χ : Z → C as a multiplicative map. Here for a prime l unramified for π
(i.e., unramified in the fixed field K of Ker(π)), χ(l) = ϕ(π(Frobl)) for the Frobenius
substitution Frobl ∈ Gal(K/Q) (see take a look at your algebraic number theory book
about Frobl). If l ramifies in K/Q, we just put χ(l) = 0. Then for any positive n with
prime decomposition n =

∏
l l

e, χ(n) =
∏

l χ(l)e. Note that χ(m) = χ(n) if m ≡ n
mod N for some positive integer N (if you know class field theory, ask why). By the
way, (2π)−sΓ(s)L(s, χ) =

∫ ∞
0
φχ(exp(−2πy))ys−1dy for a rational function φχ on Gm

(a rational function on Gm = Spec(Z[t, t−1]) is an element in the field of fractions of

Z[t, t−1]). Indeed, φχ(t) =
∑∞

n=1 χ(n)tn which is equal to
PN

a=1 χ(n)ta

1−tN
(a rational function

of t; i.e., a ratio of polynomials in t).
Similarly to this, if we start with a Galois representation ρ : Gal(Q/Q) → GL2(R)

for a p-adic local ring R such that det(c) = −1 for complex conjugation c ∈ Gal(Q/Q),
we can find a p-adic cusp form f on GL(2), thanks to the solution of Serre’s mod p
modularity conjecture by Khare–Wintenberger in 2008–2010, such that the q-expansion
of f is given by

∑
n=1 anq

n with al = Tr(ρ(Frobl)), for unramified primes l for ρ. If
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further R is a Zp-algebra (free of finite rank over Zp) and ρ is geometric (of sufficiently
high weight), in most cases, f is really classical coming from a line bundle over a modular
curve X/Q (thanks to the solution of Fontaine–Mazur conjecture by Kisin and Emerton
after the solution of Serre’s mod p modularity conjecture). Here a variety V/Q is a zero
set of a finitely many homogeneous polynomials in Q[X0, . . . , Xn] in a projective space
Pn

/Q. If V has dimension 1; i.e., V (C) ⊂ Pn(C) (the same zero set in the complex

projective space) removed finitely many points is an open Riemann surface, we call V a
curve. Note that as a complex Riemann surface, X(C) = Γ\GL2(R)/Z(R)SO2(R) for a
discrete subgroup Γ ⊂ GL2(Z), where Z(R) is made of scalar matrices in GL2(R). The
Riemann surface X(C) can be canonically embedded into PN (C) and actually defined
over Q (see [IAT] Chapter 6).

Thus the theory of elliptic modular forms is a natural GL(2)-version of class field the-
ory. Langlands (and others) made a precise conjecture for reductive general algebraic
groups G, and for a (geometric) Galois representation ρ : Gal(Q/F ) → GL(R) (for the
Langlands dual group GL), we expect to associate an automorphic form (classical or
p-adic) on G(FA). We hope that all Galois representations with finite set of ramifica-
tion primes would be obtained as a p-adic limit of automorphic Galois representation
(deformation theory). If G = GL(n), G is self dual; i.e, GL = G. We have good portion
of Langlands theory/conjectures established for GL(2)/Q in the last decade (though it
is far from completion).

In this course, we give first analytic definition of modular forms on GL2, then make
it somewhat algebraic and describe the p-adic deformation theory of modular forms and
their Galois representations.

1.1. Automorphic forms. Classically, modular/automorphic forms are defined as an
analytic function: H → C with some invariance property under a discrete subgroup
Γ of GL2(R). Note that GL1(R) = R+ t R− is a disjoint union of positive/negative
number lines R±; so, it has two connected components. Since the determinant map
det : GLn(R)→ GL1(R) is onto (and continuous), GLn(R) = GLn(R)+ tGLn(R)− is a
disjoint union of matrices with positive and negative determinants. Actually GLn(R)±

is connected (prove this fact).
For g = ( a b

c d ) ∈ GL2(R), we define g(z) := az+b
cz+d

for z ∈ C \ R = H t H. Note that

(1.1) g ( z
1 ) =

(
az+b
cz+d

)
=

(
g(z)
1

)
j(g, z) for j(g, z) = cz + d.

Thus for g, h ∈ GL2(R)+,
(

g(h(z))
1

)
j(g, h(z))j(h, z) = g

(
h(z)

1

)
j(h, z) = gh ( z

1 ) =
(

gh(z)
1

)
j(gh, z).

So we get

(1.2) (gh)(z) = g(h(z)) and j(gh, z) = j(g, h(z))j(h, z)

Thus GL2(R) acts on C \R. The action is transitive on C \R as ( y x
0 1 ) (i) = x+ iy with

y 6= 0 (i =
√
−1). Here the action is transitive if any two points are sent each other

by the action. The above equation tells us that any element in C \ R is the image of i;
so, the action is transitive. Thus C \ R = GL2(R)/K for K = {g ∈ GL2(R)|g(i) = i}.
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Consider SO2(R) = {r(θ)|θ ∈ R} for r(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
which is isomorphic to the

unit circle S1 = {eiθ|θ ∈ R}.
Exercise 1.1. Verify K = Z(R)SO2(R), and by using this, prove SL2(R) is connected
(as a real C∞ manifold). Further prove that GL2(R)+ is connected.

Let Γ be a discrete subgroup of SL2(R) such that Γ\H has finite volume under the
measure y−2dxdy for the coordinate z = x + iy of H. Any subgroup of finite index
in SL2(Z) has this property, because, as is well known, SL2(Z)\H is identical to the
following set

(1.3) Φ = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ 1}
up to measure 0 set, and obviously

∫
Φ
y−2dxdy < ∞ (compute the exact value of

∫
Φ
y−2dxdy). If the group Γ contains Γ(N) = Ker(SL2(Z)

mod N−−−−−→ SL2(Z/NZ)) for
some integer N , Γ is called a congruence subgroup.

Exercise 1.2. Is there other examples of Γ as above, which are not inside SL2(Z)?

Note that for g = ( a b
c d ) ∈ GL2(R), we have

( a b
c d ) ( z w

1 1 ) =
(

g(z) g(w)
1 1

) (
j(g,z) 0

0 j(g,w)

)
.

Taking w = z and compuing the determinant of the above identity, we get

(1.4) det(g) Im(g(z)) = Im(z)|j(g, z)|−2.

A holomorphic automorphic form on Γ of weight k ∈ Z is a holomorphic function
f : H→ C such that

(M1) f(γ(z)) = f(z)j(γ, z)k for all γ ∈ Γ;
(M2) |f(α(z)) Im(α(z))k/2| = O(Im(α(z))k/2) for all α ∈ SL2(Z).

Note by (1.4), z 7→ |f(z) Im(z)k/2| factors through Γ\H and hence (M2) makes sense.

Exercise 1.3. Define f | ( a b
c d ) (z) = det ( a b

c d )
w
f(az+b

cz+d
)(cz + d)−k for w ∈ R. Prove the

following facts:

(1) (f |α)|β = f |(αβ) for α ∈ GL2(R)+,
(2) if f satisfies (M1), f |α satisfies (M1) replacing Γ by Γ = α−1Γα.

If we impose on f the fast decreasing condition: |f(α(z)) Im(α(z))k/2| = O(1) as
Im(z)→∞ for all α ∈ SL2(Z) in (2) above, we call f a cusp form.

Exercise 1.4. Are there an example of Γ of finite index in SL2(Z) which is not a
congruence subgroup?

Write Sk(Γ) (resp. Gk(Γ)) for the vector space of holomorphic cusp forms (resp.
holomorphic automorphic forms) on Γ of weight k. If Γ is a congruence subgroup, we use
the term “elliptic modular form” in place of “automorphic form” following the tradition
started from Gauss. This is basically because elliptic modular form is a “function”
defined over isomorphism classes of elliptic curves. So, general automorphic form is not
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necessarily a function of isomorphism classes of specific algebro-geometric objects. This
point is very important to define purely algebraically elliptic modular forms.

There is another diffeo-geometric interpretation of automorphic forms. If f(z) is a
cusp form of weight 2, then ω(f) = f(z)dz is invariant under Γ as dγ(z) = j(γ, z)−2dz
by computation. If Y (Γ) := Γ\H is a Riemann sphere, then there are no non-trivial
holomorphic differential forms on Y (Γ) as Y (Γ) is simply connected. Thus if Y (Γ) is a
Riemann sphere, S2(Γ) = 0. There is a similar interpretation for higher weight modular
forms as vector valued differential forms (see [IAT] Chapter 8).

Since SL2(Z) contains α = α(1) = ( 1 1
0 1 ), the side lines of Φ defined by Re(z) = ±1

2
are

identified by α. Similarly by τ = ( 0 −1
1 0 ), the quarter unit circle left of the line Re(z) = 0

is identified with the right one, Y (1) := SL2(Z)\H is isomorphic to the Riemann sphere
punctured at ∞; so, by filling ∞, we get X(1) := Y (1) t {∞} ∼= P1(C); in other
words, SL2(Z)\H ∼= P1(C) \ {∞}. Since a cusp form on SL2(Z) extends to X(1), again
S2(SL2(Z)) = 0.

There is a function theoretic interpretation of automorphic forms. If you knows well
homotopy theory of Riemann surfaces R (or more generally, theory of complex mani-
folds), R = πtop

1 (R)\U for the universal covering space U of R. In our setting U = H,
R = Y (Γ) and πtop

1 (Y (Γ)) = Γ (strictly speaking πtop
1 (Y (Γ)) = Γ = Γ{±1}/{±1}

but usually Γ ∼= Γ). Any non-vanishing function J : πtop
1 (R) × U → C× holomorphic

in the variable z ∈ U satisfies the cocycle relation J(αβ, z) = J(α, β(z))J(β, z) for
all α, β in πtop

1 (R) and z ∈ U gives rise to a line bundle in the following way. Let
γ ∈ πtop

1 (R) act on U × C by γ(z, v) = (γ(z), J(γ, z)v). Then by the cocycle relation,
(αβ)(z, v) = α(β(z, v)) as easily verified; so, the quotient L = πtop

1 (R)\(U × C) gives
rise to a covering V � R by (z, v) 7→ z of complex manifolds whose fiber is isomorphic
to C; so, V is a line bundle over R. Any section f : R→ V pulled back to a function on
U satisfies f(α(z)) = f(z)J(α, z) for all α ∈ πtop

1 (R). Thus writing ωk for the invertible
sheaf associated to J(γ, z) = j(γ, z)k, we have Gk(Γ) = H0(X(Γ), ωk), where the right-
hand side is the collection of all global sections of the line bundle associated to j(·, z)k.
By function theory, dimH0(X,L) < ∞ for any Riemann surface and any line bundle
L (e.g., see Riemann-Roch theorem in the notes of 207b Winter 12). In particular, we
have

(1.5) dimGk(Γ) <∞.

1.2. Elliptic modular forms of level N . Let

Γ0(N) =
{
( a b

c d ) ∈ SL2(Z)
∣∣c ≡ 0 mod N

}
,

Γ1(N) =
{
( a b

c d ) ∈ SL2(Z)
∣∣d ≡ 1 mod N

}
.

These are congruence subgroups of finite index in SL2(Z).

Exercise 1.5. Let P1(A) be the projective space of dimension 1 over a ring A. Prove
[SL2(Z) : Γ0(N)] = |P1(Z/NZ)| = N

∏
`|N (1 + 1

`
) if N is square-free, where ` runs over

all prime factors of N . Hint: Let ( a b
c d ) ∈ SL2(Z) acts on P1(A) by z 7→ az+b

cz+d
and show

that this is a transitive action if A = Z/NZ and the stabilizer of ∞ is Γ0(N).
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Moreover, sending ( a b
c d ) ∈ Γ0(N) to (d mod N) ∈ (Z/NZ)× is a homomorphism of

groups, whose kernel is plainly Γ1(N). Thus for any Dirichlet character χ modulo N ,
Γ0(N) 3 ( a b

c d ) 7→ χ(d) is a character of Γ0(N).

Exercise 1.6. Prove that Γ0(N)/Γ1(N) ∼= (Z/NZ)×.

We let ( a b
c d ) ∈ GL2(C) acts on P1(C) = C ∪ {∞} by z 7→ az+b

cz+d
(by linear fractional

transformation).

Exercise 1.7. Prove the following facts:

(1) there are two orbits of the action of GL2(R) on P1(C): P1(R) and HtH, where
H = {z ∈ C| Im(z) > 0} and H = {z ∈ C| Im(z) < 0}.

(2) γ ∈ GL2(R) with det(γ) < 0 interchanges the upper half complex plane H and
lower half complex plane H,

(3) the upper half complex plane is isomorphic to SL2(R)/SO2(R) by SL2(R) 3 g 7→
g(
√
−1) ∈ H.

Then Y0(N) = Γ0(N)\H is an open Riemann surface with hole at cusps. In other
words, X0(N) = Γ0(N)\(H tP1(Q)) is a compact Riemann surface.

Exercise 1.8. Show that SL2(K) acts transitively on P1(K) for any field K by linear
fractional transformation. Hint: ( 1 a

0 1 ) (0) = a.

Let f : H → C be a holomorphic functions with f(z + 1) = f(z). Since H/Z ∼= D ={
z ∈ C×∣∣|z| < 1

}
by z 7→ q = e(z) = exp(2πiz), we may regard f as a function of q

undefined at q = 0⇔ z = i∞. Then the Laurent expansion of f gives

f(z) =
∑

n

a(n, f)qn =
∑

n

a(n, f) exp(2πinz).

In particular, we may assume that q is the coordinate of X0(N) around the infinity cusp
∞. We call f is finite (resp. vanishing) at ∞ if a(n, f) = 0 if n < 0 (resp. if n ≤ 0).
By Exercise 1.8, we can bring any point c ∈ P1(Q) to ∞; so, the coordinate around the
cusp c is given by q ◦ α for α ∈ SL2(Q) with α(c) =∞.

Exercise 1.9. Show that the above α can be taken in SL2(Z). Hint: write c = a
b

as a
reduced fraction; then, we can find x, y ∈ Z such that ax− by = 1.

Let χ : (Z/NZ)× → C× be a Dirichlet character. We define the subspace Gk(Γ0(N), χ)
made up of modular forms f ∈ Gk(Γ1(N)) satisfying the following conditions:

(χ) f(az+b
cz+d

) = χ(d)f(z)(cz + d)k for all ( a b
c d ) ∈ Γ0(N).

We put Sk(Γ0(N), χ) = Gk(Γ0(N), χ)∩Sk(Γ1(N)). If f ∈ Gk(Γ0(N), χ), N is called the
level of f and χ is called Neben character (or Nebentypus) of f following Hecke.

If f satisfies the above conditions, we find that f(z+1) = f(z) because ( 1 1
0 1 ) (z) = z+1;

so, we can say that f is finite or not at the cusps by q-expansion.

Exercise 1.10. (1) If α ∈ SL2(Z) and Γ ⊃ Γ(N), show that α−1Γα contains Γ(N).

By the above exercise, for α ∈ SL2(Z), we find f |α(z + N) = f |α(z); thus, f |α has
expansion f |α =

∑
n a(n, f |α)qNn. We call f is finite (resp. vanishing) at the cusp

α−1(∞) if f |α is finite (resp. vanishing) at ∞. Thus (M2) is equivalent to



MODULAR FORMS AND THEIR GALOIS REPRESENTATIONS 10

(M2′) f is finite at all cusps of X0(N).

Replace (M2) by

(S) f is vanishing at all cusps of X0(N).

Then the boundedness condition |f(α(z)) Im(α(z))k/2| = O(1) for all α ∈ SL2(Z) is
equivalent to (S); so,we may define the subspace Sk(Γ0(N)) ⊂ Gk(Γ0(N)) by imposing
(S).

Exercise 1.11. Prove that Gk(Γ1(N)) =
⊕

χGk(Γ0(N), χ), where χ runs over all

Dirichlet characters modulo N with χ(−1) = (−1)k.

1.3. Elliptic modular forms classify elliptic curves. We give algebro-geometric in-
terpretation of elliptic modular forms now without any real proof. First, we give another
analytic definition of modular forms more classical than the one we have given (this defi-
nition goes back to Gauss). Writing w = t(w1, w2) for two linearly independent complex
numbers (with Im(z) > 0 (z = w1/w2)), a weight k modular form is a holomorphic
function f of w satisfying f (( a b

c d )w) = f(w) for ( a b
c d ) ∈ SL2(Z) and f(aw) = a−kf(w)

for a ∈ C×. In other words, f is a “holomorphic” function on the set Lat of lattices in
C with f(aL) = a−kf(L), regarding

SL2(Z)\
{
w := ( w1

w2 )
∣∣z ∈ H

}
= Lat

via w 7→ Lw = Zw1 + Zw2. If we regard f as a function of z ∈ H = {z ∈ C| Im(z) > 0}
by f(z) = f (2πi ( z

1 )), the two relations can be stated as a single one:

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for ( a b
c d ) ∈ SL2(Z).

Exercise 1.12. Give details of the reason why the two properties defining f : Lat→ C
gives modular functional equation of f : H→ C in (M1).

This latter definition is the one given in (M1). Here we put 2πi to define f(z) to make
the q-expansion of f rational if f is algebro-geometrically rational (since f(2πiw) =
(2πi)−kf(w), this is just the division by a power of (2πi)). This has to be done because
exp : C/2πi(Z + Zz) ∼= C×/qZ for q = exp(2πiz).

We nows give an algebraic interpretation of modular forms. Without going into tech-
nicalities, we give an outline of how to define modular forms algebraically. Pick a lattice
L in C (so, L ∈ Lat). If necessary, we choose a Z-basis w = (w1, w2) ∈ C2 of L; so,
L = Lw = Zw1 + Zw2. Writing u for the variable on C, the quotient C/L of C by the
lattice L gives rise to a pair (E(L) = C/Lw, ω)/C of a Riemann surface of genus 1 and
the holomorphic differential ω = du. The differential ω is nowhere vanishing; i.e., for
any point α ∈ C, du = d(u− α) 6= 0 for the coordinate u − α around α. The Riemann
surface E(L) ∼= C/Lw can be embedded into P2 via u 7→ (x(u), y(u), 1) ∈ P2(C) by
Weierstrass ℘-functions

x(u) = ℘(u;Lw) =
1

u2
+

∑

0 6=l∈Lw

{
1

(u− l)2
− 1

l2

}
=

1

u2
+
g2

20
u2 +

g3

28
u4 + · · ·
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and y = dx
du

, where

g2(w) = 60
∑

0 6=l∈Lw

l−4 and g3(w) = 140
∑

0 6=l∈Lw

l−6.

By this formula, plainly gj(aL) = a−2jgj(L); so, gj is a modular from of weight 2j
(j = 2, 3) as we see soon its q-expansion. Then the equation satisfied by x and y is
y2 = 4x3 − g2x − g3 and ω = du = dx

y
. Indeed, the right-hand-side 4x3 − g2x − g3 is

made so that the difference y2 − (4x3 − g2x − g3) does not have pole at 0, and hence
ϕ = y2− (4x3− g2x− g3) is everywhere holomorphic function on the compact Riemann
surface C/L which has to be constant. The constant can be computed to be 0 by looking
at the constant term of the explicit expansion as above. Thus as long as x(u) 6=∞ (i.e.,
u 6= 0), the coordinate (x(u), y(u)) ∈ C2 satisfies y2 = 4x3 − g2(L)x − g3(L). By
ω = dx

y
= du, ω is a nowhere vanishing differential.

To add the point u = 0 in this picture, we homogenize the equation and consider
the homogeneous equation Y 2Z = 4X3 − g2XZ

2 − g3Z
3. To make things slightly more

general, we suppose gj ∈ K for a field K. The two-dimensional projective space P2(K)
for a field A = K is the set of lines in the affine space K3; i.e., a line ` ⊂ K3 is just
K(X, Y, Z) ⊂ K3 for (X, Y, Z) 6= (0, 0, 0). The generator (X, Y, Z) is unique up to scalar
multiplication; so, the ratio really matters; so, we write (X:Y :Z) the equivalence class
(up to scalar multiplication) of (X, Y, Z). For example, if z 6= 0, (x

z
, y

z
, 1) is unique; so,

writing Dz = {(x, y, z)|z 6= 0}, Dz
∼= K2, and P2(K) = Dx ∪Dy ∪Dz (where if K = C,

D? gives a chart of complex manifold P2(C)). Note that writing x = X
Z

and y = Y
Z
,

for the zero set E(K) = {(X:Y :Z)|Y 2Z = 4X3 − g2XZ
2 − g3Z

3} ⊂ P2(K), we have
E(K) ∩ Dz = {(x, y) ∈ K2|y2 = 4x3 − g2x − g3}. More generally, P j(K) is the set
of lines in Kj+1, and writing the generator as (x0: . . . :xn), we call it the homogeneous
coordinate of Pj(K). In particular, P1(K) = K t {∞} by (x:y) 7→ x/y (defining
x/y =∞ if y = 0). The point outside E(K)∩Dz has coordinate (X:Y :0), which implies
X = 0 by the equation; so, E(K) = {(0:1:0)} t (E(K) ∩Dz).

Going back to the case K = C, u 7→ (x(u), y(u)) is not well defined at u = 0. However,
for the homogeneous coordinate (x(u):y(u):1) = (u3x(u):u3y(u):u3) is defined for all
u 6= 0 and the right-hand-side has meaning even when u = 0. Then from the explicit
expansion, we see (u3x:u3y:u3)|u=0 = (0: − 2:0) = (0:1:0). Thus E(C) inside P2(C) is
exactly defined by the homogenized Weierstrass equation, and isomorphic to C/L as
complex manifolds by u 7→ (u3x:u3y:u3). In other words, E(C) is the compactification
adding one point 0 = (0:1:0) to the affine curve E(C)∩Dz defined by y2 = 4x3−g2x−g3.
An important point is that E(C) = C/L is a compact abelian group with identity 0.
Since Y 2Z = 4X3 − g2XZ

2 − g3Z
3 has degree 3, E(C) has three intersection points

P,Q,R with any line ` defined in aX + bY + cZ = 0 in P2(C). The great discovery of
Gauss and Abel in the early 19th century is that under the above setting, P +Q+R = 0.
We can take this (along with (x(−P ), y(−P )) = (x(P ),−y(P ))) to be the definition of
the group law on E(C).

For a more general field K, consider the zero set E(K) ⊂ P2(K) of

Y 2Z − (4X3 − g2XZ
2 − g3Z

3) (gj ∈ K).
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As long as 4X3 − g2XZ
2 − g3Z

3 = 0 has three distinct roots (in an algebraic closure
K; i.e, its discriminant ∆ = g3

2 − 27g2
3 6= 0), we can define an abelian group structure

by putting P + Q + R = 0 (and (x(−P ), y(−P )) = (x(P ),−y(P ))) if {P,Q,R} is the
intersection of a line with E (Abel’s theorem; see 12W 207b lecture notes Section 2.1).

Fix a base ring B. Any homogeneous equation f(X, Y, Z) ∈ B[X, Y, Z] gives rise
to its zero set C(A) = {` ∈ P2(A)|f(`) = 0} for any B-algebra A. Here f(`) = 0
means that f(x, y, z) = 0 for all (x, y, z) ∈ `. The association A 7→ C(A) is again a
covariant functor from B-algebras to sets. Any B-algebra homomorphism σ : A → A′

induces P2(A)
σ∗−→ P2(A′) and brings C(A) into C(A′). Since A is a B-algebra, we

have the structure algebra homomorphism i : B → A; so, applying i∗ to any point
P ∈ C(B), we get a point i∗P ∈ C(A) (which we just write P again). For any B-algebra
homomorphism ϕ : B → B ′, we may regard f as a polynomial ϕ∗f with coefficients in
B ′ applying ϕ to coefficients of f . The curve defined by ϕ∗f is written as C⊗B,ϕB

′ (the
scalar extension of C to B ′ with respect to ϕ). We say C is geometrically irreducible if
ϕ∗f is irreducible for any algebra homomorphism ϕ : B → k into an algebraically closed
field k. For a pair (C, 0 ∈ C(B)) for geometrically irreducible C , the functor A 7→ C(A)
is actually a functor from B-algebras into groups (in place of sets) with identity 0, C
is called an elliptic curve. Geometrically, C is an elliptic curve if and only if it is a
geometrically irreducible smooth curve of genus 1 (if we fix a point 0 ∈ C(B)). Here
smoothness is equivalent to ∆ ∈ B× if C is defined by (the homogenized form of) the
equation y2 − 4x3 + g2x+ g3 ∈ B[x, y] (assuming 1

6
∈ B).

Over C, we get Lat ↪→ {(E, ω)/C}/ ∼= sending L to E(C) = C/L defined by Y 2Z =
4X3−g2(L)XZ2−g3(L)Z3. Here (E, ω) ∼= (E ′, ω′) if we have an isomorphism ϕ : E → E ′

(of schemes) inducing E ∩ Dz
∼= E ′ ∩ Dz such that ϕ∗ω′ = ω. The pair w (or lattice

L = Lw) can be recovered by ω so that wi =
∫

γi
ω for a basis (γ1, γ2) of the Betti

homology group H1(E(C),Z) = πtop
1 (E(C)). For a given (E, ω)/C, we write LE for its

lattice. Thus by E/C 7→ LE , we confirm

Lat ∼= {(E, ω)/C}/ ∼=

Here C/Lw is an additive group, and this is the canonical group structure of E(C). Thus
(E(L), aω) (a ∈ C×) corresponds to aL ∈ Lat; so, gj(E, aω) = a−2jgj(E, ω) regarding
gj as a function of the pair (E, ω).

Conversely, start with a pair (E, ω)/B with 0 = 0E ∈ E(B) defined over the base
ring B made of an elliptic curve and a nowhere vanishing differential ω. By smoothness,
we have an algebraic parameter u around 0 so that ω = du. If 6−1 ∈ B, there is
a unique way of finding a rational function x : E → P1 with pole of order 2 at 0
such that x(u) = u−2 + higher terms and for y = dx

du
(algebraic derivative), we find

that the equation y2 = 4x3 − g2x − g3 defines E(A) ⊂ P1(A) with g2, g3 ∈ B for a
unique pair (g2 = g2(E, ω), g3 = g3(E, ω)) ∈ B2 (see §2.2 of the lecture notes of 207B
in 2012 Winter or [GME] §2.2.6). Since E/B is smooth, this pair (g2, g3) has to satisfy
∆ = g3

2 − 27g2
3 ∈ B× (the smoothness criterion of Weierstrass). If we change ω by aω

for a ∈ B×, aω = d(au); and hence, (x, y) is replaced by (x′, y′) = (a−2x, a−3y) whose
expansion starting with (qu)−2 and −2(au)−3 respectively, and hence the equation of
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(x′, y′) has to be

y′
2

= 4x′
3 − g2a

−2x′ − a−6g3 ⇔ (a−3y)2 = 4(a−2x)3 − g2a
−4a−2x− a−6g3.

This shows gj(E, aω) = a−2jgj(E, ω) and

(1.6) ℘(A) := [(E, ω)/A]
one-to-one and onto↔ {(g2, g3) ∈ A2|∆ ∈ A×}

= HomALG(B[g2, g3,
1

∆
], A).

Here the ring Z[ 1
6
][g2, g3] is a polynomial ring with variables g2, g3, and the straight

brackets [·] indicates the set of isomorphism classes of the objects inside; so, [(E, ω)/A] =
{(E, ω)/A}/ ∼=. The association ℘ : ALG/B → SETS is a covariant functor for a B-
algebra homomorphism ϕ : A → A′ with ℘(ϕ)(E) = E ⊗A,ϕ A

′ (and ω is sent to
corresponding differential on E ⊗A,ϕA

′). In other word, for any algebra homomorphism

A
φ−→ A′, ℘(A)

φ−→ ℘(A′) is just induced by φ : P2(A) → P2(A′) as P2(A) is the
set of “lines” in the affine space A3. Thus A 7→ ℘(A) = [(E, ω)/A] are isomorphic
to A 7→ HomALG(Z[ 1

6
, g2, g3,

1
∆

], A) as covariant functors from B-algebras into sets; so,

℘ = Spec(R) for R = B[g2, g3,
1
∆

]. Note that HomCOF (℘,Ga) is made of fA : ℘(A)→ A
such that fA((E, ω)/A) ∈ A which only depends on the A-isomorphism class of (E, ω)
and fA(℘(ϕ)(E, ω)) = ϕ(fA(E, ω)) for any ϕ ∈ HomALG(A,A′). By Yoneda’s lemma,
f ∈ HomALG/B

(B[X],R) = R by φ 7→ φ(X). In other words, f = f(g2, g3) ∈ R and

f(E, ω) = f(g2(E, ω), g3(E, ω)).
Returning to A = C, an important fact is that all these functions g2, g3 and ∆ have

Fourier expansions in Z[ 1
6
][[q]] for q = exp(2πiz). Indeed, g2 and g3 are rational multiple

of the following Eisenstein series for k > 2:

(1.7) Ek(z) :=
(k − 1)!

2(2πi)k

∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k

=
1

2
ζ(1− k) +

∞∑

n=1

qn
∑

0<d|n
dk−1

=
1

2
ζ(1− k) +

∑

(m,n)∈Z2\{(0,0)}/Z×,mn>0

qmn

for even integers 2 < k ∈ Z. By this, Ek ∈ Gk(SL2(Z)). This follows from the partial
fraction expansion of the cotangent function for z = log q

2πi
(see any function theory book):

(1.8)
1

z
+

∞∑

n=1

{
1

(z + n)
+

1

(z + n)

}
= π cot(πz) = πi

{
1− 2

∞∑

n=1

qn

}
,

and its derivatives by
(
(2πi)−1 d

dz

)k
=

(
q d

dq

)k

:

(1.9)
∞∑

n=−∞

1

(z + n)k
=

(−1)k(2πi)k

(k − 1)!

∞∑

n=1

nk−1qn.
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In particular, keeping the fact that gk(z) = gk(2πi (
z
1 )), we find

g2(q) =
1

12
+ 20

∞∑

n=1





∑

0<d|n
d3



 qn =

1

12
+ 20

∞∑

n=1

n3qn

1− qn
,

g3(q) = − 1

216
+

7

3

∞∑

n=1





∑

0<d|n
d5



 qn = − 1

216
+

7

3

∞∑

n=1

n5qn

1− qn
,(1.10)

∆(q) = q
∞∏

n=1

(1− qn)24 (so, ∆(z) 6= 0 for all z ∈ H).

To obtain the product expansion of ∆, one need to work a little more (see [IAT] (4.6.1)).
Similarly, by the same computation, for a primitive Dirichlet character χ 6= 1 modulo

N , a suitable constant multiple of

∑

(m,n)∈Z2\{(0,0)}

χ(n)

(mNz + n)k|mNz + n|−2s
|s=0

has q-expansion

(1.11) Ek(χ) =
1

2
L(1− k, χ) +

∞∑

n=1

qn
∑

0<d|n
χ(d)dk−1

and gives an element in Gk(Γ0(N), χ) for all k ≥ 1 (see [MFM] Chapter 7). We can
show the existence of Ek(χ) ∈ Gk(Γ0(Np), χ) even for imprimitive characters χ′ modulo
Np for a prime p - N . Writing χ regarded defined modulo Np as χNp (so, χNp(n) = 0 if
p|n) First note, if p|n

∑

0<d|n
χNp(d)d

k−1 =
∑

0<d|n,p-d

χ(d)dk−1 =
∑

0<d|n
χ(d)dk−1 − χ(p)pk−1

∑

p|d|n
χ(d)dk−1

and

L(s, χNp) =
∏

l:primes

(1− χNp(l)l
−s)−1 = (1− χ(p)p−s)L(s, χ).

These facts tell us that Ek(χNp) := Ek(χ)(z) − χ(p)pk−1Ek(χ)(pz) ∈ Gk(Γ0(Np), χ),
since Ek(χ)(pz) = Ek(χ)|α for α =

(
p 0
0 1

)
(taking w = 0 in the notation of Exercise 1.3)

and α−1Γ0(N)α ⊃ Γ0(Np) = α−1Γ0(N)α ∩ Γ0(N).
We can then think of the Tate curve Tate(q) defined over Z[ 1

6
][[q]][q−1] by the equation

Y 2Z− (4X3− g2(q)XZ
2− g3(q)Z

3)) with nowhere vanishing differential ωcan = dX
Y

. Let
µN is the group of N -th roots of unity; so, as a functor, µN (R) = {ζ ∈ R×|ζN = 1R} for
any commutative ring R. Note that HomALG(Z[t, t−1]/(tN − 1), R) = µN (R) by sending
t to φ(t) ∈ µN (R); so, µN = Spec(Z[t, t−1]/(tN − 1)). As shown by Tate (see [GME]
Section 2.5), we have a canonical embedding

Tate(q)(Qp[[q]]) ⊃ (Qp[[q]])
×/qZ,
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we have therefore a natural inclusion φN,can : µN (Qp) ↪→ Tate(q)[N ], (which comes from
a natural transformation of group functors µN → Tate(q); see [GME] §1.6.4). Tate curve
is not an elliptic curve over Z[ 1

6
][[q]] but is an elliptic curve over Z[ 1

6
][[q]][q−1] because

the non-unit q is a factor of the discriminant ∆(q) of the elliptic curve.
For general elliptic curve E over a B-algebra A, a level Γ1(N) structure is an embed-

ding φN : µN ↪→ E[N ] of finite flat group schemes (i.e., a group embedding of functors).
For the first reading, if the reader is not familiar with the theory of group schemes, just
assume N = 1 to forget about φN . If the triple (E, φN , ω) is all defined over A, we
call (E, φN , ω)/A a test object over A. The elements g2, g3,∆ in Z[g2, g3] is a function
of pairs (E, ω)/A of an elliptic curve E and a differential ω defined over A with values
in A and can be considered as a function of test objects (E, φN , ω) disregarding φN .
This motivates the following algebraic definition of B-integral elliptic modular forms of
level Γ1(N) as functions of test objects (E, φN : µN ↪→ E[N ], ω) satisfying the following
conditions:

(G0) f assigns a value f((E, φN , ω)/A) ∈ A for each test object

(E, φN : µN ↪→ E[N ], ω)/A

defined over an B-algebra A. Here A is also a variable (running over the category
of B-algebras).

(G1) f((E, φN , ω)/A) ∈ A depends only on the isomorphism class of (E, φN , ω)/A.
(G2) If ϕ : A→ A′ is an B-algebra homomorphism, we have

f((E, φN , ω)/A ⊗ A′) = ϕ(f((E, φN , ω)/A)),

where (E, φN , ω)/A ⊗ A′ means that we regard (E, φN , ω)/A as defined over A′

via ϕ (so, for example, if N = 1, (E, ω) ⊗ A′ is defined by the equation y2 =
4x3 − ϕ(g2(E, ω))x− ϕ(g3(E, ω))).

(G3) f((E, φN , a · ω)/A) = a−kf(E, φN , ω) for a ∈ A×.

(G4) f(q) = f((Tate(q), φN, ωcan)/A[[q1/d]][q−1/d]) ∈ A[[q1/d]] for any level N -structures

φN on Tate(q) defined over A[[q1/d]][q−1/d] with d|N . In particular, we have

f(q) = f((Tate(q), φN,can, ωcan)/B[[q]][q−1]) ∈ B[[q]].

Here, if N is invertible in B and B contains all N -th roots of unity, Z/NZ ∼= µN over B,
and we can think of a level Γ1(N)-structure φet

N : Z/NZ = µN
∼= q1/NZ/qZ ⊂ Tate(q)[N ],

which is defined over B[[q1/N]][q−1/N]. More generally, if N = dN ′ with d prime to N ′,
assuming 1

d
∈ B and that B contains all d-th roots of unity, we can think of

φN = φet
d × φN ′,can : µN = Z/dZ × µN ′ ↪→ Tate(q),

which is defined over B[[q1/d]][q−1/d].
The space of modular forms defined by the conditions (G0–4) will be written as

Gk(N ;B) = Gk(Γ1(N);B). By definition, for f ∈ Gk(N ;B) and g ∈ Gl(N ;B), the
product f ·g(E, φN , ω) = f(E, φN , ω)·g(E, φN , ω) belongs to Gk+l(N ;B). Thus GN (B) =⊕

k Gk(N ;B) is a graded ring. For f ∈ Gk(1;B), just putting f(E, φN , ω) = f(E, ω)
forgetting φN , we may consider Gk(1;B) as a subspace of Gk(N ;B). Put RN(B) =
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GN (B)[ 1
∆

]. Then RN (B) is a ring containing R as a subalgebra. The following fact is
known (e.g., [GME] §2.6.2):
Theorem 1.13. The functor ℘N : ALG/Z[ 1

n(N)
] → SETS given by

℘N (A) =
[
(E, φN , ω)/A

]

is representable by RN (Z[ 1
n(N)

]), where n(N) = 6N if N ≤ 3 and otherwise n(N) = N .

When N = 1, we forget about φN as µ1 is the trivial group. Thus there is no
need to worry about the level structure φN of Tate(q). The condition (G0-2) implies
f ∈ HomCOF (℘,Ga); so, f ∈ R. Then f is of the form h(g2, g3)/∆

d for a polynomial
h ∈ B[g2, g3] for gj(q) and ∆(q) as in (1.10). The condition (G4) implies d = 0 since
f(q) ∈ B[[q]]. Indeed, otherwise, f(q) involves negative power of q. Thus f = h(g2, g3).
By (G3) and gj(E, aω) = a−2jgj(E, ω), we find h(g2, gs) =

∑
4a+6b=k ba,bg

a
2g

b
3 with ba,b ∈

B. Since g2 and g3 in R are variables and R ↪→ Z[ 1
6
][[q]] (by q-expansion), the set

{ga
2g

b
3|0 ≤ a, b ∈ Z} in B[[q]] is linearly independent. This shows that Gk(1;B) =

⊕4a+6b=kBg
a
2g

b
3.

We can show more generally

Theorem 1.14. The B-module Gk(N ;B) is free of finite rank over B, and Gk(1, B) =
⊕4a+6b=kBg

a
2g

b
3. In particular, we have

rankB Gk(1;B) = #{(a, b) ∈ Z2
≥0|4a + 6b = k},

Gk(N ;B)⊗B A = Gk(N ;A) if k ≥ 2 and Gk(N ;B)⊗B C = Gk(Γ1(N)) whenever B as
above is inside C. Also, if f ∈ Gk(Γ1(N);B) with B ⊂ C, f(q) with q = exp(2πiz) gives
the Fourier expansion of f at the cusp ∞.

For the moment, we admit this (except for the case N = 1).

Exercise 1.15. For even k ≥ 0, show that

r(k) := rankB Gk(1;B) =

{[
k
12

]
+ 1 if k 6≡ 2 mod 12[

k
12

]
if k ≡ 2 mod 12.

Show also that 4a+6b = k− 12(r(k)− 1) has only one non-negative integer solution for
each even integer k ≥ 0.

In addition to (G1-4), if f satisfies the following condition, we call f a cusp form:

(s) f(q) = f((Tate(q), φN, ωcan)/R[[q1/d]][q−1/d]) ∈ q1/dR[[q1/d]] for any level structures

φN on Tate(q) defined over R[[q1/d]][q−1/d] with d|N . This means that the con-
stant term of f vanishes at all cusps.

We write Sk(N ;B) = Sk(Γ1(N);B) ⊂ Gk(N ;B) for the subspace of cusp forms.
In terms of L ∈ Lat, the corresponding elliptic curve is given by E(C) = C/L;

so, identifying µN (C) with N−1Z/Z by N−1Z/Z 3 a 7→ exp(2πia) ∈ µN (C), the level
structure φN is a homomorphism φN : N−1Z/Z ↪→ N−1L/L. Using coordinate w = ( w1

w2 ),
we can normalize φN so that φw,N (a) = aw2. Then plainly ( a b

c d ) ∈ Γ0(N) acts on φw,N

by φw,N 7→ φw,N ◦ d. Assuming that B contains the values of χ (i.e., B is an algebra
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over Z[ 1
6
, χ] for the subring Z[χ] in Q generated by the values of χ). Thus we can define

for f ∈ Gk(Γ1(N);B) (for Z[ 1
6
, χ]-algebra B)

f ∈ Gk(Γ0(N), χ;B)⇔ f(E, φN ◦ d, ω) = χ(d)f(E, φN , ω)

for all d ∈ (Z/NZ)×, where φN ◦ d(ζ) = φN (ζd). Then we put Sk(Γ0(N), χ;B) =
Gk(Γ0(N), χ;B)∩Sk(Γ1(N), ;B). Again we can prove, as long as B is Z[ 1

6N
, χ]-algebra,

Sk(Γ0(N), χ;B[χ])⊗B A = Sk(Γ0(N), χ;A)

and Gk(Γ0(N), χ;B[χ])⊗B A = Gk(Γ0(N), χ;A).

Here is a more elementary proof of (a part of) Theorem 1.16 for N = 1. By a well
known value of ζ(1− 2k) for k ≥ 2, if we put e2k = 2

ζ(1−2k)
Ek, we have

e2k = 1 + Ck

∞∑

n=1

∑

0<d|n
dk−1qn ∈ Z[[q]].

For the value of Ck, see [LFE] §5.2. Let s(k) = k− 12(r(k)− 1). Take a unique solution

(a, b) of s(k) = 4a+6b as in (1.15). Put hi = ea
4e

b+2(r−1−i)
6 ∆i ∈ Gk(SL2(Z)) for r = r(k).

By definition hi(q) ∈ Z[[q]]. Define Gk(N ; Z) = {f ∈ Gk(N ; Z[ 1
6N

])|f(q) ∈ Z[[q]]};
so, hi ∈ Gk(1; Z). Then for i = 0, 1, · · · , r(k) − 1, the r × r matrix U = U(k) :=
(a(i, hj))(i,j)∈[0,r−1]∩Z is a unipotent matrix with coefficients in Z; so, U−1 has coefficients
in Z, since ∆i starts with qi. Thus hi is linearly independent over Z giving a basis of
Gk(N ; Z). Solving Ux = a(f) for the column vector

a(f) = t(a(0, f), a(1, f), . . . , a(r − 1, f)),

we find f =
∑

i xihi. Thus Gk(1; Z) =
⊕r(k)−1

i=0 Zhi, which shows the following fact for
N = 1.

Theorem 1.16. Gk(N ;B) = Gk(N ; Z) ⊗Z B and Sk(N ;B) = Sk(N ; Z) ⊗Z B for any
commutative ring B as long as k ≥ 2.

The case for cusp forms for N = 1 follows from the same argument, since h1, . . . , hr(k)−1

gives a basis of Sk(1; Z).
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2. Deformation theory of modular forms

We study p-adic deformation of modular forms. This means for a given cusp form f
of level N , we want to know the totality of all modular forms congruent modulo some
power of p in

⋃
k Sk(N ;W ) ⊂ W [[q]] for a p-adically complete valuation ring containing

the p-adic integer ring Zp. Indeed, this set often has geometric structure of the form
Spec(R) for a p-profinite ring R made out of Hecke operators.

First, without going into technical details, we describe a prototypical example of a p-
adic analytic families of modular forms. Then give a definition of p-adic analytic families
of modular forms, and give details of how to construct them.

2.1. p-adic integers. We recall briefly the construction of the p-adic integer ring Zp (cf.
[PAI]). By definition, we have Zp = lim←−n

Z/pnZ ∼= {x =
∑∞

n=0 cnp
n|cn ∈ [0, p− 1] ∩ Z}

with p-adic absolute value |x|p = p−v(x) for v(x) = minn(n|cn 6= 0). Here v : Zp →
Z ∪ {∞} is a discrete valuation of Zp; so, Zp is a discrete valuation ring with only
maximal ideal (p). Embedding Z≥0 = {0 ≤ n ∈ Z} into Zp by p-adic expansion, then we
see that Z≥0 is made up of elements in Zp with finite p-adic expansion. Thus Zp is the
completion of Z≥0 under the absolute value | · |p given by |x|p = p−v(x). The field Qp of p-
adic numbers is the field of fraction of the discrete valuation ring Zp with valuation v with
v(p) = 1, and the norm | · |p and v naturally extend to Qp by v(a

b
) = v(a)− v(b). Let Qp

be an algebraic closure of Qp. Note that Qp/Qp is an infinite extension with Gal(Qp/Qp)
having continuous cardinality (why?). The p-adic absolute value | · |p extends uniquely
to Qp (so the valuation v to v : Qp → Q ∪ {∞} (taking a suitable logarithm of | · |p).
See any book on algebraic number theory for these facts.

The ring Zp is the unit closed disk centered at 0 in Qp; so, Zp is a closed compact
subring of the locally compact field Qp (so, Q ⊂ Qp and Q ∩ Zp = {a

b
∈ Q|v(b) = 0}).

Plainly Z≥0 is dense in Zp, and any polynomial function f(x) ∈ Qp[x] gives rise to a con-

tinuous function f : Zp → Qp. Consider the binomial polynomial
(

x
n

)
= x(x−1)···(x−n+1)

n!

for n ∈ Z+ = {0 < m ∈ Z≥0} and
(

x
0

)
= 1. If one plug in positive integers m in

(
x
n

)
, we

get the binomial numbers
(

m
n

)
if m ≥ n, and otherwise

(
m
n

)
= 0; so,

(
x
n

)
: Z≥0 → Z≥0

is a p-adically continuous function; so, its extends to
(

x
n

)
: Zp → Zp. Consider the

binomial power series (1 + T )x =
∑∞

n=0

(
x
n

)
T n. Plainly this series converge under | · |p

for any x ∈ Zp on the open unit disk pZp centered at 0 giving rise to an isomorphism
Zp
∼= (1 + pZp) by x 7→ γx = (1 + p)x, where p is 4 if p = 2 and p = p is p > 2.

Exercise 2.1. Why do we need to take pZp if p = 2 in the above isomorphism?

In any way, 1 + pZp = γZp = {γx|x ∈ Zp} is a multiplicative (topologically) cyclic
group generated by γ = 1 + p.

Note that prZp = {
∑

n≥r cnp
n}; so, Z/prZ ∼= Zp/p

rZp canonically. Similarly, we

have Zp
×/(1 + prZp) = (Zp/p

rZp)
×. In particular, (Zp/p

rZp)
× has ϕ(pr) = pr − pr−1

elements. By Lagrange theorem, we find that xpr−pr−1 ≡ 1 mod pr ; in other words,
|xpr − xpr−1|p ≤ |pr|p = p−r ; so, we have ω(x) = limn→∞ xpr

in Zp.
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Exercise 2.2. Let A = lim←−n
An for finite rings An of p-power order with projections

πn : A → An, prove that limn→∞ xdn converges into A for dn = |An|, where A is
equipped with the projective limit of discrete topology on An (called p-profinite topology)
such that open-closed set is given by π−1

n (x) for all x ∈ An and n <∞.

By definition, ω(x)p = ω(x); so, either ω(x) = 0 or ω(x)p−1 = 1. Since (Z/pZ)× is
made up of (p− 1)-th roots of unity (Fermat’s little theorem) and ω(x) ≡ x mod pZp,
all (p − 1)-th roots of unity shows up. Thus we have Zp

× = µp−1(Zp) × (1 + pZp) and
Z×

2 = µ2 × (1 + 4Zp). We define the p-profinite projection 〈·〉 : Zp
×

� 1 + pZp; so,
z = 〈z〉ω(z) if p > 2 and we change the definition of ω if p = 2 so that the above
formula is valid; so, if p = 2, ω : Z×

2 → {±1} is a unique character factoring through
(Z/4Z)×; i.e., ω(x) ≡ ±1 mod 4. In particular, writing 〈z〉 = γsz with sz ∈ Zp, we find
for Az(T ) = (1 + T )sz =

∑∞
n=0

(
sz

n

)
T n, Az(γ

k − 1) = 〈z〉k = zkω−k(z) for all k ∈ Zp. If

we use the power series logp(1 + x) =
∑∞

n=1(−1)n+1 xn

n
convergent on pZp (and extends

logp to Zp
× by logp(ω(z)〈z〉) = logp(〈z〉), we find sz = logp(z)/ logp(γ).

Exercise 2.3. Prove the convergence of logp, logp(xy) = logp(x) + logp(y) and sz =
logp(z)/ logp(γ).

2.2. Eisenstein family. Fix a positive integer N prime to p. For each character χ
modulo Np, let Zp[χ] be the subring generated over Zp by the values of χ inside Qp.

Exercise 2.4. Prove that Zp[χ] is a discrete valuation ring.

Take a discrete valuation ring W inside Qp containing Zp[χ]. Define Λ = ΛW = W [[T ]]
(the one variable power series ring). We often write t for 1 + T which is invertible in
ΛW . Assume that χ(−1) = 1, and put

Eχ(T ) =
∑

n=0

an,χ(T )qn ∈ ΛW [[q]],

where an(T ) =
∑

0<d|n,p-d χNp(d)d
−1Ad(T ) and a0(T ) = 1

2
Φχ(T ) for the power series

giving the Kubota–Leopoldt Dirichlet p–adic L-function Lp(s, χ) of χω in the following
way. By the theory of p-adic L-function (see [LFE] §3.4 and §3.5 and Chapter 4 for
details), there exists a power series Φχ(T ) ∈ T−1ΛW such that Φχ(γs− 1) = Lp(1− s, χ)
and Lp(1− k, χ) = (1− χω−k(p)pk−1)L(1− k, χω−k) for all positive integers k. We have
Φχ ∈ ΛW unless χ = 1 and N = 1. If N = 1 and χ = 1, Lp(s, χ) has a simple pole at
s = 1 (so, Φχ 6∈ ΛW and its denominator is T ).

By definition, Eχ(γk − 1) = Ek(χNp) for all k ≥ 1. This {Eχ(γk − 1)|1 ≤ k ∈ Z}
is the p-adic Eisenstein family first proposed by Serre. A formal q-expansion F(T ) ∈
ΛW [[q]] is called a Λ-adic form (of Neben character χ) if the weight k specialization
F(γk − 1) ∈ Gk(Γ0(Np, χω−k;W ) for all k � 1. We call the Λ-adic form a Λ-adic cusp
form if its weight k-specializations for k � 1 are cusp forms for except for finitely many
k′s. Write Gχ(Γ0(Np); Λ) (resp. Sχ(Γ0(Np); Λ) for the space of Λ-adic modular forms
(resp. Λ-adic cusp forms).

The family of modular forms {F(γk − 1)|k � 1} is called a p-adic analytic family
of modular forms. Plainly Gχ(Γ0(Np); Λ) and Sχ(Γ0(Np); Λ) are Λ-modules. Thus
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Eχ for χ 6= 1 and TE1 are called Λ-adic Eisenstein series. The Von Staut-Clausen

theorem saying that B2n ≡ −
∑

l−1|2n
1
l

mod Z tells us TΦ1(T )|T=γk−1 = ζ(1−k)
2

=

pk(1 − pk−1)Bk

k
∈ Zp

× for even integer k ≡ 0 mod (p − 1). This shows Φ1(T ) = ν(T )
T

with ν(T ) ∈ Λ×
W .

Exercise 2.5. Prove that Φ(T ) ∈ Λ×
W if and only if Φ(γk − 1) ∈ Zp

× for some k ∈ Z.

Thus defining E = a0(T )−1E1, by the above exercise, E is still a Λ-adic form and
satisfies E(0) = 1.

Proposition 2.6. For any f ∈ Gk(Γ0(Np), χω−k;W ), we can find a Λ-adic form F ∈
Gχ(Γ0(Np),Λ) such that f = F(γk − 1). In particular, Gχ(Γ0(Np); Λ) ⊗Λ Λ/(t − γk)
canonically contains Gk(Γ0(N), χω−k;W ).

Even if a non-zero Λ-adic form F(T ) vanishes at t := 1 + T = γk (k ≥ 2), there
is no guarantee that for F ′ = F/(t − γk) specializes at t = γk to a classical mod-
ular form. Therefore, we cannot prove that Gχ(Γ0(Np),Λ) ⊗Λ Λ/(1 + T − γk) ∼=
Gk(Γ0(Np), χω−k;W ).

Proof. Consider Ek(T ) = E(γ−k(1+T )−1). Then it is easy to check that a(n, Ek) ∈ ΛW

for all n. Then Ek(0) = 1 and Ek(γl − 1) = E(γl−k − 1) ∈ Gk−l(Γ0(Np), ωk−l;W ); so,
F := (f ·Ek)(γl−1) = E(γl−k−1)f ∈ Gl(Γ0(Np), χω−kωk−l;W ) = Gl(Γ0(Np), χω−l;W )
for all l ≥ k. Thus F ∈ Gχ(Γ0(Np); Λ) as desired. �

2.3. Hecke operators. Let Γ = Γ0(N) or Γ1(N). For α ∈ GL2(Q) for which f 7→ f |α
is well defined, if ΓαΓ can be decomposed into a disjoint union of finite left cosets
ΓαΓ =

⊔h
j=1 Γαj, we can think of the finite sum g =

∑
j f |αj for f : H → C. If γ ∈ Γ,

then αjγ ∈ Γασ(j) for a unique index 1 ≤ σ(j) ≤ h and σ is a permutation of 1, 2, . . . , h.
If further, f |γ = f for all γ ∈ Γ, we have

g|γ =
∑

j

f |αjγ =
∑

j

f |γjασ(j) =
∑

j

(f |γj)|ασ(j) =
∑

j

f |ασ(j) = g.

Thus under the condition that f |γ = f for all γ ∈ Γ, f 7→ g is a linear operator only
dependent on the double coset ΓαΓ; so, we write g = f |[ΓαΓ]. If we define

f | ( a b
c d ) = f |k,k−1,χ ( a b

c d ) = χ(a)(ad− bc)k−1f

(
az + b

cz + d

)
(cz + d)−k

for ( a b
c d ) with N |c and a prime to N , we find f ∈ Gk(Γ0(N), χ) satisfies f |γ = f for all

γ ∈ Γ0(N).

Exercise 2.7. Prove that f ∈ Gk(Γ0(N), χ) satisfies f |γ = f for all γ ∈ Γ0(N). Use
the fact that ad ≡ 1 mod N if ( a b

c d ) ∈ Γ0(N).

More generally, if we have a set T ⊂ GL+
2 (R) such that ΓTΓ = T with finite |Γ\T |,

we can define the operator [T ] by f 7→∑
j f |τj if T =

⊔
j Γτj . We define

∆0(N) =
{
( a b

c d ) ∈M2(Z) ∩ GL+
2 (R)

∣∣c ≡ 0 mod N, aZ +NZ = Z
}
.

Exercise 2.8. Prove that Γ∆0(N)Γ = ∆0(N) for Γ = Γ0(N).
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Lemma 2.9. Let Γ = Γ0(N).

(1) If α ∈M2(Z) with positive determinant, |Γ\(ΓαΓ)| <∞;
(2) If p is a prime,

Γ
(

1 0
0 p

)
Γ =

{
α ∈ ∆0(N)

∣∣ det(α) = p
}

=

{
Γ

(
p 0
0 1

)
t

⊔p−1
j=0 Γ

(
1 j
0 p

)
if p - N ,⊔p−1

j=0 Γ
(

1 j
0 p

)
if p|N .

(3) for an integer n > 0,

Tn :=
{
α ∈ ∆0(N)

∣∣ det(α) = n
}

=
⊔

a

d−1⊔

b=0

Γ0(N) ( a b
0 d ) (a > 0, ad = n, (a,N) = 1, a, b, d ∈ Z),

(4) Write T (n) for the operator corresponding to Tn. Then we get the following
identity of Hecke operators for f ∈ Gk(Γ0(N), χ):

a(m, f |T (n)) =
∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · a(mn
d2
, f).

(5) T (m)T (n) = T (n)T (m) for all integers m and n.

By (4), a(n, f |T (l)) = a(ln, f) if l is a prime factor of N and a(n, f |T (l)) = a(ln, f)+
χ(l)lk−1a(n

l
, f) otherwise (here a(m, f) = 0 for m 6∈ Z≥0). Because of this, we write

often U(l) for T (l) if l|N . By this formula, U(l)n = U(ln).

Proof. Note that (1) and (2) are particular cases of (3). We only prove (2), (4) when n =
p for a prime p and (5), leaving the other cases as an exercise (see [IAT] Proposition 3.36
and (3.5.10) for a detailed proof of (3) and (4)).

We first deal with (2). Since the argument in each case is essentially the same, we
only deal with the case where p - N and Γ = Γ0(N). Take any γ = ( a b

c d ) ∈ M2(Z) and
ad − bc = p. If c is divisible by p, then ad is divisible by p; so, one of a and d has a
factor p. We then have

γ = ( a b
c d ) =

(
a/p b
c/p d

) (
p 0
0 1

)
∈ Γ0(N)

(
p 0
0 1

)

if a is divisible by p. If d is divisible by p and a is prime to p, choosing an integer j with

0 ≤ j ≤ p− 1 with ja ≡ b mod p, we have γ
(

1 j
0 p

)−1 ∈ GL2(Z). If c is not divisible by

p but a is divisible by p, we can interchange a and c via multiplication by ( 0 −1
1 0 ) from

the left-side. If a and c are not divisible by p, choosing an integer j so that ja ≡ −c
mod p, we find that the lower left corner of

(
1 0
j 1

)
γ is equal to ja+ c and is divisible by

p. This finishes the proof of (2).
We now deal with (4) assuming n = p. By (2), we have

(2.1) f |T (p)(z) =





χ(p)pk−1 · f(pz) +

∑p−1
j=0 f

(
z+j
p

)
if p - N ,

∑p−1
j=0 f

(
z+j
p

)
if p|N .
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Writing f =
∑∞

n=1 a(n, f)qn for q = e(z), we find

a(m, f |T (p)) = a(mp, f) + χ(p)pk−1 · a(m
p
, f).

Here we put a(r, f) = 0 unless r is a non-negative integer.
The formula of Lemma 2.9 (4) is symmetric with respect to m and n; so, we conclude

T (m)T (n) = T (n)T (m). This proves (5). �

Exercise 2.10. Give a detailed proof of the above lemma.

The following exercise is more difficult:

Exercise 2.11. Let Γ = SL2(Z). Prove that |Γ\(ΓαΓ)| < ∞ for α ∈ GL2(R) if and
only if then α ∈M2(Q) modulo real scalar matrices.

If we regard f ∈ Gk(SL2(Z)) as a function of lattices L, for example, for α ∈ Γ
(

1 0
0 p

)
Γ,

pkf(α · L) = f(p−1αL). Note that C/p−1αL is a quotient of E(L) (E(L)(C) = C/L)
by order p subgroup p−1αL/L. Since E(L)[p] (the kernel of x 7→ px) is two dimen-
sional vector space over Fp, it has |P1(Fp)| = |Fp ∪ {∞}| subgroup of order p. This
corresponds to the representatives Γ\Γ

(
1 0
0 p

)
Γ. Thus f |T (p) = 1

p

∑
L′⊃L,[L′:L]=p f(L′).

Here the factor 1
p

in front is the difference of pk and the factor pk−1 = det(α)k−1 of

f |α = det(α)k−1f(α(z))j(α, z)−k. Note that E(L′) = E(L)/(L′/L) (i.e., E(L′) run-
ning over all quotients of E(L) by subgroups of order p). More generally, f |T (n) =
1
n

∑
L′⊃L,[L′:L]=n f(L′). If Γ = Γ0(N) or Γ1(N), we can verify f |U(l) for l|N is the sum of

f(L′, φN) where [L′ : L] = l and L′/L ∩ Im(φN) = {0} inside E(L) (so, the summation
is different from T (l) fro SL2(Z)).

If we regard algebraically f ∈ Gk(Γ1(N);B) as a function (E, φN , ω) 7→ f(E, φN , ω),
the Hecke operators can be interpreted using the above quotient process:

f |T (n)(E, φN , ω) =
1

n

∑

C:subgroups of E of order n

f(E/C, πC ◦ φN , πC,∗ω),

where πC : E → E/C is the projection and πC,∗ω is the push-forward of ω (see [GME]
§3.2.3 for more details). Similarly,

f |U(l)(E, φN , ω) =
1

l

∑

C:subgroups of E of order l, C ∩ Im(φN) = {0}
f(E/C, πC ◦ φN , πC,∗ω).

We extend the definition of Hecke operators on F ∈ Gχ(Γ0(Np); Λ) by the following
formula:

(2.2) a(m,F|T (n)) =
∑

0<d|(m,n),(d,N)=1

χ(d)d−1Ad(T ) · a(mn
d2

,F).

Since Ad(γ
k − 1) = dkω−k(d), the specialization of the above formula gives rise to

the formula in Lemma 2.9 (4) for the Neben character χω−k; so, F|T (n)(γk − 1) =
F(γk − 1)|T (n). Thus, F(γk − 1) ∈ Gk(Γ0(Np), χω−k;W ) implies F|T (n)(γk − 1) ∈
Gk(Γ0(Np), χω−k;W ); so, the above operator acts on Gχ(Γ0(Np); Λ).
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Thus we defined Λ-adic forms in an ad-hoc manner, for any local ring R = lim←−n
R/mn

R

with a continuous algebra homomorphism ϕ : Λ→ R, the image fR of F under ϕ gives a
q-expansion of a “p-adic modular form” defined over R (i.e., roughly/morally speaking,
fR is a p-adic limit of a sequence {fn ∈ Gkn(Γ1(Np);R)}), and one can give a more
intrinsic definition of Λ-adic forms which we do not touch in this course.

2.4. Ordinarity. Let V be a free W -module of finite rank with a W -linear operator
U : V → V . Then W [U ] ⊂ EndW (V ) is free of finite rank r over W ; so, the algebra
W [U ] is a p-profinite semi-local ring (i.e., W [U ] has only finitely many maximal ideals;
why?). Writing W [U ] = lim←−n

W [U ]/pnW [U ] and dn = |W [U ]/pnW [U ]| = prn rankW , we

have the p-adic limit ω(U) = limn U
dn exists by Exercise 2.2. Since dn|m! for some m

depending on n, the limit e = limn U
n! exists in W [U ], which plainly satisfies e2 = e (i.e.,

an idempotent of W [U ]). The operator e is called the projector associated to U . For any
commutative subalgebra A ⊂ EndW (V ) containing W [U ], eA is the direct summand of
A in which eU is a unit and (1− e)A is the complementary direct summand such that
(1− e)U is topologically nilpotent (i.e., limn→∞(1− e)Un = 0).

We apply this argument to the U(p)-operator. Since Gk(Γ0(Np), χ;W ) is free of finite
rank over W , we have the limit idempotent e = limn U(p)n!. We write the subspace
e(Gk(Γ0(Np), χ;W )) as Gord

k (Γ0(Np), χ;W ), and we call forms in Gord
k (Γ0(Np), χ;W )

ordinary (or p-ordinary) modular forms.
Let

Gk
χ(Γ0(Np); Λ) = {F ∈ Gχ(Γ0(Np); Λ)|F(γj−1) ∈ Gk(Γ0(Np), χω−j ;W ) for all j ≥ k}.

Then Gχ(Γ0(Np); Λ) =
⋃

k Gk
χ(Γ0(Np); Λ) ⊂ ΛW [[q]].

Theorem 2.12. There exists an idempotent e ∈ EndΛ(Gχ(Γ0(Np); Λ)) commuting with
U(p) such that eU(p) is invertible in eΛ[U ] ⊂ EndΛ(Gχ(Γ0(Np); Λ)) and (1− e)U(p) is
topologically nilpotent.

Proof. Since Gχ(Γ0(Np); Λ) =
⋃

k Gk
χ(Γ0(Np); Λ) ⊂ ΛW [[q]], we only need to prove that

e exists in EndΛ(Gk
χ(Γ0(Np); Λ)) for each k ≥ 2. If the map Gk

χ(Γ0(Np); Λ) 3 F 7→
(F(γj − 1))j≥k ∈

∏
j Gj(Γ0(Np), χω−j ;W ) is an injection, the product operator of U(p)

on each Gj(Γ0(Np), χω−j ;W ) induces U(p) on Gk
χ(Γ0(Np); Λ) since F(γj − 1)|U(p) =

F|U(p)(γj − 1). Then in the product on the right-hand-side limn→∞ U(p)n! exists and
preserves the image of Gk

χ(Γ0(Np); Λ), and the assertion follows. So we show the

injectivity. If F(γj − 1) = 0 for all j ≥ k, writing F =
∑∞

n=0 a(n,F)(T )qn, we
have a(n,F)(T ) ∈ (t − γj). Note that W [[T ]] = Λ is a unique factorization domain
(why?). Thus a(n,F)(T ) is divisible by infinitely many prime t− γj (for j ≥ k) implies
a(n,F) = 0; so, F = 0. �

We define

Gord
χ (Γ0(Np),Λ) = e(Gord

χ (Γ0(Np),Λ)) and Sord
χ (Γ0(Np),Λ) = e(Sord

χ (Γ0(Np),Λ)),

and call them the space of ordinary Λ-adic modular/cusp forms.
We have proven that for any f ∈ Gord

k (Γ0(Np), χω−k;W ), we can find a Λ-adic form
F ∈ Gχ(Γ0(Np); Λ) such that F(γk − 1) = f . Applying e, we find F|e(γk − 1) =
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F(γk − 1)|e = f |e = f ; so, any f ∈ Gord
k (Γ0(Np), χω−k;W ) can be lifted to F ∈

Gord
χ (Γ0(Np); Λ). For example, we can take F = Ekf |e for Ek as in the proof of Propo-

sition 2.6.

2.5. Control theorem. For a while, we admit the following innocuous looking theorem:

Theorem 2.13. Suppose that p - N . Then for all k ≥ 2, we have

rankZp G
ord
k (Γ0(Np), χω−k) ≤ rankZp G

ord
2 (Γ0(Np), χω−2).

The same inequality holds for cusp forms.

We will give a sketch of the proof of this theorem later if time allows. We prove the
following consequence of the above theorem.

Corollary 2.14. The Λ-modules Gord
χ (Γ0(Np); Λ) and Sord

χ (Γ0(Np); Λ) is Λ-free of finite
rank. Moreover for any k ≥ 2, we have

Gord
χ (Γ0(Np); Λ)⊗Λ Λ/(t− γk) ∼= Gord

k (Γ0(Np), χω−k;W )

and

Sord
χ (Γ0(Np); Λ)⊗Λ Λ/(t− γk) ∼= Sord

k (Γ0(Np), χω−k;W )

by the specialization map. In particular, the W -rank of the right-hand-side of the above
equation is independent of k ≥ 2.

Proof. Since the proof is the same, we prove it for modular forms. For simplicity,
write G = Gord

χ (Γ0(Np); Λ). We have E = E(γk−2 − 1) ≡ 1 mod mΛ for the max-

imal ideal m of W . Multiplying E := E mod mΛ ∈ F[[q]] for F = W/m, we get
Gord

2 (Γ0(Np), χω−2; F) ↪→ Gord
k (Γ0(Np), χω−k; F). Since we get

rankGord
k (Γ0(Np), χω−k;W ) = dimF G

ord
k (Γ0(Np), χω−k;W )⊗W F

= dimF G
ord
k (Γ0(Np), χω−k; F)

from Gk(Γ0(Np), χω−k;W )⊗W F ∼= Gk(Γ0(Np), χω−k; F), we have

rankGord
k (Γ0(Np), χω−k;W ) ≥ rankGord

2 (Γ0(Np), χω−2;W )

for all k ≥ 2. The reverse inequality follows from the theorem; so, the rank is independent
of k ≥ 2.

Let M ⊂ G be the free Λ-module of rank r generated by F1, . . . ,Fr. Thus we can find
a sequence of integer 0 ≤ n1 ≤ · · · ≤ nr such that D = det(A) 6= 0 for the r × r-matrix
A = (a(ni,Fj)) in Λ. By Weierstrass preparation theorem (cf. [ICF] Theorem 7.3),
any non-zero power series in Λ = W [[T ]] has finitely many zeros in the unit disk (in
Qp). For sufficiently large k � 0, we find D(γk − 1) 6= 0 and that all fj = Fj(γ

k − 1)
are in Gord

k (Γ0(Np), χω−k;W ). Thus any Λ-free submodule of G has rank bounded by
rankW Gord

k (Γ0(Np), χω−k;W ). Let r is the maximal of the rank of Λ-free submodules.
We may assume that the Λ-free submodule M ⊂ G has rank r. Thus fj = Fj(γ

k − 1)
(j = 1, . . . , r) are linearly independent over W , and hence

r ≤ rankGord
k (Γ0(Np), χω−k;W ) =: R,
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which is independent of k. Since M ⊂ G ⊂ Λ[[q]] by definition, M and G are Λ–torsion-
free. Therefore F1, . . . ,Fr is the set of maximally linearly independent elements in G.
Writing Q for the quotient field of Λ, we find the identity of Q-span Q ·M = Q · G in
Q[[q]]. Pick an F ∈ G. Then F =

∑
i xiFi for xi ∈ Q. The elements xi ∈ Q are the

solution of Ax = a(F), where x = t(x1, . . . , xr) and a(F) = t(a(n1,F), . . . , a(nr,F).
Therefore by linear algebra, Dxi ∈ Λ. This shows DG ⊂ M . In particular, G is finitely
generated over Λ as Λ is noetherian. We now use the following facts:

(u) Λ is a unique factorization domain (any power series ring over a regular UFD is
UFD; see, [CRT] 20.8).

(r) For x ∈ Zp, Φ(x) = 0⇔ Φ(T ) = (T − x)Ψ(T ) with Ψ(T ) ∈ Λ (an exercise).

Since G is finitely generated, choosing a set of generators Φ1, . . . ,Φm. By definition, for
k � 2, Φj(γ

k − 1) ∈ Gord
k (Γ0(Np), χω−k;W ) for all j. Then every F ∈ G, F(γk − 1)

is a linear combination of Φj(γ
k − 1), and hence F(γk − 1) ∈ Gord

k (Γ0(Np), χω−k;W ).
If F(γk − 1) = 0, by (u), a(n,F)/(t − γk) ∈ Λ for any integer n ≥ 0, and we have
F ′ = F/(t − γk) ∈ G. However, F ′(γk − 1) ∈ Gord

k (Γ0(Np), χω−k;W ) as this is true
for any elements in G; so, F = (t − γk)F ′. Thus the kernel of the specialization map
Φ 7→ Φ(γk − 1) is (t− γk)G. We have therefore an exact sequence:

0→ (t− γk)G → G → Gord
k (Γ0(Np), χω−k;W )→ 0.

Now set r = R. Choose a basis f1, . . . , fr of Gord
k (Γ0(Np), χω−k;W ) and pick Fj

with Fj(γ
k − 1) = fj . The existence of {F1, . . . ,Fr} is guaranteed by the above exact

sequence. If
∑

i aiFi = 0 for ai ∈ Λ, then
∑

i ai(γ
k − 1)fi = 0; so, ai = (t − γk)a′i

with a′i ∈ Λ for all i. Dividing the equation
∑

i aiFi = 0 by (t− γk), we get
∑

i a
′
iFi =

0; so, (t − γk)|a′i, repeating this, we find any power of (t − γk) is a factor of ai; so,
ai = 0 for all i; i.e., Fi are linearly independent. By Nakayama’s lemma below, we find
{Fi}i is a basis of G, and hence G is Λ-free of rank r = rankGord

k (Γ0(Np), χω−k;W ).
As we have seen already, for any f ∈ Gord

l (Γ0(Np), χω−2;W ), we can find F ∈ G
such that F(γl − 1) = f ; i.e., Gord

l (Γ0(Np), χω−l;W ) ↪→ G/(t − γl)G. This shows
r = R = rankΛ G ≥ rankW Gord

l (Γ0(Np), χω−l;W ) = R for any l ≥ 2. Therefore
r = rankW Gord

l (Γ0(Np), χω−l;W ), and hence

G/(t− γl)G ∼= Gord
l (Γ0(Np), χω−l;W )

for any l ≥ 2. This finishes the proof. �

Lemma 2.15 (NAK). Let R be a local ring with maximal ideal m. For any ideal P of R,
suppose that an R-module M is finitely generated over R. Then if M/PM is generated
by f1 mod P, . . . , fj mod P over R/P , then M is generated by f1, . . . , fr over R.

This lemma can be found in any book on commutative rings (e.g. [CRT] Theorem 2.3).

2.6. Duality. We suppose the following axiom for a character φ of (Z/NZ)××Zp
× with

values in R× for a profinite ring R:

(d1) We have an R–free module E of finite rank with commuting R-linear operator
T (n) (n = 1, 2, . . . ), T (1) giving the identity operator;
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(d2) We have an embedding E ↪→ qR[[q]] for a power series ring R[[q]] given by E 3
f 7→∑∞

n=1 a(n, f)qn ∈ qR[[q]];
(d3) We have a(m, f |T (n)) =

∑
0<d|(m,n),(d,Np)=1 φ(d)a(mn

d2 , f) for all positive integer
m,n, where N is a fixed positive integer.

Here φ can be a character z 7→ χ(z)zk−1
p for the projection zp of z ∈ Zp

× × (Z/Z)× to

Zp
× or φ(z) = χ(z)z−1

p Azp(T ).
Let H(E) be the closed subring of R-linear endomorphism algebra EndR(E) topo-

logically generated by T (n) (n = 1, 2, . . . ) under the profinite topology of R, E and
EndR(E). Using (d3), we leave the reader to show that H(E) is a commutative algebra.
For any Λ-algebra I, we define Gχ(Γ0(Np); I) = Gχ(Γ0(Np); Λ)⊗ΛI and Sχ(Γ0(Np); I) =
Sχ(Γ0(Np); Λ)⊗Λ I which are submodules of I[[q]].

Definition 2.1. We write Hk(Γ0(Np
r), χ;R) (resp. hk(Γ0(Np

r), χ;R)) for H(E) if
E = Gk(Γ0(Np

r), χ;R) (resp. E = Sk(Γ0(Np
r), χ;R)) for an algebra R finite over

W . Similarly, we write Hord
k (Γ0(Np

r), χ;R) (resp. hord
k (Γ0(Np

r), χ;R)) for H(E) if
E = Gord

k (Γ0(Np
r), χ;R) (resp. E = Sord

k (Γ0(Np
r), χ;R)). If E = Gχ(Γ0(Np); I),

we write Hχ(Γ0(Np); I) for H(E), where χ : (Z/NprZ)× → W× is a character. If
E = Sχ(Γ0(Np); I), we write hχ(Γ0(Np); I) for H(E).

We define a pairing 〈·, ·〉 : E × H(E) → R by 〈f, h〉 = a(1, f |h). By (d3), we have
〈f, T (n)〉 = a(n, f). Then by (d2), 〈f, T (n)〉 = 0 for all n implies f = 0. On the other
hand, if we assume that 〈f, h〉 = 0 for all f ∈ E, we have

0 = 〈f |T (n), h〉 = 〈f, hT (n)〉 = a(1, f |hT (n)) = 〈f |h, T (n)〉 = a(n, f |h).
This shows that f |h = 0 for all f ∈ E, and by definition h = 0; so, the pairing is
non-degenerate.

Lemma 2.16. If R is a field or a discrete valuation ring and E is free of finite rank
over R, we have HomR(H(E), R) ∼= E and H(E) = HomR(E,R) under the above
pairing. If λ ∈ HomR(H(E), R), the isomorphism: HomR(H(E), R) ∼= E sends λ to∑∞

n=1 λ(T (n))qn ∈ E.

Proposition 2.17. If I is a Λ-algebra and E is either S(χ; I) or S(Γ0(N), χ; I), we
have HomI(H(E), I) ∼= E and H(E) = HomI(E, I) under the above pairing. If λ ∈
HomI(H(E), I), the isomorphism: HomI(H(E), I) ∼= E sends λ to

∑∞
n=1 λ(T (n))qn ∈ E.

Proof. Since the space over I is the scalar extension of the space over Λ, we may assume
that I = Λ. For simplicity, we write S = Sχ(Γ0(Np); Λ) and h = hχ(Γ0(Np); Λ).
Let m be the maximal ideal of Λ with F = Λ/m. By definition, h/mh surjects down
to H(S/mS) as the two algebras are generated by T (n). This shows the morphism:
h→ HomΛ(S,Λ) induced by the pairing gives rise to

h/mh
i−→ HomΛ(S,Λ)⊗Λ Λ/m ∼= HomF(S/mS,F).

The last identity follows as the Λ-module S is Λ-free of finite rank. Since

HomF(S/mS,F) ∼= H(S/mS)
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by the non-degeneracy over the field F, i factors through H(S/mS). Then by Nakayama’s
lemma, i : h→ HomΛ(S,Λ) is surjective. Tensoring the quotient field Q of Λ,

i⊗ 1 : hχ(Γ0(Np);Q) = h⊗Λ Q→ S ⊗Λ Q = Sχ(Γ0(Np);Q)

again by the result over now the field Q. Thus i is an isomorphism. Since h is the Λ-dual
of the Λ-free module S, h is Λ-free. Then by applying HomΛ(?,Λ) to h ∼= HomΛ(S,Λ),
we recover

S = HomΛ(HomΛ(S,Λ),Λ) ∼= HomΛ(h,Λ),

as desired. �

We get the following control theorem for Hecke algebras from Theorem 2.13 and
Corollary 2.14.

Corollary 2.18. We have a canonical isomorphism for k ≥ 2:

h/(t− γk)h ∼= hord
k (Γ0(Np), χω−k;W )

sending T (n) to T (n) and U(`) to U(`).

2.7. Hecke eigenforms and algebra homomorphisms. If 0 6= f ∈ E ⊂ R[[q]]
as in (d1-3) the previous section and f |T (n) = λ(T (n))f with scalar λ(T (n)) ∈ R,
then we have an R-algebra homomorphism λ : H(E) → R given by f |h = λ(h)f .
Then λ(T (n))a(1, f) = a(1, f |T (n)) = 〈T (n), f〉 = a(n, f). If a(1, f) = 0, this implies
f = 0; so, we conclude a(1, f) 6= 0. Thus dividing by a(1, f), we may assume that
a(n, f) = λ(T (n)) ∈ R (in particular a(1, f) = 1). We call f a Hecke eigenform if f is an
eigenvector of all T (n) and a(1, f) = 1. Write E(E) for the set of all Hecke eigenforms
in E. Then Theorem 1.16 implies

Corollary 2.19. Let the notation be as in (d1–3). We have a canonical identity E(E) ∼=
HomALG/R

(H(E), R) = Spec(H(E))(R) by f ↔ λ with a(n, f) = λ(T (n)) for all n > 0.

Taking R = B and E = Sk(Γ1(N);B), put hk(Γ1(N);B) = H(Sk(Γ1(N); b)). Then
hk(Γ1(N);B) = hk(Γ1(N); Z) ⊗Z B. Since

HomALG(hk(Γ1(N); Z),Z) = HomALG(hk(Γ1(N); Z)⊗ZZ,Z) = HomALG(hk(Γ1(N); Z),Z)

for any f =
∑∞

n=1 λ(T (n))qn ∈ E(Sk(Γ1(N),Z)) and σ ∈ Gal(Q/Q), σ ◦ λ is associated

another fσ ∈ E(Sk(Γ1(N),Z)). Thus Gal(Q/Q) acts on the set of Hecke eigenforms.
This is also true for E(Gk(Γ1(N); Q)) even if λ(T (n)) only determine the q-expansion
coefficients a(n, f) with n > 0. Indeed, first of all, fσ exists for any f ∈ Gk(Γ1(N)) and
σ ∈ Aut(C/Q), as f is a linear combination of a basis {fi} of Gk(Γ1(N); Q). Secondly,
if a(n, f ′) = σ(a(n, f)) for all n > 0 with f ′ ∈ Gk(Γ1(N)), fσ − f ′ is a constant
in Gk(Γ1(N)) which has to be 0 (why?). Thus f ′ = fσ. This prove rationality of
the constant term in a number field K if a(n, f) ∈ K for all n > 0 (in particular,
L(1− k, χ) ∈ Q[χ] if a Dirichlet character χ satisfies χ(−1) = (−1)k). Similarly, writing
Q for an algebraic closure of Q = Frac(Λ) and Λ for integral closure of Λ inQ, Gal(Q/Q)
acts on E(Sχ(Γ0(Np); Λ))
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3. Galois representations

We describe modular two dimensional galois representations and its Λ-adic version.
Since the field Q[µN ] generated by a primitive N -th root of unity ζ has Galois group
canonically isomorphic to (Z/NZ)×. Indeed, fro σ ∈ Gal(Q[µN ]/Q), we have ζσ =
ζd with some d ∈ Z, and the association σ 7→ (d mod N) gives an isomorphism
Gal(Q[µN ]/Q) ∼= (Z/NZ)×. This any Dirichlet character χ can be regarded as a Galois

character χ : Gal(Q/Q)→ Q
×

factoring through Gal(Q[µN ]/Q). Since Q[µN ] is unram-
ified outside N , we have well defined Frobp ∈ Gal(Q[µN ]/Q) if p - N , and we haves
χ(Frobp) = p

3.1. Modular two dimensional Galois representations. Since

Sk(Γ1(N)) =
⊕

χ

Sk(Γ0(N), χ),

by duality we have hk(Γ1(N); C) =
⊕

χ hk(Γ0(N), χ; C). Thus any Hecke eigenform in

Sk(Γ1(N)) belongs Sk(Γ0(N), χ) for some χ and the cofrresponding algebra homomor-
phism λ : hk(Γ1(N); Z) → C factors through hk(Γ0(N), χ; Z[χ]). In this case, we say
that λ has Neben character χ. Here is an important theorem we admit (cf. [GME]
Section 4.2):

Theorem 3.1. Let λ : hk(Γ1(N); Z) → Q be an algebra homomorphism, with Neben

character χ : (Z/NZ)× → Q
×
. Then for the finite extension Q[λ] generated over Q by

λ(T (n)) and a prime ideal l of O := OQ[λ] with completion Ol = lim←−n
O/ln, there exists a

unique absolutely irreducible Galois representations ρλ,l of Gal(Q/Q) into GL2(Ol) such
that

(1) ρλ,l is unramified outside Nl for the rational prime l ∈ l;
(2) For each prime p outside Nl,

det(1− ρλ,l(Frobp)T ) = 1− λ(T (p))T + pk−1χ(p)T 2;

(3) We have det(ρλ,l(c)) = −1 for each complex conjugation c (such a representation
is called an “odd” representation);

(4) For the l–adic cyclotomic character νl, we have det ρλ,l = χνk−1
l , where we regard

χ as a Galois character given by χ(Frobp) = χ(p) for primes p outside Nl as
above.

This theorem is due to Eichler for N = 11, χ = 1 and k = 2, to Shimura for all cases
of k = 2, to Deligne for all cases of k ≥ 2 and to Deligne–Serre for k = 1.

If a system of Galois representations ρ = {ρl : Gal(Q/F ) → GLn(OT,l)} for a finite
extension F and T over Q satisfies

(1) There exists a finite set S of primes of OK such that ρl is unramified outside S
and any prime ideal over l ∩ Z = (l);

(2) For any prime p 6∈ S ∪ {l′|l}, Hp(X) := det(1n − ρl(Frobp)X) is in T [X] and is
independent of l,
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we call {ρl}l a (weak) compatible system of n-dimensional Galois representations with
coefficients in T . We define the L-function of ρ to be

L(s, ρ) =
∏

p

Hp(N(p−s)−1.

Thus ρλ := {ρλ,l} give a modular two dimensional compatible system with coefficients
in Q[λ] associated to a Hecke eigenform on GL(2), and one can prove L(s, ρλ) =∑∞

n=1 λ(T (n)n−s which has Euler factor as in the above theorem (see [IAT] §3.2).
The cyclotomic character νl is given by the Galois action on µl∞(Q). For any l-

adic integer z with l-adic expansion z =
∑

n=0 cnl
n (cn ∈ [0, l − 1] ∩ Z), writing zm =∑m

n=0 cnl
n ∈ Z, if ζ ∈ µlr(Q), we can define ζz = lim∞

n=0 ζ
zn = ζzr as zm ≡ zr mod lr for

all m ≥ r. Then ζσ = ζχ(σ) with χ(σ) ∈ Z×
l for all ζ ∈ µl∞(Q). Since µl∞(Q) ∼= µl∞(Fp)

(as long as p - l) by ζ 7→ (ζ mod P) for a fixed prime P over (p) in Z), we have
ζFrobp = ζp for all ζ ∈ µl∞(Q) (as Frobp acts on Fp by x 7→ xp). Thus νl(Frobp) = p,
and χνk := {χνk

l }l is a one dimensional compatible system (coming from GL(1)).

Exercise 3.2. Identify the fixed field Kl of Ker(νl) in Q, and prove that Kl ∩Kq = Q
if q is a prime different from l (even if νq(Frobp) = νl(Frobp) as long as p - ql). In
addition, prove that νl(c) = −1 for complex conjugation c.

For a given λ ∈ HomALG(hk(Γ1(N); Z),Q), we consider

Eλ = {f ∈
⋃

M

E(Sk(Γ1(M))) : f |T (n) = λ(T (l))f for almost all primes l}.

By Chebotarev density theorem (in algebraic number theory), the compatible system
associated to any Hecke eigenform f ∈ Eλ is isomorphic to ρλ. Therefore we may assume
that N is the minimal level appearing in the levels of forms in Eλ. We call such λ
primitive. The level of primitive λ is alled the conductor of any of the member of Eλ.
By the theory of new/old forms described in [MFM] Chapter 4, Hecke eigenform in Eλ
associated to a primitive λ is unique, and the form is also called a primitive form. For
a primitive from f associated to a primitive λ, its Hecke L-function L(s, f) = L(s, ρλ)
satisfies a functional equation of the form s↔ k − s.

Here is a more close information about ramification:

Theorem 3.3. Let λ : hk(Γ1(N); Z) → Q be a primitive algebra homomorphism with
Neben character χ and conductor N . Then we have

(1) (Deligne, Mazur–Wiles) Suppose k ≥ 2 and that λ(T (p)) or λ(U(p)) is a unit in
the p-adic integer ring of Q[λ] for a prime p|p. Then the restriction of ρλ,p to the
decomposition group DP/p is isomorphic to an upper triangular representation

σ 7→
(

ε(σ) ∗
0 δ(σ)

)
,

where δ is unramified and δ(Frobp) is the unique p–adic unit root of X2−λ(T )X+
χ(p)pk−1 = 0 for T = T (p) or U(p) according as p - N or p|N . Here we have
used the convention that χ(p) = 0 if p|N .
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(2) (Langlands, Carayol) Let p be a prime different from l, and let C be the conductor
of χ. Write N = peN ′ (resp. C = pe′C ′) so that p - N ′ (resp. p - C ′).
(a) If e = e′ > 0, ρλ,l restricted to the inertia group IP/p is equivalent to:

σ 7→
(

χ(σ) 0
0 1

)
.

Moreover ρ restricted to the decomposition group DP/p is still diagonal, and
writing δp for the unique unramified character appearing in ρλ,l|DP/p

, we have

δp(FrobP) = λ(U(p)).
(b) If e = 1 and e′ = 0, ρλ,l restricted to the decomposition group DP/p for P|p

is ramified and is equivalent to an upper triangular representation:

σ 7→
(

η(σ)ν`(σ) ∗
0 η(σ)

)
,

where ν` : DP/p → Z×
` is the `–adic cyclotomic character and η is an un-

ramified character taking FrobP to λ(U(p)).
(4) (Deligne-Serre) If k = 1, then there exists a complex continuous representation

ρ0 : Gal(Q/Q)→ GL2(Q(λ)) ⊂ GL2(C) unramified outside N with finite image,
which is isomorphic to ρλ,l over Q`(λ) for all l.

Here is a big theorem of Khare–Wintenberger (we state it in some particular cases
treated above):

Theorem 3.4 (Khare–Wintenberger). If a two dimensional odd compatible system ρ =
{ρl}l with coefficients T satisfies

(1) det(ρ) = χνk−1 for a Dirichlet character χ with χ(−1) = (−1)k for an integer
k ≥ 1,

(2) for some prime p|p of OT , ρp|DP/p
∼= ( ε ∗

0 δ ) for an unramified character δ,

then there exists a primitive λ : hk(Γ1(N); Z)→ Q such that ρ ∼= ρλ.

This is in their celebrated sequnce of papers proving Serre’s mod p modularity con-
jecture. Try find it in that long papers! For any two dimensional compatible system ρ,
det(ρ) is forced to be of the form χνk−1 for some integer k (not necessarily positive).
Replacing ρ by ρ⊗ νm given by (ρ⊗ νm(σ) = ν(σ)mρ(σ), we can achieve k ≥ 1; so, the
first condition is not something restrictive. If ρ is geometric (i.e., coming from cohomol-
ogy theory of projective varieties), choosing minimal m making k ≥ 1, it is expected to
find p satisfying the second condition (if ρ comes from an abelian variety, this is true).
Indeed, the theorem of Khare-Wintenberger only requires this “geometricity” not really
the second condition.

3.2. Pseudo representations. In order to make Galois representation attached to Λ-
adic eigenform, pseudo representations are very useful. We recall the definition of pseudo
representations (due to Wiles) when n = 2. See [MFG] §2.2.2 for a higher dimensional
generalization due to R. Taylor.

In this subsection, the coefficient ring A is always a local ring with maximal ideal mA.
We write κ = A/mA. For simplicity, we assume that 2 is invertible in A. We would like
to characterize the trace of a representation of a group G.
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We describe in detail traces of degree 2 representations ρ : G → GL2(A) when G
contains c such that c2 = 1 and det ρ(c) = −1. Let V (ρ) = A2 on which G acts by
ρ. Since 2 is invertible in A, we know that V = V (ρ) = V+ ⊕ V− for V± = 1±c

2
V . For

ρ = ρ mod mA, we write V = V (ρ) = κ2. Then similarly as above, V = V + ⊕ V −
and V ± = V±/mAV±. Since dimκ V = 2 and det ρ(c) = −1, dimκ V ± = 1. This shows
that V ± = κv± for v± ∈ V ±. Take v± ∈ V± such that v± mod mAV± = v±, and define
φ± : A → V± by φ(a) = av±. Then φ± mod mAV is surjective by Nakayama’s lemma.
Note that φ± : A ∼= V± as A-modules. In other words, {v−, v+} is an A–base of V . We

write ρ(r) =
(

a(r) b(r)
c(r) d(r)

)
with respect to this base. Thus ρ(c) = (−1 0

0 1 ). Define another

function x : G×G→ A by x(r, s) = b(r)c(s). Then we have

(W1) a(rs) = a(r)a(s) + x(r, s), d(rs) = d(r)d(s) + x(s, r) and

x(rs, tu) = a(r)a(u)x(s, t) + a(u)d(s)x(r, t) + a(r)d(t)x(s, u) + d(s)d(t)x(r, u);

(W2) a(1) = d(1) = d(c) = 1, a(c) = −1 and x(r, s) = x(s, t) = 0 if s = 1, c;
(W3) x(r, s)x(t, u) = x(r, u)x(t, s).

These are easy to check: We have
(

a(r) b(r)
c(r) d(r)

)(
a(s) b(s)
c(s) d(s)

)
=

(
a(rs) b(rs)
c(rs) d(rs)

)
.

Then by computation, a(rs) = a(r)a(s) + b(r)c(s) = a(r)a(s) + x(r, s). Similarly, we
have b(rs) = a(r)b(s) + b(r)d(s) and c(rs) = c(r)a(s) + d(r)c(s). Thus

x(rs, tu) = b(rs)c(tu) = (a(r)b(s) + b(r)d(s))(c(t)a(u) + d(t)c(u))

= a(r)a(u)x(s, t) + a(r)d(t)x(s, u) + a(u)d(s)x(r, t) + d(s)d(t)x(r, u).

A triple {a, d, x} satisfying the three conditions (W1-3) is called a pseudo representation
of Wiles of (G, c). For each pseudo-representation τ = {a, d, x}, we define

Tr(τ )(r) = a(r) + d(r) and det(τ )(r) = a(r)d(r)− x(r, r).
By a direct computation using (W1-3), we see

a(r) =
1

2
(Tr(τ )(r)− Tr(τ )(rc)), d(r) =

1

2
(Tr(τ )(r) + Tr(τ )(rc))

and

x(r, s) = a(rs)− a(r)a(s), det(τ )(rs) = det(τ )(r) det(τ )(s).

Thus the pseudo-representation τ is determined by the trace of τ as long as 2 is invertible
in A.

Proposition 3.5 (A. Wiles, 1988). Let G be a group and R = A[G]. Let τ = {a, d, x} be
a pseudo-representation (of Wiles) of (G, c). Suppose either that there exists at least one
pair (r, s) ∈ G×G such that x(r, s) ∈ A× or that x(r, s) = 0 for all r, s ∈ G. Then there
exists a representation ρ : R→ M2(A) such that Tr(ρ) = Tr(τ ) and det(ρ) = det(τ ) on
G. If A is a topological ring, G is a topological group and all maps in τ are continuous
on G, then ρ is a continuous representation of G into GL2(A) under the topology on
GL2(A) induced by the product topology on M2(A).
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Proof. When x(r, s) = 0 for all r, s ∈ G, we see from (W1) that a, d : G → A satisfies
a(rs) = a(r)a(s) and d(rs) = d(r)d(s). Thus a, d are characters of G, and we define

ρ : G→ GL2(A) by ρ(g) =
(

a(g) 0
0 d(g)

)
, which satisfies the required property.

We now suppose x(r, s) ∈ A× for r, s ∈ G. Then we define b(g) = x(g, s)/x(r, s) and
c(g) = x(r, g) for g ∈ G. Then by (W3), b(g)c(h) = x(r, h)x(g, s)/x(r, s) = x(g, h). Put

ρ(g) =
(

a(g) b(g)
c(g) d(g)

)
. By (W2), we see that ρ(1) is the identity matrix and ρ(c) = (−1 0

0 1 ).

By computation,

ρ(g)ρ(h) =
(

a(g) b(g)
c(g) d(g)

)(
a(h) b(h)
c(h) d(h)

)
=

(
a(g)a(h)+b(g)c(h) a(g)b(h)+b(g)d(h)
c(g)a(h)+d(g)c(h) d(g)d(h)+c(g)b(h)

)
.

By (W1), a(gh) = a(g)a(h) + x(g, h) = a(g)a(h) + b(g)c(h) and d(gh) = d(g)d(h) +
x(h, g) = d(g)d(h) + b(h)c(g). Now let us look at the lower left corner:

c(g)a(h) + d(g)c(h) = x(r, g)a(h) + d(g)x(r, h).

Now apply (W1) to (1, r, g, h) in place of (r, s, t, u), and we get

c(gh) = x(r, gh) = a(h)x(r, g) + d(g)x(r, h),

because x(1, g) = x(1, h) = 0. As for the upper right corner, we apply (W1) to (g, h, 1, s)
in place of (r, s, t, u). Then we get

b(gh)x(r, s) = x(gh, s) = a(g)x(h, s) + d(h)x(g, s) = (a(g)b(h) + d(h)b(g))x(r, s),

which shows that ρ(gh) = ρ(g)ρ(h). We now extends ρ linearly to R = A[G]. This
shows the first assertion. The continuity of ρ follows from the continuity of each entries,
which follows from the continuity of τ . �

Start from an absolutely irreducible representation ρ : G → GLn(κ). Here a repre-
sentation of a group into GLn(K) for a field K is called absolutely irreducible if it is
irreducible as a representation into GLn(K) for an algebraic closure K of K.

Exercise 3.6. Give an example of irreducible representations of a group G into GL2(Q)
which is not absolutely irreducible.

We fix an absolutely irreducible representation ρ : G→ GL2(κ) with det(ρ)(c) = −1.
If we have a representation ρ : G → GL2(A) with ρ mod mA ∼ ρ, then det(ρ(c)) ≡
det(ρ(c)) ≡ −1 mod mA. Since c2 = 1, if 2 is invertible in A (⇔ the characteristic
of κ is different from 2), det(ρ(c)) = −1. This is a requirement to have a pseudo-
representation τρ of Wiles associated to ρ. Since ρ is absolutely irreducible, we find
r, s ∈ G such that b(r) 6≡ 0 mod mA and c(s) 6≡ 0 mod mA. Thus τρ satisfies the
condition of Proposition 3.5. Conversely if we have a pseudo representation τ : G → A
such that τ ≡ τ mod mA for τ = τρ, again we find r, s ∈ G such that x(r, s) ∈ A×. The
correspondence ρ 7→ τρ induces a bijection:

(3.1) {ρ : G→ GL2(A) : representation|ρ mod mA ∼ ρ} / ∼↔
{τ : G→ A : pseudo-representation|τ mod mA = τ} ,
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where τ = τρ and “∼” is the conjugation under GL2(A). The map is surjective by
Proposition 3.5 combined with Proposition 3.7 and one to one by Proposition 3.7 we
admit, because a pseudo-representation is determined by its trace.

Proposition 3.7 (Carayol, Serre, 1994). Let A be an pro-artinian local ring with finite
residue field κ. Let R = A[G] for a profinite group G. Let ρ : R → Mn(A) and
ρ′ : R → Mn′(A) be two continuous representations. If ρ = ρ mod mA is absolutely
irreducible and Tr(ρ(σ)) = Tr(ρ′(σ)) for all σ ∈ G, then ρ ∼ ρ′.

See [MFG] Proposition 2.13 for a proof of this result.

3.3. Λ-adic Galois representations. Let h = hχ(Γ0(Np); Λ) and S = Sχ(Γ0(Np);Q).
Then E(S) ∼= HomALG/Λ

(h, Q). Since rankΛ h <∞, for each λ ∈ E(S), Q(λ) := Im(λ)·Q
is a finite extension of Q and Λ[λ] = Im(λ) is an integral extension of Λ. Write Λ̃[λ] for

the integral closure of Λ in Q(λ); so, Λ̃[λ] ⊃ Λ[λ]. Here facts from commutative ring
theory we admit:

Lemma 3.8. (0) Λ[λ] is noetherian;

(1) Λ̃[λ] and Λ[λ] are local rings;

(2) Λ̃[λ]/Λ[λ] is a torsion Λ-module of finite type;

(3) Λ̃[λ] is Λ-free of rank equal to dimQQ(λ).

Since h is free of finite rank over noetherian Λ, it is noetherian; so, its image Λ[λ] is noe-

therian, showing (0). Since the going-up and going-down theorems hold for Λ̃[λ]/Λ[λ]/Λ,
the assertion (1) holds (as Λ is a local ring with mΛ = mWΛ + (T )).

Exercise 3.9. prove that m = (p) + (T ) is the unique maximal ideal of ΛZp = Zp[[T ]].

If you do not know the going-up/down theorems, take a look at any commutative ring
theory book (e.g., [CRT] Theorem 9.4). In algebraic number theory, if any subring R in
a finite extension field F of Q (resp. Qp) is finitely generated as modules over Z (resp.
Zp), OF /R is a torsion module over Z (resp. Zp). The assertion (2) is its analogue
replacing (Z, F ) (or (Zp, F )) by (Λ, Q(λ)), and the proof is essentially the same in the
three cases); so, try prove yourself. The assertion (3) is more difficult and follows from,
for example, [CRT] Theorem 23.1 and 23.8 combined.

Again in

{ϕ ∈ HomALG/Λ
(hχ(Γ0(Np); Λ), Q)|ϕ(T (l)) = λ(T (l)) for almost all primes l},

there is a unique ϕ with minimal N . We call such ϕ primitive. Hereafter, we suppose
that λ ∈ HomALG/Λ

(h, Q) is primitive.

Exercise 3.10. Is Im(λ)-free over Λ?

A point P ∈ Spec(Λ[λ])(Qp) = HomALG/W
(Λ[λ],Qp) is called arithmetic if P (t−γk) =

0 for some k ≥ 2. From time to time, we write P for a prime ideal of Λ[λ] given by
Ker(P : Λ[λ],Qp). If P is arithmetic, λP = P ◦ λ kills (t − γk)h; so, it factors through
hord

k (Γ0(Np), χω−k;W ) = h/(t − γk)h. Therefore we get an algebra homomorphism
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λP : hord
k (Γ0(Np), χω−k;W ) → Qp with λ(T (n)) = λP (T (n)) for all n; so, we have

Galois representation ρP = ρλP ,p as in and Theorems 3.1 and 3.12 associated to λP .
Here p is the prime ideal of Q(λP ) induced by Q(λP ) ↪→ Qp(λP ). Consider Tr(ρP ) which
satisfies Tr(ρP )(Frobl) = λP (T (l)) for all primes l - Np.

Exercise 3.11. Let P1, P2, . . . be an infinite sequence of distinct primes of Λ[λ]. prove⋂
n Pn = (0) in Λ[λ].

By this exercise, we have
⋂

P :arithmetic

Ker(P ) = (0).

Therefore by i :=
∏

P :arithmeticP : Λ[λ] → ∏
P Qp(λP ) is an embedding, where Qp(λ)

is the subfield of Qp generated by λP (T (n)) for all n. For a finite set S inside {P :

arithmetic} ⊂ Spec(Λ[λ])(Qp), we consider also iS :
∏

P∈S P : Λ[λ] → ∏
P∈S Qp(λP ).

Then Im(iS) ∼= Λ/PSΛ for PS =
⋂

P∈S Ker(P ), and Λ[λ] = lim←−S
λ[λ]/PS by the above

lemma.
Put ϕ =

∏
P :arithmetic ρP : Gal(Q(Np)/Q) → GL2(

∏
P :arithmetic Qp(λP )) and ϕS =∏

P∈S ρP → GL2(
∏

P∈S Qp(λP )), where Q(Np) is the maximal extension unramified out-
side Np (i.e., fixed field of the closed subgroup generated by all conjugates of IL/l for all
l|Np). The map ϕ and ϕS are representations. Note that

Tr(ϕS(Frobl)) =
∏

P∈S

λP (T (l)) = iS(λ(T (l)))

for all primes l - Np. Since ϕS is continuous under the p-profinite topology (which is
equal to the p-adic topology) of the target, by the Chebotarev density theorem asserting
that {Frobl : l - Np} ⊂ Gal(Q(Np)/Q) is dense, we conclude Tr(ϕS)(σ) ∈ Im(iS) ∼=
Λ[λ]/PS . Taking the projective limit with respect to S (and inclusion relation S ⊂ S ′),
we find that

Tr(ϕ)(σ) = lim←−
S

Tr(ϕS)(σ) ∈ lim←−
S

Im(iS) ∼= lim←−
S

Λ[λ/PS ] = Λ[λ]/
⋂

P :arithmetic

Ker(P ) = Λ[λ].

Since the projective limit of p-profinite topology of Im(iS) is equal to the p-profinite
topology of Λ[λ] (which is the mΛ[λ]-adic topology), the trace map Tr(ϕ) : Gal(Q/Q)→
Λ[λ] is continuous; so, the pseudo-representation τ = (a, d, x) associated to Tr(ϕ) has
values in Λ[λ]. As we will see later, ρP is always irreducible; so, we can find σ, τ in
Gal(Q/Q) such that ξ = x(σ, τ ) 6= 0. Thus inverting ξ and taking Λ[λ][ 1

ξ
], we get a

Galois representation ρλ : Gal(Q/Q) → GL2(Λ[λ][ 1
ξ
]) which is a projective limit of ϕS.

Since ϕS is unramified outside Np, ρλ is unramified outside Np, and by construction
Tr(ρλ)(Frobl)) = λ(T (l)) ∈ Λ[λ] for all primes l - Np. By Theorem 3.12, the maximal
quotient of the space H0(IP/p, ϕS) of ϕS on which IP/p acts trivially is free of rank 1 over
Λ[λ][ 1

ξ
]/PS, again bu the limit, we have H0(IP/p, ρλ) ∼= Λ[λ][ 1

ξ
]. Since the ramification

description at l 6= p is independent of P (i.e., χω−k|IL/l
= χ|IL/l

), we have the same
description for ρλ. Thus we get
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Theorem 3.12. Let λ : hχ(Γ0(N); Λ) → Q be a primitive algebra homomorphism with
Neben character χ. Then we have

(0) There exists a continuous semi-simple Galois representation ρλ : Gal(Q/Q) →
GL2(Λ[λ][ 1

ξ
]) unramified outside Np for some 0 6= ξ ∈ Λ[λ] such that

Tr(ρλ(Frobl)) = λ(T (l))

for all primes l - Np and det(ρλ(σ)) = χ(σ)νp(σ)−1
ν(σ), where ν : DP/p → Λ×

is given by ν(σ) = Aνp(σ)(T ) ∈ Λ×.
(1) The restriction of ρλ to the decomposition group DP/p is isomorphic to an upper

triangular representation

σ 7→
(

ε(σ) ∗
0 δ(σ)

)
,

where δ is unramified and δ(Frobp) = λ(U(p)).
(2) Let l be a prime different from p, and let C be the conductor of χ. Write N = leN ′

(resp. C = le
′

C ′) so that l - N ′ (resp. l - C ′).
(a) If e = e′ > 0, ρλ restricted to the inertia group IL/l is equivalent to:

σ 7→
(

χ(σ) 0
0 1

)
.

Moreover ρλ restricted to the decomposition group DL/l is still diagonal, and
writing δl for the unique unramified character appearing in ρλ|DL/l

, we have
δl(Frobl) = λ(U(l)).

(b) If e = 1 and e′ = 0, ρλ restricted to the decomposition group DL/l for L|l is
ramified and is equivalent to an upper triangular representation:

σ 7→
(

η(σ)νl ∗
0 η(σ)

)
,

where η is an unramified character taking FrobP to λ(U(l)).
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