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1. Introduction

In this lecture note of the mini-course, we discuss the following five topics:

(1) Introduction to the ordinary (i.e. slope 0) Hecke algebras (the so-called
“big Hecke algebra”);

(2) Some basic ring theory to deal with Hecke algebras;
(3) “R = T” theorem of Wiles–Taylor, and its consequence for the adjoint

Selmer groups;
(4) Basics of adjoint L-function (analytic continuation, rationality of the value

at s = 1);

Date: December 21, 2014.

The author is partially supported by the NSF grant: DMS 0753991.

1



ARITHMETIC OF ADJOINT L-VALUES 2

(5) Relation of adjoint L-values to congruence of a modular form f and the
Selmer group of the adjoint Galois representation Ad(ρf ) (the adjoint main
conjectures).

Let us describe some history of these topics along with the content of the note.
Doi and the author started the study of the relation between congruence among
cusp forms and L-values in 1976 (the L-value governing the congruence is now called
the adjoint L-value L(1, Ad(f))). How it was started was described briefly in a later
paper [DHI98]. Here is a quote from the introduction of this old article:

“It was in 1976 when Doi found numerically non-trivial congruence among Hecke
eigenforms of a given conductor for a fixed weight κ [DO77]. Almost immediately
after his discovery, Doi and Hida started, from scratch, numerical and theoretical
study of such congruences among elliptic modular forms. We already knew in
1977 that the congruence primes for a fixed primitive cusp form f appear as the
denominator of Shimura’s critical L-values of the zeta function D(s, f, g) attached
to f and another lower weight modular form g. Thus the denominator is basically
independent of g.”

Though it is not mentioned explicitly in [DHI98] (as it concerns mainly with the
adjoint L-value twisted by a non-trivial character), the author realized slightly

later in 1980 that the rational value ∗D(m,f,g)
〈f,f〉 (with some power ∗ of 2πi) Shimura

evaluated in [Sh76] is essentially equal to ∗ D(m,f,g)
L(1,Ad(f)) (by Shimura’s Theorem 5.1

in the text); so, the author guessed that the adjoint L-value L(1, Ad(f)) is the
denominator and is the one responsible for the congruence primes of f . This guess
is later proven by the author in [H81a], [H81b] and [H88b].

In [H81a, Theorem 6.1], the size of the cohomological congruence module (of
the Hecke algebra acting on f) is computed by the square of the L-value (which
produces the congruence criterion: : “the prime factors of the adjoint L-value give
the congruence primes of f”). In [H81b] the converse: “the congruence primes
divide the L-value” is proven for ordinary primes, and the work was completed by
Ribet in [Ri83] for non-ordinary primes. Most of primes p is expected to be ordinary
for f (i.e., f |T (p) = u · f for a p-adic unit u), but it is still an open question if the
weight of f is greater than 2 (see [H13a, §7]). The criterion is further made precise
in [H88b] as an identity of the order of the ring-theoretic congruence module and the
L-value, which implies the if-and-only-if result (as the support of the ring theoretic
congruence module of a Hecke algebra is exactly the set of congruence primes). In
§2.2 (after some preliminary discussion of ring theory), we give an exposition of an
abstract theory of the congruence module and its sibling (the differential module)
which has direct relation to the Selmer groups by the Galois deformation theory
of Mazur (see Theorem 3.12). These works led the author to propose an analogue
of Kummer’s criterion [H82] (different from the one by Coates–Wiles [CW77]) for
imaginary quadratic fields, which was a precursor of the later proofs of the anti-
cyclotomic main conjecture in [T89], [MT90], [HiT94], [H06] and [H09] and is closely
related to the proof of the adjoint main conjecture (applied to CM families) stated
as Corollary 4.5 in the text.

In the late 1981 (just fresh after being back to Japan from a visit to Prince-
ton for two years, where he had some opportunity to talk to many outstanding
senior mathematicians, Coates, Langlands, Mazur, Shimura, Weil,...), the author
decided to study, in the current language, p-adic deformations of modular forms
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and modular Galois representations. Though he finished proving the theorems in
[H86a] in the winter of 1981–82, as the results he obtained was a bit unbelievable
even to him, he spent another year to get another proof given in [H86b], and on
the way, he found p-adic interpolation of classical modular Galois representations.
These two articles were published as [H86a] and [H86b] (while the author was in
Paris, invited by J. Coates, where he gave many talks, e.g., [H85] and [H86c], on
the findings and became confident with his results, besides he had great audiences:
Greenberg, Perrin-Riou, Taylor, Tilouine, Wiles, ...). What was given in these two
foundational articles is a construction of the big ordinary p-adic Hecke algebra h

along with p-adic analytic families of slope 0 elliptic modular forms (deforming a
starting Hecke eigenform) and a p-adic interpolation of modular Galois representa-
tions (constructed by Eichler–Shimura and Deligne earlier) in the form of big Galois
representations with values in GL2(I) for a finite flat extension I of the weight Iwa-
sawa algebra Λ := Zp[[T ]]. Here, actually, Spec(I) is (the normalization of) an
irreducible component of Spec(h) and is the parameter space of a p-adic analytic
family of ordinary Hecke eigen cusp forms. See Section 4 for an exposition of the
modular deformation theory and p-adic analytic families of modular forms.

Just after the foundation of the modular deformation theory was laid out, Mazur
conceived the idea of deforming a given mod p Galois representation without re-
stricting to the modular representations [M89] (which he explained to the author
while he was at IHES), constructing the universal Galois deformation rings (in
particular the universal ring R whose spectrum parameterizing “p-ordinary” de-
formations). He then conjectured (under some assumptions) that Spec(R) should
be isomorphic to a connected component Spec(T) of Spec(h) if the starting mod p
representation is modular associated to a mod p elliptic modular form on which T
acts non-trivially; thus, in short, the big ordinary Hecke algebra was expected to be
universal. Mazur’s Galois deformation theory is described in Section 3 which starts
with an interpretation of abelian Iwasawa theory via deformation theory (with
a deformation theoretic proof of the classical class number formula of Dirichlet–
Kummer–Dedekind in §3.2) reaching to Mazur’s theory in two dimensional cases
in §3.4. The definition of the adjoint Selmer group and its relation to the congru-
ence modules and the differential modules (of the Galois deformation ring) are also
included in this section (§3.5 and §3.6).

We saw a great leap forward in the proof by Wiles and Taylor [W95] of the equal-
ity (e.g. Theorem 4.3) of a p-adic Hecke algebra of finite level and an appropriate
Galois deformation ring with a determinant condition (that had been conjectured
by Mazur). Indeed, follows from their result (combined with an analytic result in
[H88b] described in Section 5 in the text), the exact formula connecting the adjoint
L-value with the size of the corresponding Selmer group (see §5.4). This identity
is called the adjoint non-abelian class number formula. This also implies that the
L-value gives the exact size of the congruence module (as the size of the Selmer
group is equal to the size of the congruence module by the theorems of Tate and
Mazur combined: Theorems 3.5 and 3.12).

By doing all these over the Iwasawa algebra Λ = Zp[[T ]] of weight variable T , we
get the identity “R = T” (see Theorem 4.1), and (the integral part of) the adjoint
L-values L(1, Ad(f)) are interpolated p-adically by the characteristic element of
the congruence module (of Spec(I)→ Spec(T)) which forms a one variable adjoint
p-adic L-function Lp ∈ I of the p-adic analytic family associated to Spec(I), and the
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result corresponding to the adjoint non-abelian class number formula in this setting
is the proof of the (weight variable) adjoint main conjecture: Corollary 4.5 (see also
Corollary 5.8). Urban [U06] proved the two variable adjoint main conjecture, in
many cases, adding the cyclotomic variable to the weight variable (by Eisenstein
techniques applied to Siegel modular forms on GSp(4)).

The last section Section 5 starts with a technical heuristic of why the adjoint
L-value is an easiest “integer” to be understood after the residue of the Dedekind
zeta function. Guided by this principle, we prove a formula Theorem 5.6 relating
the size of the congruence module and the L-value. Out of this theorem and the
result exposed in the earlier sections, we obtain the adjoint class number formula
Theorem 5.7.

So far, the start step (the congruence criterion by the adjoint L-value) done in
[H81a] has been generalized in many different cases (e.g., [U95], [H99], [G02], [Di05],
[N14] and [BR14]). However, even the converse (i.e., congruence primes give factors
of the L-value) proven in [H81b] and [Ri83] has not yet been generalized except for
some work of Ghate (e.g., [G10]). Even if we now have many general cases of the
identification of the Hecke algebra with an appropriate Galois deformation ring (as
exposed by some other lecture series in this workshop), the converse might not be
an easy consequence of them (as it remains an analytic task to identify the size
of the adjoint Selmer group with the integral part of the corresponding adjoint
L-value; see Section 5 for the analytic work in the elliptic modular case).

These notes are intended to give not only a systematic exposition (hopefully
accessible by graduate students with good knowledge of class field theory and mod-
ular forms) of the road to reach the non-abelian class number formula (including
a treatment via Galois deformation theory of the classical class number formula
in §3.2) but also some results of the author not published earlier, for example, see
comments after Corollary 4.4 which is an important step in the proof of the weight
variable main conjecture (Corollary 4.5).

Here are some notational conventions in the notes. Fix a prime p. For simplicity,
we assume p ≥ 5 (though p = 3 can be included under some modification). Thus
Z×
p = µp−1 × Γ for Γ = 1 + pZp. Consider the group of p-power roots of unity

µp∞ =
⋃
n µpn ⊂ Q

×
. Then writing ζn = exp

(
2πi
pn

)
, we can identify the group

µpn with Z/pnZ by ζmn ↔ (m mod pn). The Galois action of σ ∈ Gal(Q/Q) sends

ζn to ζ
νn(σ)
n for νn(σ) ∈ Z/pnZ. Then Gal(Q/Q) acts on Zp(1) = lim←−n µpn by a

character ν := lim←−n νn : Gal(Q/Q) → Z×
p , which is called the p-adic cyclotomic

character. Similarly, Gal(Qp[µp∞ ]/Qp) ∼= Z×
p by ν ; so, we get a peculiar identity

Gal(Qp[µp∞ ]/Qp) ∼= Gal(Q[µp∞ ]/Q) ∼= Z×
p . For x ∈ Z×

p , we write [x,Qp] :=

ν−1(x) ∈ Gal(Qp[µp∞ ]/Qp) (the local Artin symbol).
Always W denotes our base ring which is a sufficiently large discrete valuation

ring over Zp with residue field F which is an algebraic extension of Fp (usually we
assume that F is finite for simplicity). Also for the power series ring W [[T ]], we
write t = 1 + T and for s ∈ Zp, t

s =
∑∞
s=0

(
s
n

)
Tn noting

(
s
n

)
∈ Zp ⊂ W . Thus

for γ = 1 + p ∈ Z×
p , γs =

∑∞
s=0

(
s
n

)
pn ∈ Γ. For a local W -algebra A sharing

same residue field F with W , we write CLA the category of complete local A-
algebras with sharing residue field with A. Morphisms of CLA are local A-algebra
homomorphisms. If A is noetherian, the full subcategory CNLA of CLA is made
up of noetherian local rings.
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2. Some ring theory

We introduce the notion of congruence modules and differential modules for
general rings and basic facts about it. We apply the theory to Hecke algebras and
deformation rings to express the size of these modules by the associated adjoint
L-value.

2.1. Differentials. We recall here the definition of 1-differentials and some of their
properties for our later use. Let R be a A-algebra, and suppose that R and A are
objects in CNLW . The module of 1-differentials ΩR/A for a A-algebra R (R,A ∈
CNLW ) indicates the module of continuous 1-differentials with respect to the
profinite topology.

For a module M with continuous R-action (in short, a continuous R-module),
let us define the module of A-derivations by

DerA(R,M) =




δ : R →M ∈ HomA(R,M)
∣∣∣

δ: continuous
δ(ab) = aδ(b) + bδ(a)

for all a, b ∈ R




 .

Here the A-linearity of a derivation δ is equivalent to δ(A) = 0, because

δ(1) = δ(1 · 1) = 2δ(1)⇒ δ(1) = 0.

Then ΩR/A represents the covariant functor M 7→ DerA(R,M) from the category
of continuous R-modules into MOD.

The construction of ΩR/A is easy. The multiplication a ⊗ b 7→ ab induces a A-

algebra homomorphism m : R⊗̂AR → R taking a ⊗ b to ab. We put I = Ker(m),
which is an ideal of R⊗̂AR. Then we define ΩR/A = I/I2. It is an easy exercise

to check that the map d : R → ΩR/A given by d(a) = a ⊗ 1 − 1 ⊗ a mod I2 is a
continuous A-derivation. Thus we have a morphism of functors: HomR(ΩR/A, ?)→
DerA(R, ?) given by φ 7→ φ ◦ d. Since ΩR/A is generated by d(R) as R-modules
(left to the reader as an exercise), the above map is injective. To show that ΩR/A
represents the functor, we need to show the surjectivity of the above map.

Proposition 2.1. The above morphism of two functors M 7→ HomR(ΩR/A,M)
and M 7→ DerA(R,M) is an isomorphism, where M runs over the category of
continuous R-modules. In other words, for each A-derivation δ : R → M , there
exists a unique R-linear homomorphism φ : ΩR/A →M such that δ = φ ◦ d.

Proof. Define φ : R × R → M by (x, y) 7→ xδ(y) for δ ∈ DerA(R,M). If a, c ∈ R
and b ∈ A, φ(ab, c) = abδ(c) = a(bδ(c)) = bφ(a, c) and φ(a, bc) = aδ(bc) = abδ(c) =
b(aδ(c)) = bφ(a, c). Thus φ gives a continuous A-bilinear map. By the universality
of the tensor product, φ : R×R →M extends to a A-linear map φ : R⊗̂AR →M .
Now we see that φ(a⊗ 1− 1⊗ a) = aδ(1) − δ(a) = −δ(a) and

φ((a⊗ 1− 1⊗ a)(b⊗ 1− 1⊗ b)) = φ(ab⊗ 1− a⊗ b− b⊗ a+ 1⊗ ab)
= −aδ(b) − bδ(a) + δ(ab) = 0.

This shows that φ|I-factors through I/I2 = ΩR/A and δ = φ ◦ d, as desired. �

Corollary 2.2. Let the notation be as in the proposition.
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(i) Suppose that A is a C-algebra for an object C ∈ CLW . Then we have the
following natural exact sequence:

ΩA/C⊗̂AR −→ ΩR/C −→ ΩR/A → 0.

(ii) Let π : R � C be a surjective morphism in CLW , and write J = Ker(π).
Then we have the following natural exact sequence:

J/J2 β∗

−→ ΩR/A⊗̂RC −→ ΩC/A → 0.

Moreover if A = C, then J/J2 ∼= ΩR/A⊗̂RC.

Proof. By assumption, we have algebra morphisms C → A → R in Case (i) and
A→ R � C = R/J in Case (ii). By the Yoneda’s lemma (e.g., [GME, Lemma 1.4.1]
or [MFG, Lemma 4.3]), we only need to prove that

0→ DerA(R,M)
α−→ DerC(R,M)

β−→ DerC (A,M)

is exact in Case (i) for all continuous R-modules M and that

0→ DerA(C,M)
α−→ DerA(R,M)

β−→ HomC(J/J2,M)

is exact in Case (ii) for all continuous C-modulesM . The first α is just the inclusion
and the second α is the pull back map. Thus the injectivity of α is obvious in two
cases. Let us prove the exactness at the mid-term of the first sequence. The map β
is the restriction of derivation D on R to A. If β(D) = D|A = 0, then D kills A and
hence D is actually a A-derivation, i.e. in the image of α. The map β in the second
sequence is defined as follows: For a given A-derivation D : R → M , we regard D
as a A-linear map of J into M . Since J kills M , D(jj′) = jD(j′) + j′D(j) = 0 for
j, j′ ∈ J . Thus D induces A-linear map: J/J2 → M . Then for b ∈ A and x ∈ J ,
D(bx) = bD(x)+xD(b) = bD(x). Thus D is C-linear, and β(D) = D|J . Now prove
the exactness at the mid-term of the second exact sequence. The fact β ◦ α = 0
is obvious. If β(D) = 0, then D kills J and hence is a derivation well defined on
C = R/J . This shows that D is in the image of α.

Now suppose that A = C in the assertion (ii). To show the injectivity of β∗, we
create a surjective C-linear map: γ : ΩR/A ⊗ C � J/J2 such that γ ◦ β∗ = id. Let
π : R → C be the projection and ι : A = C ↪→ R be the structure homomorphism
giving the A-algebra structure on R. We first look at the map δ : R → J/J2 given
by δ(a) = a− P (a) mod J2 for P = ι ◦ π. Then

aδ(b) + bδ(a)− δ(ab) = a(b− P (b)) + b(a− P (a))− ab− P (ab)

= (a− P (a))(b− P (b)) ≡ 0 mod J2.

Thus δ is a A-derivation. By the universality of ΩR/A, we have an R-linear map

φ : ΩR/A → J/J2 such that φ ◦ d = δ. By definition, δ(J) generates J/J2 over

R, and hence φ is surjective. Since J kills J/J2, the surjection φ factors through
ΩR/A ⊗R C and induces γ. Note that β(d ⊗ 1C)) = d⊗ 1C|J for the identity 1C of
C; so, γ ◦ β∗ = id as desired. �

For any continuous R-module M , we write R[M ] for the R-algebra with square
zero ideal M . Thus R[M ] = R⊕M with the multiplication given by

(r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ (rx′ + r′x).
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It is easy to see that R[M ] ∈ CNLW , if M is of finite type, and R[M ] ∈ CLW if
M is a p-profinite R-module. By definition,

(2.1) DerA(R,M) ∼=
{
φ ∈ HomA−alg(R,R[M ])

∣∣φ mod M = id
}
,

where the map is given by δ 7→ (a 7→ (a⊕ δ(a)). Note that i : R → R⊗̂AR given by
i(a) = a⊗1 is a section ofm : R⊗̂AR→ R. We see easily that R⊗̂AR/I2 ∼= R[ΩR/A]
by x 7→ m(x)⊕ (x− i(m(x))). Note that d(a) = 1⊗ a− i(a) for a ∈ R.

2.2. Congruence and differential modules. Let R be an algebra over a normal
noetherian domain B. We assume that R is an B-flat module of finite type. Let
φ : R→ A be an B-algebra homomorphism for an integral B-domain A. We define

C1(φ;A) = ΩR/B ⊗R,φ Im(φ)

which we call the differential module of φ , and as we will see in Theorem 3.12, if
R is a deformation ring, this module is the dual of the associated adjoint Selmer
group. If φ is surjective, we just have

C1(φ;A) = ΩR/B ⊗R,φ A.
We usually suppose φ is surjective, but including in the definition for, something
like, the normalization of Im(φ) as A is useful. We suppose that R is reduced
(i.e., having zero nilradical of R). Then the total quotient ring Frac(R) can be
decomposed uniquely into Frac(R) = Frac(Im(φ))×X as an algebra direct product.
Write 1φ for the idempotent of Frac(Im(φ)) in Frac(R). Let a = Ker(R → X) =
(1φR ∩ R), S = Im(R → X) and b = Ker(φ). Here the intersection 1φR ∩ R is
taken in Frac(R) = Frac(Im(φ))×X. Then we put

C0(φ;A) = (R/a)⊗R,φ Im(φ) ∼= Im(φ)/(φ(a)) ∼= 1φR/a ∼= S/b,

which is called the congruence module of φ but is actually a ring (cf. [H88a]
Section 6). We can split the isomorphism 1φR/a ∼= S/b as follows: First note that
a = (R ∩ (1φR× 0)) in Frac(Im(φ))×X. Then b = (0×X) ∩R, and we have

1φR/a ∼= R/(a⊕ b) ∼= S/b,

where the maps R/(a ⊕ b) → 1φR/a and R/(a ⊕ b) → S/b are induced by two
projections from R to 1φR and S.

Write K = Frac(A). Fix an algebraic closure K of K. Since the spectrum
Spec(C0(φ;A)) of the congruence ring C0(φ;A) is the scheme theoretic intersection
of Spec(Im(φ)) and Spec(R/a) in Spec(R):

Spec(C0(λ;A)) = Spec(Im(φ)) ∩ Spec(R/a) := Spec(Im(φ)) ×Spec(R) Spec(R/a),

we conclude that

Proposition 2.3. Let the notation be as above. Then a prime p is in the support
of C0(φ;A) if and only if there exists an B-algebra homomorphism φ′ : R → K
factoring through R/a such that φ(a) ≡ φ′(a) mod p for all a ∈ R.

In other words, φ mod p factors through R/a and can be lifted to φ′. There-

fore, if B = Z and A is the integer ring of a sufficiently large number field in Q,⋃
φ Supp(C0(φ;A)) is made of primes dividing the absolute different d(R/Z) of R

over Z, and each prime appearing in the absolute discriminant of R/Z divides the
order of the congruence module for some φ.
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By Corollary 2.2 applied to the exact sequence: 0→ b→ R
φ−→ A→ 0, we know

that

(2.2) C1(φ;A) ∼= b/b2.

Since C0(φ;A) ∼= S/b, we may further define Cn(φ;A) = bn/bn+1 and call them
higher congruence modules. The knowledge of all Cn(φ;A) is almost equivalent to
the knowledge of the entire ring R. Therefore the study of Cn(φ;A) and the graded
algebra ⊕

n

Cn(φ;A)

is important and interesting, when R is a Galois deformation ring. As we will
see, even in the most favorable cases, we only know theoretically the cardinality of
modules C0 and C1 for universal deformation rings R, so far.

3. Deformation rings

We introduce the notion of universal deformation rings of a given Galois repre-
sentation into GLn(F) for a finite field.

3.1. One dimensional case. We can interpret the Iwasawa algebra Λ as a uni-
versal Galois deformation ring. Let F/Q be a number field with integer ring O.
We write CLW for the category of p-profinite local W -algebras A with A/mA = F.
We fix a set P of properties of Galois characters (for example unramifiedness out-

side a fixed positive integer N). Fix a continuous character ρ : Gal(Q/F ) → F×

with the property P. A character ρ : Gal(Q/Q) → A× for A ∈ CLW is called
a P-deformation (or just simply a deformation) of ρ if (ρ mod mA) = ρ and
ρ satisfies P. A couple (R,ρ) made of an object R of CLW and a character
ρ : Gal(Q/F ) → R× satisfying P is called a universal couple for ρ if for any

P-deformation ρ : Gal(Q/F )→ A× of ρ, we have a unique morphism φρ : R → A
in CLW (so it is a local W -algebra homomorphism) such that φρ ◦ ρ = ρ. By the
universality, if exists, the couple (R,ρ) is determined uniquely up to isomorphisms.
The ring R is called the universal deformation ring and ρ is called the universal
deformation of ρ.

For a p-profinite abelian group G of topologically finite type (so, G is isomorphic
to a product of Γm and a finite p-abelian group ∆), consider the group algebra
W [[G]] = lim←−nW [G/Gpn ]. Taking a generator γi of the ith factor Γ in Γm, we have

W [[G]] ∼= W [∆][[T1, . . . , Tm]] by sending ti = 1+Ti to γi. The tautological character
κG given by κG(g) = g ∈ W [[G]] is a universal character among all continuous
characters ρ : G → A× (A ∈ CLW ). In other words, for any such ρ, ρ extends to
a unique W -algebra homomorphism ιρ : W [[G]]→ A such that ιρ ◦ κG = ρ. If G is
finite, ιρ(

∑
g agg) =

∑
g agρ(g) for ag ∈W , and otherwise, ιρ is the projective limit

of such for finite quotients of G. By the isomorphism W [[G]] ∼= W [∆][[T1, . . . , Tm]],
we have κG(δ

∏
i γ
si
i )) = δ

∏
i t
si
i , where ts = (1 + T )s =

∑∞
n=0

(
s
n

)
Tn ∈ Zp.

Fix an O-ideal c prime to p and write Hcpn/F for the ray class field modulo
cpn. Then by Artin symbol, we can identify Gal(Hcpn/F ) with the ray class group
ClF (cpn) (here n can be infinity). Let CF (cp∞) for the maximal p-profinite quotient
of ClF (cp∞); so, it is the Galois group of the maximal p-abelian extension of F
inside Hcp∞ . If ρ has prime-to-p conductor equal to c, we define a deformation ρ
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to satisfy P if ρ is unramified outside cp and has prime-to-p conductor a factor of
c. Then we have

Theorem 3.1. Let ρ0 : Gal(Q/F )→W× be the Teichmüller lift of ρ (by the group
embedding F× ↪→ W×). The couple (W [[CF (cp∞)]], ρ0κG) for G = CF (cp∞) is
universal among all P-deformations.

Proof. By P, ρ : Gal(Q/F ) → A× factors through Gal(Hcp∞/F ) = ClF (cp∞).
Since ClF (cp∞) = CF (cp∞)×∆ for finite ∆, ρ0 factors through ∆ as p - |∆|. Then
ρρ−1

0 has image in the p-profinite group 1 + mA; so, it factors through CF (cp∞).
Thus the W -algebra homomorphism ι : W [[CF (cp∞)]] extending ρρ−1

0 is the unique
morphism with ι ◦ ρ0κG = ρ as ρ0 has values in the coefficient ring W . �

We make this more explicit assuming F = Q and c = 1. Consider the group

of p-power roots of unity µp∞ =
⋃
n µpn ⊂ Q

×
. Note that Q[µp∞ ] = Hp∞ . We

have ClQ(p∞) ∼= Z×
p and CQ(p∞) ∼= Γ by the p-adic cyclotomic character ν . The

logarithm power series

log(1 + x) =

∞∑

n=1

−(−x)n
n

converges absolutely p-adically on pZp. Note that Z×
p = µp−1 × Γ for Γ = 1 + pZp

by Z×
p 7→ (ω(z) = limn→∞ zp

n

, ω(z)−1z) ∈ µp−1 × Γ. We define logp : Z×
p → Γ by

logp(ζs) = log(s) ∈ pZp for ζµp−1 and s ∈ 1+pZp = Γ. Then κΓ : Gal(Q/Q)→ Λ×

is given by κ(σ) = tlogp(ν(σ))/ logp(γ) (γ = 1 + p). Thus (W [[T ]], κρ0) is universal
among deformations of ρ unramified outside p and ∞.

Let P be a set of properties of n-dimensional representations Gal(Q/F ) →
GLn(A). For a given n-dimensional representation ρ : Gal(Q/F )→ GLn(F) satis-

fying P, a P-deformation ρ : Gal(Q/F )→ GLn(A) is a continuous representation
ssatisfying P with ρ mod mA

∼= ρ. Two deformations ρ, ρ′ : Gal(Q/F )→ GLn(A)
for R ∈ CLW is equivalent, if there exists an invertible matrix x ∈ GLn(A) such
that xρ(σ)x−1 = ρ′(σ) for all σ ∈ Gal(Q/F ). We write ρ ∼ ρ′ if ρ and ρ′ are

equivalent. A couple (R,ρ) for a P-deformation ρ : Gal(Q/F )→ GLn(R) is called
a universal couple over W , if for any given P-deformation ρ : Gal(Q/F )→ GLn(R)
there exists a unique W -algebra homomorphism ιρ : R → A such that ιρ ◦ ρ ∼ ρ.
There are other variations of the deformation ring depending on P. For example,
we can insist a couple (R,ρ) is universal either among all everywhere unramified
deformations of ρ or all deformations unramified outside p and∞ whose restriction
to Gal(Qp/Qp) is isomorphic to an upper triangular representation whose quotient
character is unramified (ordinary deformations).

Let F/Q be a finite extension inside Q with integer ring O. Let ClF be the class
group of F in the narrow sense. Put CF for he p-Sylow subgroup of ClF . Identify
CF with the Galois group of p-Hilbert class field HF over F . Then basically by the
same argument proving Theorem 3.1, we get

Theorem 3.2. Fix a character ρ : Gal(Q/F ) → F× unramified at every finite
place. Then for the Teichmüller lift ρ0 : Gal(Q/F ) → W× of ρ and ρ given by
ρ(σ) = ρ0(σ)σ|HF ∈ W [CF ], the couple (W [CF ],ρ) is universal among all every-
where unramified deformations of ρ.
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3.2. Congruence modules for group algebras. Let H be a finite p-abelian
group. We have a canonical algebra homomorphism: W [H ] → W sending σ ∈ H
to 1. This homomorphism is called the augmentation homomorphism of the group
algebra. Write this map π : W [H ] → W . Then b = Ker(π) is generated by σ − 1
for σ ∈ H . Thus

b =
∑

σ∈H
W [H ](σ− 1)W [H ].

We compute the congruence module and the differential moduleCj(π,W ) (j = 0, 1).

Corollary 3.3. We have C0(π;W ) ∼= W/|H |W and C1(π;W ) = H ⊗Z W . In
particular, if Z[G] ∼= Z[G′] for finite abelian groups G,G′, Z[G] ∼= Z[G′] as algebras
implies G ∼= G′.

Replacing Z by fields, the last assertion of the corollary is proven by [PW50] and
[D56], but the fact is not necessarily true for non abelian groups [C62].

Proof. Let K be the quotient field of W . Then π gives rise to the algebra direct
factor Kε ⊂ K[H ] for the idempotent ε = 1

|H|
∑
σ∈H σ. Thus a = Kε ∩W [H ] =

(
∑

σ∈H σ) and π(W (H))/a = (ε)/a ∼= W/|H |W .

Note C1(π;W ) = b/b2 by (2.2). Since b2 is generated by (σ − 1)(τ − 1) for
σ, τ ∈ H , we find H ⊗Z W ∼= b/b2 by sending σ to (σ − 1) ∈ b.

As for last statement, we only need to prove Gp ∼= G′
p for the p-Sylow subgroups

Gp, G
′
p of G and G′. Then Z[G] ∼= Z[G′] implies Zp[Gp] ∼= Zp[Gp] as taking tensor

product with Zp over Z and projecting down to Zp[Gp] and Zp[G
′
p] respectively.

Then Gp ∼= Gp ⊗Z Zp ∼= C1(π; Zp[Gp]) ∼= C1(π
′; Zp[G′

p])
∼= G′

p for augmentation
homomorphisms π, π′ with respect to Gp and G′

p, respectively.
There is another deformation theoretic proof of C1(π;W [H ]) = W ⊗Z H . Con-

sider the functor F : CLW → SETS given by

F(A) = Homgroup(H,A
×) = HomW -alg(W [H ], A).

Thus R := W [H ] and the character ρ : H →W [H ] (the inclusion of H into W [H ])
are universal among characters of H with values in A ∈ CLW . Then for any R-
module X, consider R[X] = R ⊕ X with algebra structure given by rx = 0 and
xy = 0 for all r ∈ R and x, y ∈ X. Thus X is an ideal of R[X] with X2 = 0. Extend
the functor F to all local W -algebras with residue field F in an obvious way. Then
define Φ(X) = {ρ ∈ F(R[X])|ρ mod X = ρ}. Write ρ(σ) = ρ(σ) ⊕ u′ρ(σ) for
u′ρ : H → X. Since

ρ(στ )⊕ u′ρ(στ ) = ρ(στ )

= (ρ(σ) ⊕ u′ρ(σ))(ρ(τ )⊕ u′ρ(τ )) = ρ(στ )⊕ (u′ρ(σ)ρ(τ ) + ρ(σ)u′ρ(τ )),

we have u′ρ(στ ) = u′ρ(σ)ρ(τ ) + ρ(σ)u′ρ(τ ), and thus uρ := ρ−1u′ρ : H → X is a
homomorphism from H into X. This shows Hom(H,X) = Φ(X).

Any W -algebra homomorphism ξ : R → R[X] with ξ mod X = idR can be
written as ξ = idR⊕dξ with dξ : R → X. Since (r⊕x)(r′⊕x′) = rr′⊕ rx′ + r′x for
r, r′ ∈ R and x.x′ ∈ X, we have dξ(rr

′) = rdξ(r
′) + r′dξ(r); so, dξ ∈ DerW (R,X).

By universality of (R,ρ), we have

Φ(X) ∼= {ξ ∈ HomW -alg(R,R[X])|ξ mod X = id}
= DerW (R,X) = HomR(ΩR/W , X).
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Thus taking X = K/W , we have

HomW (H ⊗Z W,K/W ) = Hom(H,K/W ) = HomR(ΩR/W , K/W )

= HomW (ΩR/W ⊗R,π W,K/W ).

By taking Pontryagin dual back, we have H ∼= ΩR/W ⊗R,π W = C1(π;W ). �

We apply the above corollary toH = CF . Suppose that F/Q is a Galois extension

of degree prime to p. Regard F as Gal(Q/Q)-module, we get an Artin representation

IndQ
F 1 = 1⊕ χ. Note that as a Galois module with coefficients in Z

χ = {x ∈ O|Tr(x) = 0}.
Define V (χ) = {x ∈ O|Tr(x) = 0} ⊗Z W as Galois module, and put V (χ)∗ =

V (χ) ⊗W K/W . Then for ΩF = (2π)r2RF
wF

√
DF

for the regulator RF of F (up to 2-

power), by the class number formula of Dirichlet/Kummer/Dedekind, we have

ΩF |ClF | = Ress=1ζF (s) = Ress=1L(s, IndQ
F 1) = L(1, χ)Ress=1ζ(s) = L(1, χ).

Note by Shapiro’s lemma, assuming F/Q is a Galois extension with maximal un-
ramified p-extension F ur/F ,

Hom(Gal(F ur/Q), K/W )⊕H1(Gal(F ur/Q), V (χ)∗)

∼= H1(Gal(F ur/Q), IndQ
F K/W )

∼= H1(Gal(F ur/F ), K/W ) ∼= Hom(CF , K/W ) ∼= CF ⊗Z W,

where we have written IndQ
F K/W = (K/W )⊕ V (χ)∗ as Galois module. Note that

if p - [F : Q], and φ ∈ Hom(Gal(F ur/Q), K/W ) factors through Gal(HF/Q) =
Gal(F/Q) nHF , and Gal(F/Q) contains all inertial group, φ has to be unramified
everywhere; so, φ = 0. Thus we have Hom(Gal(F ur/Q), K/W ) = 0. We can
identify H1(Gal(F ur/F ), V (χ)∗) with the Selmer group of χ given by

(3.1) SelQ(χ) = Ker(H1(F, V (χ)∗)→
∏

l

H1(Il, V (χ)∗))

for the inertia group Il ⊂ Gal(Ql/Ql). We conclude

Theorem 3.4 (Class number formula). Suppose that F/Q is Galois and p - [F : Q].
Let π : W [CF ] → W be the augmentation homomorphism. We have, for r(W ) =
rankZp W ,

∣∣∣∣
L(1, χ)

ΩF

∣∣∣∣
r(W)

p

= |C1(π;W )|−1 = |C0(π;W )|−1 =
∣∣|SelQ(χ)|

∣∣r(W)

p

and C1(π;W ) = CF ⊗W and C0(π;W ) = W/|CF |W .

Decompose CF =
⊕m

i=1Ci for cyclic group Ci. Then sending Xi 7→ γi − 1 for a

generators γi of Ci, we have W [CF ] ∼= W [[X1, . . . , Xm]]/(x
|C1|
1 − 1, . . . , x

|Cm|
m − 1)

for xi = 1+Xi. Let A be a complete normal local domain (for example, a complete
regular local rings like A = W or A = W [[T ]] or A = W [[T1, . . . , Tr]] (power
series ring)). Any local A-algebra R free of finite rank over A has a presentation
R ∼= A[[X1, . . . , Xn]]/(f1, . . . , fm) for fi ∈ A[[X1, . . . , Xn]] with m ≥ n. If m = n,
then R is called a local complete intersection over A. There is a theorem of Tate
generalizing Corollary 3.3 to complete intersection rings. To introduce this, let us
explain the notion of pseudo-isomorphisms between torsion A-modules (see [BCM,
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VII.4.4] for a more detailed treatment). For two A-modules M,N of finite type, a
morphism φ : M → N is called a pseudo isomorphism if the annihilator of Ker(φ)
and Coker(φ) each has height at least 2 (i.e., the corresponding closed subscheme
of Spec(A) has co-dimension at least 2). If A = W , a pseudo-isomorphism is
an isomorphism, and if A = W [[T ]], it is an isogeny (having finite kernel and
cokernel). The classification theorem of torsion A-modules M of finite type tells
us that we have a pseudo isomorphism M → ⊕

iA/fi for finitely many reflexive
ideal 0 6= fi ∈ A. An ideal f is reflexive if HomA(HomA(f, A), A) ∼= f canonically as
A-modules (and equivalently f =

⋂
λ∈A,(λ)⊃f(λ); i.e., close to be principal). Then

the characteristic ideal char(M) of M is defined by char(M) :=
∏
i fi ⊂ A. If A is a

unique factorization domain (for example, if A is regular; a theorem of Auslander-
Buchsbaum [CRT, Theorem 20.3]), any reflexive ideal is principal. If A = W , then
|W/ char(M)|p =

∣∣|M |
∣∣
p
, and if further A = Zp, we have char(M) = (|M |).

Theorem 3.5 (J. Tate). Assume that R is a local complete intersection over a
complete normal noetherian local domain A with an algebra homomorphism λ :
R → A. If after tensoring the quotient field Q of A, R⊗A Q = (Im(λ) ⊗A Q)⊕ S
as algebra direct sum for some Q-algebra S, then Cj(λ;A) is a torsion A-module
of finite type, and we have

AnnA(C0(λ;A)) = char(C0(λ;A)) = char(C1(λ;A)).

In the following section, we prove

(3.2) lengthA(C0(λ;A)) = lengthA(C1(λ;A)),

assuming that A is a discrete valuation ring (see Proposition 3.10). If A is a normal

noetherian domain, charA(M) =
∏
P P

lengthAP
MP for the localizationMP at height

1-primes P for a given A-torsion module M . Since AP is a discrete valuation ring
if and only if P has height 1, this implies the above theorem. Actually Tate proved
a finer result giving the identity of Fitting ideals of C0(λ;A) and C1(λ;A), which is
clear from the proof given below (see [MW84, Appendix] for Fitting ideals). This
result is a local version of general Grothendieck–Serre duality of proper morphisms
studied by Hartshorne (see [ALG, III.7] for more details).

3.3. Proof of Tate’s theorem. We reproduce the proof from [MR70, Appendix].
We prepare some preliminary results; so, we do not assume yet that R is a complete
intersection over A. Let A be a normal noetherian integral domain of characteristic
0 and R be a reduced A–algebra free of finite rank r overA. The algebraR is called a
Gorenstein algebra over A if HomA(R,A) ∼= R as R–modules. Since R is free of rank
r over A, we choose a base (x1, . . . , xr) of R over A. Then for each y ∈ R, we have
r × r–matrix ρ(y) with entries in A defined by (yx1 , . . . , yxr) = (x1, . . . , xr)ρ(y).
Define Tr(y) = Tr(ρ(y)). Then Tr : R → A is an A–linear map, well defined
independently of the choice of the base. Suppose that Tr(xR) = 0. Then in
particular, Tr(xn) = 0 for all n. Therefore all eigenvalues of ρ(x) are 0, and hence
ρ(x) and x is nilpotent. By the reducedness of R, x = 0 and hence the pairing
(x, y) = Tr(xy) on R is non-degenerate.

Lemma 3.6. Let A be a normal noetherian integral domain of characteristic 0 and
R be an A–algebra. Suppose the following three conditions:

(1) R is free of finite rank over A;
(2) R is Gorenstein; i.e., we have i : HomA(R,A) ∼= R as R–modules;
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(3) R is reduced.

Then for an A–algebra homomorphism λ : R→ A, we have

C0(λ;A) ∼= A/λ(i(TrR/A))A.

In particular, lengthA C0(λ;A) is equal to the valuation of d = λ(i(TrR/A)) if A is
a discrete valuation ring.

Proof. Let φ = i−1(1). Then TrR/A = δφ. The element δ = δR/A is called the

different of R/A. Then the pairing (x, y) 7→ TrR/A(δ−1xy) ∈ A is a perfect pairing

over A, where δ−1 ∈ S = Frac(R) and we have extended TrR/A to S → K =
Frac(A). Since R is commutative, (xy, z) = (y, xz). Decomposing S = K ⊕X, we
have

C0(λ;A) = Im(λ)/λ(a) ∼= A/R ∩ (K ⊕ 0).

Then it is easy to conclude that the pairing ( , ) induces a perfect A–duality between
R ∩ (K ⊕ 0) and A⊕ 0. Thus R ∩ (K ⊕ 0) is generated by λ(δ) = λ(i(TrR/A)). �

Next we introduce two A–free resolutions of R, in order to compute δR/A. We
start slightly more generally. Let X be an algebra. A sequence f = (f1, . . . , fn) ∈
Xn is called regular if x 7→ fjx is injective on X/(f1, . . . , fj−1) for all j = 1, . . . , n.
We now define a complex K•

X(f) (called the Koszul complex) out of a regular
sequence f (see [CRT, Section 16]). Let V = Xn with a standard base e1, . . . , en.
Then we consider the exterior algebra

∧
•V =

n⊕

j=0

(∧jV ).

The graded piece ∧jV has a base ei1,...,ij = ei1 ∧ ei2 ∧ · · ·∧ eij indexed by sequences

(i1, . . . , ij) satisfying 0 < i1 < i2 < · · · < ij ≤ n. We agree to put
∧0

V = X and∧j
V = 0 if j > n. Then we define X–linear differential d :

∧j
X → ∧j−1

X by

d(ei1 ∧ ei2 ∧ · · · ∧ eij) =

j∑

r=1

(−1)r−1firei1 ∧ · · · ∧ eir−1
∧ eir+1

∧ · · · ∧ eij .

In particular, d(ej) = fj and hence,
∧

0V/d(
∧

1V ) = X/(f).

Thus, (K•
X(f), d) is a complex and X–free resolusion of X/(f1, . . . , fn). We also

have

dn(e1 ∧ e2 ∧ · · · ∧ en) =

n∑

j=1

(−1)j−1fje1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en.

Suppose now that X is a B–algebra. Identifying
∧n−1

V with V by

e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en 7→ ej

and
∧n

V with X by e1 ∧ e2 ∧ · · · ∧ en 7→ 1, we have

Im(d∗n : HomB(
∧

n−1V, Y )→ HomB(
∧

nV, Y )) ∼= (f)HomB(X, Y ),
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where (f)HomB(X, Y ) =
∑
j fjHomB(X, Y ), regarding HomB(X, Y ) as an X–

module by yφ(x) = φ(xy). This shows that if X is an B–algebra free of finite rank
over B, K•

X(f) is a B–free resolution of X/(f), and

(3.3) ExtnB(X/(f), Y ) = Hn(HomB(K•
X(f), Y )) ∼= HomB(X, Y )

(f)HomB(X, Y )

for any B–module Y .

We now suppose that R is a local complete intersection over A. Thus R is free
of finite rank over A and R ∼= B/(f1 , . . . , fn) for B = A[[T1, . . . , Tn]]. Write tj for
Tj mod (f1, . . . , fn) in R. Since R is local, tj are contained in the maximal ideal
mR of R. We consider C = B ⊗A R ∼= R[[T1, . . . , Tn]]. Then

R = R[[T1, . . . , Tn]]/(T1 − t1, . . . , Tn − tn),

and g = (T1 − t1, . . . , Tn− tn) is a regular sequence in C = R[[T1 . . . , Tn]]. Since C
is B–free of finite rank, the two complexes K•

B(f) � R and K•
C(g) � R are B–free

resolutions of R.

We have an Λ–algebra homomorphism Φ : B ↪→ C given by Φ(x) = x ⊗ 1. We
extend Φ to Φ• : K•

B(f) → K•
C(g) in the following way. Write fi =

∑n
j=1 bijgj .

Then we define Φ1 : K1
B(f) → K1

C (g) by Φ1(ei) =
∑n

j=1 bijej . Then Φj =
∧j

Φ1.
One can check that this map Φ• is a morphism of complexes. In particular,

(3.4) Φn(e1 ∧ · · · ∧ en) = det(bij)e1 ∧ · · · ∧ en.
Since Φ• is the lift of the identity map of R to the B–projective resolutions K•

B(f)
and K•

C(g), it induces an isomorphism of extension groups computed by K•
C(g) and

K•
B(f):

Φ∗ : H•(HomB(K•
C(g), B)) ∼= ExtjB(R,B) ∼= H•(HomB(K•

B(f), B)).

In particular, identifying
∧nBn = B, we have from (3.3) that

Hn(HomB(K•
B(f), B)) = HomB(B,B)/(f)HomB(B,B) = B/(f) = R

and similarly

Hn(HomB(K•
C (g), B)) =

HomB(C,B)

(g)HomB(C,B)
.

The isomorphism between R and HomB(C,B)
(g)HomB(C,B) is induced by Φn which is a multi-

plication by d = det(bij) (see (3.4)). Thus we have

Lemma 3.7. Suppose that R is a local complete intersection over A. Write π :
B = A[[T1, . . . , Tn]] � R be the projection as above. We have an isomorphism:

h :
HomB(C,B)

(T1 − t1, . . . , Tn − tn)HomB(C,B)
∼= R

given by h(φ) = π(φ(d)) for d = det(bij) ∈ C.

We have a base change map:

ι : HomA(R,A) −→ HomB(C,B) = HomB(B ⊗A R,B ⊗A A),

taking φ to id⊗φ. Identifying C and B with power series rings, ι(φ) is just applying
the original φ to coefficients of power series in R[[T1, . . . , Tn]]. We define I = h ◦ ι :
HomA(R,A)→ R.
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Lemma 3.8. Suppose that R is a local complete intersection over A. Then the
above map I is an R–linear isomorphism, satisfying I(φ) = π(ι(φ(d)). Thus the
ring R is Gorenstein.

Proof. We first check that I is an R–linear map. Since I(φ) = π(ι(φ(d)), we
compute I(φ ◦ b)) and rI(φ) for b ∈ B and r = π(b). By definition, we see

I(π(bx)) = π(ι(φ(r ⊗ 1)d)) and rI(φ) = π(bι(φ(d)).

Thus we need to check π(ι(φ)((r ⊗ 1− 1⊗ b)d)) = 0. This follows from:

r ⊗ 1− 1⊗ b ∈ (g) and det(bij)gi =
∑

i

b′ijfi,

where b′ij are the (i, j)–cofactors of the matrix (bij). Thus I is R–linear. Since ι
mod mB for the maximal ideal mB of B is a surjective isomorphism from

HomA((A/mA)r, A/mA) = HomA(R,A)⊗A A/mA

onto

HomB((B/mB)r, B/mB) = HomB(C,B)⊗B B/mB ,

the map ι is non-trivial modulo mC . Thus I mod mR is non-trivial. Since h is
an isomorphism, HomB(C,B)⊗C C/mC is 1–dimensional, and hence I mod mR is
surjective. By Nakayama’s lemma, I itself is surjective. Since the target and the
source of I are A–free of equal rank, the surjectivity of I tells us its injectivity.
This finishes the proof. �

Corollary 3.9. Suppose that R is a local complete intersection over A. We have
I(TrR/A) = π(d) for d = det(bij), and hence the different δR/A is equal to π(d).

Proof. The last assertion follows from the first by I(φ) = π(ι(φ(d)). To show the
first, we choose dual basis x1, . . . , xr ofR/A and φ1, . . . , φr of HomA(R,A). Thus for
x ∈ R, writing xxi =

∑
i aijxj, we have Tr(x) =

∑
i aii =

∑
i φi(xxi) =

∑
i xiφi(x).

Thus Tr =
∑

i xiφi.
Since xi is also a base of C over B, we can write d =

∑
j bjxi with ι(φi)(d) = bi.

Then we have

I(TrR/A) =
∑

i

xiI(φi) =
∑

i

xiπ(ι(φi)(d)) =
∑

i

xiπ(bi) = π(
∑

i

bixi) = π(d).

This shows the desired assertion. �

We now finish the proof of (3.2):

Proposition 3.10. Let A be a discrete valuation ring, and let R be a reduced
complete intersection over A. Then for an A–algebra homomorphism R → A, we
have

lengthA C0(λ, A) = lengthA C1(λ, A).

Actually the assertion of the proposition is equivalent to R being complete in-
tersection over A (see [L95] for a proof).

Proof. Let X be a torsion A–module, and suppose that we have an exact sequence:

Ar
L−→ Ar → X → 0

of A–modules. Then we claim lengthAX = lengthAA/ det(L)A. By elementary
divisor theory applied to L, we may assume that L is a diagonal matrix with
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diagonal entry d1, . . . , dr. Then the assertion is clear, because X =
⊕

j A/djA and

lengthA/dA is equal to the valuation of d.
SinceR is reduced, ΩR/A is a torsionR–module, and hence ΩR/A⊗RA = C1(λ;A)

is a torsion A–module. Since R is a complete intersection over A, we can write

R ∼= A[[T1, . . . , Tr]]/(f1, . . . , fr).

Then by Corollary 2.2 (ii), we have the following exact sequence for J = (f1 , . . . , fr):

J/J2 ⊗A[[T1,...,Tr ]] A −→ ΩA[[T1,...,Tr]]/A ⊗A[[T1,...,Tr]] A −→ ΩR/A ⊗R A→ 0.

This gives rise to the following exact sequence:

⊕

j

Adfj
L−→

⊕

j

AdTj −→ C1(λ;A)→ 0,

where dfj = fj mod J2. Since C1(λ;A) is a torsion A–module, we see that
lengthA(A/ det(L)A) = lengthAC1(λ;A). Since g = (T1 − t1, . . . , Tn − tn), we
see easily that det(L) = π(λ(d)). This combined with Corollary 3.9 and Lemma 3.6
shows the desired assertion. �

3.4. Two dimensional cases. Fix a positive integer N prime to p. Let ρ :
Gal(Q/Q) → GL2(F) be the Galois representation unramified outside Np. Let
ψ be the Teichmüller lift of det(ρ). For simplicity, assume that ψ and ψ := det(ρ)
has conductor divisible byN and p - ϕ(N) = |(Z/NZ)×|. We consider deformations
ρ : Gal(Q/Q)→ GL2(A) (over W ) satisfying the following three properties:

(D1) ρ is unramified outside Np,

(D2) ρ|Gal(Qp/Qp)
∼=

( ερ ∗
0 δρ

)
with δρ unramified while ερ ramified,

(D3) For each prime l|N , writing Il for the inertia group ρ|Il ∼=
(
ψl 0

0 1

)
regarding

ψl = ψ|Z×

l
as the character of Il by local class field theory.

In particular, we assume (D1–3) for ρ. Writing ρ|Gal(Qp/Qp)
∼=

(
ε ∗

0 δ

)
, we always

assume that ε is ramified while δ is unramified. We admit the following fact and
study its consequences:

Theorem 3.11 (B. Mazur). We have an universal couple (R,ρ) of a W -algebra
R and a Galois representation ρ : Gal(Q/Q) → GL2(R) such that ρ is universal
among deformations satisfying (D1–3). The algebra R is a W [[CQ(Np∞)]]-algebra
canonically by the universality of W [[CQ(Np∞)]] applied to det(ρ). In particular,
R is an algebra over Λ = W [[T ]] ⊂ W [[CQ(Np∞)]]. If we add one more property
to (D1–3)

(det) det(ρ) = ψεω−kνk for the p-adic cyclotomic character ν and k = k(P )

and a character ε : Gal(Q[µp∞ ]/Q)→ µp∞(W ), then the residual couple (R/PR,ρP )

with ρP = ρ mod P for P = (t − ε([γ,Qp])γ
k) ⊂ Λ is universal among deforma-

tions satisfying (D1–3) and (det).

See [MFG, §3.2.4] and [HMI, §3.2] for a proof. We write ρ|Gal(Qp/Qp)
= ( ε ∗

0 δ )

with δ unramified.
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3.5. Adjoint Selmer groups. We define the adjoint Selmer group over a number
field F . Let ρ : Gal(Q/Q) → GL2(A) be a deformation satisfying (D1–3). Write
V (ρ) = A2 on which Gal(Q/Q) acts via ρ. Since ρ|Gal(Qp/Qp)

∼= ( ε ∗
0 δ ) for an

unramified δ, we have a filtration Vp(εp) ↪→ V (ρ) � Vp(δp) stable under Gal(Qp/Fp)

for a prime p|p of F , where on Vp(?), Gal(Qp/Fp) acts via the character ? and
?p =?|Gal(Qp/Fp).

We now let Gal(Q/F ) act on M2(A) = EndA(V (ρ)) by conjugation: x 7→
ρ(σ)xρ(σ)−1 . The trace zero subspace sl(A) is stable under this action. This new
Galois module of dimension 3 is called the adjoint representation of ρ and written
as Ad(ρ). Thus

V = V (Ad(ρ)) =
{
T ∈ EndA(V (ρ))

∣∣Tr(T ) = 0
}
.

This space has a three step filtration: 0 ⊂ V +
p ⊂ V −

p ⊂ V given by

V +
p (Ad(ρ)) =

{
T ∈ V −

p (Ad(ρ))
∣∣T (Vp(εp))) = 0

}
,(+)

V −
p (Ad(ρ)) =

{
T ∈ V (Ad(ρ))

∣∣T (Vp(εp)) ⊂ Vp(εp)
}
.(−)

We take a base of V (ρ) so that ρ|Dp
=

(
εp ∗
0 δp

)
, then we have

V +
p (Ad(ρ)) = {( 0 ∗

0 0 )} ⊂ V −
p (Ad(ρ)) =

{
( a ∗

0 b )
∣∣a+ b = 0

}
⊂M2(A).

Writing A∨ for the Pontryagin dual module HomW (A,K/W ) ∼= Hom(A,Qp/Zp)
for the quotient field K of W . Then for any A-modules M , we put M∗ = M⊗AA∨.
In particular, V (Ad(ρ))∗ and Vp(?)

∗ are divisible Galois modules. We define

(3.5) SelF (Ad(ρ))

= Ker(H1(F, V (Ad(ρ))∗)→
∏

p|p
H1(Ip,

V (Ad(ρ))∗

V +
p (Ad(ρ))∗

)×
∏

l-p

H1(Il, V (Ad(ρ)∗)),

where p|p and l - p are primes of F and Iq is the inertia subgroup at a prime q of

Gal(Q/F ).

3.6. Selmer groups and differentials. Let (R/W ,ρ) be the universal couple
for the deformation satisfying (D1–3) and (det) for ρ in Theorem 4.3 (thus R =
T/PT if ρ satisfies the assumption of Theorem 4.3). We recall the argument of
Mazur (cf. [MT90]) to relate 1-differentials on Spec(R) with the dual Selmer group
SelQ(Ad(ρ))∨ for a Galois deformation ρ : Gal(Q/Q)→ GL2(W ) satisfying (D1–3)
and (det). Let λ : R→W be the algebra homomorphism inducing ρ (i.e., λ◦ρ ∼= ρ).
Let Φ(A) be the set of deformations of ρ satisfying (D1–3) and (det) with values
in GL2(A).

Let X be a profinite R-module. Then R[X] is an object in CLW . We consider
the W -algebra homomorphism ξ : R → R[X] with ξ mod X = id. Then we can
write ξ(r) = r ⊕ dξ(r) with dξ(r) ∈ X. By the definition of the product, we get
dξ(rr

′) = rdξ(r
′) + r′dξ(r) and dξ(W ) = 0. Thus dξ is an W -derivation, i.e.,

dξ ∈ DerW (R,X). For any derivation d : R→ X over W , r 7→ r⊕d(r) is obviously
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an W -algebra homomorphism, and we get

(3.6)
{
π ∈ Φ(R[X])

∣∣π mod X = ρ
}
/ ≈X

∼=
{
π ∈ Φ(R[X])

∣∣π mod X ∼= ρ
}
/ ∼=

∼=
{
ξ ∈ HomW -alg(R,R[X])

∣∣ξ mod X = id
}

∼= DerW (R,X) ∼= HomR(ΩR/W , X),

where “≈X” is conjugation under (1⊕Mn(X)) ∩GL2(R[X]).

Let π be the deformation in the left-hand-side of (3.6). Then we may write
π(σ) = ρ(σ) ⊕ u′π(σ). We see

ρ(στ )⊕u′π(στ ) = (ρ(σ)⊕u′π(σ))(ρ(τ )⊕u′π(τ )) = ρ(στ )⊕(ρ(σ)u′π(τ )+u′π(σ)ρ(τ )),

and we have

u′π(στ ) = ρ(σ)u′π(τ ) + u′π(σ)ρ(τ ).

Define uπ(σ) = u′π(σ)ρ(σ)−1. Then, x(σ) = π(σ)ρ(σ)−1 has values in SL2(R[X]),
and x = 1⊕ u 7→ u = x− 1 is an isomorphism from the multiplicative group of the
kernel of the reduction map SL2(R[X]) � SL2(R) given by

{x ∈ SL2(R[X])|x ≡ 1 mod X}
onto the additive group

Ad(X) = {x ∈M2(X)|Tr(x) = 0} = V (Ad(ρ))⊗R X.
Thus we may regard that u has values in Ad(X) = V (Ad(ρ))⊗R X.

We also have

(3.7) uπ(στ ) = u′π(στ )ρ(στ )−1

= ρ(σ)u′π(τ )ρ(στ )−1 + u′π(σ)ρ(τ )ρ(στ )−1 = Ad(ρ)(σ)uπ(τ ) + uπ(σ).

Hence uπ is a 1-cocycle unramified outside Np. It is a straightforward computation
to see the injectivity of the map:

{
π ∈ Φ(R[X])

∣∣π mod X ≈ ρ
}
/ ≈X ↪→ H1

ct(F,Ad(X))

given by π 7→ [uπ] (an exercise). We put V ±
p (Ad(X)) = V ±

p (Ad(ρ)) ⊗R X. Then
we see from the fact that Tr(uπ) = 0 that

(3.8) uπ(Ip) ⊂ V +
p (Ad(X)) ⇔ u′π(Ip) ⊂ V +

p (Ad(X)) ⇔ δπ(Ip) = 1.

For primes l - Np, π is unramified at l; so, uπ is trivial on Il. If l|N , we have
ρ|Il = εl ⊕ 1 and π|Il = εl ⊕ 1. Thus π|Il factors through the image of Il in the

maximal abelian quotient of Gal(Ql/Ql) which is isomorphic to Z×
l . Thus uπ|Il

factors through Z×
l . Since p - ϕ(N), p - l− 1, which implies uπ|Il is trivial; thus uπ

unramified everywhere outside p.

Since W = lim←−nW/m
n
W for the finite ringsW/mn

W , we get W∨ = lim−→n
(W/mn

W )∨,

which is a discrete R-modules, which shows R[W∨] =
⋃
n R[(W/mn

W )∨]. We put the
profinite topology on the individual R[(W/mn

W )∨]. On R[W∨], we give a injective-
limit topology. Thus, for a topological space X, a map φ : X → R[W∨] is contin-
uous if φ−1(R[(W/mn

W )∨]) → R[(W/mn
W )∨] is continuous for all n with respect to

the topology on φ−1(R[(W/mn
W )∨]) induced from X on the source and the profi-

nite topology on the target. From this, any deformation (continuous with respect to
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having values inGL2(R[W∨]) gives rise to a continuous 1-cocycle (see [HiT94] Chap-
ter 2 for details about continuity) with values in the discrete G-module V (Ad(π))∨.
In this way, we get

(3.9) (ΩR/W ⊗R W )∨ ∼= HomR(ΩR/W ,W
∨) ↪→ H1(Q, V (Ad(ρ))∗).

By definition, π is ordinary if and only if uπ restricted to Ip has values in V +
p (Ad(π))∗.

From a Selmer cocycle, we recover π by reversing the above argument; so, the
image of (ΩR/A ⊗R W )∨ in the Galois cohomology group is equal to SelQ(Ad(ρ)).

Thus we get from this and (3.8) the following fact:

Theorem 3.12 (B. Mazur). Suppose p - ϕ(N). Let (R,ρ) be the universal couple

among deformations satisfying (D1–3) and (det). If ρ : Gal(Q/Q)→ GL2(W ) is a
deformation, then we have a canonical isomorphism

SelQ(Ad(ρ))∨ ∼= ΩR/W ⊗R,λ W ∼= C1(λ;W )

as W -modules for λ : R→W with ρ ∼= λ ◦ ρ.

By a similar argument, considering the universal ring for deformations satisfying
only (D1–3), we get

Theorem 3.13 (B. Mazur). Suppose p - ϕ(N). Let (R,ρ) be the universal couple
among deformations satisfying (D1–3). Let Spec(I) be an irreducible component of

Spec(R) and Spec(̃I) be the normalization of Spec(I). Writing ρ : Gal(Q/Q) →
GL2(̃I) for the deformation corresponding to the projection R → Ĩ, we have a
canonical isomorphism

SelQ(Ad(ρ))∨ ∼= ΩR/Λ ⊗R Ĩ ∼= C1(λ; Ĩ)

as I–modules for λ : R → Ĩ with ρ ∼= λ ◦ ρ.

We do not need to assume p - ϕ(N) in the above two theorems, but otherwise,
we need some extra care in their proof.

4. Hecke algebras

We recall briefly p-adic Hecke algebras defined over a discrete valuation ring W .
We assume that the base valuation ring W flat over Zp is sufficiently large so that
its residu field F is equal to T/mT for the maximal ideal of the connected component
Spec(T) (of our interest) in Spec(h).

The base ring W may not be finite over Zp. For example, if we deal with Katz

p-adic L-function, the natural ring of its definition is the Witt vector ring W (Fp) of

over an algebraic closure Fp (realized in Cp), though the principal ideal generated
by a blanch of the Katz p-adic L-function descends to an Iwasawa algebra over a
finite extension W of Zp (and in this sense, we may assume finiteness over Zp of W
just to understand our statement as it only essentially depends on the ideal in the
Iwasawa algebra over W ).

4.1. Finite level. Fix a field embedding Q
ip
↪→ Qp ⊂ Cp and a positive integer N

prime to p. Here Q is the algebraic closure of Q in C and Qp is an algebraic closure
of Qp. A p-adic analytic family F of modular forms is defined with respect to the

fixed embedding ip : Q ↪→ Cp. We write |α|p for the p-adic absolute value (with
|p|p = 1/p) induced by ip. Take a Dirichlet character ψ : (Z/Npr+1Z)× →W× with
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(p - N, r ≥ 0), and consider the space of elliptic cusp forms Sk+1(Γ0(Np
r+1), ψ) of

weight k + 1 with character ψ as defined in [IAT, (3.5.4)]. Let the ring Z[ψ] ⊂ C
and Zp[ψ] ⊂ Qp be generated by the values ψ over Z and Zp, respectively.

We assume that the ψp = ψ|(Z/pr+1Z)× has conductor pr+1 if non-trivial and r = 0
if trivial. Since we will consider only U(p)-eigenforms with p-adic unit eigenvalues
(under | · |p), this does not pose any restriction. For simplicity we assume that N
is cube-free. We often write Nψ for Npr+1 if confusion is unlikely.

The Hecke algebra over Z[ψ] is the subalgebra of the linear endomorphism algebra
of Sk+1(Γ0(Nψ), ψ) generated by Hecke operators T (n):

(4.1) h = hk,ψ = hk(Γ0(Nψ), ψ; Z[ψ])

= Z[ψ][T (n)|n = 1, 2, · · · ] ⊂ End(Sk+1(Γ0(Nψ), ψ)),

where T (n) is the Hecke operator as in [IAT, §3.5] and pr+1 is the conductor of
the restriction ψp of ψ to Z×

p unless ψp is trivial in which case r = 0. We put
hk,ψ/A = h⊗Z[ψ]A for any Z[ψ]-algebra A. When we need to indicate that our T (l)
is the Hecke operator of a prime factor l of Nψ, we write it as U(l), since T (l) acting
on a subspace Sk+1(Γ0(N

′), ψ) ⊂ Sk+1(Γ0(Nψ), ψ) of level N ′ prime to l does not
coincide with U(l) on Sk+1(Γ0(Nψ), ψ).

For any ring A ⊂ C, put

(4.2) Sk+1,ψ/A = Sk+1(Γ0(Nψ), ψ;A)

:= {f =

∞∑

n=1

a(n, f)qn ∈ Sk+1(Γ0(Nψ), ψ)|a(n, f) ∈ A}

for q = exp(2πiz) with z ∈ H = {z ∈ C| Im(z) > 0}. As we have a good Z-integral
structure on the modular curves X0(Nψ), we have

Sk+1,ψ/A = Sk+1,ψ/Z[ψ] ⊗Z[ψ] A and Sk+1(Γ0(Nψ), ψ) ∼= Sk+1,ψ/Z[ψ] ⊗Z[ψ] C

as long as k ≥ 1 (this is because the corresponding line bundle is not very unple if
k = 1). Thus hereafter for any ring A (not necessarily in C), we define Sk+1,ψ/A by
the above formula. Then we have

hk,ψ/A ∼= A[ψ][T (n)|n = 1, 2, · · · ] ⊂ EndA(Sk+1,ψ/A)

as long as A is a Z[ψ]-algebra and k ≥ 1.
For p-profinite ring A, the ordinary part hk,ψ/A ⊂ hk,ψ/A is the maximal ring di-

rect summand on which U(p) is invertible. Writing e for the idempotent of hk,ψ/A,

we have e = limn→∞U(p)n! under the p-profinite topology of hk,ψ/A. By the fixed

embedding Qp ↪→ C, the idempotent e not only acts on the space of modular forms
with coefficients inW but also on the classical space Sk+1(Γ0(Nψ), ψ). We write the

image of the idempotent as Sordk+1,ψ/A (as long as e is defined over A). Note U(p) is a

Z[ψ]-integral operator; so, if either A is p-adically complete or contains all eigenval-
ues of U(p), e is defined over A. Note here if r = 0 (i.e., ψp = 1), the projector e (ac-

tually defined over Q) induces a surjection e : Sk+1(Γ0(N), ψ) → Sordk+1(Γ0(Np), ψ)
if k > 1. Define a pairing (·, ·) : hk(Γ0(Nψ), ψ;A) × Sk+1(Γ0(Nψ), ψ;A) → A by
(h, f) = a(1, f |h). By the celebrated formula of Hecke:

a(m, f |T (n)) =
∑

0<d|(m,n),(d,Nψ)=1

ψ(d)dka(
mn

d2
, f),
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it is an easy exercise to show that, as long as A is a Z[ψ]-algebra,

HomA(Sk+1,ψ/A, A) ∼= hk,ψ/A, HomA(Sordk+1,ψ/A, A) ∼= hk,ψ/A

HomA(hk,ψ/A, A) ∼= Sk+1,ψ/A, HomA(hk,ψ/A, A) ∼= Sordk+1,ψ/A

HomA-alg(hk,ψ/A, A)

∼= {f ∈ Sk+1,ψ/A : f |T (n) = λ(n)f with λ(n) ∈ A and a(1, f) = 1}.

(4.3)

The second isomorphism can be written as φ 7→∑∞
n=1 φ(T (n))qn for φ : hk,ψ/A → A

and the last is just this one restricted to A-algebra homomorphisms.

4.2. Ordinary of level Np∞. Fix ψ, and assume now that ψp = ψ|Z×

p
has conduc-

tor at most p and ψ(−1) = 1. Let ω be the modulo p Teichmüller character. Recall
the multiplicative group Γ := 1+pZp ⊂ Z×

p and its topological generator γ = 1+p.

Then the Iwasawa algebra Λ = W [[Γ]] = lim←−nW [Γ/Γp
n

] is identified with the power

series ring W [[T ]] by a W -algebra isomorphism sending γ ∈ Γ to t = 1 + T . As
constructed in [H86a], [H86b] and [GME], we have a unique ‘big’ ordinary Hecke
algebra h. The algebra h is characterized by the following two properties (called
Control theorems; see [H86a] Theorem 3.1, Corollary 3.2 and [H86b] Theorem 1.2
for p ≥ 5 and [GME] Theorem 3.2.15 and Corollary 3.2.18 for general p):

(C1) h is free of finite rank over Λ equipped with T (n) ∈ h for all 1 ≤ n ∈ Z (so
U(l) for l|Np),

(C2) if k ≥ 1 and ε : Z×
p → µp∞ is a character,

h⊗Λ,t 7→ε(γ)γk W [ε] ∼= hk,εψk (γ = 1 + p) for ψk := ψω−k,

sending T (n) to T (n) (and U(l) to U(l) for l|Np). Here W [ε] is the W -
subalgebra in Cp generated by the values of ε. If W [ε] = W , the above
identity becomes

h/(t− ε(γ)γk)h ∼= hk,εψk.

Let Spec(I) be a reduced irreducible component Spec(I) ⊂ Spec(h). Write
a(n) for the image of T (n) in I (so, a(p) is the image of U(p)). If a point P

of Spec(I)(Qp) kills (t − ε(γ)γk) with 1 ≤ k ∈ Z (i.e., P ((t − ε(γ)γk)) = 0),

we call it an arithmetic point and we write εP = ε, ψP = εPψω
−k, k(P ) =

k ≥ 1 and pr(P) for the order of εP . If P is arithmetic, by (C2), we have a

Hecke eigenform fP ∈ Sk+1(Γ0(Np
r(P)+1), εψk) such that its eigenvalue for T (n)

is given by aP (n) := P (a(n)) ∈ Qp for all n. Thus I gives rise to a family
F = {fP |arithemtic P ∈ Spec(I)} of Hecke eigenforms. We define a p-adic ana-
lytic family of slope 0 (with coefficients in I) to be the family as above of Hecke
eigenforms associated to an irreducible component Spec(I) ⊂ Spec(h). We call

this family slope 0 because |aP (p)|p = 1 for the p-adic absolute value | · |p of Qp

(it is also often called an ordinary family). We call this family analytic because
the Hecke eigenvalue aP (n) for T (n) is given by an analytic function a(n) on (the
rigid analytic space associated to) the p-profinite formal spectrum Spf(I). Iden-

tify Spec(I)(Qp) with HomW -alg(I,Qp) so that each element a ∈ I gives rise to a

“function” a : Spec(I)(Qp) → Qp whose value at (P : I → Qp) ∈ Spec(I)(Qp)

is aP := P (a) ∈ Qp. Then a is an analytic function of the rigid analytic space

associated to Spf(I). Taking a finite covering Spec(̃I) of Spec(I) with surjection
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Spec(̃I)(Qp) � Spec(I)(Qp), abusing slightly the definition, we may regard the fam-

ily F as being indexed by arithmetic points of Spec(̃I)(Qp), where arithmetic points

of Spec(̃I)(Qp) are made up of the points above arithmetic points of Spec(I)(Qp).

The choice of Ĩ is often the normalization of I or the integral closure of I in a finite
extension of the quotient field of I.

4.3. Modular Galois representation. Each connected component Spec(T) of
Spec(h) has a 2-dimensional continuous representation ρT of Gal(Q/Q) with coeffi-
cients in the total quotient ring of T (see [H86b]). The representation ρT restricted
to the p-decomposition group Dp is reducible with unramified quotient character
(e.g., [GME, §4.2]). We write ρssT for its semi-simplification over Dp. As is well
known now (e.g., [GME, §4.2]), ρI is unramified outside Np and satisfies
(Gal)

Tr(ρT(Frobl)) = a(l) (l - Np), ρssT ([γs,Qp]) ∼
(
ts 0
0 1

)
and ρssI ([p,Qp]) ∼

( ∗ 0
0 a(p)

)
,

where γs = (1 + p)s =
∑∞
n=0

(
s
n

)
pn ∈ Z×

p and ts = (1 + p)s =
∑∞

n=0

(
s
n

)
Tn ∈

Zp[[T ]]× for s ∈ Zp and [x,Qp] is the local Artin symbol. For each prime ideal
P of Spec(T), writing κ(P ) for the residue field of P , we also have a semi-simple
Galois representation ρP : Gal(Q/Q) → GL2(κ(P )) unramified outside Np such
that Tr(ρP (Frobl)) = a(l) mod P for all primes l - Np. If P is the maximal
ideal mT, we write ρ for ρP which is called the residual representation of ρT. We
sometimes write ρ as ρT to indicate the corresponding connected component. If ρ
is absolutely irreducible, ρP has values in GL2(T/P ); in particulr, ρT has values in
GL2(T). We assume irreducibility of ρ.

By (Gal) and Chebotarev density, Tr(ρI) has values in I; so,

P ◦Tr(ρI) : Gal(Q/Q)→ Qp (P ∈ Spec(I)(Qp))

gives rise to a pseudo-representation of Wiles (e.g., [MFG, §2.2]). Then by a the-
orem of Wiles, we can make a unique 2-dimensional semi-simple continuous repre-
sentation ρP : Gal(Q/Q)→ GL2(Qp) unramified outside Np with Tr(ρP (Frobl)) =
aP (l) for all primes l outside Np (though the construction of ρP does not re-
quire the technique of pseudo representation and was known before the inven-
tion of the technique; see [MW86, §9 Proposition 1]). This is the Galois repre-
sentation associated to the Hecke eigenform fP (constructed earlier by Eichler–
Shimura and Deligne) if P is arithmetic (e.g., [GME, §4.2]). More generally, for
any algebra homomorphism λ ∈ HomZ[ψ]-alg(hk,ψ/Z[ψ],Q), they associated a Ga-

lois representation ρλ : Gal(Q/Q) → GL2(Qp(λ)) unramified outside Np with

Tr(ρλ(Frobl)) = λ(T (l)) for primes l - Np and det(ρλ) = ψνk for the p-adic cyclo-
tomic character ν . Thus moving around primes, ρλ form a compatible system %λ
of Galois representations with coefficients in Q(λ).

4.4. Hecke algebra is universal. Start with a connected component Spec(T) of
Spec(h) of level Np∞ with character ψ. For simplicity, as before, assume that

N = C for the prime-to-p conductor C of ψ = det(ρ). Recall the deformation
properties (D1–3):

(D1) ρ is unramified outside Np,

(D2) ρ|Gal(Qp/Qp)
∼=

(
ε ∗
0 δ

)
with δ unramified while ε ramified,
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(D3) For each prime l|N , regarding ψl = ψ|Z×

l
as the character of Il by local

class field theory, we have ρ|Il ∼=
(
ψl 0

0 1

)
,

Theorem 4.1 (Wiles et al). If ρ is absolutely irreducible over Gal(Q/Q[µp]),
(T, ρT) is a local complete intersection over Λ and is universal among deforma-
tions satisfying (D1–3).

See [W95] (see also [MFG, Section 3.2] and [HMI, Chapter 3]) for a proof. Absolute

irreducibility of ρ over Gal(Q/Q[µp]) is equivalent to absolute irreducibility over

Gal(Q/Q[
√

(−1)(p−1)/2p]]). Also we note that the assumption p ≥ 5 we made for
simplicity in this note can be eased to p ≥ 3 for the theorem above and below (in
Wiles’ proof of Fermat’s last theorem, the case p = 3 has absolute importance).

Let π : T→ I be the projection map inducing Spec(I) ↪→ Spec(T) and write Ĩ for
the normalization of I (that is, the integral closure of I in its quotient field Q(I)).

Replace T by TI = T⊗Λ Ĩ and π by the composite λ := m◦(π⊗1) : TI → I⊗Λ Ĩ
m−→ Ĩ.

We would like to apply Tate’s theory (Theorem 3.5) to this setting. Note that Ĩ
is free of finite rank over Λ as Λ is a regular local ring of dimension 2. Therefore
the local complete intersection property of T over Λ implies that TI is a local

complete intersection over the normal noetherian integral domain Ĩ. Then we get

the following facts for the projection λ : TI → Ĩ:

Corollary 4.2. We have the following equalities:

(1) C0(λ; Ĩ) = Ĩ/(Lp) for some Lp ∈ Ĩ (i.e., AnneI(C0(λ; Ĩ)) is principal).

(2) char(C0(λ; Ĩ)) = char(C1(λ; Ĩ)) as ideals of Ĩ.

The assertion (2) is the consequence of Tate’s theorem (Theorem 3.5).

Proof. The fact (1) can be shown as follows. Write b = Ker(λ); i.e., we have an
exact sequence

0→ b→ TI → Ĩ→ 0.

Since b is the Ĩ-direct summand of TI, by taking Ĩ-dual (indicated by superscript

∗), we have another exact sequence 0 → Ĩ∗ → T∗
I → b∗ → 0. Since TI is a local

complete intersection, by Lemma 3.8, it is Gorenstein: T∗
I
∼= TI as TI-modules.

Thus for Q = Frac(Λ), Frac(TI) = TI ⊗Λ Q = Q(I) ⊕ X for X := b∗ ⊗Λ Q which

is an algebra direct sum and the projection to Q(I) = Q(̃I) is induced by λ. Thus

Im(̃I∗ ↪→ T∗
I
∼= TI) ⊂ TI is the ideal a = (Q(I)⊕ 0)∩ T, and a ∼= Ĩ∗ ∼= Ĩ is principal.

Since C0(λ; I) = Ĩ/a, the result follows. �

For an arithmetic point P of Spec(Λ), recall ψP = εPψω
−k(P).

Theorem 4.3 (Wiles ét al). If ρ is absolutely irreducible over Gal(Q/Q[µp]),
(T/PT, (ρT mod P )) is a local complete intersection over W and is universal among
deformations ρ satisfying (D1–3) and

(det) det(ρ) = ψP ν
k for the p-adic cyclotomic character ν and k = k(P ).

Actually Wiles–Taylor proved the first cases of Theorem 4.3 which actually im-
plies Theorem 4.1 (see [MFG, Theorem 5.29] for this implication).

For any arithmetic prime P ∈ Spec(̃I)(Qp) above P ∈ Spec(Λ), we see from the
definition

TI ⊗eI Ĩ/P = T⊗Λ Ĩ ⊗eI Ĩ/P = T⊗Λ Ĩ/P = (T/PT)⊗Λ/P Ĩ/P.
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Thus we have the Hecke eigenform fP and its Galois representation and the pro-

jection λ : T/PT ↪→ ((T/PT)⊗Λ/P Ĩ/P)→ Ĩ/P given by λ⊗ 1. Then, in the same
way as Corollary 4.2, we can prove

Corollary 4.4. We have C0(λ; Ĩ/P) = (̃I/P)/(Lp(P)) for Lp ∈ Ĩ in Corollary 4.2,
where Lp(P) = P(Lp).

This corollary is essentially [H88b, Theorem 0.1]; however, the assumptions
(0.8a,b) made in [H88b] is eliminated as these are proven later in [H13b, Lemma 4.2].

Proof. From the Ĩ-split exact sequences 0→ b→ TI → Ĩ→ 0, its Ĩ-dual 0← b∗ ←
T∗

I ← Ĩ∗ ← 0 is isomorphic to 0 → a → TI → S → 0 for the image S in X of TI.

Thus the latter sequence is also Ĩ-split. Tensoring Ĩ/P, we get the following two
exact sequence:

0→ b/Pb → TI/PTI → Ĩ/P→ 0 and 0→ a/Pa→ TI/PTI → S/PS → 0.

Then we get

C0(λ; Ĩ/P) = (̃I/P)/(a/Pa) = (̃I/a)⊗TI
(̃I/P) = C0(λ; Ĩ) ⊗eI Ĩ/P = (̃I/P)/(Lp(P))

as desired. �

Assume p - ϕ(N). By Mazur’s theorem (Theorem 3.13),

C1(λ; Ĩ) ∼= SelQ(Ad(ρeI))
∨, char(SelQ(Ad(ρeI)

∨) = char(C0(λ; Ĩ)) = (Lp)

and char(SelQ(Ad(ρP)∨) = char(C0(λ; Ĩ/P)) = (Lp(P)).

In the following section, we relate Lp(P) with L(1, Ad(ρP)); so, we get the one
variable adjoint main conjecture:

Corollary 4.5. Then there exists a p-adic L-function Lp ∈ Ĩ such that we have

char(SelQ(Ad(ρeI)
∨) = (Lp) and char(SelQ(Ad(ρP)∨) = (Lp(P))

for all arithmetic points P ∈ Spec(I)(Qp).

Though we assumed p - ϕ(N) in our proof, this condition is not necessary for the
validity of the above corollary.

In [H90], the author constructed a two variable p-adic L-function L ∈ Ĩ[[X]]
interpolating L(1 + m,Ad(ρI)) (i.e., P(L)(γm − 1) + L(1 + m,Ad(ρP) ⊗ ω−m)
essentially). Eric Urban proved the divisibility L| char(SelQ(ρI ⊗ κ)∨) for the uni-
versal character κ : Gal(Q∞/Q) → W [[X]]× deforming the identity character in
many cases (applying Eisenstein techniques to GSp(4) of Ribet–Greenberg–Wiles;
see [U06]). Note here that the two variable adjoint L-function has exceptional
zero along s = 1 as Ad(ρI) has p-Frobenius eigenvalue 1. In other words, we

have X|L in Ĩ[[X]] (an exceptional zero), and in this case, up to a simple non-

zero constant, we have (L/X)|X=0 +
da(p)
dT Lp essentially when the equality holds

(see [H11]). Thus we have dL
dX |s=1 = LLp for Lp in the above corollary and an

L-invariant L +
dL
dX |s=1 ∈ Q(I). Because of this exceptional zero, the divisibility:

L| char(SelQ(ρI ⊗ κ)∨) proved by Urban combined Corollary 4.5 does not imme-
diately imply the equality (L) = char(SelQ(ρI ⊗ κ)∨) without computing L. The
L-invariant specialized to an elliptic curve with multiplicative reduction has been

computed by Greenberg–Tilouine–Rosso [Ro13] to be equal to
logp(q)

ordp(q)
for the Tate
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period q of the elliptic curve. This L-invariant formula in [Ro13] combined with
Urban’s divisibility tells us the equality (assuming that Spec(I) has an arithmetic
point giving rise to an elliptic curve with multiplicative reduction).

The p-adic L-function Lp is defined up to units in Ĩ. If I has complex multipli-

cation (that is, ρeI is an induced representation of a character ϕ : Gal(Q/M)→ Ĩ×

of Gal(Q/M) for an imaginary quadratic field M), we can choose Lp to be equal to

L(0,
(
M/Q

)
)Lp(ϕ

−) for the Katz p-adic L-function Lp(ϕ
−) for the anti-cyclotomic

projection ϕ−(σ)ϕ(σ)ϕ(cσc)−1 under some assumptions; see [H06] and [H09]. Even

if Ad(IndQ
M ϕ) ∼=

(
M/Q

)
⊕ IndQ

M ϕ− is easy to show, the identification of Lp with

L(0,
(
M/Q

)
)Lp(ϕ

−) is a highly non-trivial endeavor which eventually proved the

anti-cyclotomic CM main conjecture and the full CM main conjacture in many
cases (see [T89], [MT90], [HiT94], [H06], [H09] and [Hs14]).

5. Analytic and topological methods

We compute the size |C0(λ;W )| for an algebra homomorphism λ : T/PT→ W
associated to a Hecke eigenform f by the adjoint L-value.

Here is a technical heuristic explaining some reason why at the very beginning
of his work [H81a] the author speculated that the adjoint L-value would be most
accessible to a non-abelian generalization of the class number formula in Theo-
rem 3.4. The proof of the formula by Dirichlet–Kummer–Dedekind proceeds as
follows: first, one relates the class number h = |SelQ(χ)| in Theorem 3.4 to the
residue of the Dedekind zeta function ζF of F , that is, the L–function of the self
dual Galois representation

1⊕ χ = IndQ
F 1;

second, one uses the fact ζF (s) = L(s, χ)ζ(s) following the above decomposition for
the Riemann zeta function ζ(s) = L(s, 1) and the residue formula Ress=1ζ(s) = 1
to finish the proof of the identity.

If one has good experience of calculating the value or the residue of a well defined
complex meromorphic function, one would agree that a residue tends to be more
accessible than the value of the function (the foremost proto-typical example is the
residue of the Riemann zeta function at s = 1).

Note here unless F is either Q or an imaginary quadratic field, the value L(1, χ)
is not critical. Thus the transcendental factor ΩF (in Theorem 3.4) involves the
regulator in addition to the period (a power of 2πi).

Perhaps, the most simple (and natural) way to create a self dual representation
containing the trivial representation 1 is to form the tensor product of a given n-
dimensional Galois representation ϕ (of Gal(Q/Q)) with its contragredient ϕ̃: ϕ⊗ϕ̃.
We define an n2− 1 dimensional representation Ad(ϕ) so that ϕ⊗ ϕ̃ ∼= 1⊕Ad(ϕ).
When n = 2, s = 1 is critical with respect to Ad(ϕ)) if detϕ(c) = −1 for complex

conjugation c. Then we expect that L(1,Ad(ϕ))
a period

should be somehow related to the

size of Sel(Ad(ϕ)) in the most favorable cases, for the Selmer group Sel(Ad(ϕ)) of
Ad(ϕ), in a fashion analogous to (3.5). Even if s = 1 is not critical for Ad(ϕ), as in
the case of F , there seems to be a good way to define a natural transcendental factor
of L(1, Ad(ϕ)) only using the data from the Hecke side (see [H99] and [BR14]) if
ϕ is automorphic. Therefore, the transcendental factor automorphically defined in
these papers via Whittaker model should contain a period associated with Ad(ϕ)



ARITHMETIC OF ADJOINT L-VALUES 26

and a Beilinson regulator geometrically defined for Ad(ϕ) (as long as ϕ is geometric
in a reasonable sense) if one believes in the standard conjecture. It would be a
challenging problem for us to factor the automorphic transcendental factor (given
in these articles) in an automorphically natural way into the product of a period
and the regulator of Ad(M) when we know that ϕ is associated to a motive M .

In this section, the reader will see this heuristic is actually realized by a simple
classical computation at least when ϕ is associated to an elliptic Hecke eigenform.

Again for simplicity, we assume p ≥ 5 and p - ϕ(N) (in the disguise of p - ϕ(C))
in this section.

5.1. Analyticity of adjoint L-functions. We summarize here known fact on
analyticity and arithmeticity of the adjoint L-function L(s, Ad(λ)) = L(s, Ad(ρλ))

for a Z[χ]-algebra homomorphism λ of hk(Γ0(C), χ; Z[χ]) into Q and the compatible
system ρλ of Galois representations attached to ρλ. We always assume that k ≥ 1
as before. Recall here that hk is a Hecke algebra of Sk+1; so, this condition means
weight ≥ 2.

By new form theory, we may assume that λ is primitive of exact level C. For
simplicity, we assume that χ is primitive of conductor C throughout this section
(this assumption implies that λ is primitive of exact level C). Then writing the
(reciprocal) Hecke polynomial at a prime ` as

L`(X) = 1− λ(T (`))X + χ(`)`kX2 = (1− α`X)(1 − β`X),

we have the following Euler product convergent absolutely if Re(s) > 1:

L(s, Ad(λ)) =
∏

`

{
(1− α`

β`
`−s)(1 − `−s)(1− β`

α`
`−s)

}−1

.

The meromorphic continuation and functional equation of this L-function was
proven by Shimura in 1975 [Sh75]. The earlier method of Shimura in [Sh75] is gen-
eralized, using the language of Langlands’ theory, by Gelbart and Jacquet [GJ78].
Taking the primitive cusp form f such that T (n)f = λ(T (n))f for all n, let π be
the automorphic representation of GL2(A) spanned by f and its right translations.
We write L(s, Ad(π)) for the L-function of the adjoint lift Ad(π) to GL(3) [GJ78].
This L-function coincides with L(s, Ad(λ)) and has a meromorphic continuation to
the whole complex s-plane and satisfies a functional equation of the form 1↔ 1−s
whose Γ-factor is given by

Γ(s, Ad(λ)) = ΓC(s+ k)ΓR(s+ 1),

where ΓC(s) = 2(2π)−sΓ(s) and ΓR(s) = π−s/2Γ( s
2
).

The L-function is known to be entire, and the adjoint lift of Gelbart-Jacquet is
a cusp from if ρλ is not an induced representation of a Galois character (note that

L(s, Ad(λ) ⊗
(
F/Q

)
) has a pole at s = 1 if ρλ = IndQ

F ϕ for a quadratic field F ).

To see this, suppose that ρλ is an induced representation IndQ

Q(
√
D)
ϕ for a Galois

character ϕ : Gal(Q/Q(
√
D)) → Q

×
p (associated to a Hecke character). Then we

have Ad(ρλ) ∼= χ ⊕ IndQ

Q(
√
D)

(ϕϕ−1
σ ), where χ =

(
D

)
is the Legendre symbol,

and ϕσ(g) = ϕ(σgσ−1) for σ ∈ Gal(Q/Q) inducing a non-trivial automorphism

on Q(
√
D). Since λ is cuspidal, ρλ is irreducible, and hence ϕϕ−1

σ 6= 1. Thus
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L(s, Ad(λ)) = L(s, χ)L(s, ϕϕ−1
σ ) is still an entire function, but L(s, Ad(λ)⊗χ) has

a simple pole at s = 1.

After summarizing what we have said, we shall give a sketch of a proof of the
meromorphic continuation of L(s, Ad(λ)) and its analyticity around s = 1 following
[LFE] Chapter 9:

Theorem 5.1 (G. Shimura). Let χ be a primitive character modulo C. Let λ :
hk(Γ0(C), χ; Z[χ])→ C be a Z[χ]-algebra homomorphism for k ≥ 1. Then

Γ(s, Ad(λ))L(s, Ad(λ))

has an analytic continuation to the whole complex s-plane and

Γ(1, Ad(λ))L(1, Ad(λ)) = 2k+1C−1

∫

Γ0(C)\H

|f |2yk−1dxdy,

where f =
∑∞

n=1 λ(T (n))qn ∈ Sk+1(Γ0(C), χ) and z = x + iy ∈ H. If C = 1, we
have the following functional equation:

Γ(s, Ad(λ))L(s, Ad(λ)) = Γ(1− s, Ad(λ))L(1 − s, Ad(λ)).
Proof. We consider L(s− k, ρλ ⊗ ρ̃λ) for the Galois representation associated to λ.
Since ρλ ⊗ ρ̃λ = 1⊕Ad(ρλ), we have

(5.1) L(s, ρλ ⊗ ρ̃λ) = L(s, Ad(λ))ζ(s)

for the Riemann zeta function ζ(s). Then, the Rankin-convolution method tells us
(cf. [LFE] Theorem 9.4.1) that

22−s

∏

p|C
(1− 1

ps−k
)


ΓC(s)L(s−k, ρλ⊗ρ̃λ) =

∫

Γ0(C)\H

|f |2E′
0,C(s−k, 1)y−2dxdy,

where E′
0(s, 1) is the Eisenstein series of level C for the trivial character 1 defined

in [LFE] page 297. Since the Eisenstein series is slowly increasing and f is rapidly
decreasing, the integral converges absolutely on the whole complex s-plane outside
the singularity of the Eisenstein series. The Eisenstein series has a simple pole at
s = 1 with constant residue: π

∏
p|C(1− 1

p ), which yields

Ress=k+1





22−s

∏

p|C
(1− 1

ps−k
)


 ΓC(s)L(s − k, ρλ ⊗ ρ̃λ)




= π
∏

p|C
(1− 1

p
)

∫

Γ0(C)\H

|f |2y−2dxdy.

This combined with (5.1) yields the residue formula and analytic continuation of
L(s, Ad(λ)) over the region of Re(s) ≥ 1. Since ΓC(s)E′

0,C(s, 1) satisfies a functional

equation of the form s 7→ 1−s (see [LFE] Theorem 9.3.1), we have the meromorphic
continuation of ΓC(s)ΓC(s−k)L(s−k, ρλ⊗ρ̃λ). Dividing the above zeta function by
ΓR(s− k)ζ(s− k), we get the L-function Γ(s− k, Ad(λ))L(s− k, Ad(λ)), and hence
meromorphic continuation of Γ(s, Ad(λ))L(s, Ad(λ)) to the whole s-plane and its
holomorphy around s = 1.

When C = 1, the functional equation of the Eisenstein series is particularly
simple:

ΓC(s)E0,1(s, 1) = 21−2sΓC(1− s)E0,1(1− s, 1),
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which combined with the functional equation of the Riemann zeta function (e.g.
[LFE] Theorem 2.3.2 and Corollary 8.6.1) yields the functional equation of the
adjoint L-function L(s, Ad(λ)). �

5.2. Integrality of adjoint L-values. By the explicit form of the Gamma factor,
Γ(s, Ad(λ)) is finite at s = 0, 1, and hence L(1, Ad(λ)) is a critical value in the
sense of Deligne and Shimura, as long as L(s, Ad(λ)) is finite at these points. Thus
we expect the L-value divided by a period of the λ-eigenform to be algebraic.
This fact was first shown by Sturm (see [St80] and [St89]) by using Shimura’s
integral expression (in [Sh75]). Here we shall describe the integrality of the value,
following [H81a] and [H88a]. This approach is different from Sturm. Then we
shall relate in the following subsection, as an application of the “R = T” theorem
Theorem 4.3, the size of the module Sel(Ad(ρλ)) and the p-primary part of the

critical value Γ(1,Ad(λ))L(1,Ad(λ))
Ω(+,λ;A)Ω(−,λ;A) . Since our argument can be substantially simplified

if p - |(Z/CZ)×| = ϕ(C), we simply assume this condition hereafter.

Consider the defining inclusion I : SL2(Z) ↪→ AutC(C2) = GL2(C). Let us
take the nth symmetric tensor representation Isym⊗n whose module twisted by the
action of χ, we write as L(n, χ; C). Recall the Eichler-Shimura isomorphism,

(5.2) δ : Sk+1(Γ0(C), χ)⊕ Sk+1(Γ0(C), χ) ∼= H1
cusp(Γ0(C), L(n, χ; C)),

where k = n + 1, Sk+1(Γ0(C), χ) is the space of anti-holomorphic cusp forms of
weight k + 1 of “Neben” type character χ, and

H1
cusp(Γ0(C), L(n, χ; C)) ⊂ H1(Γ0(C), L(n, χ; C))

is the cuspidal cohomology groups defined in [IAT] Chapter 8 (see also [LFE] Chap-
ter 6 under the formulation close to this chapter; in these books H1

cusp is written

actually as H1
P and is called the parabolic cohomology group).

The periods Ω(±, λ;A) measure the difference of two rational structure coming
from algebro-geometric space Sk+1,χ/Z[χ] and topologically defined

H1
cusp(Γ0(C), L(n, χ; Z[χ]))∼= H1

cusp(X0(C),L(n, χ; Z[χ]))

(for the Z[χ]-rational symmetric tensors L(n, χ; Z[χ]) and the associated sheaf
L(n, χ; Z[χ]) on the modular curve X0(C)) connected by Eishler-Shimura com-
parison map.

Since the isomorphism classes over Q of Isym⊗n can have several classes over
Z, we need to have an explicit construction of the Γ0(C)-module L(n, χ; Z[χ]). To
do the construction, let A be a Z[χ]-algebra. Here is a more concrete definition of
SL2(Z)-module as the space of homogeneous polynomial in (X, Y ) of degree n with
coefficients in A. We let γ =

(
a b
c d

)
∈M2(Z)∩GL2(Q) act on P (X, Y ) ∈ L(n, χ;A)

by

(γP )(X, Y ) = χ(d)P ((X, Y )tγι),

where γι = (det γ)γ−1 . The cuspidal cohomology group H1
cusp(Γ0(C), L(n, χ;A))

is defined in [IAT] Chapter 8 and [LFE] Chapter 6 as the image of compactly
supported cohomology group of the sheaf associated to L(n, χ;A), whose definition
we recall later in this subsection.
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The Eichler-Shimura map in (5.2) δ is specified in [LFE] as follows: We put

ω(f) =

{
f(z)(X − zY )ndz if f ∈ Sk(Γ0(C), χ),

f(z)(X − zY )ndz if f ∈ Sk(Γ0(C), χ).

Then we associate to f the cohomology class of the 1-cocycle γ 7→
∫ γ(z)
z

ω(f) of
Γ0(C) for a fixed point z on the upper half complex plane. The map δ does not
depend on the choice of z.

Let us prepare preliminary facts for the definition of cuspidal cohomology groups.
Let Γ = ΓC = Γ(3) ∩ Γ0(C) for Γ(3) = {γ ∈ SL2(Z)|γ ≡ 1 mod 3}. The good
point of ΓC is that it acts on H freely without fixed point. To see this, let Γz be the
stabilizer of z ∈ H in Γ. Since the stabilizer of z in SL2(R) is a maximal compact
subgroup Cz of SL2(R), Γz = Γ ∩Cz is compact-discrete and hence is finite. Thus
if Γ is torsion-free, it acts freely on H. Pick a torsion-element γ ∈ Γ. Then two
eigenvalues ζ and ζ of γ are roots of unity complex conjugate each other. Since
Γ cannot contain −1, ζ 6∈ R. Thus if γ 6= 1, we have −2 < Tr(γ) = ζ + ζ < 2.
Since γ ≡ 1 mod 3, Tr(γ) ≡ 2 mod 3, which implies Tr(γ) = −1. Thus γ satisfies
γ2 + γ + 1 = 0 and hence γ3 = 1. Thus Z[γ] ∼= Z[ω] for a primitive cubic root ω.
Since 3 ramifies in Z[ω], Z[ω]/3Z[ω] has a unique maximal ideal m with m2 = 0.
The ideal m is principal and is generated by ω. Thus the matrix (γ − 1 mod 3)
corresponds (ω − 1 mod 3), which is non-zero nilpotent. This γ − 1 mod 3 is
non-zero nilpotent, showing γ 6∈ Γ(3), a contradiction.

By the above argument, the fundamental group of Y = ΓC\H is isomorphic
to ΓC . Then we may consider the locally constant sheaf L(n, χ;A) of sections
associated to the following covering:

X = ΓC\(H× L(n, χ;A)) � Y via (z, P ) 7→ z.

Since ΓC acts on H without fixed point, the space X is locally isomorphic to Y ,
and hence L(n, χ;A) is a well defined locally constant sheaf. In this setting, there
is a canonical isomorphism (see [LFE] Appendix Theorem 1 and Proposition 4):

H1(ΓC , L(n, χ;A)) ∼= H1(Y,L(n, χ;A)).

Note that Γ0(C)/ΓC is a finite group whose order is a factor of 24. Thus as long
as 6 is invertible in A, we have

(5.3) H0(Γ0(C)/ΓC, H
1(ΓC , L(n, χ;A))) = H1(Γ0(C), L(n, χ;A)).

As long as 6 is invertible inA, all perfectness of Poincaré duality for smooth quotient
ΓC\H descends over A to H1(Γ0(C), L(n, χ;A)); so, we pretend as if X0(C) is
smooth hereafter, as we always assume that 6 is invertible in A.

For simplicity, we write Γ for Γ0(C) and Y = Y0(C) := Γ0(C)\H. Let S =
Γ\P1(Q) ∼= Γ\SL2(Z)/Γ∞ for Γ∞ = {γ ∈ SL2(Z)|γ(∞) = ∞}. Thus S is the
set of cusps of Y . We can take a neighborhood of ∞ in Y isomorphic to the
cylinder C/Z. Since we have a neighborhood of each cusp isomorphic to a given
neighborhood of∞, we can take an open neighborhood of each cusp of Y isomorphic
to the cylinder. We then compactify Y adding a circle at every cusp. We write Y
for the compactified space. Then

∂Y =
⊔

S

S1,
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and
Hq(∂Y ,L(n, χ;A)) ∼=

⊕

s∈S

Hq(Γs, L(n, χ;A)),

where Γs is the stabilizer in Γ of a cusp s ∈ P1(Q) representing an element in S.
Since Γs ∼= Z, Hq(∂Y ,L(n, χ;A)) = 0 if q > 1.

We have a commutative diagram whose horizontal arrows are given by the re-
striction maps:

H1(Y,L(n, χ;A))
res−−−−→ H1(∂Y ,L(n, χ;A))

o
y o

y

H1(Γ, L(n, χ;A))
res−−−−→ ⊕

s∈S H1(Γs, L(n, χ;A)).

We then define H1
cusp by the kernel of the restriction map.

We have the boundary exact sequence (cf. [LFE] Appendix Corollary 2):

0→ H0(Y,L(n, χ;A))→ H0(∂Y ,L(n, χ;A))→ H1
c (Y,L(n, χ;A))

π−→ H1(Y,L(n, χ;A))→ H1(∂Y ,L(n, χ;A))→ H2
c (Y,L(n, χ;A))→ 0.

Here H1
c is the sheaf cohomology group with compact support, and the map π send

each compactly supported cohomology class to its usual cohomology class. Thus
H1
cusp is equal to the image of π, made of cohomology classes rapidly decreasing

towards cusps (when A = C). We also have (cf. [LFE] Chapter 6 and Appendix)

(5.4) H2
c (Y,L(n, χ;A)) ∼= L(n, χ;A)/

∑

γ∈Γ

(γ − 1)L(n, χ;A) (so, H2
c (Y, A) = A),

H0
c (Y,L(n, χ;A)) = 0 and H0(Y,L(n, χ;A)) = H0(Γ, L(n, χ;A)).

When A = C, the isomorphism H2
c (Y,C) ∼= C is given by [ω] 7→

∫
Y
ω, where ω

is a compactly supported 1-form representing the cohomology class [ω] (de Rham
theory; cf. [LFE] Appendix Proposition 6).

Suppose that n! is invertible in A. Then the
(
n
j

)−1 ∈ A for binomial symbols(
n
j

)
. We can then define a pairing [ , ] : L(n, χ;A)× L(n, χ−1;A)→ A by

(5.5) [
∑

j

ajX
n−jY j,

∑

j

bjX
n−jY j] =

n∑

j=0

(−1)j
(
n

j

)−1

ajbn−j.

By definition, [(X − zY )n, (X − zY )n] = (z − z)n. It is an easy exercise to check
that [γP, γQ] = det γn [P,Q] for γ ∈ GL2(A). Thus we have a Γ-homomorphism
L(n, χ;A)⊗A L(n, χ−1;A)→ A, and we get the cup product pairing

[ , ] : H1
c (Y,L(n, χ;A))×H1(Y,L(n, χ−1;A)) −→ H2

c (Y, A) ∼= A.

This pairing induces the cuspidal pairing

(5.6) [ , ] : H1
cusp(Y,L(n, χ;A))×H1

cusp(Y,L(n, χ−1;A)) −→ A.

By (5.3), we identify H1
cusp(Γ0(C), L(n, χ;A)) as a subspace of H1

cusp(Y,L(n, χ;A))

and write [ , ] for the pairing induced on H1
cusp(Γ0(C),L(n, χ;A)) by the above

pairing of H1
cusp(Y,L(n, χ;A)).

There are three natural operators acting on the cohomology group (cf. [LFE]
6.3): one is the action of Hecke operators T (n) on H1

cusp(Γ0(C), L(n, χ;A)), and
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the second is an involution τ induced by the action of τ =
(

0 −1
C 0

)
, and the third

is is an action of complex conjugation c given by cω(z) = eω(−z) for e =
(−1 0

0 1

)

and a differential form ω. In particular, δ and c commute with T (n). We write
H1
cusp(Γ0(C), L(n, χ;A))[±] for the ±-eigenspace of c. Then it is known ([IAT] or

[LFE] (11) in Section 6.3) thatH1
cusp(Γ0(C), L(n, χ; Q(λ)))[±] is hκ(C, χ; Q(λ))-free

of rank 1. Supposing that A contains the eigenvalues λ(T (n)) for all n, we write
H1
cusp(Γ0(C), L(n, χ;A))[λ,±] for the λ-eigenspace under T (n).

The action of τ =
(

0 −1
C 0

)
defines a quasi-involution on the cohomology

τ : H1
cusp(Γ0(C), L(n, χ;A))→ H1

cusp(Γ0(C), L(n, χ−1;A)),

which is given by u 7→ {γ 7→ τu(τγτ−1)} for each homogeneous 1-cocycle u. The
cocycle u|τ has values in L(n, χ−1;A) because conjugation by τ interchanges the
diagonal entries of γ. We have τ2 = (−C)n and [x|τ, y] = [x, y|τ ]. Then we modify
the above pairing [ , ] by τ and define 〈x, y〉 = [x, y|τ ] ([LFE] 6.3 (6)). As described
in [IAT] Chapter 8 and [LFE] Chapter 6, we have a natural action of Hecke operators
T (n) on H1

cusp(Γ0(C), L(n, χ;A)). The operator T (n) is symmetric with respect to
this pairing:

(5.7) 〈x|T (n), y〉 = 〈x, y|T (n)〉.

We now regard λ : hk,χ/Z[χ] → C as actually having values in W ∩ Q (via the

fixed embedding: Q ↪→ Qp). Put A = W ∩ Q(λ). Then A is a valuation ring of

Q(λ) of residual characteristic p. Thus for the image L of H1
cusp(Γ0(C), L(n, χ;A))

in H1
cusp(Γ0(C), L(n, χ; Q(λ))),

H1
cusp(Γ0(C), L(n, χ; Q(λ)))[λ,±] ∩ L = Aξ±

for a generator ξ±. Then for the normalized eigenform f ∈ Sκ(Γ0(C), χ) with
T (n)f = λ(T (n))f , we define Ω(±, λ;A) ∈ C× by

δ(f) ± c(δ(f)) = Ω(±, λ;A)ξ±.

The above definition of the period Ω(±, λ;A) can be generalized to the Hilbert
modular case as in [H94].

We now compute

〈Ω(+, λ;A)ξ+,Ω(−, λ;A)ξ−〉 = Ω(+, λ;A)Ω(−, λ;A)〈ξ+, ξ−〉.

Note that δ(f)|τ = W (λ)(−1)nC(n/2)δ(fc), where fc =
∑∞

m=1 λ(T (m))qm and
f |τ = W (λ)fc for and W (λ) ∈ C with |W (λ)| = 1. By definition, we have

2Ω(+, λ;A)Ω(−, λ;A)〈ξ+, ξ−〉 = [δ(f) + cδ(f), (δ(f) − cδ(f))|τ ],
which is equal to, up to sign,

(5.8) 4i

∫

Y0(C)

[δ(f)|τ, cδ(f)]dx ∧ dy = 2k+1ikW (λ)C((k−1)/2

∫

Y0(C)

|fc|2yk−1dxdy

= 2k+1ikW (λ)C(k−1)/2

∫

Y0(C)

|f |2yk−1dxdy

= ikW (λ)C(k+1)/2Γ(1, Ad(λ))L(1, Ad(λ)),

where Y0(C) = Γ0(C)\H. This shows
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Theorem 5.2. Let χ be a character of conductor C. Let λ : hk(Γ0(C), χ; Z[χ])→ Q
(k ≥ 1) be a Z[χ]-algebra homomorphism. Then for a valuation ring A of Q(λ), we
have, up to sign,

ikW (λ)C(k+1)/2Γ(1, Ad(λ))L(1, Ad(λ))

Ω(+, λ;A)Ω(−, λ;A)
= 〈ξ+, ξ−〉 ∈ Q(λ).

Moreover we have 〈ξ+, ξ−〉 ∈ n!−1 · A if p - ϕ(C) with p > 3.

The proof of rationality of the adjoint L-values as above can be generalized to
even non-critical values L(1, Ad(λ) ⊗ α) for quadratic Dirichlet characters α (see
[H99]).

If one insists on p-ordinarity: λ(T (p)) ∈ A× for the residual characteristic p ≥ 5
of A, we can show that 〈ξ+, ξ−〉 ∈ A. This follows from the perfectness of the
duality pairing 〈 , 〉 on the p-ordinary cohomology groups defined below even if n!
is not invertible in A (see Theorem 5.4 in the text and [H88a]).

Let W be the completion of the valuation ring A. Let Tk = T/(t − γk)T be
the local ring of hk(Γ0(C), χ;W ) through which λ factor through. Let 1k be the
idempotent of Tk in the Hecke algebra. Since the conductor of χ coincides with
C, hk(Γ0(C), χ;W ) is reduced (see [MFM, Theorem 4.6.8]). Thus for the quotient
field K of W , the unique local ring IK of hk(Γ0(C), χ;K) through which λ factors
is isomorphic to K. Let 1λ be the idempotent of IK in hk(Γ0(C), χ;K). Then we
have the following important corollary.

Corollary 5.3. Let the assumption be as in Theorem 5.2. Assume that p - ϕ(C).
Let A be a valuation ring of residual characteristic p > 3. Suppose that 〈 , 〉 induces
a perfect duality on 1kH

1
cusp(Γ0(C), L(n, χ;W )) for k = n+ 1. Then

∣∣∣∣
ik+1W (λ)Ck/2Γ(1, Ad(λ))L(1, Ad(λ))

Ω(+, λ;A)Ω(−, λ;A)

∣∣∣∣
−r(W)

p

= |Lλ/Lλ|,

where r(W ) = rankZp W , Lλ = 1λL for the image L of H1
cusp(Γ0(C), L(n, χ;W ))[+]

in the cohomology H1
cusp(Γ0(C), L(n, χ;K))[+], and Lλ is given by the intersection

Lλ ∩ L in H1
cusp(Γ0(C), L(n, χ;K))[+].

Writing 1k = 1λ + 1′λ and defining ⊥Lλ = 1′λL with ⊥Lλ = ⊥Lλ ∩ L, we have
⊥Lλ/⊥Lλ ∼= 1kL/(Lλ ⊕ ⊥Lλ) ∼= Lλ/Lλ as modules over Tk. If Lλ/Lλ 6= 0 (i.e.,
the L-value is divisible by mW ), by the argument proving Proposition 2.3 applied
to (Lλ,

⊥Lλ, 1kL) in place of (a, b, R), we conclude the existence of an algebra
homomorphism λ′ : Tk → Qp factoring through the complementary factor 1′λTk
such that λ ≡ λ′ mod p for the maximal ideal p above mW in the integral closure
of W in Qp. In this way, the congruence criterion of [H81a] was proven.

Proof. By our choice, ξ+ is the generator of Lλ. Similarly we define Mλ = 1λM for
the image M of H1

cusp(Γ0(C), L(n, χ;W ))[−] in H1
cusp(Γ0(C), L(n, χ;K))[−], and

Mλ = Mλ ∩ M in H1
cusp(Γ0(C), L(n, χ;K))[−]. Then ξ− is a generator of Mλ.

Since the pairing is perfect, Lλ ∼= HomW (Mλ,W ) and Lλ ∼= HomW (Mλ,W ) under
〈 , 〉. Then it is an easy exercise to see that |〈ξ+, ξ−〉|−1

p = |Lλ/Lλ|. �

As for the assumption of the perfect duality, we quote the following slightly
technical result from [H81a] and [H88a, Section 3]:
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Theorem 5.4. Let the notation and assumption be as in Theorem 5.2. Suppose
p > 3. If either λ(T (p)) ∈ A× or 1

n! ∈ A, then

(1) 1kH
1
cusp(Γ0(C), L(n, χ;W )) is W -free;

(2) the pairing 〈 , 〉 induces a perfect duality on 1kH
1
cusp(Γ0(C), L(n, χ;W )).

What is really proven in [H88a, Section 3] is the W -freeness and the perfect
self-duality of H1

cusp(Γ1(C), L(n;W )). Thus if C = 1, the theorem follows from
this result. If C > 1 and p - ϕ(C), we have an orthogonal decomposition (from the
inflation-restriction sequence):

H1
cusp(Γ1(C), L(n;W )) ∼=

⊕

χ

H1
cusp(Γ0(C), L(n, χ;W )),

and thus the theorem follows from [H88a, Theorem 3.1]. If the reader scruti-
nizes the argument in [H88a, Section 3], replacing (Γ1(Np

r), L(n;W )) there by
(Γ0(C), L(n, χ;W )) here, he or she will find that the above theorem holds without
assuming p - ϕ(C) (but we need p > 3 if Γ0(C)/{±1} has non-trivial torsion).

5.3. Congruence and adjoint L-values. Here we study a non-abelian adjoint
version of the analytic class number formula, which follows from the theorem of
Taylor-Wiles (Theorem 4.3) and some earlier work of the author (presented in the
previous subsection). Actually, long before the formula was established, Doi and
the author had found an intricate relation between congruence of modular forms
and the adjoint L-value (see the introduction of [DHI98]), and later via the work of
Taylor–Wiles, it was formulated in a more precise form we discuss here. In [W95],
Wiles applied Taylor–Wiles system argument to 1TQH

1(Γ0(C)∩ΓQ,W ) for varying
Q and obtained Theorem 4.3. Here ΓQ := Γ1(

∏
q∈Q q) for suitably chosen sets Q

of primes outside Cp, and TQ is the local ring of h1(Γ0(C)∩ΓQ, χ;W ) covering T1

note here k = 1). As a by-product of the Taylor-Wiles argument, we obtained the
local complete intersection property in Theorem 4.3 and in addition

11H
1(Γ0(C),W ) is a free T1-module.

As many followers of Taylor–Wiles did later, this can be applied to general k and
also one can replace 1TQH

1(Γ0(C)∩ΓQ,W ) by 1TQH
1(Γ0(C)∩ΓQ, L(n, χ;W )[±].

Then we obtain Theorem 4.3 as stated and further

Theorem 5.5. Let the notation and assumption be as in Theorem 4.3. Then
1TQH

1(Γ0(C), L(n, χ;W ))[±]∼= Tk as Tk-modules (k = n+ 1).

The assumption here is that ρ = ρλ mod mW is absolutely irreducible over

Gal(Q/Q[
√

(−1)(p−1)/2p]), ε 6= δ and λ(T (p)) ∈ A×. Actually, by a result of

Mazur, we do not need the irreducibility over Gal(Q/Q[
√

(−1)(p−1)/2p]) but irre-

ducibility just over Gal(Q/Q) is sufficient as explained in [MFG, §5.3.2]. However
at the end, we eventually need to assume stronger assumption of irreducibility over

Gal(Q/Q[
√

(−1)(p−1)/2p]) to use Theorem 3.5 to relate the L-value with |C1(λ;W )|
and the size of the Selmer group.

To relate the size |Lλ/Lλ| to the size of the congruence module |C0(λ;W )| for
λ : Tk � W , we apply the theory in §2.2. To compare with the notation in §2.2,
now we rewrite W as A forgetting about the dense subring W ∩Q denoted by A in
the previous subsection, and we write R = Tk, λ = φ : R → A = W and S for the
image of Tk in X, decomposing R⊗WK = K⊕X as algebra direct sum. Under the
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notation of Corollary 5.3, we get Lλ ⊗AW/Lλ ⊗AW ∼= Lλ/Lλ as hk(Γ0(C), χ;A)-
modules. Since on Lλ ⊗A W/Lλ ⊗A W , the Hecke algebra hk(Γ0(C), χ;A) acts
through λ, it acts through R. Thus multiplying 1k does not alter the identity
Lλ ⊗A W/Lλ ⊗AW ∼= Lλ/Lλ, and we get

1k(L
λ ⊗A W )/1k(Lλ ⊗A W ) ∼= Lλ/Lλ.

Fix an isomorphism of R-modules: 1kL ∼= R by Theorem 5.5. Then we have
1k(Lλ ⊗A W ) ∼= R ∩ (A ⊕ 0) = a in R ⊗A K and 1k(L

λ ⊗A W ) ∼= R. Thus
1k(L

λ ⊗A W )/1k(Lλ ⊗A W ) ∼= A/a ∼= C0(φ;A). In conclusion, we get

Theorem 5.6. Let the assumption be as in Theorem 4.1 and the notation be as in
Corollary 5.3. Then we have

∣∣∣∣
ik+1W (λ)Ck/2Γ(1, Ad(λ))L(1, Ad(λ))

Ω(+, λ;A)Ω(−, λ;A)

∣∣∣∣
−r(W)

p

=
∣∣|C0(λ;W )|

∣∣−1

p
=

∣∣|C1(λ;W )|
∣∣−1

p
.

The last identity follows from Theorem 4.3 and Theorem 3.5.

As already described, primes appearing in the discriminant of the Hecke algebra
gives congruence among algebra homomorphisms of the Hecke algebra into Q, which
are points in Spec(hk)(Q). For the even weights k = 26, 22, 20, 18, 16, 12, we have
dimC Sk(SL2(Z)) = 1, and the Hecke field hk⊗Z Q is just Q and hence the discrim-

inant is 1. As is well known from the time of Hecke that h24 ⊗Z Q = Q[
√

144169].
The square root of the value in the following table is practically the adjoint L-value
L(1, Ad(f)) for a Hecke eigenform f ∈ Sk(SL2(Z)) for the weight k in the table.
Here is a table by Y. Maeda of the discriminant of the Hecke algebra of weight k
for Sk(SL2(Z)) when dimSk(SL2(Z)) = 2:

Discriminant of Hecke algebras.
weight dim Discriminant

24 2 26
· 32

· 144169

28 2 26
· 36

· 131 · 139

30 2 212
· 32

· 51349

32 2 26
· 32

· 67 · 273067

34 2 28
· 34

· 479 · 4919

38 2 210
· 32

· 181 · 349 · 1009

A bigger table (computed by Maeda) can be found in [MFG, §5.3.3] and in [Ma14],
and a table of the defining equations of the Hecke fields is in [Ma14]. The au-
thor believes that by computing Hecke fields in the mid 1970’s, Maeda somehow
reached the now famous conjecture asserting irreducibility of the Hecke algebra of
S2k(SL2(Z)) (see [Ma14] and [HiM97]).

5.4. Adjoint non-abelian class number formula. Let λ◦ : hk(C, χ; Z[χ])→W
be a primitive Z[χ]-algebra homomorphism of conductor C with ρ = ρλ mod mW .
Suppose λ◦ is ordinary; so, χ = ψω−k. Define N to be the prime to p-part of C,
and write C = Npr+1 if p|C and otherwise, we put r = 1. Assume that conductor
of ψ is divisible by N . Combining all what we have done, by Theorem 3.12, we get
the following order formula of the Selmer group (compare with Theorem 3.4):

Theorem 5.7. Suppose p - 6ϕ(C) in addition to the assumption of Theorem 4.3
for ρ. Let λ : hk(Np

r+1 , χ;W ) → W be the algebra homomorphism equivalent to
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λ◦ with λ(U(p)) ∈ W×. We put A = Q(λ◦) ∩W . Take an element η(λ) ∈ A such
that A/η(λ) ∼= C0(λ

◦;A). Then we have

C(k+1)/2W (λ)Γ(1, Ad(λ))L(1, Ad(λ))

Ω1(+, λ;A)Ω1(−, λ;A)
= η(λ) up to A-units, and(CN1)

∣∣∣
C(k+1)/2W (λ)Γ(1, Ad(λ))L(1, Ad(λ))

Ω1(+, λ◦;A)Ω1(−, λ◦;A)

∣∣∣
−[W :Zp ]

p
= #(Sel(Ad(ρλ))/Q).(CN2)

The definition of the Selmer group can be also done through Fontaine’s theory
as was done by Bloch–Kato, and the above formula can be viewed as an example
of the Tamagawa number formula of Bloch and Kato for the motive M(Ad(ρλ))
(see [W95] p.466, [BK90] Section 5 and [F92]). The finiteness of the Bloch–Kato
Selmer groups Sel(Ad(ρλ)) for λ of weight 2 associated to an elliptic curve (un-
der some additional assumptions) was first proven by M. Flach [F92], and then
relating Bloch–Kato Selmer groups to Greenberg Selmer groups, he showed also
the finiteness of Greenberg Selmer groups. By adopting the definition of Bloch–
Kato, we can define the Selmer group Selcrys(Ad(ρλ)) when ρλ is associated to a
p-divisible Barsotti–Tate group and a crystalline modular motives at p over Zp, and
the formula (CN2) is valid even for the non-ordinary cases (see [DFG04]).

5.5. p-Adic adjoint L-functions. Assume the assumptions of Theorem 4.1. Then
(T, ρT) is universal among deformations of ρ under the notation of Theorem 4.1.

Let λ : T → Λ be a Λ-algebra homomorphism (so, Spec(Λ)
λ

∗

−−→ Spec(T) is an
irreducible component). Write ρλ = λ ◦ %ord. We thus have Sel(Ad(ρλ)). By
Theorem 3.12 (and Proposition 2.2 (ii)), we have, as Λ-modules,

(5.9) SelQ(Ad(ρλ))∨ ∼= Ker(λ)/Ker(λ)2 = C1(λ; Λ).

Thus SelQ(Ad(ρλ))∨ is a torsion Λ-module, and hence we have a characteristic
power series Φ(T ) ∈ Λ. We would like to construct a p-adic L-function Lp(T ) ∈ Λ
from the Hecke side such that Lp(T ) = Φ(T ) up to units in Λ.

Consider the algebra homomorphism π` : Λ→W given by Φ(T ) 7→ Φ(γ` − 1) ∈
W (γ = 1 + p). So we have P` = Ker(π`) = (t− γ`). After tensoring W via π`, we
get an W -algebra homomorphism

λ` : h`(p, ψω
−`;W ) � T/P`T→W.

Thus λ` is associated to a Hecke eigenform f`. We then have η` ∈ W such that
C0(λ`;W ) ∼= W/η`W and

W (λ◦` )C(λ◦` )
(`+1)/2Γ(1, Ad(λ`))L(1, Ad(λ`))

Ω(+, λ`;A`)Ω(−, λ`;A`)
= η`

up to units in W , where A` = Q(λ`) ∩W . We require to have

Lp(P`) = (Lp mod P`) = Lp(γ
` − 1) = η`

up to W -units for all ` ≥ 2.

Since T can be embedded into
∏
` h`,ψω−`/W , the reducedness of the Hecke al-

gebras hord` (p, ψω−`;W ) shows that T is reduced. Thus for the field of fractions Q
of Λ,

T⊗Λ Q ∼= L⊕X,
where the projection to L is λ⊗ id. We then define Cj(λ; Λ) as in §5.3.
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Again Theorem 3.5 tells us that the characteristic power series of C1(λ; Λ) and
C0(λ; Λ) coincide. Since C0(λ; Λ) ∼= T/T ∩ (Λ⊕ 0) in T⊗Λ Q, Λ-freeness of T tells
us that a := T ∩ (Λ⊕ 0) is principal generated by Lp ∈ Λ. Put T` = T/(t− γ`)T ⊂
h`,ψω−`/W . Let π` : Λ � Λ/(t − γ`) = W be the projection which is realized by

Φ(T ) 7→ Φ(γ` − 1). Since T` ∼= T ⊗Λ,π` W , we see easily from a diagram chasing
that

C0(λ,Λ)⊗Λ,π` W
∼= C0(λ`;W ).

This assures us Lp(P`) = η` up to W -units. The Iwasawa module C0(λ; Λ) was
first introduced in [H86a] to study behavior of congruence between modular forms
as one varies Hecke eigenforms f` associated to λ`. The fact that the characteristic
power series of C0(λ; Λ) interpolates p-adically the adjoint L-values was pointed
out in [H86a] (see also [H88a]). We record here what we have proven:

Corollary 5.8. Let the notation and the assumption be as in Theorem 5.7. Then
there exists 0 6= Lp(T ) ∈ Λ such that

(1) Lp(T ) gives a characteristic power series of SelQ(Ad(ρλ))∨;
(2) We have, for all ` ≥ 2,

Lp(P`) =
W (λ◦` )C(λ`)

(`+1)/2Γ(1, Ad(λ`))L(1, Ad(λ`))

Ω(+, λ`;A`)Ω(−, λ`;A`)
up to units in W , where C(λ`) is the conductor of λ`.

Though we presented the above corollary assuming Ĩ = I = Λ for simplicity, the

same method works well for Ĩ 6= Λ by Corollaries 4.4 and 4.5. We leave the reader
to formulate the general result.
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Progress in Math. 63 (1986), 131–163

[H88a] H. Hida, A p–adic measure attached to the zeta functions associated with two elliptic
modular forms II, Ann. l’institut Fourier 38 (1988), 1–83.

[H88b] H. Hida, Modules of congruence of Hecke algebras and L–functions associated with cusp
forms, Amer. J. Math. 110 (1988), 323–382.

[H90] H. Hida, p-adic L-functions for base change lifts of GL2 to GL3. Automorphic forms,
Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math. 11

(1990), 93–142.
[H94] H. Hida, On the critical values of L-functions of GL(2) and GL(2)×GL(2), Duke Math.

J. 74 (1994), 431–529.
[H99] H. Hida, Non-critical values of adjoint L-functions for SL(2), Proc. Symp. Pure Math.

66 (1999), Part I, 123–175.
[H06] H. Hida, Anticyclotomic main conjectures, Ducumenta Math. Volume Coates (2006),

465–532.
[H09] H. Hida, Quadratic exercises in Iwasawa theory, International Mathematics Research

Notices, Vol. 2009, Article ID rnn151, 41 pages, doi:10.1093/imrn/rnn151.
[H11] H. Hida, Constancy of adjoint L-invariant, Journal of Number Theory 131 (2011) 1331–

1346.
[H13a] H. Hida, Local indecomposability of Tate modules of non CM abelian varieties with real

multiplication, J. Amer. Math. Soc. 26 (2013), 853–877



ARITHMETIC OF ADJOINT L-VALUES 38

[H13b] H. Hida, Image of Λ-adic Galois representations modulo p, Invent. Math. 194 (2013),

1–40.
[HiM97] H. Hida and Y. Maeda, Non-abelian base-change for totally real fields, Special Issue of

Pacific J. Math. in memory of Olga Taussky Todd, 189–217, 1997.
[HiT94] H. Hida and J. Tilouine, On the anticyclotomic main conjecture for CM fields, Invent.

Math. 117 (1994), 89–147.
[Hs14] M.-L. Hsieh, Eisenstein congruence on unitary groups and Iwasawa main conjecture for

CM fields, J. Amer. Math. Soc. 27 (2014), 753–862
[K78] N. M. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297.

[L95] H. W. Lenstra, Complete intersections and Gorenstein rings, in [HKC] (1995), pp. 99–
109.

[M89] B. Mazur, Deforming Galois representations, in “Galois group over Q”, MSRI publica-
tions 16, (1989), 385–437

[Ma14] Y. Maeda, Maeda’s conjecture and related topics, preprint, 15 pages, to appear in RIMS
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