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We prepare a measure theory for p-adic analytic interpolation

of Dirichlet L-values. Let A be a subring of a field containing

Q. We first show that any function f : N → A can be written

uniquely

f(x) =
∞
∑

n=0

an(f)
(x

n

)

with
(x

n

)

=







x(x−1)···(x−n+1)
n! if n ≥ 1,

1 if n = 0,

(I)

for an(f) ∈ A, where

an(f) =
n

∑

i=0

(−1)k
(n

i

)

f(n− i)
i 7→n−i

=
n

∑

i=0

(−1)n−i
(n

i

)

f(i).

This is called an interpolation series expansion of f and is a finite

sum as
(

x
n

)

= 0 if n > x (i.e., f(x) =
∑x
n=0 an(f)

(

x
n

)

).



§4.0. Binomial polynomial.

To prove (I), we list some propertyies of the binomial polynomial.

If 0 < n ≤ m ∈ Z, we have
(

m
n

)

= m!
n!(m−n)!

is the binomial number;

so, an integer, and if n > m,
(

m
n

)

= 0 as the factor (x−m) shows

up in the numerator. Thus the right-hand-side of (I) is a finite

sum of m + 1 terms if x = m; so, the right-hand-side is well

defined. Note that
(

x
n

)

is an integer-valued polynomial over N.

We define a formal power series (1 + T)x ∈ Q[x][[T ]] by

(1 + T)x :=
∞
∑

n=0

(x

n

)

Tn.

For non-negative integer x, by the binomial theorem, we have

(1 + T)x ∈ Q[T ] gives the usual binomial expansion of degree x.

We specialize T to −1, then we have for k ∈ N and x ∈ N∩ [0, k],

x−k
∑

j=0

(−1)j
(x− k

j

)

= (1 − 1)x−k = δx,k (D)

for the Kronecker symbol δx,k.



§4.1. Interpolation series. Note

(j + k

k

)( x

j + k

)

=
(j + k)!x!

k!j!(j + k)!(x − j − k)!

=
x!(x − k)!

k!(x− k)!j!(x− k − j)!
=

(x

k

)(x− k

j

)

.

Write the right-hand-side of (I) as f∗ to prove f = f∗. Then

f∗(x) =
x

∑

n=0

an(f)
(x

n

)

=
x

∑

n=0





n
∑

k=0

(−1)n−k
(n

k

)

f(k)





(x

n

)

n−k 7→j
=

x
∑

k=0

f(k)
x−k
∑

j=0

(−1)j
(j + k

k

)( x

j + k

)

=
x

∑

k=0

f(k)
x−k
∑

j=0

(−1)j
(x

k

)(x− k

j

)

=
x

∑

k=0

f(k)
(x

k

)

x−k
∑

j=0

(−1)j
(x− k

j

)

=
x

∑

k=0

f(k)
(x

k

)

δk,x = f(x).



§4.2. Uniqueness of interpolation series expansion.

We prove bn = 0 for all n from an identity
∑∞
n=0 bn

(

x
n

)

= 0.

Towards a contradiction, we suppose {bn}n 6= 0 as a sequence.

Pick the smallest integerm such that bm 6= 0. Then
∑m−1
n=0 bn

(

x
n

)

=

0 for all integers x and
∑∞
n=m+1 bn

(

m
n

)

= 0; so, bm = bm
(

m
m

)

=
∑∞
n=0

(

m
n

)

= 0, a contradiction.

We have proven

Proposition 1. Let A be an integral domain. For any function

f : N → A, we have a unique interpolation series expansion

f(x) =
∞
∑

n=0

an(f)
(x

n

)

,

where an(f) =
∑n
i=0(−1)k

(

n
i

)

f(n− i)
i 7→n−i

=
∑n
i=0(−1)n−i

(

n
i

)

f(i).



§4.3. p-Adic interpolation series. Let W be a discrete val-

uation ring containing Zp with rankZp
W < ∞. Write | · |p for

the absolute value of W and extend it to the field of fractions

K := Frac(W ). Let A be a closed subring of K. For each func-

tion f : Zp → A, we can restrict f to N ⊂ Zp and define an(f) as

in the above proposition. Here is a theorem of Mahler

Theorem 1 (K. Mahler, 1958). Let the notation be as above.

For a function f : Zp → A, we have

(1) an(f) ∈ A;

(2) f is continuous if and only if limn→∞ an(f) = 0 under | · |p;

(3) If f is continuous, the interpolation series
∑∞
n=0 an(f)

(

x
n

)

converges to f(x) for all x ∈ Zp.



§4.4. Reduction to the case A = W .

Suppose limn→∞ an(f) = 0; so, |an(f)|p is bounded by pn for

some n ≥ 0. If f is continuous, by compacity of Zp, |f |p is

bounded by some pn. Replacing f by pnf for n large, we may

and do assume that A = W .

The series
∑∞
n=0 an(f)

(

x
n

)

converges uniformly; so, continuous,

and the value on N coincide with f ; so, by density of N in Zp,

f =
∑∞
n=0 an(f)

(

x
n

)

all over. Thus we need to prove one direction

of (2):

lim
n→∞

an(f) = 0 if f is continuous.

We use valid interpolation expansion for x ∈ N; so, hereafter

x, y ∈ N until the end of the proof.



§4.5. Topological ingredients and a distribution formula.

We list the topologically properties we use
• Any continuous functions f : D → W on a compact set is uni-
formly continuous.
• The p-adic integer ring is compact (this follows from the em-
bedding Zp ↪→

∏

nZ/pnZ sending each p-adic expansion
∑∞
n=0 anp

n

to (
∑m
n=0 anp

n)m is continuous and product of finite set is con-
tinuous under the product topology).
• x 7→

(

x
n

)

is a function from Zp → Zp. We know that
(

x
n

)

is
continuous as it is a polynomial and has values in N on N. Then
this fact follows from the following commutative diagram:

N
⊂

−−−−→
dense

Zp

(xn)







y







y

(xn)

N
⊂

−−−−→
dense

Zp

.

Take y ∈ N. By comparing the coefficients of (1+T)x(1+T)y =
(1 + T)x+y, we get a “x and y” distribution formula
(D)

(

x+y
m

)

=
∑m
n=0

(

x
n

)(

y
m−n

)

.



§4.6. Summation interchange. Let fy(x) := f(x+ y). Then

an(fy) =
∑n
k=0(−1)n−k

(

n
k

)

f(k + y). Then the sum of interpola-

tion series runs over m ∈ [0, x+ y], n ∈ [0, x] and m− n ∈ [0, y]:

∞
∑

n=0

an(fy)
(x

n

)

= fy(x) = f(x+ y) =
x+y
∑

m=0

am(f)
(x+ y

m

)

(D)
=

x+y
∑

m=0

am(f)
m
∑

n=0

(x

n

)( y

m− n

) (∗)
=

∞
∑

m=0

am(f)
∞
∑

n=0

(x

n

)( y

m− n

)

(∗∗)
=

∞
∑

n=0

(x

n

)

∞
∑

m=n
am(f)

( y

m− n

) m−n7→k
=

∞
∑

n=0





∞
∑

k=0

an+k(f)
(y

k

)





(x

n

)

.

(C)

Here at (∗), we may think n runs from 0 to ∞ as we have
(

x
n

)

= 0 if n > x, and similarly, we can run m to ∞ as x+ y ≥ y

and
(

y
m−n

)

= 0 if m−n ≥ y. We can interchange the sum at (∗∗)

as they are anyway finite summations and the sum for m starts

with m = n (by m− n ∈ [0, y]).



§4.7. Manipulation of coefficients.

Comparing the coefficient of
(

x
n

)

of the two boxed sides of (C),

we get

∞
∑

k=0

an+k(f)
(y

k

)

= an(fy) =
n

∑

k=0

(−1)n−k
(n

k

)

f(k+ y)

Let y = pt. Then we bring the term for k < y = pt to the RHS

(right-hand-side) and get (the boxed terms are equal)

an+pt(f) = −an(f)−
pt−1
∑

k=1

an+k(f)
(pt

k

)

+
n

∑

k=0

(−1)n−k
(n

k

)

f(k+ pt) .

Since an(f) =
∑n
k=0(−1)n−k

(

n
k

)

f(k), the above formula produces

an+pt(f) = −
pt−1
∑

k=1

an+k(f)
(pt

k

)

+
n

∑

k=0

(−1)n−k
(n

k

)

(f(k+pt)−f(k)).



§4.8. Use of uniform continuity. Suppose f is continuous.

Compactness of Zp tells us that f is uniformly continuous: for

any given ε = p−s (s large), we have t = t(s) > 0 such that

|(k+ pt)− k|p ≤ p−t(s) ⇒ |f(k+ pt)− f(k)|p < p−s. Since

∣

∣

∣

∣

(

pt

k

)

∣

∣

∣

∣

p
≤

p−1 and | · |p is non-Archimedean, we have

|an+pt(f)|p ≤ max(p−1|an+1(f)|p, . . . , p
−1|an+pt−1(f)|p, p

−s).

Since |an(f)|p ≤ 1, we find if n ≥ pt(1) |an(f)|p ≤ p−1. Then

|a
n+pt(2)(f)| ≤ p−2 or equivalently, |an(f)|p ≤ p−2 if n ≥ pt(1) +

pt(2), and repeating this process, inductively we get

|an(f)|p ≤ p−m if n ≥ pt(1) + pt(2) + · · · + pt(m).

Thus we get the desired limit formula: limn→∞ an(f) = 0.

Exercise: Suppose A = Qp and f is continuous. Use compacity

of Zp, prove that there exists 0 < α ∈ Z such that pαf has values

in W , and using this fact, prove limn→∞ an(f) = 0.



§4.9. Space of continuous functions f : Zp → A.

Let C(Zp, A) be the space of all continuous functions f : Zp → A.

Then f has unique interpolation series expansion

f(x) =
∞
∑

n=0

an(f)
(x

n

)

with an(f) ∈ A. Define the norm of f by |f |p := supx∈Zp
|f(x)|p.

Plainly | · |p is a norm satisfying |f + g|p ≤ max(|f |p, |g|p), |αf |p =

|α|p|f |p (α ∈ A) and |f |p = 0 ⇔ f = 0.

Corollary 1. We have |f |p = supn |an(f)|p

Proof. Note |an(f)|p = |
∑n
k=0(−1)n−k

(

n
k

)

f(k)|p ≤ maxk |f(k)|p ≤

|f |p, which shows supn |an(f)|p ≤ |f |p. On the other hand, we

have

|f |p = | lim
N→∞

N
∑

n=0

an(f)
(x

n

)

|p = lim
N→∞

|
N
∑

n=0

an(f)
(x

n

)

|p ≤ sup
n

|an(f)|p

as desired.



§4.10. Space of p-adic measure on Zp.

Since uniform convergence preserves continuity, the space C(Zp, A)

is a Banach A-module (i.e., complete uner | · |p). We write

M(Zp, A) for the space of A-linear functional ϕ : C(Zp, A) → A

such that |ϕ(f)|p ≤ B|f |p for a constant B > 0 independent of f .

We often write
∫

Zp
fdϕ := ϕ(f). If A = W , then B can be taken

to be 1. We define

|ϕ|p = sup
06=f∈C(Zp,A)

|ϕ(f)|p

|f |p

(∗)
= sup

f∈C(Zp,A),|f |p=1
|ϕ(f)|p.

Exercise: Why the identity (∗) holds? Prove |ϕ+ϕ′|p ≤ max(|ϕ|p, |ϕ′|p),

|αϕ|p = |α|p|ϕ|p for α ∈ A and |ϕ|p = 0 ⇔ ϕ = 0.

If limn→∞ ϕn = ϕ under the above norm, we have |ϕ|p = limn→∞ |ϕn|

and |ϕm(f) − ϕn(f)|p ≤ |ϕm − ϕn|p|f |p, and hence {ϕn(f)}n is

a Cauchy sequence. Thus we define ϕ(f) := limn→∞ϕn(f).

Therefore |ϕ(f)|p = limn→∞ |ϕn(f)|p ≤ limn→∞ |ϕn|p|f |p = |ϕ|p|f |p.

Thus ϕ ∈M(Zp, A), and M(Zp, A) is a Banach A-module.



§4.11. Moment determines a measure.

Theorem 2.For a given sequence {bn ∈ A}n with bounded norm,

there is a unique measure ϕ ∈ M(Zp, A) satisfying
∫

(

x
n

)

dϕ = bn

and |ϕ|p = supn |bn|p such that if f =
∑∞
n=0 an(f)

(

x
n

)

∈ C(Zp, A),

we have
∫

fdϕ =
∑∞
n=0 bnan(f). All element ϕ in M(Zp, A) is

obtained this way.

Proof. Since limn→∞ an(f) = 0 and |bn| ≤ B for all n,
∑∞
n=0 bnan(f)

converges, giving an A-linera map ϕ : C(Zp, A) → A. Note

|
∞
∑

n=0

bnan(f)| = sup
n

|bn|p|an(f)|p ≤ B
∑

n
|an(f)|p = B|f |p.

So ϕ ∈M(Zp, A). Taking B := supn |bn|p, we find |ϕ|p ≤ B. Since

|
∫

(

x
n

)

dϕ|p = |bn|p and |
(

x
n

)

|p = 1, we find B = |ϕ|p. Since f has

unique interpolation series expansion, every measure is given by

the above way.



§4.12. Corollary. {
∫

xndϕ}n determines ϕ ∈M(Zp, A).

By definition, we have M(Zp, A) ⊂M(Zp,K). Since
(

x
n

)

=
∑n
j=0 ajx

j,

the sequence {
∫

xndϕ}n determines
∫

(

x
n

)

dϕ =
∑n
j=0 aj

∫

xjdϕ as an

element of K. Then the above theorem implies ϕ is uniquely de-

termined in M(Zp,K). Since M(Zp, A) is a subspace of M(Zp,K),

we find ϕ is determined by {
∫

xndϕ}n ∈ AN.

Consider a formal expansion (1 + T)x =
∑∞
n=0

(

x
n

)

Tn. For each

ϕ ∈M(Zp,W ), we define

Φϕ(T) :=
∫

(1 + T)xdϕ =
∞
∑

n=0

∫

(x

n

)

dϕTn ∈W [[T ]].

By the above facts, this gives an isomorphism

Φ : M(Zp,W ) ∼= W [[T ]].



§4.13. Ring structure of M(Zp,W ).

For two measures ϕ, ψ ∈ M(Zp, A), we define
∫

fd(ϕ ∗ ψ) :=
∫ ∫

f(x+ y)dϕ(x)dψ(y). Then

Φϕ∗ψ =

∫ ∫

(1 + T)x+ydϕ(x)dψ(y)

=
∫

(1 + T)xdϕ(x) ·
∫

(1 + T)ydψ(y) = Φϕ(T)Φψ(T).

Thus M(Zp,W ) with convolution product (ϕ,ψ) 7→ ϕ ∗ ψ is iso-

morphic to the power series ring W [[T ]]. Defining |
∑∞
n=0 anT

n| =
∑

n |an|p, W [[T ]] is a Banach W -module. The theorem in §4.10

tells us

Corollary 2. The isomorphism Φ : M(Zp,W ) ∼= W [[T ]] is an

isometry of normed rings.

Exercise: What is the multiplicative identity of the ring M(Zp,W )?


