Lecture note No.4 for Math 205a Fall 2019
p-Adic integration under a p-adic measure.
Haruzo Hida

We prepare a measure theory for p-adic analytic interpolation
of Dirichlet L-values. Let A be a subring of a field containing
Q. We first show that any function f : N — A can be written
uniquely

s T ~ x(x—1)-(x—n+1) if
flx)y =) an(f)(n) with (n) = { nl ifn>1,

(1)

for an(f) € A, where

an() = 3 COF() fn ) 2T Y 1 (") £,
=0 1=0

This is called an interpolation series expansion of f and is a finite
sum as <fr”;) =0ifn>x (i.e., f(x) = ,ﬁzoan(f)@)).



34.0. Binomial polynomial.
To prove (1), we list some propertyies of the binomial polynomial.

IfO<n<mé&€Z, we have <Z’Z) = n!(nTin)! is the binomial number;

so, an integer, and if n > m, <Z’Z) — 0 as the factor (z —m) shows

up in the numerator. Thus the right-hand-side of (I) is a finite
sum of m + 1 terms if x+ = m; so, the right-hand-side is well
defined. Note that <:Z) IS an integer-valued polynomial over N.
We define a formal power series (1 + T)% € Q[z][[T]] by

X x
14+T7T)" = T".
1+D":=3 ()
n=0
For non-negative integer z, by the binomial theorem, we have
(1 4+ T)* € Q[T] gives the usual binomial expansion of degree .
We specialize T to —1, then we have for k € N and z € NN [0, k],
r—k
x— k _
S D) =a -1 =0, (D)
j=0 J
for the Kronecker symbol 4, .



54.1. Interpolation series. Note

gtk T N (j + k)!z!
< k )<j—|—k>_k!j!(j—l—k)!(a:—j—k)!

. xl(x —k)! o\ x—k
_k!(a:—k)!j!(a;—k—j)!_<k)< j )

Write the right-hand-side of (I) as f* to prove f = f*. Then

F*(z) = Xxj an(f)<x) 7 {7( 1) H( )f(’f)} ( )

n=0 n=0

TS s S e T
—;ﬂmz(wm(f)

—k T

—Zﬂmpz (T = Y W () = f@).

7=0 J k=0



84.2. Uniqueness of interpolation series expansion.
We prove b, = 0 for all n from an identity > 52, bn@) = 0.

Towards a contradiction, we suppose {bn}n #= 0 as a sequence.
Pick the smallest integer m such that b,, # 0. Then Z?:_é bn<fr”;) =

O for all integers z and > °2 =1 bn< ) = 0; so, by = bm<$) =
> 0 <f'g) — 0, a contradiction. ]

We have proven
Proposition 1. Let A be an integral domain. For any function
f:N— A, we have a unique interpolation series expansion

@ =3 an(n(®)

n=0

’Ll—>n 1

where an(f) = S0 o(—1)F(7) f(n — i) "= S0 o (=177 £ ().



84.3. p-Adic interpolation series. Let W be a discrete val-
uation ring containing Zp with rankz W < oco. Write |- |, for
the absolute value of W and extend it to the field of fractions
K := Frac(W). Let A be a closed subring of K. For each func-
tion f:Z, — A, we can restrict f to N C Z, and define a,(f) as
in the above proposition. Here is a theorem of Mahler
Theorem 1 (K. Mahler, 1958). Let the notation be as above.
For a function f : Z, — A, we have

(1) an(f) €A,

(2) f is continuous if and only if limp—ococ an(f) = 0 under |- |p,
(3) If f is continuous, the interpolation series > > qan(f) <;”;)
converges to f(x) for all x € Zyp.



34.4. Reduction to the case A =W.

Suppose limp—coan(f) = 0; so, |an(f)|p is bounded by p™ for
some n > 0. If f is continuous, by compacity of Zp, |fl|p is
bounded by some p"™. Replacing f by p"f for n large, we may
and do assume that A =W.

The series Z%O:o an(f)@) converges uniformly; so, continuous,
and the value on N coincide with f; so, by density of N in Zp,
f=3"2gan(f) <fr”;) all over. Thus we need to prove one direction
of (2):

nh_)moo an(f) = 0 if f is continuous.

We use valid interpolation expansion for x € N; so, hereafter
x,y € N until the end of the proof.



34.5. Topological ingredients and a distribution formula.
We list the topologically properties we use

e Any continuous functions f: D — W on a compact set is uni-
formly continuous.

e The p-adic integer ring is compact (this follows from the em-
bedding Zp — [I,, Z/p"Z sending each p-adic expansion >, app”
to (I anp™)m is continuous and product of finite set is con-
tinuous under the product topology).

° T — <;”;) is a function from Z, — Z,. We know that Q‘Z) is
continuous as it is a polynomial and has values in N on N. Then

this fact follows from the following commutative diagram:

N < Zoy
dense
() ()
1 €
N < Zoy
dense

Take y € N. By comparing the coefficients of (14+T)*(1+4T)Y =
(14 T7)*+Y, we get a “z and y" distribution formula

(D) (") = Zhizo () ().



§4.6. Summation interchange. Let f,(z) := f(z +y). Then
an(fy) = Z:O(—l)”_"’@)f(k + v). Then the sum of interpola-
tion series runs over m € [0,z + y], n € [0,2] and m — n € [0, y]:

©.@) ZC_I_
> [0 |) = @ =16 +n = 3 and(* )
n—0 m=0
r+y moo. ) X Xz
©) S ann 350, ) ngoamm > (G

D05 w0, )" S (S () ()

n=0 Y m=n m—=mn n=0
(C)

Here at (%), we may think n runs from O to oo as we have
<f§) = 0 if n > z, and similarly, we can run m to co as z+y > y

and < Y ) =0 ifm—n >y. We can interchange the sum at (xx)

m—"n
as they are anyway finite summations and the sum for m starts

with m =n (by m —n € [0,y]).




84.7. Manipulation of coefficients.
Comparing the coefficient of <;”;) of the two boxed sides of (C),
we get

> ana (DY) =[ani)| = 3 D" () Gk + )

k=0 k=0
Let y = pt. Then we bring the term for k < y = p! to the RHS
(right-hand-side) and get (the boxed terms are equal)

pt—1 t n

an gyt (1) = —an(f) = 3 angi(D(} )+ 2 D)+ D |
k=1 k=0

Since an(f) = > 7 _o(—1)"" ’“( )f(k) the above formula produces

t

Gt () = = Z an+1(N(, )+z( 1) () G Ge+p") = F(R)).



34.8. Use of uniform continuity. Suppose f is continuous.
Compactness of Z, tells us that f is uniformly continuous: for
any given ¢ = p~ % (s large), we have t = t(s) > 0 such that

t
I(k+pY) — K|p < p 1) = |f(k 4+ pt) — F(k)|p < p~*. Since |<€€)| <
p
p~ 1 and | - |p IS non-Archimedean, we have

a4t (Plp < Max(® Nan1(Hlps -0~ Har 1 (PDlpsp™®).

Since |an(f)lp < 1, we find if n > pt(l) lan(f)lp < p~ 1. Then
a, 412 (] < p~2 or equivalently, |an(f)lp < p2 if n > pill) 4
pt(z), and repeating this process, inductively we get

an(Plp <p™™ if n > pl) 4 pH2) o ptm),

Thus we get the desired limit formula: limy, oo an(f) = 0. [ ]
Exercise: Suppose A = Qp and f is continuous. Use compacity
of Zy,, prove that there exists O < a € Z such that p®f has values
in W, and using this fact, prove limp,—oc an(f) = 0.



§4.9. Space of continuous functions f : Z, — A.
Let C(Zp, A) be the space of all continuous functions f : Z, — A.
Then f has unique interpolation series expansion

@) =3 an(H)(")

xr
n=0 n
with an(f) € A. Define the norm of f by |f|y := Supx€Zp|f(a;)|p.

Plainly |- |, is @ norm satisfying |f + glp < max(|flp, |l9lp), |aflp =
la|p|flp (€ A) and |f|p =0« f =0.
Corollary 1. We have |f|, = sup,, |an(f)|p

Proof. Note [an(f)lp = | S_o(~1)"F(2) F(R)]p < maxg |f(&)]p <
|flp, which shows sup, lan(f)|lp < |flp. On the other hand, we
have

N

N
fp=10im 3 an(D( )lp= 1im |3 an(H( )Ip < suplan(lp
n=0

n=0
as desired. [ ]



§4.10. Space of p-adic measure on Zy.

Since uniform convergence preserves continuity, the space C(Zp, A)
is a Banach A-module (i.e., complete uner |- |p). We write
M(Zy, A) for the space of A-linear functional ¢ : C(Zp,A) — A
such that |o(f)|p < B|f|p for a constant B > 0 independent of f.
We often write pr fdo ;= o(f). If A=W, then B can be taken
to be 1. We define

= sup ZO@ gy )
0#feC(Zyp,A) | flp FEC(Zp,A),|flp=1

Exercise: Why the identity (x) holds? Prove |o+¢'|p < max(|¢lp, |¥'|p),
loplp = |efpleplp for o € A and [plp =0 < ¢ = 0.

If limy—oo on, = o Uunder the above norm, we have ||y = liMp—oo |¢n|
and |em(f) — en(flp < lom — enlplflp, and hence {on(f)}n is
a Cauchy sequence. Thus we define o(f) = limMn—oo wn(f).

Therefore |o(f)lp = liMn—oo [en(f)lp < NiMn—oo [@nlpl flp = |elplflp.
Thus ¢ € M(Zp,A), and M(Zp, A) is a Banach A-module.



§4.11. Moment determines a measure.
Theorem 2. For a given sequence {b, € A}, with bounded norm,
there is a unique measure o € M(Zyp, A) satisfying f< )dgp = by,

and |p|lp = supy, |bn|p such that if f =352 an(f)<n) e C(Zp, A),
we have [ fdp = Y °° obnan(f). All element ¢ in M(Zp,A) is
obtained this way.

Proof. Since limp—oc an(f) = 0 and |by| < B for all n, Y02 5 bran(f)
converges, giving an A-linera map ¢ : C(Zp, A) — A. Note

| Z bnan(f)| = SUD b lplan(f)|p < BZ lan(f)lp = B|flp-

n=0
So p € M(Zp,A). Taking B :=sup,, |bn|p, we find |¢|p < B. Since
[ (F)delp = [balp and |(2)], = 1, we find B = |p|p. Since f has
unique interpolation series expansion, every measure is given by
the above way. [ ]



64.12. Corollary. {[z2"dy}, determines ¢ € M(Zp, A).

By definition, we have M (Zp, A) C M(Zyp, K). Since < ) i—o a;@’

the sequence { [ z"dp}, determines | < )dgp = 04 [xldy as an
element of K. Then the above theorem |mplles @ IS uniquely de-
termined in M (Zy, K). Since M(Zy, A) is a subspace of M (Zyp, K),
we find ¢ is determined by {[ z"dyp}, € AN.

Consider a formal expansion (1 +T)% = »°2 4 <£)T” For each
w € M(Zp, W), we define

oo
xr
®,(T) 1= /(1 FT)dp =S /(n)dngn e W[[T]].
n=0
By the above facts, this gives an isomorphism

& M(Zp, W) 2 WI[T]].



64.13. Ring structure of M (Zy, W).
For two measures ¢, € M(Zp, A), we define [ fd(p x ¢) =

[ [ flx+ y)de(x)dyp(y). Then

Py = [ [+ T)Hdp(w)diy)

= [A+D)%de() - [(1+ TV (y) = Sp(T)y(T).

Thus M(Zy, W) with convolution product (y,®) — ¢ * 1 is iso-
morphic to the power series ring W|[[T]]. Defining |>>° janT"| =
>onlanlp, WIIT]] is a Banach W-module. The theorem in §4.10
tells us

Corollary 2. The isomorphism & : M(Zy,, W) = WI[T]] is an
isometry of normed rings.

Exercise: What is the multiplicative identity of the ring M (Zp, W )7



