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Hecke L-function.
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We prove analytic continuation of Hecke L functions of nhumber
fields. A key is to write down explicitly the Hecke L-function
as a linear combination of Shintani {-function. For a number
field, write F_Tf for the group of all totally positive numbers in
F. Define, for linearly independent vq,...,vr € F*. writing v =
(v1,...,vr), an open simplicial cone with generators v by

C(v) =C(vy,...,vr) := ]Rj_vl + .- —I—Rivfr
For z,s € C, writing z = |z|e’? with —7 < 8 < 7, we put 25 =
z|%€'%5 in this notes. We start with the elementary case of

quadratic fields and generalize the method to general number
fields.



§3.0. Quadratic fields.
Let FF = Q[V/d] for square free integer d. It is known that the
integer ring O of F' is given by O = Zwq + Zwo, with wqy = 1 and

_ Y4 ifd=1 mod 4,
Vd otherwise.

Write o € Gal(F/Q) given by o(a + bV/d) = a — bv/d (here V/d is
normalized so that it is positive when d > 0 and it has positive
imaginary part if d < 0. Let F_|>f be the group of totally positive

elements in FX; so, if F' is imaginary, we understand F_Tf = FX.

Fix a non-zero O-ideal n. Let O} (n) = {e € O}|e =1 mod n}.
If F is real, choose ¢ with O (n) = el with e <1 <%, If F is
imaginary, then Off_(n) is finite, and write ¢ for a generator with
non-negative imaginary part of the cyclic group Off_(n).



§3.1. Cones in quadratic fields.
In the case where ¢ € {£1}, we consider the cone C(1,¢). Then
every o € F_|>f is uniquely brought into C := C(1,e) UC(1) by the

multiplication by an element Off_. If e € {£1}, we pick a; € F_|>f
(0 <j<k)witha; =1sothat C = |]j«;, Cla;)Ulljcr Claj, ajyq)
has the same property. We may assume that if C(v,w) C C,
the angle of v and w to be less than 90°. For an open cone
C(v,w), we have aC(v,w) = C(av,aw). Multiplying generators
by o, we may assume that C is a disjoint union of finitely many
cones generated by v’'s in na with totally positive real part. For
any £ € C(v,w), there exists a unique a« = av + bw € C(v,w) with
(a,b) € (0,1]2 such that € = (a+n1)v+(b+n2)w = a+niv+nrw
for (nq,n>) € N2. More generally, for a number field F and
£ € C(v) with v = Y(vq,...,ur) € (F)", there exists a unique
a=ayv1+ - -+arvpr =n-ve C(v) with (aq,...,ar) € (0,1]" such
that

fz(al+n1)?}1‘|‘"'+(ar+n7~)vfr=o¢—|—n-v
for n = (nq1,...,nr) € N" (note n-v € na if v; € na for all j).



§3.2. Hecke L as a sum of partial ¢ function.
In this section, F' is a general number field. Let a be an O-ideal

prime to n and write [a] € Clg(n) for the ray class of a modulo
n. Define a partial L-function of [a] by

(n(s,a) = > N(b)75.
0#bCO,[b]=[a"1]
Formally, for a character x : Clp(n) — C*, we have
Lis,x) = Y x(@) (s, ).
[a]eClp(n)

On the other hand, writing aa=1 = b with a = 1(mod n)*, b C
O < o € a. Thus, indicating totally positivity of o by a > 0O,

(s, @) = N(a)’ > ")
Oéea/O_T_(n),ozzl(mOd noo)x ¢
= N(a)s Z H(O{O')—S,

O<<oz€((1—|—n)ﬂa)/0_>|<_ (n) ¢

where o runs over all field embeddings of F' into C.



63.3. Hecke L as a sum of Shintani ¢ for quadratic fields.
Pick C(v) for v ="(vy,...,vr) C C with r < 2. Define

C(v) =Cqu(v) :={ajv1+ -+ arvr € C(v) Nalag € (0,1]}

which is a finite set as a is a lattice in F®@ R.

Return to a quadratic field field F. Write C = |J, C(v). As
remarked already, we may assume v € na” and Re(v;) > 0 and
Re(vy) > 0 for all i. Then for Ay = (v,v?) and a =z -v (x €
(0,1]2), N(a)~5¢a(s,a) is given by

XX > (atn-v) (o +n-v0)

V. oaeC(v)N((14n)Na) neN"

:Z Z C((s,8),Av,za,1)

V. oaeC(v)N((14+n)Na)
Thus (n(s,a) and L(s,x) have meromorphic continuation to all
s € C. This is the original Shintani's method in his 1976 paper.



§3.4. Cone decomposition. Let F' be a general number field.
An open cone C(v) for v = Y(vq,...,vpn) in F_Tf spanned by Q-

linearly independent numbers vq,...,vn € F_|>f is defined to be

C(v) = Rivl + -4 Rivn.
We will later prove
Theorem 1 (D. Mumford 1975 and T. Shintani 1976). There
exists finitely many open simplicial cones C(v1),...,C(vy) with-
out intersection such that any a € F, there exists a unique
e € OX(n) such that ea € C := U§:1 C(v;) with v; € na and
Re(vg) > 0 for all embeddings o : F' — C.

We admit this theorem for the moment. A disjoint union of open
simplicial cones is called a polyhedral cone.

Mumford proved this to make smooth toroidal compactification
of the Hilbert modular variety (and generalized this to GLJ,'J'(O)
with totally positive determinant in place of Oj_ = GLi"(O) to
make a smooth toroidal compactification of Shimura varieties).



§3.5. Integral cone decomposition.

Write C = | |, C(v) for C as in the theorem. Pick an O-ideal a
prime to n. By multiplying by a positive integer, we may assume
that v; € na. Write I = Isomgigg(F,C) and v = “(vqy,...,vp)
(r < [F:Q] =dimgF = m). Ordering I = {o1,...,0m}, define
Ay = (v71,...,vom) € M, (C) and

C(v) =Cq(v) :={a1vi + -+ arvr € C(v) Nalag € (0,1]}.

For any & = aqvy + - 4+ arv, € C(v) Na prime to n, take the
fraction part (a;) € [0,1) such that a; — (a;) € N. Then a=qa¢ =
>r—1{a;)v; € C(v), and we have, putting zo := ({a;));, we have
£ = (xa+n)- v with n € N” (row vector). Thus £ = a« mod n,
and A((&))¢F = )\((Ozg))ozgk for a Hecke character A modulo
n of weight k. As remarked in §3.1, the element ag € Ca(v)
is uniquely determined by & € a. In other words, we have for

ay = {a € ala > 0},

a_|_/O_>|<_(n) =] [ {oo+n-vln e N}
vV oaeCu(v)



§3.6. Meromorphic continuation for general F.
Let A\ be a Hecke character of weight ¥ modulo n. Define

N(a)®

(s, N, a) = S X)) TIN()E = a2 AMa g) |N(£>| ’,
0£bCO,ba—1 (a) (§)Ca €

where b ~ a1 means the ideal class of b in Cl}' IS equal to the
class of a= 1. Since A(&)|N(&)|7% = ¢k—s1if ¢ > 0. We have

/\Eai (s = 3 A(ig>£k_81
§€Cl_|_/0_>|<_ Oég
= ¥ ”\(O‘)g(sl k, Ay, Ta, 1)
Vo oaeCqy(v)
and
< N(a)® A(a) B .
L(s,/\)_%: O Z:aega:(v) " = 2(l(s1 — k, Ay, xa, 1),

which has meromorphic continuation.



§3.7. Known functional equation when k£ = 0. Write X =
I/{c) for complex conjugation ¢, and decompose >¥ = > (R) U
> (C), where >(R) is made of all real embeddings.

We say M is odd at 0 € Z(R) if AM(av) = —1 for o« € F' with a? <0
and o >0 for all T #0 in Z(R) and o« =1 mod n. Otherwise
X is even at o. Define Lo(s,\) = 7n~%/2[(5) if X is even for
o€ Z(R), Lo(s,\) = 7~ HD/2r (541 if X is odd for o € Z(R)
and Ly(s,\) = (27) 5l (s) for o € Z(C). Define

L(s,A) = ([] Lo(s, A))L(s, N).
oE
Then for primitive X, we have for k(\) € Q with |sk(\)| =1

L(s,)) = kW) (DIN@)A/D =551 — 5,2~ 1) (Hecke, 1917).

If A # 1, L(s,\) is holomorphic everywhere, and (z(s) has simple
pole at s = 0,1. General L(s,\) has functional equation of the
form s < w4+ 1—s for w € Z with k+ kc = w) ,0 (see [LFE,

58.6]).



§3.8. Cone lemma for Mumford-Shintani theorem. Let C
and C' be polyhedral cones in F_|>f Then CnNC’, CuC’ and C\C’
are all polyhedral cones.

Sketch of Proof. Since CUC’ = (C\C")u(CncHu(C’'\C), we need
to prove this only for CNC’ and C\C’. Since the complement cL
of C' is a disjoint union of C(%wvy,...,xvj_1,+v;, £v;41,...,Tvr)
with *(tvq,...,+vj_1,+vj,+v,41,...,£0r) # v, we only need to
prove the result for C N C/. We may assume that C and '’
is simplicial; so, C = C(v) and C' = C(w). Then sending C >
aivi+---+arvr to (aq,...,ar) € (R )", we have C = (R )". Thus
we may assume that C = (IR{ )" with CNF" sent to (Q_|_)"“ Then
decompose CNC' = Cy |_|02|_| -, for connected components
Cj. Then the closure C] of C] has finitely many faces of the form
C(y1,.--,yr—1). Take yr in Cj, then C(y1,...,yr—1,yr) covers C;.
Removing redundant faces, we get the decomposition. [ ]



§3.9. Reduction towards Mumford-Shintani theorem.

Since the proof is the same for any n, we treat Off_. We may as-

sume that Oj_ is infinite as otherwise, it is easy. Let V, =

Haez(R)Ri X [I;es(c) C*.  The space Vi is a multiplicative
abelian Lie group. Let

X ={(vs)gex € V4IN(z) = ][ =zox ]I |9’3<f|2 = 1}.
o> (R) 7€ (C)
Then X is a Lie subgroup of V. By Log vV, — R> =: W given

by Log(vs) = ((109v5)gex(r)> (109 [0r?) cx () LOQ(X) is a R-
vector subspace of W, and by Dirichlet’s unit theorem, Log(O )
is a lattice of W (i.e., W/ Log(X) is compact). We have an exact

sequence, for S1 = {z e C:|z| =1},
1 - (SH>O . x - Log(x) — 0.
Thus we have a compact subset K C X such that

X = U eK with the interior K° of K containing 1.

X
€€O+



63.10. Proof of Mumford-Shintani theorem. We can then
find an open subset U > 1 inside K such that eUNU = 0 if
1 # er_. Let 7 : V3 — X be the projection v — v/N(v). Since

F_Tf is dense in V., 7r(F_|>f) is dense in X, which implies

K = U al.
aEW(Fi

Since K is compact, there is a finite set A C F_|>f such that

K = U aU.
acm(A)
We may assume that U = Cg N X for an open simplicial cones
Co; so,
K = LJ aCo
acA
as m(a)C = aCy. Then by Cone Lemma, we can remove over-

lapping intersections and still K is exactly the disjoint union of
finitely many open simplicial cones. [ ]



§3.11. Towards integrality of L-values (Cassou-Nogues).

If X(C) = 0, Lo(s,\) = (2w) %I'(s) for ¢ € >(C) has pole at
s=1-n(0<neZ), while L(n,A™1) < 00 and Ly(n,A71) < co;
so, L(1 —n,\) = 0 if (C) # (. So we assume now that F
is totally real to study integrality of L(1 — n, ). Rationality is
proven by Shintani in 1976, but here we describe Cassou-Nogues’
method effective to show integrality also.

A generalized Bernoulli polynomial in §2.8 is given only for x with
x; = 1 for all . Thus we need to find a way to express L(s, \)
as a linear combination of ((s, Av, xza,x) for non-trivial .

We take an integral ideal a prime to n and pick a prime ideal [
prime to an such that O/l = Z/IZ for a prime [ € Z (this means (1)
splitsin O). There are such prime [ with positive density (actually
the density > 1/[F : Q] by Chebotarev density theorem). We put
A=A :=a/la. Then a/l = O/l = Z/IZ which is a cyclic group
of prime order [.



§3.12. Finite Fourier transform.
Let A :=Hom(A,C) = Hom(A, ;). For functions f: 4 — C and
g A — C, define their Fourier transform to be

F() =F@) =Y fla)y(a) and F(g)(z) = Y. gy ().
acA ¢€j
Exercise: If FF = Q and a = Z, for a Dirichlet character xy modulo
[, show X(¢) = G(x) for ¥(z) = e(?%£), and find an explicit
formula of F(F(f)) : A— C.
Lemma 1. Forl: A— C with 1(¢)) =1 for+y #= 1 and 1(1) = 0.
1 if £ = 0O,

Then F(1)(xz) = — L im0

Proof. If z = 0, the F(1) = |[A—{1}| =1—-1. If 2 # 0, F(1) is
the sum of all I-th roots of unity except for 1. Since ) ¢¢,, ¢ = 0,
we get F(1)(z) = —1. [ ]



63.13. A Shintani zeta function with .

Let xvy = ((v3)). Thenxy , =1L ¢(v)" = ¢(n1vi+- - -+nrvr).
Recall

(s, Av, oy Xvp) = O Xey 1@ 4+ npvy? + - 4 npwp?) 75,
nEZf'_ J

By the lemma, we have

Z Z )\(O{)C(S,AVaxOMXV,’Qb)
Y71 aeCy(v)

= — Z Ma)l(s, Ay, xa, 1)
acCq(v)
+1 3 AB)(s, Av, 3, 1)
BeC 4 (v)
By choosing [ sufficiently large, we may assume v; &€ la; i.e.,

Ww(v;) = 1 for all ¥ #= 1.



§3.14. Conclusion.
Multiplying by N(a)$A(a)~! and summing over v and a, we get

N S
S /\Eg S Y M@, Av, Tas Xy)

a V YFEL aeCy(v)
N(a)s

=230

a,v

Z Ma)l(s, Ay, za, 1)

acCqa(v)

Z A(5)<(87AVaxﬁ7]-)
5€6a[(v)

N(a)$
-3 ST A@)C(s, Ay, za, 1)
A(a) aE@a(V)

(D) N(la)*
[ s, Av, xg,

& (1 = AONDI)L(s, N).

The identity at (x) is because {la}q = Cl}'.

N(a)s
+i2 A(a)

a,v




§3.15. If x is non-trivial, no variable change necessary. Re-
call that F(z, A, z,x) = [Ti_, 15?%;&@582» has pole at L;(z) =
log x + 2miZ. If x; = |x;le’?i with 0 % 6, € (==, 7) or |x| < 1,
the pole avoid z = 0. Thus the poles avoid original contour
P(e)" in z-space. Therefore by the above trick, even to make
analytic continuation of L(s,\), Shintani’'s variable change is not

necessary (as long as y; = 1 for all 7).

The corresponding rational function are therefore, writing t; =
exp(—L;(z)), of the form

r 4T
Z£1 (1 —y(v)t;)

where zo = (x1,...,2zr) € [0,1]"NQ".




§3.16. Rationality and integrality theorem. For an em-
bedding ¢ : FF — R, let ay € F* be an element such that
ar = 1(mod n)* and a9 < 0 but ol > 0 for all embedding 7
other than o. The character A modulo n is called totally odd
(resp. totally even) if AM(ag) = —1 (resp. A(ag) = 1) for all field
embeddings o of F.

Theorem 2 (Siegel 1937, Klingen 1962, Shintani 1976, Pierrete
Cassou-Nogues 1979). Let F #= Q be a totally real number field
and \ be a finite order ray class character. For O < n € Z and a
split prime | of F' outside n with sufficiently large N (l),

(1 - AX(ONMDML(L —n, \) € Z[A],

where Z[)\] is the subring of C generated by the values of A\. We
have L(1 —n,\) #= 0 only when (i) X is totally odd and n is odd
or (ii) \ is totally even and n is even.

Exercise: Use functional equation to show vanishing of L(1—n, )
when the condition of the theorem is not met.



