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Hecke L-function.
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We prove analytic continuation of Hecke L functions of number

fields. A key is to write down explicitly the Hecke L-function

as a linear combination of Shintani ζ-function. For a number

field, write F×
+ for the group of all totally positive numbers in

F . Define, for linearly independent v1, . . . , vr ∈ F×
+, writing v =

(v1, . . . , vr), an open simplicial cone with generators v by

C(v) = C(v1, . . . , vr) := R×
+v1 + · · · + R×

+vr

= {x1v1 + · · · + xrvr|xi ∈ R×
+} ⊂ F ⊗Q R =: F∞.

For z, s ∈ C, writing z = |z|eiθ with −π < θ ≤ π, we put zs :=

|z|seiθs in this notes. We start with the elementary case of

quadratic fields and generalize the method to general number

fields.



§3.0. Quadratic fields.

Let F = Q[
√
d] for square free integer d. It is known that the

integer ring O of F is given by O = Zw1 + Zw2 with w1 = 1 and

w2 =






1+
√
d

2 if d ≡ 1 mod 4,√
d otherwise.

Write σ ∈ Gal(F/Q) given by σ(a+ b
√
d) = a − b

√
d (here

√
d is

normalized so that it is positive when d > 0 and it has positive

imaginary part if d < 0. Let F×
+ be the group of totally positive

elements in F×; so, if F is imaginary, we understand F×
+ = F×.

Fix a non-zero O-ideal n. Let O×
+(n) = {ε ∈ O×

+|ε ≡ 1 mod n}.
If F is real, choose ε with O×

+(n) = εZ with ε < 1 < εσ. If F is

imaginary, then O×
+(n) is finite, and write ε for a generator with

non-negative imaginary part of the cyclic group O×
+(n).



§3.1. Cones in quadratic fields.

In the case where ε 6∈ {±1}, we consider the cone C(1, ε). Then

every α ∈ F×
+ is uniquely brought into C := C(1, ε)∪C(1) by the

multiplication by an element O×
+. If ε ∈ {±1}, we pick αj ∈ F×

+
(0 < j ≤ k) with α1 = 1 so that C =

⊔
j<kC(αj)t

⊔
j<rC(αj, αj+1)

has the same property. We may assume that if C(v,w) ⊂ C,

the angle of v and w to be less than 90◦. For an open cone

C(v,w), we have αC(v, w) = C(αv,αw). Multiplying generators

by α, we may assume that C is a disjoint union of finitely many

cones generated by v’s in na with totally positive real part. For

any ξ ∈ C(v,w), there exists a unique α = av+ bw ∈ C(v, w) with

(a, b) ∈ (0,1]2 such that ξ = (a+n1)v+(b+n2)w = α+n1v+n2w

for (n1, n2) ∈ N2. More generally, for a number field F and

ξ ∈ C(v) with v = t(v1, . . . , vr) ∈ (F×
+)r, there exists a unique

α = a1v1+ · · ·+arvr = n ·v ∈ C(v) with (a1, . . . , ar) ∈ (0,1]r such

that

ξ = (a1 + n1)v1 + · · · + (ar + nr)vr = α+ n · v
for n = (n1, . . . , nr) ∈ Nr (note n · v ∈ na if vj ∈ na for all j).



§3.2. Hecke L as a sum of partial ζ function.

In this section, F is a general number field. Let a be an O-ideal

prime to n and write [a] ∈ ClF(n) for the ray class of α modulo

n. Define a partial L-function of [a] by

ζn(s, a) =
∑

06=b⊂O,[b]=[a−1]

N(b)−s.

Formally, for a character χ : ClF(n) → C×, we have

L(s, χ) =
∑

[a]∈ClF (n)

χ(a)−1ζn(s, a).

On the other hand, writing αa−1 = b with α ≡ 1(mod n)×, b ⊂
O ⇔ α ∈ a. Thus, indicating totally positivity of α by α� 0,

ζn(s, a) = N(a)s
∑

α∈a/O×
+(n),α≡1(mod n∞)×

∏

σ
(ασ)−s

= N(a)s
∑

0�α∈((1+n)∩a)/O×
+

(n)

∏

σ
(ασ)−s,

where σ runs over all field embeddings of F into C.



§3.3. Hecke L as a sum of Shintani ζ for quadratic fields.

Pick C(v) for v = t(v1, . . . , vr) ⊂ C with r ≤ 2. Define

C(v) = Ca(v) := {a1v1 + · · · + arvr ∈ C(v) ∩ a|ak ∈ (0,1]}
which is a finite set as a is a lattice in F ⊗Q R.

Return to a quadratic field field F . Write C =
⊔

vC(v). As

remarked already, we may assume v ∈ nar and Re(vi) > 0 and

Re(vσi ) > 0 for all i. Then for Av = (v,vσ) and α = x · v (x ∈
(0,1]2), N(a)−sζn(s, a) is given by

∑

v

∑

α∈C(v)∩((1+n)∩a)

∑

n∈Nr
(α+ n · v)−s(ασ + n · vσ)−s

=
∑

v

∑

α∈C(v)∩((1+n)∩a)

ζ((s, s), Av, xα, 1)

Thus ζn(s, a) and L(s, χ) have meromorphic continuation to all

s ∈ C. This is the original Shintani’s method in his 1976 paper.



§3.4. Cone decomposition. Let F be a general number field.

An open cone C(v) for v = t(v1, . . . , vn) in F×
+ spanned by Q-

linearly independent numbers v1, . . . , vn ∈ F×
+ is defined to be

C(v) = R×
+v1 + · · · + R×

+vn.

We will later prove

Theorem 1 (D. Mumford 1975 and T. Shintani 1976). There

exists finitely many open simplicial cones C(v1), . . . , C(vk) with-

out intersection such that any α ∈ F×
+, there exists a unique

ε ∈ O×
+(n) such that εα ∈ C :=

⊔k
j=1C(vj) with vj ∈ na and

Re(vσj ) > 0 for all embeddings σ : F ↪→ C.

We admit this theorem for the moment. A disjoint union of open

simplicial cones is called a polyhedral cone.

Mumford proved this to make smooth toroidal compactification

of the Hilbert modular variety (and generalized this to GL+
n (O)

with totally positive determinant in place of O×
+ = GL+

1 (O) to

make a smooth toroidal compactification of Shimura varieties).



§3.5. Integral cone decomposition.

Write C =
⊔

vC(v) for C as in the theorem. Pick an O-ideal a

prime to n. By multiplying by a positive integer, we may assume

that vi ∈ na. Write I = Isomfield(F,C) and v = t(v1, . . . , vr)

(r ≤ [F : Q] = dimQF = m). Ordering I = {σ1, . . . , σm}, define

Av = (vσ1, . . . ,vσm) ∈Mr,m(C) and

C(v) = Ca(v) := {a1v1 + · · · + arvr ∈ C(v) ∩ a|ak ∈ (0,1]}.
For any ξ = a1v1 + · · · + arvr ∈ C(v) ∩ a prime to n, take the

fraction part 〈ai〉 ∈ [0,1) such that ai − 〈ai〉 ∈ N. Then α = αξ =
∑r
i=1〈ai〉vi ∈ C(v), and we have, putting xα := (〈ai〉)i, we have

ξ = (xα + n) · v with n ∈ Nr (row vector). Thus ξ ≡ α mod n,

and λ((ξ))ξ−k = λ((αξ))α
−k
ξ for a Hecke character λ modulo

n of weight k. As remarked in §3.1, the element αξ ∈ Ca(v)

is uniquely determined by ξ ∈ a. In other words, we have for

a+ := {α ∈ a|α � 0},

a+/O
×
+(n) ∼=

⊔

v

⊔

α∈Ca(v)

{α+ n · tv|n ∈ Nr}



§3.6. Meromorphic continuation for general F .

Let λ be a Hecke character of weight k modulo n. Define

ζ(s, λ, a) =
∑

06=b⊂O,b∼a−1

λ(b)−1N(b)s =
N(a)s

λ(a)

∑

(ξ)⊂a

λ(αξ)
ξk

αkξ
|N(ξ)|−s,

where b ∼ a−1 means the ideal class of b in Cl+F is equal to the

class of a−1. Since λ(ξ)|N(ξ)|−s = ξk−s1 if ξ � 0. We have

λ(a)

N(a)s
ζ(s, λ, a) =

∑

ξ∈a+/O
×
+

λ(αξ)

αkξ
ξk−s1

=
∑

v

∑

α∈Ca(v)

λ(α)

αk
ζ(s1 − k,Av, xα, 1)

and

L(s, λ) =
∑

a

N(a)s

λ(a)

∑

v

∑

α∈Ca(v)

λ(α)

αk
ζ(s1 − k,Av, xα, 1),

which has meromorphic continuation.



§3.7. Known functional equation when k = 0. Write Σ :=

I/〈c〉 for complex conjugation c, and decompose Σ = Σ(R) t
Σ(C), where Σ(R) is made of all real embeddings.

We say λ is odd at σ ∈ Σ(R) if λ(α) = −1 for α ∈ F with ασ < 0

and ατ > 0 for all τ 6= σ in Σ(R) and α ≡ 1 mod n. Otherwise

λ is even at σ. Define Lσ(s, λ) = π−s/2Γ(s2) if λ is even for

σ ∈ Σ(R), Lσ(s, λ) = π−(s+1)/2Γ(s+1
2 ) if λ is odd for σ ∈ Σ(R)

and Lσ(s, λ) = (2π)−sΓ(s) for σ ∈ Σ(C). Define

L̂(s, λ) = (
∏

σ∈Σ

Lσ(s, λ))L(s, λ).

Then for primitive λ, we have for κ(λ) ∈ Q with |κ(λ)| = 1

L̂(s, λ) = κ(λ)(|D|N(n))(1/2)−sL̂(1 − s, λ−1) (Hecke, 1917).

If λ 6= 1, L(s, λ) is holomorphic everywhere, and ζ̂F(s) has simple

pole at s = 0,1. General L(s, λ) has functional equation of the

form s ↔ w + 1 − s for w ∈ Z with k + kc = w
∑
σ σ (see [LFE,

§8.6]).



§3.8. Cone lemma for Mumford-Shintani theorem. Let C

and C ′ be polyhedral cones in F×
+. Then C ∩C ′, C ∪C ′ and C \C ′

are all polyhedral cones.

Sketch of Proof. Since C∪C ′ = (C\C ′)t(C∩C ′)t(C ′\C), we need

to prove this only for C∩C ′ and C \C ′. Since the complement C⊥

of C is a disjoint union of C(±v1, . . . ,±vj−1,±vj,±vj+1, . . . ,±vr)
with t(±v1, . . . ,±vj−1,±vj,±vj+1, . . . ,±vr) 6= v, we only need to

prove the result for C ∩ C ′. We may assume that C and C ′

is simplicial; so, C = C(v) and C ′ = C(w). Then sending C 3
a1v1+· · ·+arvr to (a1, . . . , ar) ∈ (R×

+)r, we have C ∼= (R×
+)r. Thus

we may assume that C = (R×
+)r with C∩F r sent to (Q×

+)r. Then

decompose C ∩C ′ = C1tC2t · · · tCk for connected components

Cj. Then the closure Cj of Cj has finitely many faces of the form

C(y1, . . . , yr−1). Take yr in Cj, then C(y1, . . . , yr−1, yr) covers Cj.

Removing redundant faces, we get the decomposition.



§3.9. Reduction towards Mumford-Shintani theorem.

Since the proof is the same for any n, we treat O×
+. We may as-

sume that O×
+ is infinite as otherwise, it is easy. Let V+ :=

∏
σ∈Σ(R) R×

+ × ∏
τ∈Σ(C) C×. The space V+ is a multiplicative

abelian Lie group. Let

X = {(vσ)σ∈Σ ∈ V+|N(x) =
∏

σ∈Σ(R)

xσ ×
∏

τ∈Σ(C)

|xσ|2 = 1}.

Then X is a Lie subgroup of V+. By Log : V+ → RΣ =: W given

by Log(vσ) = ((log vσ)σ∈Σ(R), (log |vτ |2)τ∈Σ(C)), Log(X) is a R-

vector subspace of W , and by Dirichlet’s unit theorem, Log(O×
+)

is a lattice of W (i.e., W/Log(X) is compact). We have an exact

sequence, for S1 = {z ∈ C : |z| = 1},
1 → (S1)Σ(C) → X → Log(X) → 0.

Thus we have a compact subset K ⊂ X such that

X =
⋃

ε∈O×
+

εK with the interior K◦ of K containing 1.



§3.10. Proof of Mumford-Shintani theorem. We can then

find an open subset U 3 1 inside K such that εU ∩ U = ∅ if

1 6= εO×
+. Let π : V+ � X be the projection v 7→ v/N(v). Since

F×
+ is dense in V+, π(F×

+) is dense in X, which implies

K =
⋃

α∈π(F×
+)

αU.

Since K is compact, there is a finite set A ⊂ F×
+ such that

K =
⋃

α∈π(A)

αU.

We may assume that U = C0 ∩ X for an open simplicial cones

C0; so,

K =
⋃

α∈A
αC0

as π(α)C = αC0. Then by Cone Lemma, we can remove over-

lapping intersections and still K is exactly the disjoint union of

finitely many open simplicial cones.



§3.11. Towards integrality of L-values (Cassou-Nogues).

If Σ(C) 6= ∅, Lσ(s, λ) = (2π)−sΓ(s) for σ ∈ Σ(C) has pole at

s = 1 − n (0 < n ∈ Z), while L̂(n, λ−1) < ∞ and Lσ(n, λ−1) < ∞;

so, L(1 − n, λ) = 0 if Σ(C) 6= ∅. So we assume now that F

is totally real to study integrality of L(1 − n, λ). Rationality is

proven by Shintani in 1976, but here we describe Cassou-Nogues’

method effective to show integrality also.

A generalized Bernoulli polynomial in §2.8 is given only for χ with

χi 6= 1 for all i. Thus we need to find a way to express L(s, λ)

as a linear combination of ζ(s,Av, xα, χ) for non-trivial χ.

We take an integral ideal a prime to n and pick a prime ideal l

prime to an such that O/l ∼= Z/lZ for a prime l ∈ Z (this means (l)

splits in O). There are such prime l with positive density (actually

the density ≥ 1/[F : Q] by Chebotarev density theorem). We put

A = Al := a/la. Then a/l ∼= O/l ∼= Z/lZ which is a cyclic group

of prime order l.



§3.12. Finite Fourier transform.

Let Â := Hom(A,C) = Hom(A, µl). For functions f : A → C and

g : Â → C, define their Fourier transform to be

F(f) = f̂(ψ) =
∑

a∈A
f(a)ψ(a) and F(g)(x) =

∑

ψ∈Â
g(ψ)ψ(x).

Exercise: If F = Q and a = Z, for a Dirichlet character χ modulo

l, show χ̂(ψ) = G(χ) for ψ(x) = e(2πix
l ), and find an explicit

formula of F(F(f)) : A → C.

Lemma 1. For 1 : Â → C with 1(ψ) = 1 for ψ 6= 1 and 1(1) = 0.

Then F(1)(x) = −




1 if x 6= 0,

1 − l if x = 0.

Proof. If x = 0, the F(1) = |Â − {1}| = l − 1. If x 6= 0, F(1) is

the sum of all l-th roots of unity except for 1. Since
∑
ζ∈µl ζ = 0,

we get F(1)(x) = −1.



§3.13. A Shintani zeta function with ψ.

Let χv,ψ = (ψ(vi)). Then χn
v,ψ =

∏
iψ(vi)

ni = ψ(n1v1+· · ·+nrvr).

Recall

ζ(s,Av, xα, χv,ψ) =
∑

n∈Zr+

χn
v,ψ

∏

j

(ασj + n1v
σj
1 + · · ·+ nrv

σj
r )−sj .

By the lemma, we have

∑

ψ 6=1

∑

α∈Ca(v)

λ(α)ζ(s,Av, xα, χv,ψ)

= −
∑

α∈Ca(v)

λ(α)ζ(s,Av, xα, 1)

+ l
∑

β∈Cal(v)

λ(β)ζ(s,Av, xβ, 1)

By choosing l sufficiently large, we may assume vi 6∈ la; i.e.,

ψ(vi) 6= 1 for all ψ 6= 1.



§3.14. Conclusion.

Multiplying by N(a)sλ(a)−1 and summing over v and a, we get

∑

a

N(a)s

λ(a)

∑

v

∑

ψ 6=1

∑

α∈Ca(v)

λ(α)ζ(s,Av, xα, χψ)

= −
∑

a,v

N(a)s

λ(a)

∑

α∈Ca(v)

λ(α)ζ(s,Av, xα, 1)

+ l
∑

a,v

N(a)s

λ(a)

∑

β∈Cal(v)

λ(β)ζ(s, Av, xβ, 1)

= −
∑

a,v

N(a)s

λ(a)

∑

α∈Ca(v)

λ(α)ζ(s,Av, xα, 1)

+N(l)
λ(l)

N(l)s

∑

a,v

N(la)s

λ(la)

∑

β∈Cal(v)

λ(β)ζ(s,Av, xβ, 1)

(∗)
= −(1 − λ(l)N(l)1−s)L(s, λ).

The identity at (∗) is because {la}a
∼= Cl+F .



§3.15. If χ is non-trivial, no variable change necessary. Re-

call that F (z, A, x, χ) =
∏r
i=1

exp(−xiLi(z))
1−χi exp(−Li(z)) has pole at Li(z) =

logχ + 2πiZ. If χi = |χi|eiθi with 0 6= θi ∈ (−π, π) or |χ| < 1,

the pole avoid z = 0. Thus the poles avoid original contour

P (ε)r in z-space. Therefore by the above trick, even to make

analytic continuation of L(s, λ), Shintani’s variable change is not

necessary (as long as χi 6= 1 for all i).

The corresponding rational function are therefore, writing ti =

exp(−Li(z)), of the form

r∏

i=1

txi

(1 − ψ(vi)ti)
,

where xα = (x1, . . . , xr) ∈ [0,1]r ∩ Qr.



§3.16. Rationality and integrality theorem. For an em-

bedding σ : F ↪→ R, let ασ ∈ F× be an element such that

ασ ≡ 1(mod n)× and ασσ < 0 but ατσ > 0 for all embedding τ

other than σ. The character λ modulo n is called totally odd

(resp. totally even) if λ(ασ) = −1 (resp. λ(ασ) = 1) for all field

embeddings σ of F .

Theorem 2 (Siegel 1937, Klingen 1962, Shintani 1976, Pierrete

Cassou-Nogues 1979). Let F 6= Q be a totally real number field

and λ be a finite order ray class character. For 0 < n ∈ Z and a

split prime l of F outside n with sufficiently large N(l),

(1 − λ(l)N(l)n)L(1 − n, λ) ∈ Z[λ],

where Z[λ] is the subring of C generated by the values of λ. We

have L(1 − n, λ) 6= 0 only when (i) λ is totally odd and n is odd

or (ii) λ is totally even and n is even.

Exercise: Use functional equation to show vanishing of L(1−n, λ)
when the condition of the theorem is not met.


