Lecture note No.3 for Math 205a Fall 2019 Hecke L-function. Haruzo Hida

We prove analytic continuation of Hecke L functions of number fields. A key is to write down explicitly the Hecke L-function as a linear combination of Shintani ζ -function. For a number field, write F_+^{\times} for the group of all totally positive numbers in F. Define, for linearly independent $v_1, \ldots, v_r \in F_+^{\times}$, writing $\mathbf{v} = (v_1, \ldots, v_r)$, an open simplicial cone with generators \mathbf{v} by

$$C(\mathbf{v}) = C(v_1, \dots, v_r) := \mathbb{R}_+^{\times} v_1 + \dots + \mathbb{R}_+^{\times} v_r$$
$$= \{x_1 v_1 + \dots + x_r v_r | x_i \in \mathbb{R}_+^{\times}\} \subset F \otimes_{\mathbb{Q}} \mathbb{R} =: F_{\infty}.$$

For $z, s \in \mathbb{C}$, writing $z = |z|e^{i\theta}$ with $-\pi < \theta \leq \pi$, we put $z^s := |z|^s e^{i\theta s}$ in this notes. We start with the elementary case of quadratic fields and generalize the method to general number fields.

\S **3.0.** Quadratic fields.

Let $F = \mathbb{Q}[\sqrt{d}]$ for square free integer d. It is known that the integer ring O of F is given by $O = \mathbb{Z}w_1 + \mathbb{Z}w_2$ with $w_1 = 1$ and

$$w_2 = \begin{cases} \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4, \\ \sqrt{d} & \text{otherwise.} \end{cases}$$

Write $\sigma \in \text{Gal}(F/\mathbb{Q})$ given by $\sigma(a + b\sqrt{d}) = a - b\sqrt{d}$ (here \sqrt{d} is normalized so that it is positive when d > 0 and it has positive imaginary part if d < 0. Let F_+^{\times} be the group of totally positive elements in F^{\times} ; so, if F is imaginary, we understand $F_+^{\times} = F^{\times}$.

Fix a non-zero O-ideal \mathfrak{n} . Let $O_+^{\times}(\mathfrak{n}) = \{\varepsilon \in O_+^{\times} | \varepsilon \equiv 1 \mod \mathfrak{n}\}$. If F is real, choose ε with $O_+^{\times}(\mathfrak{n}) = \varepsilon^{\mathbb{Z}}$ with $\varepsilon < 1 < \varepsilon^{\sigma}$. If F is imaginary, then $O_+^{\times}(\mathfrak{n})$ is finite, and write ε for a generator with non-negative imaginary part of the cyclic group $O_+^{\times}(\mathfrak{n})$.

$\S3.1.$ Cones in quadratic fields.

In the case where $\varepsilon \notin \{\pm 1\}$, we consider the cone $C(1,\varepsilon)$. Then every $\alpha \in F_+^{\times}$ is uniquely brought into $C := C(1, \varepsilon) \cup C(1)$ by the multiplication by an element O_{+}^{\times} . If $\varepsilon \in \{\pm 1\}$, we pick $\alpha_j \in F_{+}^{\times}$ $(0 < j \le k)$ with $\alpha_1 = 1$ so that $\dot{C} = \bigsqcup_{i < k} C(\alpha_i) \sqcup \bigsqcup_{i < r} C(\alpha_i, \alpha_{i+1})$ has the same property. We may assume that if $C(v,w) \subset C$, the angle of v and w to be less than 90°. For an open cone C(v, w), we have $\alpha C(v, w) = C(\alpha v, \alpha w)$. Multiplying generators by α , we may assume that C is a disjoint union of finitely many cones generated by v's in $\mathfrak{n}\mathfrak{a}$ with totally positive real part. For any $\xi \in C(v, w)$, there exists a unique $\alpha = av + bw \in C(v, w)$ with $(a,b) \in (0,1]^2$ such that $\xi = (a+n_1)v + (b+n_2)w = \alpha + n_1v + n_2w$ for $(n_1, n_2) \in \mathbb{N}^2$. More generally, for a number field F and $\xi \in C(\mathbf{v})$ with $\mathbf{v} = {}^t(v_1, \ldots, v_r) \in (F_+^{\times})^r$, there exists a unique $\alpha = a_1v_1 + \cdots + a_rv_r = n \cdot \mathbf{v} \in C(\mathbf{v})$ with $(a_1, \ldots, a_r) \in (0, 1]^r$ such that

$$\xi = (a_1 + n_1)v_1 + \dots + (a_r + n_r)v_r = \alpha + n \cdot \mathbf{v}$$

for $n = (n_1, \dots, n_r) \in \mathbb{N}^r$ (note $n \cdot \mathbf{v} \in \mathfrak{na}$ if $v_j \in \mathfrak{na}$ for all j).

§3.2. Hecke L as a sum of partial ζ function.

In this section, F is a general number field. Let \mathfrak{a} be an O-ideal prime to \mathfrak{n} and write $[\mathfrak{a}] \in Cl_F(\mathfrak{n})$ for the ray class of α modulo \mathfrak{n} . Define a partial L-function of $[\mathfrak{a}]$ by

$$\zeta_{\mathfrak{n}}(s,\mathfrak{a}) = \sum_{\substack{0 \neq \mathfrak{b} \subset O, [\mathfrak{b}] = [\mathfrak{a}^{-1}]}} N(\mathfrak{b})^{-s}.$$

Formally, for a character $\chi : Cl_F(\mathfrak{n}) \to \mathbb{C}^{\times}$, we have

$$L(s,\chi) = \sum_{[\mathfrak{a}] \in Cl_F(\mathfrak{n})} \chi(\mathfrak{a})^{-1} \zeta_{\mathfrak{n}}(s,\mathfrak{a}).$$

On the other hand, writing $\alpha \mathfrak{a}^{-1} = \mathfrak{b}$ with $\alpha \equiv 1 \pmod{\mathfrak{n}}^{\times}$, $\mathfrak{b} \subset O \Leftrightarrow \alpha \in \mathfrak{a}$. Thus, indicating totally positivity of α by $\alpha \gg 0$,

$$\zeta_{\mathfrak{n}}(s,\mathfrak{a}) = N(\mathfrak{a})^{s} \sum_{\alpha \in \mathfrak{a}/O_{+}^{\times}(\mathfrak{n}), \alpha \equiv 1 \pmod{\mathfrak{n}\infty}^{\times}} \prod_{\sigma} (\alpha^{\sigma})^{-s}$$
$$= N(\mathfrak{a})^{s} \sum_{0 \ll \alpha \in ((1+\mathfrak{n})\cap\mathfrak{a})/O_{+}^{\times}(\mathfrak{n})} \prod_{\sigma} (\alpha^{\sigma})^{-s},$$

where σ runs over all field embeddings of F into \mathbb{C} .

§3.3. Hecke L as a sum of Shintani ζ for quadratic fields. Pick $C(\mathbf{v})$ for $\mathbf{v} = {}^t(v_1, \ldots, v_r) \subset C$ with $r \leq 2$. Define

$$\overline{C}(\mathbf{v}) = \overline{C}_{\mathfrak{a}}(\mathbf{v}) := \{a_1v_1 + \dots + a_rv_r \in C(\mathbf{v}) \cap \mathfrak{a} | a_k \in (0, 1]\}$$

which is a finite set as \mathfrak{a} is a lattice in $F \otimes_{\mathbb{O}} \mathbb{R}$.

Return to a quadratic field field F. Write $C = \bigsqcup_{\mathbf{v}} C(\mathbf{v})$. As remarked already, we may assume $\mathbf{v} \in \mathfrak{n}\mathfrak{a}^r$ and $\operatorname{Re}(v_i) > 0$ and $\operatorname{Re}(v_i^{\sigma}) > 0$ for all i. Then for $A_{\mathbf{v}} = (\mathbf{v}, \mathbf{v}^{\sigma})$ and $\alpha = x \cdot v$ ($x \in (0, 1]^2$), $N(\mathfrak{a})^{-s} \zeta_{\mathfrak{n}}(s, \mathfrak{a})$ is given by

$$\sum_{\mathbf{v}} \sum_{\alpha \in \overline{C}(\mathbf{v}) \cap ((1+\mathfrak{n})\cap\mathfrak{a})} \sum_{n \in \mathbb{N}^r} (\alpha + n \cdot \mathbf{v})^{-s} (\alpha^{\sigma} + n \cdot \mathbf{v}^{\sigma})^{-s}$$
$$= \sum_{\mathbf{v}} \sum_{\alpha \in \overline{C}(\mathbf{v}) \cap ((1+\mathfrak{n})\cap\mathfrak{a})} \zeta((s,s), A_{\mathbf{v}}, x_{\alpha}, 1)$$

Thus $\zeta_{\mathfrak{n}}(s,\mathfrak{a})$ and $L(s,\chi)$ have meromorphic continuation to all $s \in \mathbb{C}$. This is the original Shintani's method in his 1976 paper.

§3.4. Cone decomposition. Let F be a general number field. An open cone $C(\mathbf{v})$ for $\mathbf{v} = {}^t(v_1, \ldots, v_n)$ in F_+^{\times} spanned by \mathbb{Q} -linearly independent numbers $v_1, \ldots, v_n \in F_+^{\times}$ is defined to be

$$C(\mathbf{v}) = \mathbb{R}_+^{\times} v_1 + \dots + \mathbb{R}_+^{\times} v_n.$$

We will later prove

Theorem 1 (D. Mumford 1975 and T. Shintani 1976). There exists finitely many open simplicial cones $C(\mathbf{v}_1), \ldots, C(\mathbf{v}_k)$ without intersection such that any $\alpha \in F_+^{\times}$, there exists a unique $\varepsilon \in O_+^{\times}(\mathfrak{n})$ such that $\varepsilon \alpha \in C := \bigsqcup_{j=1}^k C(\mathbf{v}_j)$ with $v_j \in \mathfrak{n}\mathfrak{a}$ and $\operatorname{Re}(v_j^{\sigma}) > 0$ for all embeddings $\sigma : F \hookrightarrow \mathbb{C}$.

We admit this theorem for the moment. A disjoint union of open simplicial cones is called a *polyhedral cone*.

Mumford proved this to make smooth toroidal compactification of the Hilbert modular variety (and generalized this to $GL_n^+(O)$ with totally positive determinant in place of $O_+^{\times} = GL_1^+(O)$ to make a smooth toroidal compactification of Shimura varieties).

§3.5. Integral cone decomposition.

Write $C = \bigsqcup_{\mathbf{v}} C(\mathbf{v})$ for C as in the theorem. Pick an O-ideal \mathfrak{a} prime to \mathfrak{n} . By multiplying by a positive integer, we may assume that $v_i \in \mathfrak{n}\mathfrak{a}$. Write $I = \operatorname{Isom}_{\mathsf{field}}(F, \mathbb{C})$ and $\mathbf{v} = {}^t(v_1, \ldots, v_r)$ $(r \leq [F : \mathbb{Q}] = \dim_{\mathbb{Q}} F = m)$. Ordering $I = \{\sigma_1, \ldots, \sigma_m\}$, define $A_{\mathbf{v}} = (\mathbf{v}^{\sigma_1}, \ldots, \mathbf{v}^{\sigma_m}) \in M_{r,m}(\mathbb{C})$ and

$$\overline{C}(\mathbf{v}) = \overline{C}_{\mathfrak{a}}(\mathbf{v}) := \{a_1v_1 + \dots + a_rv_r \in C(\mathbf{v}) \cap \mathfrak{a} | a_k \in (0, 1]\}.$$

For any $\xi = a_1 v_1 + \cdots + a_r v_r \in C(\mathbf{v}) \cap \mathfrak{a}$ prime to \mathfrak{n} , take the fraction part $\langle a_i \rangle \in [0, 1)$ such that $a_i - \langle a_i \rangle \in \mathbb{N}$. Then $\alpha = \alpha_{\xi} = \sum_{i=1}^r \langle a_i \rangle v_i \in \overline{C}(\mathbf{v})$, and we have, putting $x_{\alpha} := (\langle a_i \rangle)_i$, we have $\xi = (x_{\alpha} + n) \cdot \mathbf{v}$ with $n \in \mathbb{N}^r$ (row vector). Thus $\xi \equiv \alpha \mod \mathfrak{n}$, and $\lambda((\xi))\xi^{-k} = \lambda((\alpha_{\xi}))\alpha_{\xi}^{-k}$ for a Hecke character $\lambda \mod \mathfrak{n}$ of weight k. As remarked in §3.1, the element $\alpha_{\xi} \in \overline{C}\mathfrak{a}(\mathbf{v})$ is uniquely determined by $\xi \in \mathfrak{a}$. In other words, we have for $\mathfrak{a}_+ := \{\alpha \in \mathfrak{a} | \alpha \gg 0\}$,

$$\mathfrak{a}_{+}/O_{+}^{\times}(\mathfrak{n}) \cong \bigsqcup_{\mathbf{v}} \bigsqcup_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \{\alpha + n \cdot {}^{t}\mathbf{v} | n \in \mathbb{N}^{r}\}$$

§3.6. Meromorphic continuation for general F. Let λ be a Hecke character of weight k modulo \mathfrak{n} . Define

$$\zeta(s,\lambda,\mathfrak{a}) = \sum_{\substack{0\neq\mathfrak{b}\subset O,\mathfrak{b}\sim\mathfrak{a}^{-1}}}\lambda(\mathfrak{b})^{-1}N(\mathfrak{b})^s = \frac{N(\mathfrak{a})^s}{\lambda(\mathfrak{a})}\sum_{(\xi)\subset\mathfrak{a}}\lambda(\alpha_{\xi})\frac{\xi^k}{\alpha_{\xi}^k}|N(\xi)|^{-s},$$

where $b \sim a^{-1}$ means the ideal class of b in Cl_F^+ is equal to the class of a^{-1} . Since $\lambda(\xi)|N(\xi)|^{-s} = \xi^{k-s1}$ if $\xi \gg 0$. We have

$$\frac{\lambda(\mathfrak{a})}{N(\mathfrak{a})^{s}}\zeta(s,\lambda,\mathfrak{a}) = \sum_{\xi\in\mathfrak{a}_{+}/O_{+}^{\times}} \frac{\lambda(\alpha_{\xi})}{\alpha_{\xi}^{k}} \xi^{k-s\mathbf{1}}$$
$$= \sum_{\mathbf{v}} \sum_{\alpha\in\overline{C}\mathfrak{a}(\mathbf{v})} \frac{\lambda(\alpha)}{\alpha^{k}} \zeta(s\mathbf{1}-k,A_{\mathbf{v}},x_{\alpha},\mathbf{1})$$

and

$$L(s,\lambda) = \sum_{\mathfrak{a}} \frac{N(\mathfrak{a})^s}{\lambda(\mathfrak{a})} \sum_{\mathbf{v}} \sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \frac{\lambda(\alpha)}{\alpha^k} \zeta(s\mathbf{1}-k, A_{\mathbf{v}}, x_{\alpha}, \mathbf{1}),$$

which has meromorphic continuation.

§3.7. Known functional equation when k = 0. Write $\Sigma := I/\langle c \rangle$ for complex conjugation c, and decompose $\Sigma = \Sigma(\mathbb{R}) \sqcup \Sigma(\mathbb{C})$, where $\Sigma(\mathbb{R})$ is made of all real embeddings.

We say λ is odd at $\sigma \in \Sigma(\mathbb{R})$ if $\lambda(\alpha) = -1$ for $\alpha \in F$ with $\alpha^{\sigma} < 0$ and $\alpha^{\tau} > 0$ for all $\tau \neq \sigma$ in $\Sigma(\mathbb{R})$ and $\alpha \equiv 1 \mod \mathfrak{n}$. Otherwise λ is even at σ . Define $L_{\sigma}(s,\lambda) = \pi^{-s/2}\Gamma(\frac{s}{2})$ if λ is even for $\sigma \in \Sigma(\mathbb{R}), \ L_{\sigma}(s,\lambda) = \pi^{-(s+1)/2}\Gamma(\frac{s+1}{2})$ if λ is odd for $\sigma \in \Sigma(\mathbb{R})$ and $L_{\sigma}(s,\lambda) = (2\pi)^{-s}\Gamma(s)$ for $\sigma \in \Sigma(\mathbb{C})$. Define

$$\widehat{L}(s,\lambda) = (\prod_{\sigma \in \Sigma} L_{\sigma}(s,\lambda))L(s,\lambda).$$

Then for primitive λ , we have for $\kappa(\lambda) \in \overline{\mathbb{Q}}$ with $|\kappa(\lambda)| = 1$

$$\widehat{L}(s,\lambda) = \kappa(\lambda)(|D|N(\mathfrak{n}))^{(1/2)-s}\widehat{L}(1-s,\lambda^{-1}) \quad (\text{Hecke, 1917}).$$

If $\lambda \neq 1$, $L(s,\lambda)$ is holomorphic everywhere, and $\hat{\zeta}_F(s)$ has simple pole at s = 0, 1. General $L(s,\lambda)$ has functional equation of the form $s \leftrightarrow w + 1 - s$ for $w \in \mathbb{Z}$ with $k + kc = w \sum_{\sigma} \sigma$ (see [LFE, §8.6]). §3.8. Cone lemma for Mumford-Shintani theorem. Let C and C' be polyhedral cones in F_+^{\times} . Then $C \cap C'$, $C \cup C'$ and $C \setminus C'$ are all polyhedral cones.

Sketch of Proof. Since $C \cup C' = (C \setminus C') \sqcup (C \cap C') \sqcup (C' \setminus C)$, we need to prove this only for $C \cap C'$ and $C \setminus C'$. Since the complement C^{\perp} of C is a disjoint union of $C(\pm v_1, \ldots, \pm v_{j-1}, \pm v_j, \pm v_{j+1}, \ldots, \pm v_r)$ with $t(\pm v_1, \ldots, \pm v_{j-1}, \pm v_j, \pm v_{j+1}, \ldots, \pm v_r) \neq \mathbf{v}$, we only need to prove the result for $C \cap C'$. We may assume that C and C' is simplicial; so, $C = C(\mathbf{v})$ and $C' = C(\mathbf{w})$. Then sending $C \ni$ $a_1v_1 + \cdots + a_rv_r$ to $(a_1, \ldots, a_r) \in (\mathbb{R}^{\times}_+)^r$, we have $C \cong (\mathbb{R}^{\times}_+)^r$. Thus we may assume that $C = (\mathbb{R}^{\times}_{+})^r$ with $C \cap F^r$ sent to $(\mathbb{Q}^{\times}_{+})^r$. Then decompose $C \cap C' = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_k$ for connected components C_i . Then the closure \overline{C}_i of C_i has finitely many faces of the form $C(y_1,\ldots,y_{r-1})$. Take y_r in C_j , then $\overline{C}(y_1,\ldots,y_{r-1},y_r)$ covers C_j . Removing redundant faces, we get the decomposition.

§3.9. Reduction towards Mumford-Shintani theorem.

Since the proof is the same for any n, we treat O_+^{\times} . We may assume that O_+^{\times} is infinite as otherwise, it is easy. Let $V_+ := \prod_{\sigma \in \Sigma(\mathbb{R})} \mathbb{R}_+^{\times} \times \prod_{\tau \in \Sigma(\mathbb{C})} \mathbb{C}^{\times}$. The space V_+ is a multiplicative abelian Lie group. Let

$$X = \{ (v_{\sigma})_{\sigma \in \Sigma} \in V_{+} | N(x) = \prod_{\sigma \in \Sigma(\mathbb{R})} x_{\sigma} \times \prod_{\tau \in \Sigma(\mathbb{C})} |x_{\sigma}|^{2} = 1 \}.$$

Then X is a Lie subgroup of V_+ . By Log : $V_+ \to \mathbb{R}^{\Sigma} =: W$ given by $\text{Log}(v_{\sigma}) = ((\log v_{\sigma})_{\sigma \in \Sigma(\mathbb{R})}, (\log |v_{\tau}|^2)_{\tau \in \Sigma(\mathbb{C})}), \text{Log}(X)$ is a \mathbb{R} -vector subspace of W, and by Dirichlet's unit theorem, $\text{Log}(O_+^{\times})$ is a lattice of W (i.e., W/Log(X) is compact). We have an exact sequence, for $S^1 = \{z \in \mathbb{C} : |z| = 1\}$,

$$1 \to (S^1)^{\Sigma(\mathbb{C})} \to X \to Log(X) \to 0.$$

Thus we have a compact subset $K \subset X$ such that

$$X = \bigcup_{\varepsilon \in O_+^{\times}} \varepsilon K \text{ with the interior } K^{\circ} \text{ of } K \text{ containing 1.}$$

§3.10. Proof of Mumford-Shintani theorem. We can then find an open subset $U \ni 1$ inside K such that $\varepsilon U \cap U = \emptyset$ if $1 \neq \varepsilon O_+^{\times}$. Let $\pi : V_+ \twoheadrightarrow X$ be the projection $v \mapsto v/N(v)$. Since F_+^{\times} is dense in V_+ , $\pi(F_+^{\times})$ is dense in X, which implies

$$K = \bigcup_{\alpha \in \pi(F_+^{\times})} \alpha U.$$

Since K is compact, there is a finite set $A \subset F_+^{\times}$ such that

$$K = \bigcup_{\alpha \in \pi(A)} \alpha U.$$

We may assume that $U = C_0 \cap X$ for an open simplicial cones C_0 ; so,

$$K = \bigcup_{\alpha \in A} \alpha C_0$$

as $\pi(\alpha)C = \alpha C_0$. Then by Cone Lemma, we can remove overlapping intersections and still K is exactly the disjoint union of finitely many open simplicial cones. §3.11. Towards integrality of L-values (Cassou-Nogues). If $\Sigma(\mathbb{C}) \neq \emptyset$, $L_{\sigma}(s,\lambda) = (2\pi)^{-s}\Gamma(s)$ for $\sigma \in \Sigma(\mathbb{C})$ has pole at s = 1 - n ($0 < n \in \mathbb{Z}$), while $\hat{L}(n, \lambda^{-1}) < \infty$ and $L_{\sigma}(n, \lambda^{-1}) < \infty$; so, $L(1 - n, \lambda) = 0$ if $\Sigma(\mathbb{C}) \neq \emptyset$. So we assume now that F is totally real to study integrality of $L(1 - n, \lambda)$. Rationality is proven by Shintani in 1976, but here we describe Cassou-Nogues' method effective to show integrality also.

A generalized Bernoulli polynomial in §2.8 is given only for χ with $\chi_i \neq 1$ for all *i*. Thus we need to find a way to express $L(s, \lambda)$ as a linear combination of $\zeta(s, A_v, x_\alpha, \chi)$ for non-trivial χ .

We take an integral ideal \mathfrak{a} prime to \mathfrak{n} and pick a prime ideal \mathfrak{l} prime to $\mathfrak{a}\mathfrak{n}$ such that $O/\mathfrak{l} \cong \mathbb{Z}/l\mathbb{Z}$ for a prime $l \in \mathbb{Z}$ (this means (l) splits in O). There are such prime l with positive density (actually the density $\geq 1/[F : \mathbb{Q}]$ by Chebotarev density theorem). We put $\mathcal{A} = \mathcal{A}_{\mathfrak{l}} := \mathfrak{a}/\mathfrak{l}\mathfrak{a}$. Then $\mathfrak{a}/\mathfrak{l} \cong O/\mathfrak{l} \cong \mathbb{Z}/l\mathbb{Z}$ which is a cyclic group of prime order l.

§3.12. Finite Fourier transform.

Let $\widehat{\mathcal{A}} := \operatorname{Hom}(\mathcal{A}, \mathbb{C}) = \operatorname{Hom}(\mathcal{A}, \mu_l)$. For functions $f : \mathcal{A} \to \mathbb{C}$ and $g : \widehat{\mathcal{A}} \to \mathbb{C}$, define their Fourier transform to be

$$\mathcal{F}(f) = \widehat{f}(\psi) = \sum_{a \in \mathcal{A}} f(a)\psi(a) \text{ and } \mathcal{F}(g)(x) = \sum_{\psi \in \widehat{\mathcal{A}}} g(\psi)\psi(x).$$

Exercise: If $F = \mathbb{Q}$ and $\mathfrak{a} = \mathbb{Z}$, for a Dirichlet character χ modulo l, show $\hat{\chi}(\psi) = G(\chi)$ for $\psi(x) = e(\frac{2\pi i x}{l})$, and find an explicit formula of $\mathcal{F}(\mathcal{F}(f)) : \mathcal{A} \to \mathbb{C}$. **Lemma 1.** For $1 : \hat{\mathcal{A}} \to \mathbb{C}$ with $1(\psi) = 1$ for $\psi \neq 1$ and 1(1) = 0. Then $\mathcal{F}(1)(x) = -\begin{cases} 1 & \text{if } x \neq 0, \\ 1-l & \text{if } x = 0. \end{cases}$

Proof. If x = 0, the $\mathcal{F}(1) = |\widehat{\mathcal{A}} - \{1\}| = l - 1$. If $x \neq 0$, $\mathcal{F}(1)$ is the sum of all *l*-th roots of unity except for 1. Since $\sum_{\zeta \in \mu_l} \zeta = 0$, we get $\mathcal{F}(1)(x) = -1$.

§3.13. A Shintani zeta function with ψ . Let $\chi_{\mathbf{v},\psi} = (\psi(v_i))$. Then $\chi_{\mathbf{v},\psi}^n = \prod_i \psi(v_i)^{n_i} = \psi(n_1v_1 + \dots + n_rv_r)$. Recall

$$\zeta(s, A_{\mathbf{v}}, x_{\alpha}, \chi_{\mathbf{v}, \psi}) = \sum_{n \in \mathbb{Z}_+^r} \chi_{\mathbf{v}, \psi}^n \prod_j (\alpha^{\sigma_j} + n_1 v_1^{\sigma_j} + \dots + n_r v_r^{\sigma_j})^{-s_j}.$$

By the lemma, we have

$$\begin{split} \sum_{\psi \neq 1} \sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\alpha) \zeta(s, A_{\mathbf{v}}, x_{\alpha}, \chi_{\mathbf{v}, \psi}) \\ &= -\sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\alpha) \zeta(s, A_{\mathbf{v}}, x_{\alpha}, 1) \\ &+ l \sum_{\beta \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\beta) \zeta(s, A_{\mathbf{v}}, x_{\beta}, 1) \end{split}$$

By choosing l sufficiently large, we may assume $v_i \notin \mathfrak{la}$; i.e., $\psi(v_i) \neq 1$ for all $\psi \neq 1$.

$\S3.14$. Conclusion.

Multiplying by $N(\mathfrak{a})^s\lambda(\mathfrak{a})^{-1}$ and summing over \mathbf{v} and \mathfrak{a} , we get

$$\begin{split} \sum_{\mathfrak{a}} \frac{N(\mathfrak{a})^{s}}{\lambda(\mathfrak{a})} \sum_{\mathbf{v}} \sum_{\psi \neq 1} \sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\alpha) \zeta(s, A_{\mathbf{v}}, x_{\alpha}, \chi_{\psi}) \\ &= -\sum_{\mathfrak{a}, \mathbf{v}} \frac{N(\mathfrak{a})^{s}}{\lambda(\mathfrak{a})} \sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\alpha) \zeta(s, A_{\mathbf{v}}, x_{\alpha}, 1) \\ &+ l \sum_{\mathfrak{a}, \mathbf{v}} \frac{N(\mathfrak{a})^{s}}{\lambda(\mathfrak{a})} \sum_{\beta \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\beta) \zeta(s, A_{\mathbf{v}}, x_{\beta}, 1) \\ &= -\sum_{\mathfrak{a}, \mathbf{v}} \frac{N(\mathfrak{a})^{s}}{\lambda(\mathfrak{a})} \sum_{\alpha \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\alpha) \zeta(s, A_{\mathbf{v}}, x_{\alpha}, 1) \\ &+ N(\mathfrak{l}) \frac{\lambda(\mathfrak{l})}{N(\mathfrak{l})^{s}} \sum_{\mathfrak{a}, \mathbf{v}} \frac{N(\mathfrak{l}\mathfrak{a})^{s}}{\lambda(\mathfrak{l}\mathfrak{a})} \sum_{\beta \in \overline{C}_{\mathfrak{a}}(\mathbf{v})} \lambda(\beta) \zeta(s, A_{\mathbf{v}}, x_{\beta}, 1) \\ &\stackrel{(*)}{=} -(1 - \lambda(\mathfrak{l})N(\mathfrak{l})^{1-s})L(s, \lambda). \end{split}$$

The identity at (*) is because $\{\mathfrak{la}\}_{\mathfrak{a}} \cong Cl_F^+$.

§3.15. If χ is non-trivial, no variable change necessary. Recall that $F(z, A, x, \chi) = \prod_{i=1}^{r} \frac{\exp(-x_i L_i(z))}{1-\chi_i \exp(-L_i(z))}$ has pole at $L_i(z) = \log \chi + 2\pi i \mathbb{Z}$. If $\chi_i = |\chi_i| e^{i\theta_i}$ with $0 \neq \theta_i \in (-\pi, \pi)$ or $|\chi| < 1$, the pole avoid z = 0. Thus the poles avoid original contour $P(\varepsilon)^r$ in z-space. Therefore by the above trick, even to make analytic continuation of $L(s, \lambda)$, Shintani's variable change is not necessary (as long as $\chi_i \neq 1$ for all i).

The corresponding rational function are therefore, writing $t_i = \exp(-L_i(z))$, of the form

$$\prod_{i=1}^r \frac{t^{x_i}}{(1-\psi(v_i)t_i)},$$

where $x_{\alpha} = (x_1, \ldots, x_r) \in [0, 1]^r \cap \mathbb{Q}^r$.

§3.16. Rationality and integrality theorem. For an embedding $\sigma : F \hookrightarrow \mathbb{R}$, let $\alpha_{\sigma} \in F^{\times}$ be an element such that $\alpha_{\sigma} \equiv 1 \pmod{\mathfrak{n}}^{\times}$ and $\alpha_{\sigma}^{\sigma} < 0$ but $\alpha_{\sigma}^{\tau} > 0$ for all embedding τ other than σ . The character λ modulo \mathfrak{n} is called totally odd (resp. totally even) if $\lambda(\alpha_{\sigma}) = -1$ (resp. $\lambda(\alpha_{\sigma}) = 1$) for all field embeddings σ of F.

Theorem 2 (Siegel 1937, Klingen 1962, Shintani 1976, Pierrete Cassou-Nogues 1979). Let $F \neq \mathbb{Q}$ be a totally real number field and λ be a finite order ray class character. For $0 < n \in \mathbb{Z}$ and a split prime \mathfrak{l} of F outside \mathfrak{n} with sufficiently large $N(\mathfrak{l})$,

 $(1 - \lambda(\mathfrak{l})N(\mathfrak{l})^n)L(1 - n, \lambda) \in \mathbb{Z}[\lambda],$

where $\mathbb{Z}[\lambda]$ is the subring of \mathbb{C} generated by the values of λ . We have $L(1 - n, \lambda) \neq 0$ only when (i) λ is totally odd and n is odd or (ii) λ is totally even and n is even.

Exercise: Use functional equation to show vanishing of $L(1-n, \lambda)$ when the condition of the theorem is not met.