We prove analytic continuation of Hecke L functions of number fields. A key is to write down explicitly the Hecke L-function as a linear combination of Shintani \(\zeta \)-function. For a number field, write \(F_+^\times \) for the group of all totally positive numbers in \(F \). Define, for linearly independent \(v_1, \ldots, v_r \in F_+^\times \), writing \(v = (v_1, \ldots, v_r) \), an open simplicial cone with generators \(v \) by

\[
C(v) = C(v_1, \ldots, v_r) := \mathbb{R}_+^\times v_1 + \cdots + \mathbb{R}_+^\times v_r
\]

\[
= \{ x_1 v_1 + \cdots + x_r v_r | x_i \in \mathbb{R}_+^\times \} \subset F \otimes_{\mathbb{Q}} \mathbb{R} =: F_\infty.
\]

For \(z, s \in \mathbb{C} \), writing \(z = |z|e^{i\theta} \) with \(-\pi < \theta \leq \pi\), we put \(z^s := |z|^s e^{i\theta s} \) in this notes. We start with the elementary case of quadratic fields and generalize the method to general number fields.
§3.0. Quadratic fields.
Let $F = \mathbb{Q}[\sqrt{d}]$ for square free integer d. It is known that the integer ring O of F is given by $O = \mathbb{Z}w_1 + \mathbb{Z}w_2$ with $w_1 = 1$ and

$$w_2 = \begin{cases} \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4}, \\ \frac{\sqrt{d}}{2} & \text{otherwise}. \end{cases}$$

Write $\sigma \in \text{Gal}(F/\mathbb{Q})$ given by $\sigma(a + b\sqrt{d}) = a - b\sqrt{d}$ (here \sqrt{d} is normalized so that it is positive when $d > 0$ and it has positive imaginary part if $d < 0$). Let F^\times_+ be the group of totally positive elements in F^\times; so, if F is imaginary, we understand $F^\times_+ = F^\times$.

Fix a non-zero O-ideal n. Let $O^\times_+(n) = \{\varepsilon \in O^\times_+ | \varepsilon \equiv 1 \pmod{n} \}$. If F is real, choose ε with $O^\times_+(n) = \varepsilon \mathbb{Z}$ with $\varepsilon < 1 < \varepsilon^\sigma$. If F is imaginary, then $O^\times_+(n)$ is finite, and write ε for a generator with non-negative imaginary part of the cyclic group $O^\times_+(n)$.
§3.1. Cones in quadratic fields.

In the case where $\varepsilon \notin \{\pm 1\}$, we consider the cone $C(1, \varepsilon)$. Then every $\alpha \in F_+^\times$ is uniquely brought into $C := C(1, \varepsilon) \cup C(1)$ by the multiplication by an element O_+^\times. If $\varepsilon \in \{\pm 1\}$, we pick $\alpha_j \in F_+^\times (0 < j \leq k)$ with $\alpha_1 = 1$ so that $C = \bigsqcup_{j<k} C(\alpha_j) \cup \bigsqcup_{j<r} C(\alpha_j, \alpha_{j+1})$ has the same property. We may assume that if $C(v, w) \subset C$, the angle of v and w to be less than 90°. For an open cone $C(v, w)$, we have $\alpha C(v, w) = C(\alpha v, \alpha w)$. Multiplying generators by α, we may assume that C is a disjoint union of finitely many cones generated by v's in \mathfrak{a} with totally positive real part. For any $\xi \in C(v, w)$, there exists a unique $\alpha = av + bw \in C(v, w)$ with $(a, b) \in (0, 1]^2$ such that $\xi = (a+n_1)v+(b+n_2)w = \alpha + n_1 v + n_2 w$ for $(n_1, n_2) \in \mathbb{N}^2$. More generally, for a number field F and $\xi \in C(v)$ with $v = t(v_1, \ldots, v_r) \in (F_+^\times)^r$, there exists a unique $\alpha = a_1 v_1 + \cdots + a_r v_r = n \cdot v \in C(v)$ with $(a_1, \ldots, a_r) \in (0, 1]^r$ such that

$$\xi = (a_1 + n_1) v_1 + \cdots + (a_r + n_r) v_r = \alpha + n \cdot v$$

for $n = (n_1, \ldots, n_r) \in \mathbb{N}^r$ (note $n \cdot v \in \mathfrak{a}$ if $v_j \in \mathfrak{a}$ for all j).
§3.2. Hecke L as a sum of partial \(\zeta \) function.

In this section, \(F \) is a general number field. Let \(a \) be an \(O \)-ideal prime to \(n \) and write \([a] \in Cl_F(n)\) for the ray class of \(\alpha \) modulo \(n \). Define a partial L-function of \([a]\) by

\[
\zeta_n(s, a) = \sum_{0 \neq b \subset O, [b] = [a^{-1}]} N(b)^{-s}.
\]

Formally, for a character \(\chi : Cl_F(n) \to \mathbb{C}^\times \), we have

\[
L(s, \chi) = \sum_{[a] \in Cl_F(n)} \chi(a)^{-1} \zeta_n(s, a).
\]

On the other hand, writing \(\alpha a^{-1} = b \) with \(\alpha \equiv 1 (\text{mod } n)^\times \), \(b \subset O \Leftrightarrow \alpha \in a \). Thus, indicating totally positivity of \(\alpha \) by \(\alpha \gg 0 \),

\[
\zeta_n(s, a) = N(a)^s \sum_{\alpha \in a/O_+^\times(n), \alpha \equiv 1 (\text{mod } n^\infty)^\times} \prod_{\sigma} (\alpha^\sigma)^{-s} = N(a)^s \sum_{0 \ll \alpha \in ((1+n) \cap a)/O_+^\times(n)} \prod_{\sigma} (\alpha^\sigma)^{-s},
\]

where \(\sigma \) runs over all field embeddings of \(F \) into \(\mathbb{C} \).
§3.3. Hecke L as a sum of Shintani ζ for quadratic fields.

Pick $C(v)$ for $v = (v_1, \ldots, v_r) \subset \mathbb{C}$ with $r \leq 2$. Define

$$C(v) = \overline{C}_a(v) := \{a_1v_1 + \cdots + a_r v_r \in C(v) \cap a | a_k \in (0, 1]\}$$

which is a finite set as a is a lattice in $F \otimes_{\mathbb{Q}} \mathbb{R}$.

Return to a quadratic field field F. Write $C = \bigsqcup_v C(v)$. As remarked already, we may assume $v \in na^r$ and $\Re(v_i) > 0$ and $\Re(v_i^\sigma) > 0$ for all i. Then for $A_v = (v, v^\sigma)$ and $\alpha = x \cdot v$ ($x \in (0, 1]^2$), $N(a)^{-s}\zeta_n(s, a)$ is given by

$$\sum_v \sum_{\alpha \in \overline{C}(v) \cap ((1+n)\cap a)} \sum_{n \in \mathbb{N}^r} (\alpha + n \cdot v)^{-s}(\alpha^\sigma + n \cdot v^\sigma)^{-s}$$

$$= \sum_v \sum_{\alpha \in \overline{C}(v) \cap ((1+n)\cap a)} \zeta((s, s), A_v, x\alpha, 1)$$

Thus $\zeta_n(s, a)$ and $L(s, \chi)$ have meromorphic continuation to all $s \in \mathbb{C}$. This is the original Shintani’s method in his 1976 paper.
3.4. Cone decomposition. Let F be a general number field. An open cone $C(v)$ for $v = t(v_1, \ldots, v_n)$ in F_+^\times spanned by \mathbb{Q}-linearly independent numbers $v_1, \ldots, v_n \in F_+^\times$ is defined to be

$$C(v) = \mathbb{R}_+^\times v_1 + \cdots + \mathbb{R}_+^\times v_n.$$

We will later prove

Theorem 1 (D. Mumford 1975 and T. Shintani 1976). There exists finitely many open simplicial cones $C(v_1), \ldots, C(v_k)$ without intersection such that any $\alpha \in F_+^\times$, there exists a unique $\varepsilon \in O_+^\times(n)$ such that $\varepsilon \alpha \in C := \bigsqcup_{j=1}^k C(v_j)$ with $v_j \in \mathfrak{n}a$ and $\text{Re}(v_j^\sigma) > 0$ for all embeddings $\sigma : F \hookrightarrow \mathbb{C}$.

We admit this theorem for the moment. A disjoint union of open simplicial cones is called a *polyhedral cone*.

Mumford proved this to make smooth toroidal compactification of the Hilbert modular variety (and generalized this to $GL_n^+(O)$ with totally positive determinant in place of $O_+^\times = GL_1^+(O)$ to make a smooth toroidal compactification of Shimura varieties).
§3.5. Integral cone decomposition.

Write $C = \bigsqcup_v C(v)$ for C as in the theorem. Pick an O-ideal \mathfrak{a} prime to \mathfrak{n}. By multiplying by a positive integer, we may assume that $v_i \in \mathfrak{n}\mathfrak{a}$. Write $I = \text{Isom}_{\text{field}}(F, \mathbb{C})$ and $v = (v_1, \ldots, v_r)$ ($r \leq [F : \mathbb{Q}] = \dim_{\mathbb{Q}} F = m$). Ordering $I = \{\sigma_1, \ldots, \sigma_m\}$, define $A_v = (v^{\sigma_1}, \ldots, v^{\sigma_m}) \in M_{r,m}(\mathbb{C})$ and

$$
\overline{C}(v) = \overline{C}_\mathfrak{a}(v) := \{a_1 v_1 + \cdots + a_r v_r \in C(v) \cap \mathfrak{a} | a_k \in (0, 1]\}.
$$

For any $\xi = a_1 v_1 + \cdots + a_r v_r \in C(v) \cap \mathfrak{a}$ prime to \mathfrak{n}, take the fraction part $\langle a_i \rangle \in [0, 1)$ such that $a_i - \langle a_i \rangle \in \mathbb{N}$. Then $\alpha = \alpha_\xi = \sum_{i=1}^r \langle a_i \rangle v_i \in \overline{C}(v)$, and we have, putting $x_\alpha := (\langle a_i \rangle)_i$, we have $\xi = (x_\alpha + n) \cdot v$ with $n \in \mathbb{N}^r$ (row vector). Thus $\xi \equiv \alpha \mod \mathfrak{n}$. and $\lambda((\xi))^{-k} = \lambda((\alpha_\xi))^{-k}$ for a Hecke character λ modulo \mathfrak{n} of weight k. As remarked in §3.1, the element $\alpha_\xi \in \overline{C}_\mathfrak{a}(v)$ is uniquely determined by $\xi \in \mathfrak{a}$. In other words, we have for $\mathfrak{a}_+ := \{\alpha \in \mathfrak{a} | \alpha \gg 0\}$,

$$
\mathfrak{a}_+ / \mathcal{O}_+^X(\mathfrak{n}) \cong \bigsqcup_v \bigsqcup_{\alpha \in \overline{C}_\mathfrak{a}(v)} \{\alpha + n \cdot v | n \in \mathbb{N}^r\}
$$
§3.6. Meromorphic continuation for general F.

Let λ be a Hecke character of weight k modulo n. Define

$$\zeta(s, \lambda, a) = \sum_{0 \neq b \subset O, b \sim a^{-1}} \lambda(b)^{-1} N(b)^s = \frac{N(a)^s}{\lambda(a)} \sum_{(\xi) \subset a} \lambda(\alpha_\xi) \frac{\zeta^k}{\alpha_\xi^k} |N(\xi)|^{-s},$$

where $b \sim a^{-1}$ means the ideal class of b in Cl_F^+ is equal to the class of a^{-1}. Since $\lambda(\xi)|N(\xi)|^{-s} = \zeta^{k-s1}$ if $\xi \gg 0$. We have

$$\frac{\lambda(a)}{N(a)^s} \zeta(s, \lambda, a) = \sum_{\xi \in a_+/O_+^\times} \frac{\lambda(\alpha_\xi)}{\alpha_\xi^k} \zeta^{k-s1} \zeta(s1 - k, A_v, x_\alpha, 1)$$

and

$$L(s, \lambda) = \sum_a \frac{N(a)^s}{\lambda(a)} \sum_v \sum_{\alpha \in C_a(v)} \frac{\lambda(\alpha)}{\alpha^k} \zeta(s1 - k, A_v, x_\alpha, 1),$$

which has meromorphic continuation.
§3.7. Known functional equation when $k = 0$. Write $\Sigma := I/\langle c \rangle$ for complex conjugation c, and decompose $\Sigma = \Sigma(\mathbb{R}) \sqcup \Sigma(\mathbb{C})$, where $\Sigma(\mathbb{R})$ is made of all real embeddings.

We say λ is odd at $\sigma \in \Sigma(\mathbb{R})$ if $\lambda(\alpha) = -1$ for $\alpha \in F$ with $\alpha^\sigma < 0$ and $\alpha^\tau > 0$ for all $\tau \neq \sigma$ in $\Sigma(\mathbb{R})$ and $\alpha \equiv 1 \mod n$. Otherwise λ is even at σ. Define $L_\sigma(s, \lambda) = \pi^{-s/2} \Gamma(\frac{s}{2})$ if λ is even for $\sigma \in \Sigma(\mathbb{R})$, $L_\sigma(s, \lambda) = \pi^{-(s+1)/2} \Gamma(\frac{s+1}{2})$ if λ is odd for $\sigma \in \Sigma(\mathbb{R})$ and $L_\sigma(s, \lambda) = (2\pi)^{-s} \Gamma(s)$ for $\sigma \in \Sigma(\mathbb{C})$. Define

$$\hat{L}(s, \lambda) = \left(\prod_{\sigma \in \Sigma} L_\sigma(s, \lambda) \right) L(s, \lambda).$$

Then for primitive λ, we have for $\kappa(\lambda) \in \bar{\mathbb{Q}}$ with $|\kappa(\lambda)| = 1$

$$\hat{L}(s, \lambda) = \kappa(\lambda)(|D|N(n))^{(1/2)-s} \hat{L}(1-s, \lambda^{-1}) \quad \text{(Hecke, 1917)}.$$

If $\lambda \neq 1$, $L(s, \lambda)$ is holomorphic everywhere, and $\hat{\zeta}_F(s)$ has simple pole at $s = 0, 1$. General $L(s, \lambda)$ has functional equation of the form $s \leftrightarrow w + 1 - s$ for $w \in \mathbb{Z}$ with $k + kc = w \sum_\sigma \sigma$ (see [LFE, §8.6]).
§3.8. Cone lemma for Mumford-Shintani theorem. Let C and C' be polyhedral cones in F^\times_+. Then $C \cap C'$, $C \cup C'$ and $C \setminus C'$ are all polyhedral cones.

Sketch of Proof. Since $C \cup C' = (C \setminus C') \sqcup (C \cap C') \sqcup (C' \setminus C)$, we need to prove this only for $C \cap C'$ and $C \setminus C'$. Since the complement C^\perp of C is a disjoint union of $C'(\pm v_1, \ldots, \pm v_{j-1}, \pm v_j, \pm v_{j+1}, \ldots, \pm v_r)$ with $^t(\pm v_1, \ldots, \pm v_{j-1}, \pm v_j, \pm v_{j+1}, \ldots, \pm v_r) \neq v$, we only need to prove the result for $C \cap C'$. We may assume that C and C' is simplicial; so, $C = C(v)$ and $C' = C(w)$. Then sending $C \ni a_1 v_1 + \cdots + a_r v_r$ to $(a_1, \ldots, a_r) \in (\mathbb{R}^\times_+)^r$, we have $C \cong (\mathbb{R}^\times_+)^r$. Thus we may assume that $C = (\mathbb{R}^\times_+)^r$ with $C \cap F^r$ sent to $(\mathbb{Q}^\times_+)^r$. Then decompose $C \cap C' = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_k$ for connected components C_j. Then the closure \overline{C}_j of C_j has finitely many faces of the form $C(y_1, \ldots, y_{r-1})$. Take y_r in C_j, then $\overline{C}(y_1, \ldots, y_{r-1}, y_r)$ covers C_j. Removing redundant faces, we get the decomposition. \Box
§3.9. Reduction towards Mumford-Shintani theorem.

Since the proof is the same for any \(n \), we treat \(O^\times_+ \). We may assume that \(O^\times_+ \) is infinite as otherwise, it is easy. Let \(V_+ := \prod_{\sigma \in \Sigma(\mathbb{R})} \mathbb{R}^\times_+ \times \prod_{\tau \in \Sigma(\mathbb{C})} \mathbb{C}^\times \). The space \(V_+ \) is a multiplicative abelian Lie group. Let

\[
X = \{ (v_\sigma)_{\sigma \in \Sigma} \in V_+ | N(x) = \prod_{\sigma \in \Sigma(\mathbb{R})} x_\sigma \times \prod_{\tau \in \Sigma(\mathbb{C})} |x_\sigma|^2 = 1 \}.
\]

Then \(X \) is a Lie subgroup of \(V_+ \). By \(\text{Log} : V_+ \to \mathbb{R}^{\Sigma} =: W \) given by \(\text{Log}(v_\sigma) = ((\log v_\sigma)_{\sigma \in \Sigma(\mathbb{R})}, (\log |v_\tau|^2)_{\tau \in \Sigma(\mathbb{C})}) \), \(\text{Log}(X) \) is a \(\mathbb{R} \)-vector subspace of \(W \), and by Dirichlet’s unit theorem, \(\text{Log}(O^\times_+) \) is a lattice of \(W \) (i.e., \(W/\text{Log}(X) \) is compact). We have an exact sequence, for \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} \),

\[
1 \to (S^1)^{\Sigma(\mathbb{C})} \to X \to \text{Log}(X) \to 0.
\]

Thus we have a compact subset \(K \subset X \) such that

\[
X = \bigcup_{\varepsilon \in O^\times_+} \varepsilon K \text{ with the interior } K^\circ \text{ of } K \text{ containing 1.}
\]
§3.10. Proof of Mumford-Shintani theorem. We can then find an open subset $U \ni 1$ inside K such that $\varepsilon U \cap U = \emptyset$ if $1 \neq \varepsilon O_+^\times$. Let $\pi : V_+ \to X$ be the projection $v \mapsto v/N(v)$. Since F_+^\times is dense in V_+, $\pi(F_+^\times)$ is dense in X, which implies

$$K = \bigcup_{\alpha \in \pi(F_+^\times)} \alpha U.$$

Since K is compact, there is a finite set $A \subset F_+^\times$ such that

$$K = \bigcup_{\alpha \in \pi(A)} \alpha U.$$

We may assume that $U = C_0 \cap X$ for an open simplicial cones C_0; so,

$$K = \bigcup_{\alpha \in A} \alpha C_0$$

as $\pi(\alpha)C = \alpha C_0$. Then by Cone Lemma, we can remove overlapping intersections and still K is exactly the disjoint union of finitely many open simplicial cones. \qed
3.11. Towards integrality of L-values (Cassou-Nogues).
If $\Sigma(C) \neq \emptyset$, $L_\sigma(s, \lambda) = (2\pi)^{-s} \Gamma(s)$ for $\sigma \in \Sigma(C)$ has pole at $s = 1 - n$ ($0 < n \in \mathbb{Z}$), while $\hat{L}(n, \lambda^{-1}) < \infty$ and $L_\sigma(n, \lambda^{-1}) < \infty$; so, $L(1 - n, \lambda) = 0$ if $\Sigma(C) \neq \emptyset$. So we assume now that F is totally real to study integrality of $L(1 - n, \lambda)$. Rationality is proven by Shintani in 1976, but here we describe Cassou-Nogues' method effective to show integrality also.

A generalized Bernoulli polynomial in \S 2.8 is given only for χ with $\chi_i \neq 1$ for all i. Thus we need to find a way to express $L(s, \lambda)$ as a linear combination of $\zeta(s, A_v, x_\alpha, \chi)$ for non-trivial χ.

We take an integral ideal a prime to n and pick a prime ideal l prime to an such that $O/l \cong \mathbb{Z}/l\mathbb{Z}$ for a prime $l \in \mathbb{Z}$ (this means (l) splits in O). There are such prime l with positive density (actually the density $\geq 1/[F : \mathbb{Q}]$ by Chebotarev density theorem). We put $A = A_l := a/l\mathbb{A}$. Then $a/l \cong O/l \cong \mathbb{Z}/l\mathbb{Z}$ which is a cyclic group of prime order l.
§3.12. Finite Fourier transform.

Let $\hat{A} := \text{Hom}(A, \mathbb{C}) = \text{Hom}(A, \mu_l)$. For functions $f : A \to \mathbb{C}$ and $g : \hat{A} \to \mathbb{C}$, define their Fourier transform to be

$$\mathcal{F}(f) = \hat{f}(\psi) = \sum_{a \in A} f(a) \psi(a) \quad \text{and} \quad \mathcal{F}(g)(x) = \sum_{\psi \in \hat{A}} g(\psi) \psi(x).$$

Exercise: If $F = \mathbb{Q}$ and $a = \mathbb{Z}$, for a Dirichlet character χ modulo l, show $\hat{\chi}(\psi) = G(\chi)$ for $\psi(x) = e(\frac{2\pi i x}{l})$, and find an explicit formula of $\mathcal{F}(\mathcal{F}(f)) : A \to \mathbb{C}$.

Lemma 1. For $1 : \hat{A} \to \mathbb{C}$ with $1(\psi) = 1$ for $\psi \neq 1$ and $1(1) = 0$.

Then $\mathcal{F}(1)(x) = -\begin{cases} 1 & \text{if } x \neq 0, \\ 1 - l & \text{if } x = 0. \end{cases}$

Proof. If $x = 0$, the $\mathcal{F}(1) = |\hat{A} - \{1\}| = l - 1$. If $x \neq 0$, $\mathcal{F}(1)$ is the sum of all l-th roots of unity except for 1. Since $\sum_{\zeta \in \mu_l} \zeta = 0$, we get $\mathcal{F}(1)(x) = -1$. \(\square\)
§3.13. A Shintani zeta function with ψ.

Let $\chi_{v,\psi} = (\psi(v_i))$. Then $\chi_{v,\psi}^n = \prod_i \psi(v_i)^{n_i} = \psi(n_1v_1 + \cdots + n_rv_r)$.

Recall

$$
\zeta(s, A_v, x_\alpha, \chi_v, \psi) = \sum_{n \in \mathbb{Z}_+^r} \chi_{v,\psi}^n \prod_j (\alpha^\sigma_j + n_1v_1^\sigma_j + \cdots + n_rv_r^\sigma_j)^{-s_j}.
$$

By the lemma, we have

$$
\sum_{\psi \neq 1} \prod_{\alpha \in \mathcal{C}_a(v)} \lambda(\alpha) \zeta(s, A_v, x_\alpha, \chi_v, \psi)
= - \sum_{\alpha \in \mathcal{C}_a(v)} \lambda(\alpha) \zeta(s, A_v, x_\alpha, 1)
+ l \sum_{\beta \in \mathcal{C}_{a_l}(v)} \lambda(\beta) \zeta(s, A_v, x_\beta, 1)
$$

By choosing l sufficiently large, we may assume $v_i \notin la$; i.e., $\psi(v_i) \neq 1$ for all $\psi \neq 1$.
§3.14. Conclusion.

Multiplying by $N(a)^s \lambda(a)^{-1}$ and summing over v and a, we get

$$\sum_a \frac{N(a)^s}{\lambda(a)} \sum_v \sum_{\psi \neq 1} \lambda(\alpha) \zeta(s, A_v, x_\alpha, \chi_\psi)$$

$$= - \sum_{a,v} \frac{N(a)^s}{\lambda(a)} \sum_{\alpha \in C_a(v)} \lambda(\alpha) \zeta(s, A_v, x_\alpha, 1)$$

$$+ l \sum_{a,v} \frac{N(a)^s}{\lambda(a)} \sum_{\beta \in C_a(lv)} \lambda(\beta) \zeta(s, A_v, x_\beta, 1)$$

$$= - \sum_{a,v} \frac{N(a)^s}{\lambda(a)} \sum_{\alpha \in C_a(v)} \lambda(\alpha) \zeta(s, A_v, x_\alpha, 1)$$

$$+ \frac{\lambda(l)}{N(l)} \sum_{a,v} \frac{N(la)^s}{\lambda(la)} \sum_{\beta \in C_a(lv)} \lambda(\beta) \zeta(s, A_v, x_\beta, 1)$$

$$\overset{(*)}{=} -(1 - \lambda(l)N(l)^{1-s})L(s, \lambda).$$

The identity at $(*)$ is because $\{la\}_a \cong Cl_{F}^{+}$.
§3.15. If χ is non-trivial, no variable change necessary. Recall that $F(z, A, x, \chi) = \prod_{i=1}^{r} \frac{\exp(-x_i L_i(z))}{1 - \chi_i \exp(-L_i(z))}$ has pole at $L_i(z) = \log \chi + 2\pi i \mathbb{Z}$. If $\chi_i = |\chi_i| e^{i\theta_i}$ with $0 \neq \theta_i \in (-\pi, \pi)$ or $|\chi| < 1$, the pole avoid $z = 0$. Thus the poles avoid original contour $P(\varepsilon)^r$ in z-space. Therefore by the above trick, even to make analytic continuation of $L(s, \lambda)$, Shintani’s variable change is not necessary (as long as $\chi_i \neq 1$ for all i).

The corresponding rational function are therefore, writing $t_i = \exp(-L_i(z))$, of the form

$$\prod_{i=1}^{r} \frac{tx_i}{(1 - \psi(v_i) t_i)},$$

where $x_\alpha = (x_1, \ldots, x_r) \in [0, 1]^r \cap \mathbb{Q}^r$.

§3.16. Rationality and integrality theorem. For an embedding $\sigma : F \hookrightarrow \mathbb{R}$, let $\alpha_\sigma \in F^\times$ be an element such that $\alpha_\sigma \equiv 1 \pmod{\mathfrak{n}}$ and $\alpha_\sigma^\tau < 0$ but $\alpha_\sigma^\tau > 0$ for all embedding τ other than σ. The character λ modulo \mathfrak{n} is called totally odd (resp. totally even) if $\lambda(\alpha_\sigma) = -1$ (resp. $\lambda(\alpha_\sigma) = 1$) for all field embeddings σ of F.

Theorem 2 (Siegel 1937, Klingen 1962, Shintani 1976, Pierrete Cassou-Nogues 1979). Let $F \neq \mathbb{Q}$ be a totally real number field and λ be a finite order ray class character. For $0 < n \in \mathbb{Z}$ and a split prime l of F outside \mathfrak{n} with sufficiently large $N(l)$,

$$(1 - \lambda(l)N(l)^n)L(1 - n, \lambda) \in \mathbb{Z}[\lambda],$$

where $\mathbb{Z}[\lambda]$ is the subring of \mathbb{C} generated by the values of λ. We have $L(1 - n, \lambda) \neq 0$ only when (i) λ is totally odd and n is odd or (ii) λ is totally even and n is even.

Exercise: Use functional equation to show vanishing of $L(1 - n, \lambda)$ when the condition of the theorem is not met.