Lecture note No.2 for Math 205a Fall 2019 Shintani ζ-function Haruzo Hida

We extend Hurwitz's method of proving analytic continuation to Shintani ζ -function. For example, consider an imaginary quadratic field $K = \mathbb{Q}[\sqrt{-1}]$ with integer ring $O = \mathbb{Z}[\sqrt{-1}]$. Then $\zeta_K(s) = \sum_{0 \neq (\alpha) \subset O} N(\alpha)^{-s}$ for $N(\alpha) = |O/(\alpha)| = |\alpha|^2$. Since $\pm i(a + bi) = \pm ia \mp b$ and $\pm (a + bi) = \pm a \pm bi$, (α) is generated by a + bi o with a > 0 and $b \ge 0$. Then

$$\zeta_K(s) = \sum_{m>0,n\geq 0} (m+ni)^{-s} (m-ni)^{-s}$$

= $\zeta(s,1) + \sum_{m=0,n=0}^{\infty} L_1^*((m,n) + (1,1))^{-s} L_2^*((m,n) + (1,1))^{-s}$

 $= \zeta(s,1) + \zeta((s,s),A,(1,1),(1,1)),$

where $L_1^*((x,y)) = x + iy$ and $L_2^*((x,y)) = x - iy$ are linear forms with coefficients summarized in a matrix $A = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$ so that $(x,y)A = (L_1, L_2)$ and $z^s = |z|^s e^{i\theta}$ with $-\pi \le \theta < \pi$.

$\S2.1.$ Set up for Shintani zeta function.

We take a different branch of complex logarithm; so, writing $z = |z|e^{i\theta}$ with $-\pi \le \theta < \pi$, we define $\log(z) = \log |z| + i\theta$ and hence $z^s = e^{s\log(z)} = |z|^s e^{i\theta s}$.

The data defining Shintani zeta function is

$$A = (a_{ij}) \in M_{r,m}(\mathbb{C}) \text{ with } \operatorname{Re}(a_{ij}) > 0 \text{ for all } (i,j),$$

$$\chi = (\chi_1, \dots, \chi_r) \in \mathbb{C}^r \text{ with } |\chi_i| = 1 \text{ and}$$

$$x = (x_1, \dots, x_r) \in [0,1]^r \text{ but } x \neq (0,0,\dots,0).$$

We define Linear form $L_j^* : \mathbb{C}^r \to \mathbb{C}$ by $L_j^*(w) = \sum_{k=1}^r a_{kj} w_k$ for $w = (w_1, \dots, w_r)$, and Shintani zeta function by

$$\zeta(s,A,x,\chi) := \sum_{n \in \mathbb{N}^r} \chi^n L^*(n+x)^{-s} \quad (s = (s_1,\ldots,s_m) \in \mathbb{C}^m),$$

where $L^*(n+x) = (L_1^*(n+x), \dots, L_m^*(n+x))$ and $L^*(n+x)^{-s} = \prod_{j=1}^m L_j^*(n+x)^{-s_j}$. Here $\mathbb{N} := \{n \in \mathbb{Z} | n \ge 0\}$.

§2.2. Convergence Lemma. The zeta function $\zeta(s, A, x, \chi)$ converges absolutely and locally unifromly if $\operatorname{Re}(s_i) > \frac{r}{m}$. Sketch of Proof: Since $|\chi_i| \leq 1$, we may assume that $\chi_i = 1$ for all i; so, $\chi = 1 = (1, \ldots, 1)$. Since $\operatorname{Re}(a_{ij}) > 0$, have $\min_{i,j} \operatorname{Re}(a_{ij}) = c > 0$. Assume $\operatorname{Re}(s_j) > 0$ for all j and let $\sigma_j = \operatorname{Re}(s_j)$. To estimate $|\zeta(s, A, x, 1)|$, we may throw away finitely many terms; so, we may assume that $n_j > 0$ for all j, and we may ignore x. We have $|L_j^*(n)| = |\operatorname{Re}(L_j^*(n)) + \operatorname{Im}(L_j^*(n))| \geq |\operatorname{Re}(L_j^*(n))|$; or equivalently,

$$|L_j^*(n)|^{-t} \le |\operatorname{Re}(L_j^*(n))|^{-t}$$
 for $t > 0$.

Thus we may assume that $0 < c = a_{ij} \in \mathbb{R}$ for all (i, j). Note that $\#P_k \leq Ck^{r-1}$ for $P_k := \{k_1 + k_2 + \dots + k_r = k | 0 < k_j \in \mathbb{Z}\}$ for a constant C > 0 independent of $0 < k \in \mathbb{Z}$. Thus $|L_j^*(n)^{-s_j}| \geq (c(\sum_{i=1}^r n_i))^{-\sigma_j}$ and hence, writing $|\sigma| = \sum_{j=1}^m \sigma_j$,

$$|\zeta(s, A, x, \chi)| \le c^{-|\sigma|} \sum_{k=1}^{\infty} \sum_{n \in P_k} k^{-|\sigma|} \le c^{-|\sigma|} C \sum_{k=1}^{\infty} k^{r-1-|\sigma|},$$

which converges absolutely and locally uniformly if $|\sigma| > r$.

§2.3. Rational function in $\exp(-L_i(t))$. Define $G(t) = G(t, A, x, \chi) := \sum_{n \in \mathbb{N}^r} \chi^n \exp(-\sum_{j=1}^m L_j^*(n+x)t_j)$. Note that

$$\sum_{j=1}^{m} L_{j}^{*}(n+x)t_{j} = \sum_{j=1}^{m} \sum_{i=1}^{r} a_{ij}(n_{i}+x_{i})t_{j} = \sum_{i=1}^{r} (n_{i}+x_{i}) \sum_{j=1}^{m} a_{ij}t_{j}.$$

Thus writing $L_i(t) := \sum_{j=1}^m a_{ij}t_j$ for $t = (t_1, \ldots, t_m)$, we have

$$G(t) = G(t, A, x, \chi) = \prod_{i=1}^{r} \sum_{n_i=0}^{\infty} \chi_i^{n_i} \exp(-(n_i + x_i)L_i(t))$$

= $\exp(-\sum_{i=1}^{r} x_i L_i(t)) \prod_{i=1}^{r} \sum_{n_i=0}^{\infty} \chi_i^{n_i} \exp(-n_i L_i(t))$
= $\prod_{i=1}^{r} \frac{\exp(-x_i L_i(t))}{1 - \chi_i \exp(-L_i(t))}.$

Let $\tilde{G}(t)$ be the function constructed for $\chi = 1$, Re(A) and x = 1. Thus $|\tilde{G}(t)| = O(\exp(-c\sum_i t_i))$ as $|t| \to \infty$ and is bounded as $|t| \to 0$; i.e., $|\tilde{G}(t)|$ is an integrable positive valued function over \mathbb{R}^r_+ .

§2.4. Integral expression of $\zeta(s, A, \chi, x)$. For $G_N(t) = \sum_{|n| < N} \chi^n \exp(-\sum_{j=1}^m L_j^*(n+x)t_j)$, $|G_N(t)t^s| \le |\tilde{G}(t)|t^{\sigma}$ for all $0 < N \in \mathbb{Z}$, by Lebesgue's dominated convergence theorem, we find for $d\mu = \prod_j t_j^{-1} dt_j$, if $\operatorname{Re}(s_j) > m/r$ for all j,

$$\Gamma_m(s)\zeta(s,A,x,\chi) = \sum_{n \in \mathbb{N}^r} \int_0^\infty \cdots \int_0^\infty t^s \chi^n \exp(-\sum_{j=1}^m L_j^*(n+x)t_j) d\mu$$

= $\lim_{N \to \infty} \int_0^\infty \cdots \int_0^\infty t^s G_N(t) d\mu$
= $\int_0^\infty \cdots \int_0^\infty t^s \lim_{N \to \infty} G_N(t) d\mu = \int_0^\infty \cdots \int_0^\infty t^s G(t) d\mu,$

where $\Gamma_m(s) = \prod_{j=1}^m \Gamma(s_j)$. Let $\mathbb{R}_+ := \{x \in \mathbb{R} | x > 0\}$ (right half real line), and hereafter we write

$$\int_0^\infty \cdots \int_0^\infty ?d\mu = \int_{\mathbb{R}^m_+} ?d\mu.$$

§2.5. $\int_{P(\varepsilon)} \cdots \int_{P(\varepsilon)} t^s G(t) d\mu$ does not make sense. For simplicity, take $\chi = 1$. The function $\frac{\exp(-x_i L_i(z))}{1 - \exp(-L_i(z))}$ has pole on the hyper plane $H_{i,k}$ defined by $L_i(z) = 2k\pi\sqrt{-1}$ for any $k \in \mathbb{Z}$. Plainly $P(\varepsilon)^r$ intersects some of $H_{i,k}$; so, taking naive contour integral does not make sense.

Shintani's idea is to make a very clever variable change. Decompose

$$\mathbb{R}^m_+ = \bigcup_{k=1}^m D_k \quad \text{with} \quad D_k = \{(t_1, \dots, t_m) | t_k \ge t_i \ \forall i \neq k\}.$$

Note that $D_k \cap D_j \subset \{t_k = t_j\}$; so, the intersection of D_k and D_j for $k \neq j$ has measure 0. Any $t = (t_1, \ldots, t_m) \in \mathbb{R}^m_+$, taking the index k such that $t_k = \max_j(t)$, we find $t \in D_k$; so, \mathbb{R}^m_+ is a union of D_k . Thus we have for any continuous integrable function f(t)on \mathbb{R}^m_+ , we have $\int_{\mathbb{R}^m_+} f(t) d\mu = \sum_{k=1}^m \int_{D_k} f(t) d\mu$. Thus we study $\int_{D_k} t^s G(t) d\mu$. §2.6. Shintani's variable change. Since $D_k \cong D_1$ by interchanging t_k and t_1 , we study the integral over D_1 . The variable change is $(t_1, \ldots, t_m) = U(1, u_2 \ldots, u_{m-1}, u_m)$ (i.e., on D_k , $u_k = 1$). Thus $U \in \mathbb{R}_+$ and $u_j \in (0, 1]$. The jacobian matrix of this variable change is given

$$\begin{pmatrix} \frac{\partial t_1}{\partial U} & \frac{\partial t_2}{\partial U} & \cdots & \frac{\partial t_m}{\partial U} \\ \frac{\partial t_1}{\partial u_2} & \frac{\partial t_2}{\partial u_2} & \cdots & \frac{\partial t_m}{\partial u_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial t_1}{\partial u_m} & \frac{\partial t_2}{\partial u_m} & \cdots & \frac{\partial t_m}{\partial u_m} \end{pmatrix} = \begin{pmatrix} 1 & u_2 & \cdots & u_m \\ 0 & U & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & U \end{pmatrix}$$

So we have $dt = U^{m-1}dUdu$ for $du = du_2 \cdots du_m$ and

$$d\mu = U^{-1}u^{-1}dUdu \quad (\text{Tr}(s) = \sum_{j=1}^{m} s_j) \text{ and}$$
$$\int_{D_1} t^s G(t)d\mu = \int_0^\infty \int_0^1 \cdots \int_0^1 G_1(U, u) U^{\text{Tr}(s)} u^s d\mu \text{ with}$$
$$G_1(U, u) = \prod_{i=1}^r \frac{\exp(-x_i U L_i(u))}{1 - \chi_i \exp(-U L_i(u))}.$$

§2.7. Why the contour $P(\varepsilon) \times P(\varepsilon, 1)^{m-1}$ avoids singularity? Write $\chi = |\chi_i|e^{i\theta_i}$ with $0 \le \theta_i < 2\pi$. Since $u = (1, u_2, \dots, u_m) \in (0, 1]^m$,

$$\operatorname{Re}(L_i(u)) = \operatorname{Re}(a_{i1}) + \sum_{j=2} \operatorname{Re}(a_{ij})u_j \to \operatorname{Re}(a_{i1}) \ge c$$

as $u_j \to 0$ (j = 2, ..., m). Thus $|u_j| \leq \varepsilon$ for sufficiently small ε , $1 - \chi_i \exp(-UL_i(u))$ have 0 only at U = 0 if $\chi = 1$ and otherwise $UL_i(u) \in \theta_i + 2\pi i \mathbb{Z} + \log |\chi_i|$ which never happen if ε is sufficiently small. This argument applies to all integral over D_k for k > 1, and making ε further small and writing $G_k(U, u) = \prod_{i=1}^r \frac{\exp(-x_i UL_i(u))}{1-\chi_i \exp(-UL_i(u))}$ for the function on D_k , we get

$$\Gamma_m(s)\zeta(s,A,x,\chi) = \frac{\sum_{k=1}^m (e^{2\pi s_k i} - 1) \int_{P(\varepsilon)} \int_{P(\varepsilon,1)} \cdots \int_{P(\varepsilon,1)} G_k(U,u) U^{\mathsf{Tr}(s)} u^s d\mu}{(e^{2\pi i \mathsf{Tr}(s)} - 1) \prod_{j=1}^m (e^{2\pi s_j i} - 1)}.$$

Thus Shintani zeta function is analytically continued to a meromorphic function on $s \in \mathbb{C}^m$ with possible poles at $Tr(s) \in \mathbb{Z}$ and $s_j \in \mathbb{Z}$.

§2.8. Generalized Bernoulli polynomial.

Let $\mathbb{Q}(A,\chi)$ be the field generated by coefficients of A and χ inside \mathbb{C} . Assume $\chi_i \neq 1$ for all i. Then G(z) is holomorphic at z = 0; so, we have its Taylor expansion around z = 0:

$$G(z, A, x, \chi) = \prod_{i=1}^{r} \frac{\exp(-x_i L_i(z))}{1 - \chi_i \exp(-L_i(z))} = \sum_{n \in \mathbb{N}^m} \frac{B_{n+1}(x)}{(n+1)!} z^n$$

for the polynomial $B_{n+1}(x) \in \mathbb{Q}(A,\chi)[x]$ of r variables, where $n! = \prod_{j=1}^{m} n_j!$, $z^n = \prod_{j=1}^{m} z_j^{n_j}$. Similarly, writing $(Uu)^n$ for z^n under the variable change $z = U(u_1, \ldots, u_{k-1}, 1, u_{k+1}, \ldots, u_m)$,

$$G_k(U, u, A, x, \chi) = \prod_{i=1}^r \frac{\exp(-x_i U L_i(u))}{1 - \chi_i \exp(-U L_i(u))} = \sum_{n \in \mathbb{N}^m} \frac{B_{n+1}^{(k)}(x)}{(n+1)!} (Uu)^n$$

and $B_n(x) = \sum_{k=1}^m B_n^{(k)}(x).$

§2.9. Rationality Theorem. As we have seen, for $0 < n \in \mathbb{Z}$,

$$\left[(e^{2\pi i m s} - 1) \Gamma(s) \left((e^{2\pi i s} - 1) \Gamma(s) \right)^{m-1} \right]_{s=1-n} \zeta(1-n, A, x, \chi) = \sum_{k=1}^{m} \oint \oint \cdots \oint G_k(U, u) U^{m(1-n)} u^{1-n} d\mu,$$

$$\left[(e^{2\pi i m s} - 1) \Gamma(s) \left((e^{2\pi i s} - 1) \Gamma(s) \right)^{m-1} \right]_{s=1-n} = m \left(\frac{(-1)^{n-1} 2\pi i}{(n-1)!} \right)^m$$

The coefficient in $(Uu)^{-1}$ of $G(z)(Uu)^{-n1}$ is given by the coefficient in $(Uu)^{(n-1)1}$; so, if $\chi_i \neq 1$ for all *i*,

$$m\left(\frac{(-1)^{n-1}2\pi i}{(n-1)!}\right)^{m}\zeta((1-n)1,A,x,\chi)$$

= $(2\pi i)^{m}\sum_{k=1}^{m} \operatorname{Res}_{U=0,u=0}(G_{k}(U,u)U^{m(1-n)}u^{1-n}) = (2\pi i)^{m}\frac{B_{n}(x)}{n!^{m}}$

and
$$\zeta((1-n)1, A, x, \chi) = (-1)^{m(n-1)} \frac{B_n(x)}{mn^m} \in \mathbb{Q}(A, \chi)[x].$$

$\S2.10.$ A bit of algebraic number theory.

Let F be a number field with integer ring O. A non-zero finitely generated O-submodule \mathfrak{a} of F is called a fractional ideal of F (in particular, a fractional ideal is a finitely generated \mathbb{Z} -module). Let I be the correction of all fractional ideals of F. The trace pairing $(x, y) \mapsto \mathsf{Tr}(xy)$ gives a non-degenerate self Q-duality on F with $(\alpha x, y) = (x, \alpha y)$ for $\alpha \in O$. For a fractional ideal \mathfrak{a} , $\mathfrak{a}^* := \{x \in F | (O, x) \subset \mathbb{Z}\}$, which is a fractional ideal as it is finitely generated even over \mathbb{Z} . Define $\mathfrak{a}^{-1} = \{x \in F | x\mathfrak{a} \subset O\}$, which is an *O*-module (as $x\mathfrak{a} \subset O \Rightarrow Ox\mathfrak{a} \subset O$). Plainly $\mathfrak{a}^{-1} \subset \mathfrak{a}^*$; so, \mathfrak{a}^{-1} is finitely generated over \mathbb{Z} ; so, \mathfrak{a}^{-1} is a fractional ideal. Defining \mathfrak{ab} be the O-module generated by ab with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$, we have $\mathfrak{a}^{-1}\mathfrak{a} = O$. Thus I is a group by the above product $(\mathfrak{a}, \mathfrak{b}) \mapsto \mathfrak{a}\mathfrak{b}$ with identity O.

§2.11. Ray class group. Since O is a Dedekind domain, we can uniquely factorize $\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{e(\mathfrak{p})}$ for prime ideals \mathfrak{p} . The exponent $e(\mathfrak{p})$ is non-negative if \mathfrak{a} is an O-ideal. Thus $I \cong \bigoplus_{\mathfrak{p}: \text{prime}} \mathfrak{p}^{\mathbb{Z}}$. Pick a non-zero O-ideal \mathfrak{n} . If in the above factorization, any prime in \mathfrak{n} does not appear in \mathfrak{a} , we say that \mathfrak{a} is prime to \mathfrak{n} . Then plainly $I(\mathfrak{n})$ made up of ideals prime to \mathfrak{n} is a subgroup of I.

We write $\alpha \equiv 1 \pmod{\mathfrak{n}}^{\times}$ if $\alpha = \frac{a}{b}$ with $a, b \in O$ such that $a \equiv b \equiv 1 \mod \mathfrak{n}$. If in addition we impose a/b to be positive under every real embedding of F (i.e., totally positive), we write $\alpha \equiv 1 \pmod{\mathfrak{n}\infty}^{\times}$. Then we define $P(\mathfrak{n}) = \{(\alpha) | \alpha \equiv 1 \pmod{\mathfrak{n}}^{\times}\}$ and $P^+(\mathfrak{n}) = \{(\alpha) | \alpha \equiv 1 \pmod{\mathfrak{n}\infty}^{\times}\}$

$$Cl_F(\mathfrak{n}) := \frac{I(\mathfrak{n})}{P(\mathfrak{n})}$$
 and $Cl_F^+(\mathfrak{n}) := \frac{I(\mathfrak{n})}{P^+(\mathfrak{n})},$

which are finite group. The group $Cl_F(\mathfrak{n})$ (resp. $Cl_F^+(\mathfrak{n})$) is called the (resp. strict) ray class group modulo \mathfrak{n} .

\S **2.12.** Examples.

If $F = \mathbb{Q}$, we have $\mathfrak{n} = (N)$ for a positive integer N. To gete a map from $(\mathbb{Z}/N\mathbb{Z})^{\times}$ into the class grup, we send $0 \neq n \in$ \mathbb{Z} into the class [(n)] of the principal ideal (n) in $Cl_{\mathbb{Q}}^+(N)$. If [(n)] = [(n')], then $n' = \frac{n'}{n}n$ with $\frac{n'}{n} \equiv 1 \pmod{N\infty}^{\times}$ ($\Leftrightarrow n' \equiv n \mod N$ and nn' > 0). Thus $(\mathbb{Z}/N\mathbb{Z})^{\times} \hookrightarrow Cl_{\mathbb{Q}}^+(N)$. Take $0 \neq \alpha = \frac{a}{b}$ (reduced fraction) with a, b prime to N. Choose an integer $n \neq 0$ so that modulo N, $[a \mod N][b \mod N]^{-1} = [n \mod N]$ and $\alpha n > 0$. Then (α) is in the image of $(\mathbb{Z}/N\mathbb{Z})^{\times}$. This shows

$$(\mathbb{Z}/N\mathbb{Z})^{\times} \cong Cl^+_{\mathbb{Q}}(N).$$

In general, writing O_+^{\times} (resp. \overline{O}_+^{\times}) be the group of totally positive units in O (resp. its image in $(O/\mathfrak{n})^{\times}$). Then we have an exact sequence for $i(\alpha) = [(\alpha)]$

$$1 \to (O/\mathfrak{n}O)^{\times}/\overline{O}_{+}^{\times} \xrightarrow{i} Cl_{F}^{+}(\mathfrak{n}) \to Cl_{F}^{+} \to 1.$$

For a divisor $\mathfrak{d} \supset \mathfrak{n}$, we have a projection $Cl_F^2(\mathfrak{n}) \twoheadrightarrow Cl_F^2(\mathfrak{d})$.

\S **2.13. Hecke L-function.**

Consider a character $\lambda : Cl_F^+(\mathfrak{n}) \to \mathbb{C}^{\times}$. Pull back λ to a character of $I(\mathfrak{n})$ and extend it putting $\lambda(\mathfrak{a}) = 0$ for fractional ideals \mathfrak{a} with non-trivial common divisor with \mathfrak{n} . Define a Hecke L-function

$$L(s,\lambda) = \sum_{\mathfrak{a}} \lambda(\mathfrak{a}) N(\mathfrak{a})^{-s} = \prod_{\mathfrak{p}} (1 - \lambda(\mathfrak{p}) N(\mathfrak{p})^{-s})^{-1}.$$

As we will see that this converges absolutely and locally uniformly if $\operatorname{Re}(s) > 1$. A weight for F is a formal integer linear combination $k = \sum_{\sigma} k_{\sigma} \sigma$ of complex embeddings σ of F. For $\alpha \in F$, we write $\alpha^k = \prod_{\sigma} \alpha^{k_{\sigma}\sigma}$. We say k admissible if $\varepsilon^k = 1$ for all $\varepsilon \in O_+^{\times}$. A character $\lambda : I(\mathfrak{n}) \to \mathbb{C}^{\times}$ is called a Hecke character of (admissible) weight k if $\lambda(\alpha) = \alpha^k$ for all $(\alpha) \in P^+(\mathfrak{n})$. In this case, the character λ can be of infinite order. We then define

$$L(s,\lambda) = \sum_{\mathfrak{a}} \lambda(\mathfrak{a}) N(\mathfrak{a})^{-s} = \prod_{\mathfrak{p}} (1 - \lambda(\mathfrak{p}) N(\mathfrak{p})^{-s})^{-1},$$

which is again absolutely and locally uniformly convergent if $\operatorname{Re}(s) \gg 0$. For \mathbb{Q} or an imaginary quadratic field, every weight is admissible.

§2.14. Real quadratic field. Let $F = \mathbb{Q}[\sqrt{D}]$ with $0 < D \in \mathbb{Z}$. For simplicity, assume $|Cl_F^+| = 1$. By Dirichlet unit theorem (or by the solution of Pell's equation), we have a fundamental unit $\varepsilon \in O_+^{\times}$ such that $O_+^{\times} = \varepsilon^{\mathbb{Z}}$. Embed F into $\mathbb{R} \times \mathbb{R}$ by $\alpha \mapsto (\alpha, \sigma(\alpha))$, where $\sigma(a+b\sqrt{D}) = a-b\sqrt{D}$. We regard F as a Q vector subspace of \mathbb{R}^2 in this way. Let $F_+^{\times} = F \cap (\mathbb{R}_+^{\times} \times \mathbb{R}_+^{\times})$. Let 1 = (1, 1) and $\varepsilon = (\varepsilon, \sigma(\varepsilon))$ and A be the 2 × 2 matrix with row vectors given by 1 and ε . Let $C = C(1, \varepsilon) = \mathbb{R}_+^{\times} 1 + \mathbb{R}_+ \varepsilon$ (a cone generated by $1, \varepsilon$) for $\mathbb{R}_+ = \mathbb{R}_+^{\times} \cup \{0\}$. By multiplying ε , we can bring any $0 \neq \alpha \in O$ inside C uniquely. Note that $R = O \cap ((0, 1]1 + [0, 1]\varepsilon)$ is finite, and we regard $R \subset \mathbb{R}^2$ by $(0,1] \times [0,1] \ni x = (x_1,x_2) \mapsto x_1 1 + x_2 \varepsilon$. Then we have an absolutely and uniformly convergent series for Re(s) > 1 (*m* = *r*),

$$\zeta_F(s) = \sum_{x \in R} \zeta((s,s), A, \mathbf{1}, x)$$

which has analytic continuation for all $s \in \mathbb{C}$. We are going to generalize this to number fields F and any Hecke character λ .