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We extend Hurwitz’s method of proving analytic continuation
to Shintani ζ-function. For example, consider an imaginary
quadratic field K = Q[

√
−1] with integer ring O = Z[

√
−1]. Then

ζK(s) =
∑

06=(α)⊂O N(α)−s for N(α) = |O/(α)| = |α|2. Since
±i(a + bi) = ±ia ∓ b and ±(a + bi) = ±a ± bi, (α) is generated by
a + bi o with a > 0 and b ≥ 0. Then

ζK(s) =
∑

m>0,n≥0

(m + ni)−s(m − ni)−s

= ζ(s,1) +
∞∑

m=0,n=0

L∗
1((m, n) + (1,1))−sL∗

2((m, n) + (1,1))−s

= ζ(s,1) + ζ((s, s), A, (1,1), (1,1)),

where L∗
1((x, y)) = x + iy and L∗

2((x, y)) = x− iy are linear forms
with coefficients summarized in a matrix A =

(
1 1
i −i

)
so that

(x, y)A = (L1, L2) and zs = |z|seiθ with −π ≤ θ < π.



§2.1. Set up for Shintani zeta function.

We take a different branch of complex logarithm; so, writing

z = |z|eiθ with −π ≤ θ < π, we define log(z) = log |z| + iθ and

hence zs = es log(z) = |z|seiθs.

The data defining Shintani zeta function is

A = (aij) ∈ Mr,m(C) with Re(aij) > 0 for all (i, j),

χ = (χ1, . . . , χr) ∈ Cr with |χi| = 1 and

x = (x1, . . . , xr) ∈ [0,1]r but x 6= (0,0, . . . ,0).

We define Linear form L∗
j : Cr → C by L∗

j(w) =
∑r

k=1 akjwk for

w = (w1, . . . , wr), and Shintani zeta function by

ζ(s,A, x, χ) :=
∑

n∈Nr

χnL∗(n + x)−s (s = (s1, . . . , sm) ∈ Cm),

where L∗(n+ x) = (L∗
1(n +x), . . . , L∗

m(n +x)) and L∗(n +x)−s =
∏m

j=1 L∗
j(n + x)−sj. Here N := {n ∈ Z|n ≥ 0}.



§2.2. Convergence Lemma. The zeta function ζ(s,A, x, χ)

converges absolutely and locally unifromly if Re(si) > r
m.

Sketch of Proof: Since |χi| ≤ 1, we may assume that χi = 1 for all

i; so, χ = 1 = (1, . . . ,1). Since Re(aij) > 0, have mini,j Re(aij) =

c > 0. Assume Re(sj) > 0 for all j and let σj = Re(sj). To

estimate |ζ(s, A, x, 1)|, we may throw away finitely many terms;

so, we may assume that nj > 0 for all j, and we may ignore x.
We have |L∗

j(n)| = |Re(L∗
j(n)) + Im(L∗

j(n))| ≥ |Re(L∗
j(n))|; or

equivalently,

|L∗
j(n)|−t ≤ |Re(L∗

j(n))|−t for t > 0.

Thus we may assume that 0 < c = aij ∈ R for all (i, j). Note that

#Pk ≤ Ckr−1 for Pk := {k1 + k2 + · · · + kr = k|0 < kj ∈ Z} for

a constant C > 0 independent of 0 < k ∈ Z. Thus |L∗
j(n)−sj | ≥

(c(
∑r

i=1 ni))
−σj and hence, writing |σ| = ∑m

j=1 σj,

|ζ(s,A, x, χ)| ≤ c−|σ|
∞∑

k=1

∑

n∈Pk

k−|σ| ≤ c−|σ|C
∞∑

k=1

kr−1−|σ|,

which converges absolutely and locally uniformly if |σ| > r.



§2.3. Rational function in exp(−Li(t)).
Define G(t) = G(t, A, x, χ) :=

∑
n∈Nr χn exp(−∑m

j=1 L∗
j(n + x)tj).

Note that
m∑

j=1

L∗
j(n + x)tj =

m∑

j=1

r∑

i=1

aij(ni + xi)tj =
r∑

i=1

(ni + xi)
m∑

j=1

aijtj.

Thus writing Li(t) :=
∑m

j=1 aijtj for t = (t1, . . . , tm), we have

G(t) = G(t, A, x, χ) =
r∏

i=1

∞∑

ni=0

χ
ni
i exp(−(ni + xi)Li(t))

= exp(−
r∑

i=1

xiLi(t))
r∏

i=1

∞∑

ni=0

χ
ni
i exp(−niLi(t))

=
r∏

i=1

exp(−xiLi(t))

1 − χi exp(−Li(t))
.

Let G̃(t) be the function constructed for χ = 1, Re(A) and
x = 1. Thus |G̃(t)| = O(exp(−c

∑
i ti)) as |t| → ∞ and is bounded

as |t| → 0; i.e., |G̃(t)| is an integrable positive valued function
over Rr

+.



§2.4. Integral expression of ζ(s,A, χ, x).

For GN(t) =
∑

|n|<N χn exp(−∑m
j=1 L∗

j(n+x)tj), |GN(t)ts| ≤ |G̃(t)|tσ
for all 0 < N ∈ Z, by Lebesgue’s dominated convergence theo-

rem, we find for dµ =
∏

j t−1
j dtj, if Re(sj) > m/r for all j,

Γm(s)ζ(s,A, x, χ) =
∑

n∈Nr

∫ ∞

0
· · ·

∫ ∞

0
tsχn exp(−

m∑

j=1

L∗
j(n+x)tj)dµ

= lim
N→∞

∫ ∞

0
· · ·

∫ ∞

0
tsGN(t)dµ

=

∫ ∞

0
· · ·

∫ ∞

0
ts lim

N→∞
GN(t)dµ =

∫ ∞

0
· · ·

∫ ∞

0
tsG(t)dµ,

where Γm(s) =
∏m

j=1 Γ(sj). Let R+ := {x ∈ R|x > 0} (right half

real line), and hereafter we write
∫ ∞

0
· · ·

∫ ∞

0
?dµ =

∫

Rm
+

?dµ.



§2.5.
∫
P(ε) · · ·

∫
P(ε) tsG(t)dµ does not make sense.

For simplicity, take χ = 1. The function exp(−xiLi(z))
1−exp(−Li(z))

has pole

on the hyper plane Hi,k defined by Li(z) = 2kπ
√
−1 for any k ∈ Z.

Plainly P (ε)r intersects some of Hi,k; so, taking naive contour

integral does not make sense.

Shintani’s idea is to make a very clever variable change. Decom-

pose

Rm
+ =

m⋃

k=1

Dk with Dk = {(t1, . . . , tm)|tk ≥ ti ∀i 6= k}.

Note that Dk ∩ Dj ⊂ {tk = tj}; so, the intersection of Dk and Dj

for k 6= j has measure 0. Any t = (t1, . . . , tm) ∈ Rm
+, taking the

index k such that tk = maxj(t), we find t ∈ Dk; so, Rm
+ is a union

of Dk. Thus we have for any continuous integrable function f(t)

on Rm
+, we have

∫
Rm

+
f(t)dµ =

∑m
k=1

∫
Dk

f(t)dµ. Thus we study
∫
Dk

tsG(t)dµ.



§2.6. Shintani’s variable change. Since Dk
∼= D1 by inter-

changing tk and t1, we study the integral over D1. The variable

change is (t1, . . . , tm) = U(1, u2 . . . , um−1, um) (i.e., on Dk, uk = 1).

Thus U ∈ R+ and uj ∈ (0,1]. The jacobian matrix of this variable

change is given



∂t1
∂U

∂t2
∂U ··· ∂tm

∂U
∂t1
∂u2

∂t2
∂u2

··· ∂tm
∂u2

... ... ... ...
∂t1
∂um

∂t2
∂um

··· ∂tm
∂um




=




1 u2 ··· um
0 U ··· 0
... ... ... ...
0 0 ··· U


 .

So we have dt = Um−1dUdu for du = du2 · · · dum and

dµ = U−1u−1dUdu (Tr(s) =
m∑

j=1

sj) and

∫

D1

tsG(t)dµ =

∫ ∞

0

∫ 1

0
· · ·

∫ 1

0
G1(U, u)UTr(s)usdµ with

G1(U, u) =
r∏

i=1

exp(−xiULi(u))

1 − χi exp(−ULi(u))
.



§2.7. Why the contour P (ε)× P (ε,1)m−1 avoids singularity?

Write χ = |χi|eiθi with 0 ≤ θi < 2π. Since u = (1, u2, . . . , um) ∈
(0,1]m,

Re(Li(u)) = Re(ai1) +
∑

j=2

Re(aij)uj → Re(ai1) ≥ c

as uj → 0 (j = 2, . . . m). Thus |uj| ≤ ε for sufficiently small
ε, 1 − χi exp(−ULi(u)) have 0 only at U = 0 if χ = 1 and

otherwise ULi(u) ∈ θi + 2πiZ + log |χi| which never happen if
ε is sufficiently small. This argument applies to all integral

over Dk for k > 1, and making ε further small and writing
Gk(U, u) =

∏r
i=1

exp(−xiULi(u))
1−χi exp(−ULi(u))

for the function on Dk, we get

Γm(s)ζ(s,A, x, χ)

=

∑m
k=1(e

2πski − 1)
∫
P(ε)

∫
P(ε,1) · · ·

∫
P(ε,1) Gk(U, u)UTr(s)usdµ

(e2πiTr(s) − 1)
∏m

j=1(e
2πsji − 1)

.

Thus Shintani zeta function is analytically continued to a mero-
morphic function on s ∈ Cm with possible poles at Tr(s) ∈ Z and

sj ∈ Z.



§2.8. Generalized Bernoulli polynomial.

Let Q(A, χ) be the field generated by coefficients of A and χ

inside C. Assume χi 6= 1 for all i. Then G(z) is holomorphic at

z = 0; so, we have its Taylor expansion around z = 0:

G(z, A, x, χ) =
r∏

i=1

exp(−xiLi(z))

1 − χi exp(−Li(z))
=

∑

n∈Nm

Bn+1(x)

(n + 1)!
zn

for the polynomial Bn+1(x) ∈ Q(A, χ)[x] of r variables, where

n! =
∏m

j=1 nj!, zn =
∏m

j=1 z
nj
j . Similarly, writing (Uu)n for zn

under the variable change z = U(u1, . . . , uk−1, 1, uk+1, . . . , um),

Gk(U, u, A, x, χ) =
r∏

i=1

exp(−xiULi(u))

1 − χi exp(−ULi(u))
=

∑

n∈Nm

B
(k)
n+1

(x)

(n + 1)!
(Uu)n

and Bn(x) =
m∑

k=1

B
(k)
n (x).



§2.9. Rationality Theorem. As we have seen, for 0 < n ∈ Z,
[
(e2πims − 1)Γ(s)

(
(e2πis − 1)Γ(s)

)m−1
]

s=1−n
ζ(1 − n, A, x, χ)

=
m∑

k=1

∮ ∮
· · ·

∮
Gk(U, u)Um(1−n)u1−ndµ,

[
(e2πims − 1)Γ(s)

(
(e2πis − 1)Γ(s)

)m−1
]

s=1−n
= m

(
(−1)n−12πi

(n − 1)!

)m

.

The coefficient in (Uu)−1 of G(z)(Uu)−n1 is given by the coeffi-

cient in (Uu)(n−1)1; so, if χi 6= 1 for all i,

m

(
(−1)n−12πi

(n − 1)!

)m

ζ((1 − n)1, A, x, χ)

= (2πi)m
m∑

k=1

ResU=0,u=0(Gk(U, u)Um(1−n)u1−n) = (2πi)mBn(x)

n!m

and ζ((1 − n)1, A, x, χ) = (−1)m(n−1)Bn(x)

mnm
∈ Q(A, χ)[x].



§2.10. A bit of algebraic number theory.

Let F be a number field with integer ring O. A non-zero finitely

generated O-submodule a of F is called a fractional ideal of F

(in particular, a fractional ideal is a finitely generated Z-module).

Let I be the correction of all fractional ideals of F . The trace

pairing (x, y) 7→ Tr(xy) gives a non-degenerate self Q-duality on

F with (αx, y) = (x, αy) for α ∈ O. For a fractional ideal a,

a∗ := {x ∈ F |(O, x) ⊂ Z}, which is a fractional ideal as it is finitely

generated even over Z. Define a−1 = {x ∈ F |xa ⊂ O}, which is

an O-module (as xa ⊂ O ⇒ Oxa ⊂ O). Plainly a−1 ⊂ a∗; so, a−1

is finitely generated over Z; so, a−1 is a fractional ideal. Defining

ab be the O-module generated by ab with a ∈ a and b ∈ b, we have

a−1a = O. Thus I is a group by the above product (a, b) 7→ ab

with identity O.



§2.11. Ray class group. Since O is a Dedekind domain, we can

uniquely factorize a =
∏

p pe(p) for prime ideals p. The exponent

e(p) is non-negative if a is an O-ideal. Thus I ∼= ⊕
p:prime pZ. Pick

a non-zero O-ideal n. If in the above factorization, any prime in

n does not appear in a, we say that a is prime to n. Then plainly

I(n) made up of ideals prime to n is a subgroup of I.

We write α ≡ 1 (mod n)× if α = a
b with a, b ∈ O such that

a ≡ b ≡ 1 mod n. If in addition we impose a/b to be positive

under every real embedding of F (i.e., totally positive), we write

α ≡ 1 (mod n∞)×. Then we define P (n) = {(α)|α ≡ 1 (mod n)×}
and P+(n) = {(α)|α ≡ 1 (mod n∞)×}

ClF (n) :=
I(n)

P (n)
and Cl+F (n) :=

I(n)

P+(n)
,

which are finite group. The group ClF(n) (resp. Cl+F (n)) is called

the (resp. strict) ray class group modulo n.



§2.12. Examples.

If F = Q, we have n = (N) for a positive integer N . To gete

a map from (Z/NZ)× into the class grup, we send 0 6= n ∈
Z into the class [(n)] of the principal ideal (n) in Cl+

Q
(N). If

[(n)] = [(n′)], then n′ = n′
n n with n′

n ≡ 1(mod N∞)× (⇔ n′ ≡ n

mod N and nn′ > 0). Thus (Z/NZ)× ↪→ Cl+
Q

(N). Take 0 6= α =
a
b (reduced fraction) with a, b prime to N . Choose an integer

n 6= 0 so that modulo N , [a mod N ][b mod N ]−1 = [n mod N ]

and αn > 0. Then (α) is in the image of (Z/NZ)×. This shows

(Z/NZ)× ∼= Cl+
Q

(N).

In general, writing O×
+ (resp. O

×
+) be the group of totally positive

units in O (resp. its image in (O/n)×). Then we have an exact

sequence for i(α) = [(α)]

1 → (O/nO)×/O
×
+

i−→ Cl+F (n) → Cl+F → 1.

For a divisor d ⊃ n, we have a projection Cl?F(n) � Cl?F(d).



§2.13. Hecke L-function.

Consider a character λ : Cl+F (n) → C×. Pull back λ to a character

of I(n) and extend it putting λ(a) = 0 for fractional ideals a with

non-trivial common divisor with n. Define a Hecke L-function

L(s, λ) =
∑

a

λ(a)N(a)−s =
∏

p

(1 − λ(p)N(p)−s)−1.

As we will see that this converges absolutely and locally uniformly

if Re(s) > 1. A weight for F is a formal integer linear combination

k =
∑

σ kσσ of complex embeddings σ of F . For α ∈ F , we

write αk =
∏

σ αkσσ. We say k admissible if εk = 1 for all ε ∈
O×

+. A character λ : I(n) → C× is called a Hecke character of

(admissible) weight k if λ(α) = αk for all (α) ∈ P+(n). In this

case, the character λ can be of infinite order. We then define

L(s, λ) =
∑

a

λ(a)N(a)−s =
∏

p

(1 − λ(p)N(p)−s)−1,

which is again absolutely and locally uniformly convergent if

Re(s) � 0. For Q or an imaginary quadratic field, every weight

is admissible.



§2.14. Real quadratic field. Let F = Q[
√

D] with 0 < D ∈ Z.

For simplicity, assume |Cl+F | = 1. By Dirichlet unit theorem (or

by the solution of Pell’s equation), we have a fundamental unit

ε ∈ O×
+ such that O×

+ = εZ. Embed F into R×R by α 7→ (α, σ(α)),

where σ(a+b
√

D) = a−b
√

D. We regard F as a Q vector subspace

of R2 in this way. Let F×
+ = F ∩ (R×

+ × R×
+). Let 1 = (1,1) and

ε = (ε, σ(ε)) and A be the 2×2 matrix with row vectirs given by

1 and ε. Let C = C(1, ε) = R×
+1+R+ε (a cone generated by 1, ε)

for R+ = R×
+∪{0}. By multiplying ε, we can bring any 0 6= α ∈ O

inside C uniquely. Note that R = O ∩ ((0,1]1 + [0,1]ε) is finite,

and we regard R ⊂ R2 by (0,1]× [0, 1] 3 x = (x1, x2) 7→ x11+x2ε.

Then we have an absolutely and uniformly convergent series for

Re(s) > 1 (m = r),

ζF (s) =
∑

x∈R

ζ((s, s), A, 1, x)

which has analytic continuation for all s ∈ C. We are going to

generalize this to number fields F and any Hecke character λ.


