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We extend Hurwitz's method of proving analytic continuation
to Shintani (-function. For example, consider an imaginary
quadratic field K = Q[v/—1] with integer ring O = Z[/—1]. Then
Ck(8) = Tor(aycoN(a)™ for N(a) = [0/(a)| = |af?. Since
+i(a 4+ bi) = :I:za,IFb and +(a + bi) = +a £ bi, () is generated by
a—+ bt 0o with a >0 and b > 0. Then

Cx(s)= 3 (m4+ni)~*(m—mni)”*

m>0,n>0

=¢(s, D+ ) 1((m,n) +(1,1)) " °L5((m,n) + (1,1))7
m=0,n=0
= ((s,1) +¢((s,5),4,(1,1),(1,1)),

where L] ((z,y)) =z + iy and L5((z,y)) = x — iy are linear forms

with coefficients summarized in a matrix A — <% }Z) so that

(z,y)A = (L1, Lo) and 2% = |z|%¢? with —7 < 6 < 7.



§2.1. Set up for Shintani zeta function.

We take a different branch of complex logarithm; so, writing
z = |z|e?? with —7 < 0 < 7, we define log(z) = log|z| + i# and
hence 25 = e5109(2) = |z|5¢W0s.

The data defining Shintani zeta function is

A= (aij) € Mrm(C) with Re(aij) > 0 for all (4,7),
x = (x1,---,xr) € C" with |x;/] =1 and
x = (x1,...,2r) € [0,1]" but x #= (0,0,...,0).

We define Linear form L7 : C" — C by L;‘f(w) = > j—q ak;wi for

w = (wq,...,wr), and Shintani zeta function by
C(s, A,y x) = Y X"L*(n+x)"% (s=(s1,...,8m) € C™),
neN"

where L*(n+z)=(Li(n+=x),...,Ly,(n+=x)) and L*(n+z) % =

L Li(n4a)7%, HereN.—{n€Z|nZO}.



§2.2. Convergence Lemma. The zeta function ((s, A, x,x)
converges absolutely and locally unifromly if Re(s;) > %

Sketch of Proof: Since |x;| < 1, we may assume that x; = 1 for all
i, S0, x =1=(1,...,1). Since Re(a;;) > 0, have min; ; Re(a;;) =
c > 0. Assume Re(s;) > 0 for all j and let 0; = Re(s;). To
estimate |((s, A,z,1)|, we may throw away finitely many terms;
SO, we may assume that n; > O for all 7, and we may ignore zx.
We have |L;’f(n)| = |Re(L;’f(n)) —|—Im(L§(n))| > |Re(L§(n))|; or
equivalently,

IL(n)| ™" < |Re(L}(n))|™" for ¢t > 0.

Thus we may assume that 0 < c = a;; € R for all (¢,5). Note that
#P, < Ck™ 1 for P, :=={k1 + ko4 -+ kr = k|0 < k; € Z} for
a constant C > 0 independent of 0 < k € Z. Thus |L;‘f(n)_33’| >

(c(XF—1m;))” % and hence, writing |o| = "’771:1 o,

o0 00
C(s, A,z x)| < el ST S kol < mlole S grmtslel,
k=1neP; k=1

which converges absolutely and locally uniformly if |o| > 7. [ ]



§2.3. Rational function in exp(—L;(t)).
Define G(t) = G(t,A,z,x) := > enr X exp(— ZT:l L;k(n + x)t;).
Note that

Z L;k(n + x)t Z Z az](nz + xz)t — Z (n; + x;) Z az] 'R
=1

j=1:=1
Thus writing L;(t) := i aijt; for t = (tl,...,tm), we have

G(t) =G, Az, x) =[] D x; exp(—(n; + z;)Li(t))
i=1n;=0

= exp(— Z ;i Li(t)) H Z x; ' exp(—n;L;(t))

1=1n;=

e exp(—a;Li(t))
B -1;[1 1 — x;exp(—L;(t))

Let G(t) be the function constructed for x = 1, Re(A) and
z =1. Thus |G(t)| = O(exp(—c¥;t;)) as |t| — oo and is bounded
as |t| — 0; i.e., |G(t)| is an integrable positive valued function
over IR{"_“I_.



§2.4. Integral expression of ((s, A, x,x).

For G (t) = Yjnjen X" exp(— XLy Li(n+a)t;), |Gy (D] < |G(1)[t0
for all 0O < N € Z, by Lebesgue’'s dominated convergence theo-
rem, we find for du =[], tj_ldtj, if Re(sj) > m/r for all j,

Cn()¢(s, Ae) = 3 [T [T exp(- Z L (n+a)t;)dp

neN"

— Iim/ / tSGN(t)du

N —o0

>~ S lim Ga()d T HG)d
p— t Im t _/ / t t :
/O /O Aim n(t)du . A v

where M (s) = H}n:1 M(s;). Let Ry := {z € Rjz > 0} (right half
real line), and hereafter we write

[ =



§2.5. [p) - Ipe) t°G(t)dn does not make sense.

. . . . : eXD(—ZCiLi(Z))
For simplicity, take x = 1. The function I—exp(=L:(2)) has pole
on the hyper plane H, ; defined by L;(z) = 2kn/—1 for any k € Z.
Plainly P(e)" intersects some of Hi,k; so, taking naive contour

integral does not make sense.

Shintani’s idea is to make a very clever variable change. Decom-
pose

m
mz U Dy with Dy = {(t1,...,tm)|tr > t; Vi #* k}.
k=1

Note that Dy N D; C {ty = t;}; so, the intersection of Dy and D,
for k = 7 has measure 0. Any t = (t1,...,tm) € R, taking the
index k such that ¢, = maxj(t), we find t € Dy; so, IR{Q is a union
of Di.. Thus we have for any continuous integrable function f(t)
on R, we have fRTJrrL f@)dp = Y7, ka f(t)du. Thus we study



§2.6. Shintani’s variable change. Since D, = D4 by inter-
changing ¢, and t1, we study the integral over Dy. The variable
changeis (t1,...,tm) =U(L,un ..., upym_1,um) (i.€., on Dy, ur =1).
ThusU € Ry and u; € (0,1]. The jacobian matrix of this variable
change is given

ou oU oU 1

oty 0Oty . Otm up - Um
8u2 8u2 8u2 — ouU - 0 .
oty ot Bt 00 U

So we have dt = U™~ 1dUdu for du = dus - - - dum and

m

dy = Ut YdUdu (Tr(s) = Z sj) and

/D PG dp = / / / G1 (U, w)U T y5dy, with

o exp(—z;UL;(u))

G = 1= s Cun




§2.7. Why the contour P(g) x P(e,1)™~! avoids singularity?
Write x = |x;|e?? with 0 < 0, < 27. Since u = (1,un,...,um) €
(0, 1]™,

Re(L;(u)) = Re(a;1) + ) Re(a;j)u; — Re(a;1) > ¢
j=2
as u; — 0 (j = 2,...m). Thus Ju;| < e for sufficiently small
e, 1 —x;exp(—UL;(uw)) have 0 only at U = 0O if x = 1 and
otherwise UL;(u) € 0; + 2miZ + log|x;| which never happen if
e is sufficiently small. This argument applies to all integral
over D; for £k > 1, and making ¢ further small and writing

—z,;UL;
Gr(U,u) =T'—, 1e§ng§EUUL( ()))) for the function on Dy, we get

I_TTL(S)C(S7A7 Ly X)
M (2™ — 1) [pey Jpee) - Jp(e.1) Gr(U, W)U Ty Sdu
(627T7,TI’(8) —1) H 1(627733 —1)

Thus Shintani zeta function is analytically continued to a mero-
morphic function on s € C™ with possible poles at Tr(s) € Z and
S c 7.




§2.8. Generalized Bernoulli polynomial.

Let Q(A,x) be the field generated by coefficients of A and x
inside C. Assume x; 7= 1 for all . Then G(z) is holomorphic at
z = 0; so, we have its Taylor expansion around z = O:

_ o oxp(—ziLi(2)) Bpyi1(z) 5
G de0= T e L) T A 1!

i=1
for the polynomial B, 41(x) € Q(A,x)[x] of r variables, where
n! = [[Tyny!, 2" = "Ly 2. Similarly, writing (Uu)" for 2"
under the variable change z = U(uy,...,up_1, 1, ugp41,...,um),

B31()
T i exp(~UL(w) 2 (n 1

and Bp(z) = )_ Bf,(lk)(a;).
k=1

T
Gr(Uu, Az, x) = |] exp(—z;UL;(u))

1=1




§2.9. Rationality Theorem. As we have seen, for 0 < n € Z,

(2~ () (275 = ()" <= m A

s=1-—n

— éjlj{j{ . -%Gk(U, w)um—nlyl=ng,,

- - m— —1) 1o\
[(e%@ms — DF(s) (€27 — 1) (s)) 1]8:1_n —m <( (13_ 1)2! ) |

The coefficient in (Uu)~! of G(2)(Uu)~™ is given by the coeffi-
cient in (Uw)(™=D1: so if [y, % 1| for all 4,

- ((—1)”_127773

> C((l—n)l,A,x,x)

(n—1)!
= (2m)™ 3 Resy=0,u=0(Gx(U, ))U™ "Ml ™) = (2m>mB§.Ef)
k=1 '
and ¢((1—n)1, A,z x) = (~1)m-DEE) o0 .

nm




§2.10. A bit of algebraic number theory.

Let F' be a number field with integer ring O. A non-zero finitely
generated O-submodule a of F' is called a fractional ideal of F
(in particular, a fractional ideal is a finitely generated Z-module).
Let I be the correction of all fractional ideals of F'. The trace
pairing (x,y) — Tr(xzy) gives a non-degenerate self Q-duality on
F with (ax,y) = (z,ay) for o« € O. For a fractional ideal q,
a* :={x € F|(O,x) C Z}, which is a fractional ideal as it is finitely
generated even over Z. Define a=! = {z € F|za C O}, which is
an O-module (as za C O = Oza C O). Plainly a1 C a*; so, a1
is finitely generated over Z; so, a— 1 is a fractional ideal. Defining
ab be the O-module generated by ab with ¢ € a and b € b, we have
ala=0. Thus I is a group by the above product (a,b) — ab
with identity O.



§2.11. Ray class group. Since O is a Dedekind domain, we can
uniquely factorize a = Hp pe(p) for prime ideals p. The exponent
e(p) is non-negative if a is an O-ideal. Thus I £ @,.prime b, Pick
a non-zero O-ideal n. If in the above factorization, any prime in
n does not appear in a, we say that a is prime to n. Then plainly
I(n) made up of ideals prime to n is a subgroup of I.

We write @ = 1 (mod n)* if a« = ¢ with a,b € O such that
a =b=1 modn. If in addition we impose a/b to be positive
under every real embedding of F' (i.e., totally positive), we write
a =1 (mod noo)*. Then we define P(n) = {(a)|a =1 (mod n)*}
and PT(n) = {(a)|a =1 (mod noo)*}

I(n) + I(n)
Clp(n) .= ——= and Cl}i(n) .= :
which are finite group. The group Clr(n) (resp. Cl}'(n)) is called

the (resp. strict) ray class group modulo n.




§2.12. Examples.

If F = Q, we have n = (IN) for a positive integer N. To gete
a map from (Z/NZ)* into the class grup, we send 0 #* n €
Z, into the class [(n)] of the principal ideal (n) in Cl&(N). If

[(n)] = [(n)], then n/ = ®n with & = 1(mod Noo)* (& n' =n

mod N and nn/ > 0). Thus (Z/NZ)X — CIT(N). Take 0 # a =
Q

% (reduced fraction) with a,b prime to N. Choose an integer

n # 0 so that modulo N, [a mod N][b mod N]~1 = [n mod N]
and an > 0. Then («) is in the image of (Z/NZ)*. This shows

(Z/NZ)* = Cl@t(N).

In general, writing Oj_ (resp. fo_) be the group of totally positive
units in O (resp. its image in (O/n)*). Then we have an exact
sequence for i(a) = [(a)]

1 — (0/n0)* /0% L cit(n) — Cif — 1.

For a divisor @ D n, we have a projection Clh(n) — Cl54(d).



§2.13. Hecke L-function.

Consider a character A : Cl}'(n) — C*. Pull back X to a character
of I(n) and extend it putting A(a) = O for fractional ideals a with
non-trivial common divisor with n. Define a Hecke L-function

L(s,A) =Y Ma)N(a) 5 =[[(1 = x(p)N(p)~5)~ L.
a p

As we will see that this converges absolutely and locally uniformly
if Re(s) > 1. A weight for F'is a formal integer linear combination
k = ) skoo Of complex embeddings o of F. For a € F, we
write of = [, af?. We say k admissible if ¢k = 1 for all ¢ €

Off_. A character XA : I(n) — C* is called a Hecke character of

(admissible) weight k if A(a) = oF for all (a) € PT(n). In this
case, the character A can be of infinite order. We then define

L(s,A) =S M@)N(a) 5 =[[(1 - X(p)N(p) )L,
a p

which is again absolutely and locally uniformly convergent if
Re(s) > 0. For Q or an imaginary quadratic field, every weight
IS admissible.



§2.14. Real quadratic field. Let FF = Q[v/D] with 0 < D € Z.
For simplicity, assume |Cl}'| — 1. By Dirichlet unit theorem (or
by the solution of Pell's equation), we have a fundamental unit
e € OX such that O} = &% Embed F into RxR by a — (o, o(a)),

where o(a+bvD) = a—bvD. We regard F as a Q vector subspace
of R? in this way. Let FX=Fn (R xRY). Let1=(1,1) and
e = (g,0(g)) and A be the 2 x 2 matrix with row vectirs given by
lande. LetC=C(1,¢) = Rj_l—l—IR{_l_e (a cone generated by 1,¢)
for Ry = Rj_u{O}. By multiplying e, we can bring any 0 #a € O
inside C' uniquely. Note that R = O n ((0,1]1 + [0, 1]e) is finite,
and we regard R C R?2 by (0,1] x[0,1] 3 2 = (z1,25) — z11+25¢.
Then we have an absolutely and uniformly convergent series for
Re(s) >1 (m =r),

CF(S) — Z C((S7S)7A7]-7x)

TER
which has analytic continuation for all s € C. We are going to
generalize this to number fields F and any Hecke character \.



