Lecture note No.1 for Math 205a Fall 2019
Dirichlet L-function
Haruzo Hida

We extend Hurwitz's method of proving analytic continuation
and functional equation to Dirichlet L-function. I suggest you
to try working out Riemann’s method yourself. Take an integer
N > 1. For a character x : (Z/NZ)* — C*, Dirichlet L-function
with character x is defined by L(s,x) = >.>2; x(n)n™° which is
absolutely convergent in the region Re(s) > 1. Here if n has a
non-trivial common factor with N, we agree to set y(n) = 0 as
a convention. The residue ring Z/NZ surjects down to Z/DZ for
any divisor D of N; so, any character xq : (Z/DZ)* — C* can
be pulled back to a character of (Z/NZ)*. If there is no divisor
D of N such that x comes from (Z/DZ)* in this way, x is called
primitive.



§1.1. Hurwitz zeta function.
For O < x <1, we define

((s,2) = ) (n+x)%
n=0

which is absolutely and locally uniformly convergent if Re(s) > 1.
Indeed, if 0 = Re(s) > 1, we have

—a—l—l

1C(s,x)| < Zn_a<1—|—/ _de—l—l—[ g

] = 14(o—1)"1.

Note that

o0 N
L(s,x) = > x(m)n™%= > x(a)(Nn+a) ° = Z x(a)N~7C(s, —)
n=1 a=0

a=0
which is also absolutely and locally uniformly convergent if Re(s) >
1. Thus ((s,z) and L(s,x) are holomorphic function in the right
half plane {s € C|Re(s) > 1}.



N’

§1.2. Contour integral. Define G(t,x) = 6(61::;% = 16__21 &

300 e~ (@)t The identity () is valid if Re(t) > 0. Note that
G(t,z) = O(e %) as t — oo and G(t,2) = O(t~ 1) as t — 0 as the
Laurent expansion of G(t,z) starts with t—1. Hence the Mellin
transform [§°t5~1G (¢, z)dt converges if Re(s) > 1 and we get

/OO #5=1G(t, 2)dt = F(s)C(s, ).

0
T herefore allowing variable z = ret? 0 <0< 2reC

s—1 > s—1 2mis [ ,s—1
/ 227 "G(z,x)dz = —/ t°"G(t,x)dt + € / t°"G(t, x)
P(e) € €

+ 271G(z, x)dz

|2|=¢

has limit as € — 0 when Re(s) > 1 given by

lim - )28_1G(z,a:)dz = (2™ — DM (s)¢(s,z) if Re(s) > 1.



§1.3. Meromorphic continuation.
By residue theorem, for 0 < ¢/ < e < 1, we have for the annulus
A(e’,€) with inner radius ¢ and outer radius ¢

/ 2 1G(z, 2)dz — / #7162, 2)dz = / G(z,z)dz = 0,
P(e) P(e") A(ee)
and hence s — [p(. ()7 25~1G(z,2)dz is well defined for all s € C giv-
ing the identity (e<™% — 1)l (s){(s,2) = Ip(e) %~ 1G(z, 2)dz which
is an entire function of s € C. Therefore
571G (2, 2)dz
C(S,JZ) _ fP(e) | ( )
(275 — 1) (s)
is a meromorphic function on C with p055|ble poles at integers

n<1. Since M(s)~1 = Hn— Ilggj__"g 2)5 ()~ has simple zero
at —n (0>necZ). Thus the poles of C(s x) is limited to s = 1.

s—1 e~ %d
Jp)? “. 50, '(s) has simple pole

(€2m'8_1)
n—1 .
at s=1—n (0 <n € Z) with residue <—1()n_1§!2m).

Similarly we get N'(s) =

Exercise: Prove the above residue formula for I(s).



§1.4. Functional equation of ((s,x).
The function G(z,z) has simple pole at 2win for integers n and

- . 1 627rn:r:+(8—1)7T73/2|2n77|3—1 if n> 0,
€S, —2xinG(2, )2 — 6—27Tnzc+3(8—1)77i/2|2n7-(|3_1 ifn<O

T his shows

/D(m) G(z,2)2° " Ldz

— (27T)8(637Ti8/2 f: p2minT ,s—1 _ €7Ti8/2 in: 6—27T7jn:cn8—1)
Assuming Re(s) < 0 and passing to the limit, we get
(e2™5 1) (s)((s, ) :/P G(z,2)2°"1dz = lim G(z,z)2°"1dz

(e) M=/ D(m)

00 00
— (27_‘_)8(6371"&8/2 Z p2minT,, s—1 _ mis/2 Z 6—27mn.:cn8—1).
n=1 n=1



§1.5. Towards the functional equation of L(s,x).
Plug in the functional equation of {((s,z) into

L(s,x) = Z x(a)N~7C(s, —)

a=0
we get

(e2™5 — 1>r(s)L(s X) =
o~ N-—1

( )7 (e3mis/2 S Z x(@)e(-n* =™ 30 3 x(a)e(—In*h).
n=1 a=0 n=1 a=1
Let G(X) = > = _1 x(a)e(x). Then by na — a (if a € (Z/NZ)*,

we get Yy (a)e("e) = x(n)"1G(x). Assuming x primitive, we
will prove in the next page

N—1
y X(a,)e(%) = 0=x"1(n)G(x) if (n,N):= GCD of n and N # 1.



§1.6. Gauss sum for primitive y.
Lemma 1. Let G be a finite abelian group and x : G — C* be a
character. If x is non-trivial, 3-,cqx(g) = 0.

Let h be the order of x. Since the image H of x is a group uy
of h-th roots of unity (which is cyclic), we may assume that G
is cyclic and G = H by x. Then we have ¢, ¢ = >seqXx(9)
which vanishes as it is the trace term of X" — 1. [ ]

Suppose to have a prime p|n with n = pn’ and p|N with N = pD,
and put ¥(a) =e(a/N). Then

> x(a)e(na/N)= >  x(a)e(na/N)

a€(Z/NZ)* ac(Z/NZ)*
= Y  x(ae(a/D)y= >  e@a/D)x(a) >  x(),
a€(Z/NZ)> ac€(Z/DZ)* b=1 mod D

which vanishes as x restricted to {b € (Z/NZ)*|b=1 mod D} is
nontrivial by primitivity.



§1.7. Functional equation of L(s,yx) of Euler type. By the
discussion in §1.6, as long as x is primitive, we have

Y x(a)e(na/N) = x (n)G(x)

ac(Z/NZ)*

including n not co prime to N (following the convention y~1(n) =
O for such n). Therefore we obtain, if Re(s) < 0,

(27150 = (7] GOOET/ 2 x (= D)™/ D) L(1-5,),

Since we already know the analytic continuation of L(s,x), this
identity is valid for all s € C. Since

(e2™is — 1) | 2cos(ns/2) if v(—1) =1,
2v/—1sin(ws/2)  if x(—=1) = -1,

(637Ti8/2 _ X(_l)emjs/Q) R

we get
(GO)(2r/N)*L(1—sx~1) - B
L(s,x) = 4 er(b{) COS(7T8/2)X if x(—1) =1,
T G@UN LA s gy (1) = 1
L 2\/—_1|_(8) sin(ws/2) X )




§1.8. Functional equation of L(s,x) of Riemann type.

Put
= _ w2 () L(s, %) if x(=1) =1,
s ) = {w<8+1>/22r(83“1)L(s,x) if x(—1) = —1.
By IM'(s)I'(1 —s) = g (Euler) and
ns = (/AT ((1-5)/2) _ (27)°
(s/2) 2 (s) cos(ms/2)

we have seen in §0.14 (or by Riemann’'s method), we can inter-

pret the functional equation in §1.7 into the following form:

~ 1 ~
L(s,x) = k(x)N2°L(1 —s,x" 1)
with k(x) = {

Thus L(s,x) = s(x)c(x "1 L(s,x) and hence |k(x)| = 1.
Exercise: Why |k(x)| =17

G(x)/VN if x(—1) =1,
—/—1G(x)/VN  if x(-1) = —1.



§1.9. Bernoulli polynomials
Let Fi(z,7) 1= 2G(z,1—x) = 1 and expand F(z x) into a power

series in z: F(z,z) = Z%O:OBn(a;)%. Since e** = Y °° oxn:f ,
Bn(x) is a polynomial of z. Note that F(z,z) = e**3*y =
<2°° 0T"= )(ZOO oBm ,). Thus we get
"oom
Bn(z) = ) <,)B] "=J and
j=0 J
Bn(1 —
Res,—oG(z,2)2 " = Res,—gF (2,1 —2)z "1 = n( | ac)
n.
Since F(z,1 —z) = Zee(zl—:i)z = ff_;zz = F(—z,x), we get

Bn(1l—z) = (—-1)"Bn(x).
Examples: Bg(x) =1, Bi(x) =z — %, By(z) =22 —z+ %, ...



§1.10. The value of ((s,z) at s=1—-—n <0. Let Q(x) be the
field inside C generated by the values of x. Thus writing h for
the order of x, Q(x) = Q(uy) is the field of h-th roots of unity.
By the formula given in §1.3, we have

(2™ — 1) (s)((s,2) = /P(e) 27 1G(z, x)dz.

If s is an integer 1 —n (0 < n € Z), then z571G(z,z) is single

. n—1 :
valued, and by (€2™5 — 1) (s)|s=1_p, = (_(2_1)!2“, the formula
becomes
(—=1)" 1274 B o
(n — 1)1 (1l —-—n,z) = /8D€Z G(z,x)dz
Bn(1 — B
= 2miRes,—pz "G(z,x) = 27i n | ) _ (=1)"2mi ”(Ix)
n: n:

for the circle of radius ¢ centered at the origin.



§1.11. Rationality Theorem. We have, for O <n € Z

C(l—n,x) = Bn(z) and
N
L1 =m0 = - 3 xN) ¢ gy,
b=0

If x(=1) = (-D)"and x#1, L(1 —n,x) =0, and {((1 —n) =0

if n > 1 is odd. In the above formula, x can be any function on
(Z/NZ).

The last assertion follows from

N
L1 =) R Y sy B = D)
b=0
N
= ()" 3 x@N P - a1y ra a0
b=0
by Bn((N —b)/N) = (=1)"Bn(b/N).




§1.12. Rational function expression. Put t = ¢*/N. Then
tNx
(N1

-2 £t

and for any integer a > 1,

tNe _q taNx — Z n—I—l(x)_a’n_I_an—I—l(x)
tN —1 tV (n 4+ 1)!

— — 4d
and by dt!¥ = NtV 1dt<:>NtthN te

N N
n-|-1 dtN tV —1 tha —1
d \" tNx taNx
— (2 — and

(<ﬁ) [}N——l atN“—-1]L=1

d \" tb tab
fe1 _ DY (11 1( ) i | .
(1—n,x) ;Z%Xf J(1—a™T0) dt) |tN—1 “tNo 1] li=



§1.13. Integrality.
Sincetm —1=@G(—-1)(14+t+---+tm 1) we have

— a
tN 1 tNa_]_ (t—l)(ZNa 1t=7)

d(t) ;=

The numerator ¢(t) = t°(1 4+t 4 ... 4+ ¢Na=1)) _ gzab is divisible
by (t — 1) as ¢(1) = 0, we do not have t — 1 in the denominator
of < ) d(t). Therefore ®©(t) € Z[ ] [t].

Exercise: What is the GCD of a1 —1 for all a prime to N? By
this, give an estimate of possible denominators of L(1 —n,x).

We will see later that L(1 —n,x) # 0 if x(—=1) = (—-1)", and
therefore, ¢(t) is not divisible by (¢t — 1) twice.



§1.14. Euler products. Consider a formal Dirichlet series
L(s) =352 1ann™®, and suppose
(EP) amn = aman as long as m and n are co-prime.

By prime factorization, if m = pre(”), then am = Hpa,pe(n).
T herefore, we get a formal expansion

L(S) — H Z a,pnp_ns.

P n=0
Consider the generating function for each p:

©.@)
Gp(T) — Z a,pnTn.

n=0
If Gp(T) is a rational function 1/L,(T) with L, € C[T] such that
D,(0) = 1 (reciprocally monic). We say that L(s) has formal
Euler product L(s) = Hpr(p_S)_l, and when the product ab-
solutely converges if Re(s) > a, we say L(s) has Euler product
(absolute convergence means |L(s)| = liMz—oo [[p<y |Lp(p~%)|71).



§1.15. Euler product of Dirichlet L-function. Plainly an =
x(n) is multiplicative. Note that }~°2 4 x(p)"1T™ = as long
as pt N. Thus we have

L(s,x) = [[(1 — x()p~*)~ 1.

p

1—()T

Exercise: Prove that the Euler product converges if Re(s) > 1.

By the convergence of Euler product means |L,(p~*%)|~! — 1 as
p — oo. Since Ly(p~%) # 0 for any p if Re(s) > 1, this implies
if Re(s) > 1, we have L(s,x) #= 0; so, by functional equation,
L(l —n,x) Z= 0 if x(=1) = (—=1)". If n = 1, one can show that
HL7 OL(s x) has pole at s = 1. Since ((s) has a pole at s =1,
we know L(0,x) # 0 if x(—1) = —1.



§1.16. Imprimitive Dirichlet L-function. If xy(n) = xg(n) for
a primitive character modulo D for a divisor D|N, then

L(s,x) =[] QA —x@)p )"t = L(s,x0) [] (1—x®p~ ).
PIN p|N/D
So analytic continuation of imprimitive L-functions follows from
the result for primitive L-function.

In this lecture, we study Hecke L functions which is associated
to Galois character x sending the Frobenius element Frob, at
p 1 N to x(p); i.e, it has values in GL1(Q(x)). Galois repre-
sentations « having values in GL,(C) is called Artin L function.
Let Ly(m)(T) = det(1l, — w(Froby)T) (the reciprocal character-
istic polynomial). Then we can make an (imprimitive) Artin
L-function

L(s,m) =[] Lp(m)(p~*) .
p

There are many other interesting Euler products of degree n in
Number theory.



