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Dirichlet L-function

Haruzo Hida

We extend Hurwitz’s method of proving analytic continuation

and functional equation to Dirichlet L-function. I suggest you

to try working out Riemann’s method yourself. Take an integer

N ≥ 1. For a character χ : (Z/NZ)× → C×, Dirichlet L-function

with character χ is defined by L(s, χ) =
∑∞
n=1 χ(n)n

−s which is

absolutely convergent in the region Re(s) > 1. Here if n has a

non-trivial common factor with N , we agree to set χ(n) = 0 as

a convention. The residue ring Z/NZ surjects down to Z/DZ for

any divisor D of N ; so, any character χ0 : (Z/DZ)× → C× can

be pulled back to a character of (Z/NZ)×. If there is no divisor

D of N such that χ comes from (Z/DZ)× in this way, χ is called

primitive.



§1.1. Hurwitz zeta function.

For 0 < x ≤ 1, we define

ζ(s, x) :=
∞∑

n=0

(n+ x)−s,

which is absolutely and locally uniformly convergent if Re(s) > 1.

Indeed, if σ = Re(s) > 1, we have

|ζ(s, x)| ≤
∞∑

n=1

n−σ ≤ 1+

∫ ∞

1
x−σdx = 1+

[
x−σ+1

−σ+ 1

]∞

1

= 1+(σ−1)−1.

Note that

L(s, χ) =
∞∑

n=1

χ(n)n−s =
N∑

a=0

χ(a)(Nn+a)−s =
N∑

a=0

χ(a)N−sζ(s,
a

N
),

which is also absolutely and locally uniformly convergent if Re(s) >

1. Thus ζ(s, x) and L(s, χ) are holomorphic function in the right

half plane {s ∈ C|Re(s) > 1}.



§1.2. Contour integral. Define G(t, x) := e(1−x)t
et−1

= e−tx
1−e−t

(∗)
=

∑∞
n=0 e

−(n+x)t. The identity (∗) is valid if Re(t) > 0. Note that

G(t, x) = O(e−tx) as t→ ∞ and G(t, x) = O(t−1) as t→ 0 as the

Laurent expansion of G(t, x) starts with t−1. Hence the Mellin

transform
∫∞
0 ts−1G(t, x)dt converges if Re(s) > 1 and we get

∫ ∞

0
ts−1G(t, x)dt = Γ(s)ζ(s, x).

Therefore allowing variable z = reiθ 0 ≤ θ ≤ 2π ∈ C
∫

P(ε)
zs−1G(z, x)dz = −

∫ ∞

ε
ts−1G(t, x)dt+ e2πis

∫ ∞

ε
ts−1G(t, x)

+
∮

|z|=ε
zs−1G(z, x)dz

has limit as ε→ 0 when Re(s) > 1 given by

lim
ε→0

∫

P(ε)
zs−1G(z, x)dz = (e2πis − 1)Γ(s)ζ(s, x) if Re(s) > 1.



§1.3. Meromorphic continuation.

By residue theorem, for 0 < ε′ < ε < 1, we have for the annulus

A(ε′, ε) with inner radius ε′ and outer radius ε
∫

P(ε)
zs−1G(z, x)dz −

∫

P(ε′)
zs−1G(z, x)dz =

∫

A(ε′,ε)
G(z, x)dz = 0,

and hence s 7→ ∫
P(ε) z

s−1G(z, x)dz is well defined for all s ∈ C giv-

ing the identity (e2πis − 1)Γ(s)ζ(s, x) =
∫
P(ε) z

s−1G(z, x)dz which

is an entire function of s ∈ C. Therefore

ζ(s, x) =

∫
P(ε) z

s−1G(z, x)dz

(e2πis − 1)Γ(s)

is a meromorphic function on C with possible poles at integers

n ≤ 1. Since Γ(s)−1 = (s+n−1)(s+n−2)···s
Γ(s+n)

, Γ(s)−1 has simple zero

at −n (0 ≥ n ∈ Z). Thus the poles of ζ(s, x) is limited to s = 1.

Similarly we get Γ(s) =

∫
P(ε) z

s−1e−zdz
(e2πis−1)

; so, Γ(s) has simple pole

at s = 1 − n (0 < n ∈ Z) with residue (−1)n−1(2πi)
(n−1)!

.

Exercise: Prove the above residue formula for Γ(s).



§1.4. Functional equation of ζ(s, x).

The function G(z, x) has simple pole at 2πin for integers n and

Resz=2πinG(z, x)zs−1 =





e2πnx+(s−1)πi/2|2nπ|s−1 if n > 0,

e−2πnx+3(s−1)πi/2|2nπ|s−1 if n < 0

This shows
∫

D(m)
G(z, x)zs−1dz

= (2π)s(e3πis/2
m∑

n=1

e2πinxns−1 − eπis/2
m∑

n=1

e−2πinxns−1)

Assuming Re(s) < 0 and passing to the limit, we get

(e2πis−1)Γ(s)ζ(s, x) =
∫

P(ε)
G(z, x)zs−1dz = lim

m→∞

∫

D(m)
G(z, x)zs−1dz

= (2π)s(e3πis/2
∞∑

n=1

e2πinxns−1 − eπis/2
∞∑

n=1

e−2πinxns−1).



§1.5. Towards the functional equation of L(s, χ).

Plug in the functional equation of ζ(s, x) into

L(s, χ) =
N∑

a=0

χ(a)N−sζ(s,
a

N
),

we get

(e2πis − 1)Γ(s)L(s, χ) =

(2π
N

)s
(e3πis/2

∞∑

n=1

N∑

a=0

χ(a)e(
na

N
)ns−1−eπis/2

∞∑

n=1

N−1∑

a=1

χ(a)e(
−na
N

)ns−1).

Let G(χ) =
∑N−1
a=1 χ(a)e(

a
N). Then by na 7→ a (if a ∈ (Z/NZ)×,

we get
∑N−1
a=1 χ(a)e(

na
N ) = χ(n)−1G(χ). Assuming χ primitive, we

will prove in the next page

N−1∑

a=1

χ(a)e(
na

N
) = 0 = χ−1(n)G(χ) if (n,N) := GCD of n and N 6= 1.



§1.6. Gauss sum for primitive χ.

Lemma 1. Let G be a finite abelian group and χ : G→ C× be a

character. If χ is non-trivial,
∑
g∈Gχ(g) = 0.

Let h be the order of χ. Since the image H of χ is a group µh
of h-th roots of unity (which is cyclic), we may assume that G

is cyclic and G ∼= H by χ. Then we have
∑
ζ∈µh ζ =

∑
g∈G χ(g)

which vanishes as it is the trace term of Xh − 1.

Suppose to have a prime p|n with n = pn′ and p|N with N = pD,

and put ψ(a) = e(a/N). Then

∑

a∈(Z/NZ)×
χ(a)e(na/N) =

∑

a∈(Z/NZ)×
χ(a)e(na/N)

=
∑

a∈(Z/NZ)×
χ(a)e(n′a/D) =

∑

a∈(Z/DZ)×
e(n′a/D)χ(a)

∑

b≡1 mod D

χ(b),

which vanishes as χ restricted to {b ∈ (Z/NZ)×|b ≡ 1 mod D} is

nontrivial by primitivity.



§1.7. Functional equation of L(s, χ) of Euler type. By the

discussion in §1.6, as long as χ is primitive, we have
∑

a∈(Z/NZ)×
χ(a)e(na/N) = χ−1(n)G(χ)

including n not co prime to N (following the convention χ−1(n) =

0 for such n). Therefore we obtain, if Re(s) < 0,

(e2πis−1)Γ(s)L(s, χ) =

(
2π

N

)s
G(χ)(e3πis/2−χ(−1)eπis/2)L(1−s, χ).

Since we already know the analytic continuation of L(s, χ), this

identity is valid for all s ∈ C. Since

(e2πis − 1)

(e3πis/2 − χ(−1)eπis/2)
=





2cos(πs/2) if χ(−1) = 1,

2
√
−1 sin(πs/2) if χ(−1) = −1,

we get

L(s, χ) =






G(χ)(2π/N)sL(1−s,χ−1)
2Γ(s) cos(πs/2)

if χ(−1) = 1,

G(χ)(2π/N)sL(1−s,χ−1)

2
√
−1Γ(s) sin(πs/2)

if χ(−1) = −1.



§1.8. Functional equation of L(s, χ) of Riemann type.

Put

L̂(s, χ) =





π−s/2Γ(s2)L(s, χ) if χ(−1) = 1,

π−(s+1)/2Γ(s+1
2 )L(s, χ) if χ(−1) = −1.

By Γ(s)Γ(1− s) = π
sinπs (Euler) and

πs−(1/2)Γ((1 − s)/2)

Γ(s/2)
=

(2π)s

2Γ(s) cos(πs/2)

we have seen in §0.14 (or by Riemann’s method), we can inter-

pret the functional equation in §1.7 into the following form:

L̂(s, χ) = κ(χ)N
1
2−sL̂(1 − s, χ−1)

with κ(χ) =





G(χ)/

√
N if χ(−1) = 1,

−
√
−1G(χ)/

√
N if χ(−1) = −1.

Thus L̂(s, χ) = κ(χ)κ(χ−1)L̂(s, χ) and hence |κ(χ)| = 1.

Exercise: Why |κ(χ)| = 1?



§1.9. Bernoulli polynomials.

Let F (z, x) := zG(z, 1−x) = zezx

ez−1 and expand F (z, x) into a power

series in z: F (z, x) =
∑∞
n=0Bn(x)

zn

n! . Since ezx =
∑∞
n=0

xnzn

n! ,

Bn(x) is a polynomial of x. Note that F (z, x) = ezx z
ez−1 =

(∑∞
n=0 x

nzn

n!

) (∑∞
m=0Bm

zm

m!

)
. Thus we get

Bn(x) =
n∑

j=0

(n
j

)
Bjx

n−j and

Resz=0G(z, x)z−n = Resz=0F (z,1 − x)z−n−1 =
Bn(1 − x)

n!
.

Since F (z,1 − x) = ze(1−x)z
ez−1 = ze−xz

1−e−z = F (−z, x), we get

Bn(1 − x) = (−1)nBn(x).

Examples: B0(x) = 1, B1(x) = x− 1
2, B2(x) = x2 − x+ x

6, ...



§1.10. The value of ζ(s, x) at s = 1 − n ≤ 0. Let Q(χ) be the

field inside C generated by the values of χ. Thus writing h for

the order of χ, Q(χ) = Q(µh) is the field of h-th roots of unity.

By the formula given in §1.3, we have

(e2πis − 1)Γ(s)ζ(s, x) =
∫

P(ε)
zs−1G(z, x)dz.

If s is an integer 1 − n (0 < n ∈ Z), then zs−1G(z, x) is single

valued, and by (e2πis − 1)Γ(s)|s=1−n = (−1)n−12πi
(n−1)!

, the formula

becomes

(−1)n−12πi

(n− 1)!
ζ(1 − n, x) =

∫

∂Dε
z−nG(z, x)dz

= 2πiResz=0z
−nG(z, x) = 2πi

Bn(1 − x)

n!
= (−1)n2πi

Bn(x)

n!

for the circle of radius ε centered at the origin.



§1.11. Rationality Theorem. We have, for 0 < n ∈ Z

ζ(1− n, x) =
Bn(x)

n
and

L(1 − n, χ) = −
N∑

b=0

χ(b)NnBn(b/N)

n
∈ Q(χ).

If χ(−1) 6= (−1)n and χ 6= 1, L(1 − n, χ) = 0, and ζ(1 − n) = 0

if n > 1 is odd. In the above formula, χ can be any function on

(Z/NZ).

The last assertion follows from

L(1 − n, χ)
b7→N−b

= −
N∑

b=0

χ(−b)NnBn((N − b)/N)

n

= −(−1)nχ(−1)
N∑

b=0

χ(b)NnBn(b/N)

n
= (−1)nχ(−1)L(1 − n, χ)

by Bn((N − b)/N) = (−1)nBn(b/N).



§1.12. Rational function expression. Put t = ez/N . Then

tNx

tN − 1
=

1

z
F (z, x) =

1

z
+

∞∑

n=0

Bn+1(x)

(n+ 1)!
zn

and for any integer a > 1,

tNx

tN − 1
− a

taNx

tNa − 1
=

∞∑

n=0

Bn+1(x) − an+1Bn+1(x)

(n+ 1)!
zn

and by dtN = NtN−1dt⇔ NtN d
dtN

= tddt

(1 − an+1)NnBn+1(x)

n+ 1
= Nn

(
tN

d

dtN

)n [
tNx

tN − 1
− a

taNx

tNa − 1

] ∣∣∣∣
t=1

=

(
t
d

dt

)n [
tNx

tN − 1
− a

taNx

tNa − 1

] ∣∣∣∣
t=1

and

L(1−n, χ) = −
N∑

b=0

χ(b)(1−an+1)−1
(
t
d

dt

)n [
tb

tN − 1
− a

tab

tNa − 1

] ∣∣∣∣
t=1

.



§1.13. Integrality.

Since tm − 1 = (t− 1)(1 + t+ · · · + tm−1), we have

Φ(t) :=
tb

tN − 1
− a

tab

tNa − 1
=
tb(1 + tN + · · · + tN(a−1)) − atab

(t− 1)(
∑Na−1
j=0 tj)

.

The numerator φ(t) = tb(1+ tN + · · ·+ tN(a−1))− atab is divisible

by (t− 1) as φ(1) = 0, we do not have t− 1 in the denominator

of
(
tddt

)n
Φ(t). Therefore Φ(t) ∈ Z

[
1
aN

]
[t].

Exercise: What is the GCD of an+1−1 for all a prime to N? By

this, give an estimate of possible denominators of L(1 − n, χ).

We will see later that L(1 − n, χ) 6= 0 if χ(−1) = (−1)n, and

therefore, φ(t) is not divisible by (t− 1) twice.



§1.14. Euler products. Consider a formal Dirichlet series

L(s) =
∑∞
n=1 ann

−s, and suppose

(EP) amn = aman as long as m and n are co-prime.

By prime factorization, if m =
∏
p p

e(n), then am =
∏
p ape(n).

Therefore, we get a formal expansion

L(s) =
∏

p

∞∑

n=0

apnp
−ns.

Consider the generating function for each p:

Gp(T) =
∞∑

n=0

apnT
n.

If Gp(T) is a rational function 1/Lp(T) with Lp ∈ C[T ] such that

Dp(0) = 1 (reciprocally monic). We say that L(s) has formal

Euler product L(s) =
∏
pLp(p

−s)−1, and when the product ab-

solutely converges if Re(s) > a, we say L(s) has Euler product

(absolute convergence means |L(s)| = limx→∞
∏
p<x |Lp(p−s)|−1).



§1.15. Euler product of Dirichlet L-function. Plainly an =

χ(n) is multiplicative. Note that
∑∞
n=0 χ(p)

nTn = 1
1−χ(p)T as long

as p - N . Thus we have

L(s, χ) =
∏

p
(1 − χ(p)p−s)−1.

Exercise: Prove that the Euler product converges if Re(s) > 1.

By the convergence of Euler product means |Lp(p−s)|−1 → 1 as

p → ∞. Since Lp(p−s) 6= 0 for any p if Re(s) > 1, this implies

if Re(s) > 1, we have L(s, χ) 6= 0; so, by functional equation,

L(1 − n, χ) 6= 0 if χ(−1) = (−1)n. If n = 1, one can show that
∏h−1
j=0L(s, χ) has pole at s = 1. Since ζ(s) has a pole at s = 1,

we know L(0, χ) 6= 0 if χ(−1) = −1.



§1.16. Imprimitive Dirichlet L-function. If χ(n) = χ0(n) for

a primitive character modulo D for a divisor D|N , then

L(s, χ) =
∏

p-N

(1 − χ(p)p−s)−1 = L(s, χ0)
∏

p|N/D
(1 − χ(p)p−s).

So analytic continuation of imprimitive L-functions follows from

the result for primitive L-function.

In this lecture, we study Hecke L functions which is associated

to Galois character χ sending the Frobenius element Frobp at

p - N to χ(p); i.e, it has values in GL1(Q(χ)). Galois repre-

sentations π having values in GLn(C) is called Artin L function.

Let Lp(π)(T) = det(1n − π(Frobp)T) (the reciprocal character-

istic polynomial). Then we can make an (imprimitive) Artin

L-function

L(s, π) =
∏

p
Lp(π)(p

−s)−1.

There are many other interesting Euler products of degree n in

Number theory.


