
MODULAR FORMS, CONGRUENCES AND L-VALUES

HARUZO HIDA

Contents

1. Introduction 1
2. Elliptic modular forms 2
2.1. Congruence subgroups and the associated Riemann surface 2
2.2. Modular forms and q-expansions 4
2.3. Eisenstein series 5
3. Explicit modular forms of level 1 8
3.1. Isomorphism classes of elliptic curves 8
3.2. Level 1 modular forms 8
3.3. Dimension of Mk(SL2(Z)) 9
4. Hecke operators 12
4.1. Duality 14
4.2. Congruences among cusp forms 17
4.3. Ramanujan’s congruence 18
4.4. Congruences and inner product 19
4.5. Petersson inner product 21
5. Modular L-functions 22
5.1. Rankin product L-functions 23
5.2. Analyticity of L(s, λ⊗ µ) 24
5.3. Rationality of L(s, λ⊗ µ) 25
5.4. Adjoint L-value and congruences 26
References 27

1. Introduction

In this course, assuming basic knowledge of complex analysis, we describe basics of
elliptic modular forms. We plan to discuss the following four topics:

(1) Spaces of modular forms and its rational structure,
(2) Modular L-functions,
(3) Rationality of L-values,
(4) Congruences among cusp forms.

Date: January 5, 2019.
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Basic references are [MFM, Chapters 1–4] and [LFE, Chapter 5]. We assume basic
knowledge of algebraic number theory and complex analysis (including Riemann sur-
faces).

2. Elliptic modular forms

2.1. Congruence subgroups and the associated Riemann surface. Let Γ0(N) =
{

( a bc d ) ∈ SL2(Z)
∣

∣c ≡ 0 mod N
}

. This a subgroup of finite index in SL2(Z). A subgroup
Γ ⊂ SL2(Q) is said to be a congruence subgroup if there exists a positive integer N such
that the following principal congruence subgroup of level N :

Γ(N) = {α ∈ SL2(Z)|α ≡ 1 mod N}
is a subgroup of finite index in Γ. More generally, we can generalize the notion of
congruence subgroups to any number field K with integer ring O. A subgroup Γ ⊂
SL2(K) is called a congruence subgroup if Γ contains as a subgroup of finite index

Γ(N) = {α ∈ SL2(O)|α ≡ 1 mod N}
for a non-zero ideal N of O. A classical problem is

Problem 2.1. Is every subgroup of finite index of SL2(O) a congruence subgroup?

This problem is called the congruence subgroup problem. In the case of SL(2), this is
solved affirmatively by Serre and others in 1970s if K is not Q and not an imaginary
quadratic field (see [CSP]). Ask yourself why this fails when K = Q (via complex
analysis and homology theory).

Exercise 2.2. Let P1(A) be the projective space of dimension 1 over a ring A. Prove
[SL2(Z) : Γ0(N)] = |P1(Z/NZ)| = N

∏

`|N(1 + 1
`
) if N is square-free, where ` runs over

all prime factors of N . Hint: Let ( a bc d ) ∈ SL2(Z) acts on P1(A) by z 7→ az+b
cz+d

and show
that this is a transitive action if A = Z/NZ and the stabilizer of ∞ is Γ0(N).

We let ( a bc d ) ∈ GL2(C) acts on P1(C) = C ∪ {∞} by z 7→ az+b
cz+d

(by linear fractional
transformation).

Exercise 2.3. Prove the following facts:

(1) there are two orbits of the action of GL2(R) on P1(C): P1(R) and HtH, where
H = {z ∈ C| Im(z) > 0} and H = {z ∈ C| Im(z) < 0}.

(2) the stabilizer of i =
√
−1 is the center times SO2(R) =

{(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

∣

∣θ ∈ R
}

,

(3) For z ∈ H and Γz = {γ ∈ SL2(Z)|γ(z) = z}, Γz is an abelian group of order
either 2, 4 or 6.

(4) γ ∈ GL2(R) with det(γ) < 0 interchanges the upper half complex plane H and
lower half complex plane H,

(5) the upper half complex plane is isomorphic to SL2(R)/SO2(R) by SL2(R) 3 g 7→
g(
√
−1) ∈ H,

(6) SL2(R) is connected but GL2(R) is not connected as topological space. How about
GL2(C)?
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As a slightly more advanced fact, we note

Proposition 2.4. Write Aut(Hn) (0 < n ∈ Z) for the holomorphic automorphisms of
Hn. Then Aut(H) = PSL2(R). More generally writing Sn for the group of permutation
of coordinates of Hn, we have Aut(Hn) ∼= Sn n PSL2(R)n.

See any undergraduate text book of complex analysis to find a proof of Aut(H) =
PSL2(R). The rest is an exercise.

Lemma 2.5. The group SL2(Z) is generated by τ := ( 1 1
0 1 ) and σ := ( 0 −1

1 0 ).

Proof. Let Γ be the subgroup generated by τ and σ inside SL2(Z). Suppose Γ 6= SL2(Z)
and get a contradiction. Since στ−1σ−1 = ( 1 0

1 1 ) and σ2 = −1, Γ contains any lower
triangular elements in SL2(Z). Let

B = min{|b| : ( ∗ b
∗ ∗ ) ∈ SL2(Z) − Γ}.

Note that B 6= 0 as στ−1σ−1 = ( 1 0
1 1 ) ∈ Γ. Take γ = ( a Bc d ) ∈ SL2(Z) − Γ and an integer

m so that |a−mB| < B (as a and B is co-prime by det(γ) = 1). Then, by computation,
we have γσ−1τm =

(

−b a−mB
−d c−md

)

∈ Γ. This implies γ ∈ Γ, a contradiction. �

Let Γ be a subgroup of SL2(R) and F be a connected sub-domain of H. The domain
F is said to be a fundamental domain of Γ if the following three conditions are met:

(1) H =
⋃

γ∈Γ γ(F ) for the image Γ of Γ in PSL2(R);

(2) F = U for an open set U made up of all interior points of F ;
(3) If γ(U) ∩ U = ∅ for any 1 6= γ ∈ Γ.

Corollary 2.6. The set F = {z ∈ H : |z| ≥ 1 and |Re(z)| ≤ 1
2
} is a fundamental

domain of SL2(Z) and
∫

F
y−2dxdy = π

3
.

Proof. Here we give some heuristics (showing H =
⋃

γ∈SL2(Z) γ(F )). See [MFM, Theo-

rem 4.1.2] for a detailed proof. Let Φ := {z ∈ H : |Re(z) ≤ 1
2
}.

Pick z ∈ H. Since Zz + Z is a lattice in C, we can find α ∈ SL2(Z) with minimal
|j(α, z)| in {j(γ, z) := cz + d|γ = ( a bc d ) ∈ SL2(Z)}. Let z0 = α(z). Since Im(γ(z)) =
Im(z)/|j(γ, z)|2 and |j(γ, z)| is minimal, we get Im(z0) ≥ Im(γ(z0)) for all γ ∈ SL2(Z).
This means

Im(z0) ≥ Im(γα(z)) = Im(γ(z0))

for all γ ∈ SL2(Z). Take γ to be ( 0 −1
1 0 ). Then we have

Im(z0) ≥ Im(−1/z0) = Im(z0)/|z0|2

which implies |z0|2 ≥ 1.
By translation z + m = τm(z) (which does not change Im(z)), we can bring z ∈ H

inside Φ. Thus H =
⋃

γ∈SL2(Z) γ(F ).

We leave the verification of γ(F ◦) ∩ F ◦ = ∅ for ±1 6= γSL2(Z) as an exercise. �

Exercise 2.7. Let K := Q[
√
−D] be an imaginary quadratic field. Show that each ideal

class of K has a unique fractional ideal a = Z + Zz with z ∈ F ′ for F ′ = F ◦ ∪ {z ∈
F |Re(z) ≥ 0} for the interior F ◦ of F .
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By sending z ∈ F to q := exp(2πiz), {z ∈ F | Im(z) > 1} is sent to an open disk
of radius exp(−2π) punctured at the center 0. Thus by filling in q−1(0) = ∞, we find
P1(J) := SL2(Z)\(H ∪P1(Q)) is (essentially a Riemann sphere).

For any subgroup of finite index Γ, we put X(Γ) := Γ\(H∪P1(Q)) and Y (Γ) := Γ\H.
Then X(Γ) is a finite covering of P1(J) and hence X(Γ) is a Riemann surface. If the
image Γ does not have torsion, the topological fundamental group π1(Y (Γ)) is isomorphic
to Γ. What happens if Γ has non-trivial torsion?

Exercise 2.8. Describe the local coordinate of P1(J) around the image of a cubic root
of unity in F .

Thus Y0(N) = Γ0(N)\H is an open Riemann surface with hole at cusps. In other
words, X0(N) = Γ0(N)\(H tP1(Q)) is a compact Riemann surface.

Exercise 2.9. Show the following facts

(1) SL2(K) acts transitively on P1(K) for any field K by linear fractional transfor-
mation. Hint: ( 1 a

0 1 ) (0) = a.
(2) SL2(Z) acts transitively on P1(Q).
(3) Give an example of a number field K with an integer ring O such that SL2(O)

does not acts transitively on P1(K).
(4) |X0(N) − Y0(N)| = 2 if N is a prime.

2.2. Modular forms and q-expansions. Let f : H → C be a holomorphic functions
with f(z+1) = f(z). Since H/Z ∼= D =

{

z ∈ C×
∣

∣|z| < 1
}

by z 7→ q = e(z) = exp(2πiz),
we may regard f as a function of q undefined at q = 0 ⇔ z = i∞. Then the Laurent
expansion of f gives

f(z) =
∑

n

a(n, f)qn =
∑

n

a(n, f) exp(2πinz).

In particular, we may assume that q is the coordinate of X0(N) around the infinity cusp
∞. We call f is finite (resp. vanishing) at ∞ if a(n, f) = 0 if n < 0 (resp. if n ≤ 0).
By Exercise 2.9, we can bring any point c ∈ P1(Q) to ∞; so, the coordinate around the
cusp c is given by q ◦ α for α ∈ SL2(Q) with α(c) = ∞.

Exercise 2.10. Show that the above α can be taken in SL2(Z). Hint: write c = a
b

as a
reduced fraction; then, we can find x, y ∈ Z such that ax− by = 1.

We consider the space of holomorphic functions f : H → C satisfying the following
conditions for an even integer k:

(M1) f(az+b
cz+d

) = f(z)(cz + d)k for all ( a bc d ) ∈ Γ0(N).

If f satisfies the above conditions, we find that f(z+1) = f(z) because ( 1 1
0 1 ) (z) = z+1;

so, we can say that f is finite or not.

Exercise 2.11. Define f | ( a bc d ) (z) = f(az+b
cz+d

)(cz + d)−k. Prove the following facts:

(1) (f |α)|β = f |(αβ) for α ∈ SL2(R),
(2) if f satisfies (M1), f |α satisfies (M1) replacing Γ0(N) by Γ = α−1Γ0(N)α,
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(3) If α ∈ SL2(Z), show that Γ contains Γ(N) = {γ ∈ SL2(Z)|γ − 1 ∈ NM2(Z)}.
By (3) of the above exercise, for α ∈ SL2(Z), we find f |α(z +N) = f |α(z); thus, f |α

has expansion f |α =
∑

n a(n, f |α)qNn. We call f is finite (resp. vanishing) at the cusp
α−1(∞) if f |α is finite (resp. vanishing) at ∞. Consider the following condition:

(M2) f is finite at all cusps of X0(N).

We write Mk(Γ0(N)) for the space of functions satisfying (M1–2). Replace (M2) by

(S) f is vanishing at all cusps of X0(N),

we define subspace Sk(Γ0(N)) ⊂ Mk(Γ0(N)) by imposing (S). Element in Sk(Γ0(N)) is
called a holomorphic cusp form on Γ0(N) of weight k.

Pick a Dirichlet character χ : (Z/NZ)× → C×. We impose slightly different conditions
than (M1):

(Mχ1) f(az+b
cz+d

) = χ(d)f(z)(cz + d)k for all ( a bc d ) ∈ Γ0(N).

We write Mk(Γ0(N), χ) for the space of holomorphic functions on H satisfying (Mχ1)
and (M2). If further we impose (S), the space will be written as Sk(Γ0(N), χ).

2.3. Eisenstein series. Let χ : (Z/NZ)× → Q
×

be a primitive Dirichlet character. We
consider the Eisenstein series of weight 0 < k ∈ Z

E ′
k,χ(z, s) =

∑

(m,n)∈Z2−{(0,0)}

χ−1(n)(mNz + n)−k|mNz + n|−2s,

where z ∈ H and s ∈ C. When N = 1, χ is the trivial character 1.
Since Γ∞ := {α ∈ Γ0(N)|α(∞) = ∞} is given by

{± ( 1 m
0 1 ) |m ∈ Z} ,

we have

(2.1) Γ∞\Γ0(N) ∼= {(cN, d) ∈ NZ × Z|cNZ + dZ = Z}/{±1}.
Exercise 2.12. Prove (2.1).

From this, we conclude

Lemma 2.13.

E ′
k,χ(z) = 2L(2s + k, χ−1)

∑

γ∈Γ∞\Γ0(N)

χ−1(γ)j(γ, z)−k|j(γ, z)|−2s,

where χ(( a b
c d )) = χ(d).

We put

E∗
k,χ :=

∑

γ∈Γ∞\Γ0(N)

χ−1(γ)j(γ, z)−k|j(γ, z)|−2s.

Exercise 2.14. Prove the above lemma.

For the following exercise, see [MFM] Section 2.6 and Chapter 7.

Exercise 2.15. Prove
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(1) E ′
k,χ(z, s) converges absolutely and locally uniformly with respect to (z, s) ∈ H×C

if Re(2s + k) > 2;
(2) E ′

k,χ(z, s) = 0 if χ(−1) 6= (−1)k (assuming convergence);
(3) E ′

k,χ(z) = E ′
k,χ(z, 0) is a holomorphic function of z if k > 2 (this fact is actually

true if k = 2 and χ 6= 1 for the limit E ′
k,χ(z) = lims→+0 E

′
k,χ(z, s));

(4) E ′
k,χ(γ(z)) = χ(d)(cz + d)kE ′

k,χ(z) for γ = ( a bc d ) ∈ Γ0(N).

Recall that a holomorphic function f : H → C is called a modular form on Γ0(N) of
weight k with character χ if f satisfies the following conditions:

(Mχ1) f(az+b
cz+d

) = χ(d)f(z)(cz + d)k for all ( a bc d ) ∈ Γ0(N);

(M2) f is finite at all cusps of X0(N); in other words, for all α = ( a bc d ) ∈ SL2(Z),
f |kα(z) = f(α(z))(cz + d)−k has Fourier expansion of the form

∑

0≤n∈N−1Z

a(n, f |kα) exp(2πinz) (with a(n, f |kα) ∈ C).

Functions in the space Sk(Γ0(N), χ) are called holomorphic cusp forms on Γ0(N) of
weight k with character χ.

Exercise 2.16. Prove that M0(Γ0(N), χ) is either C (constants) or 0 according as χ = 1

or not.

Exercise 2.17. Prove that Mk(Γ0(N), χ) = 0 if χ(−1) 6= (−1)k.

Proposition 2.18. Let χ be a primitive Dirichlet character modulo N . The Eisenstein
series E ′

k,χ(z, s) for 0 < k ∈ Z can be meromorphically continued as a function of s for
a fixed z giving a real analytic function of z if E ′

k,χ(z, s) is finite at s ∈ C. If χ 6= 1 or
k 6= 2, E ′

k,χ(z) = E ′
k,χ(z, 0) is an element in Mk(Γ0(N), χ).

We only prove the last assertion for k > 2, since the proof of the other assertions
require more preparation from real analysis. See [LFE] Chapter 9 (or [MFM] Chapter 7)
for a proof of these assertions not proven here.

Proof. Suppose k > 2. Then E ′
k,χ is absolutely and locally uniformly convergent by

the exercise above, and hence E ′
k,χ is a holomorphic functions in z ∈ H. Thus we need

to compute its Fourier expansion. Since the computation is basically the same for all
cusps, we only do the computation at the cusp ∞. We use the following partial fraction
expansion of cotangent function (can be found any advanced Calculus text or [LFE]
(2.1.5-6) in page 28):

π cot(πz) = πi
exp(2πiz) + 1

exp(2πiz)− 1
=

1

z
+

∞
∑

n=1

(

1

z + n
+

1

z − n

)

π cot(πz) = πi
exp(2πiz) + 1

exp(2πiz)− 1
= πi

(

−1 − 2

∞
∑

n=1

qn

)

, q = exp(2πiz).

(2.2)
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The two series converge locally uniformly on H and periodic on C by definition. Applying
the differential operator (2πi)−1 ∂

∂z
to the formulas in (2.2) term by term, we get

(2.3) Sk(z) =
∑

n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞
∑

n=1

nk−1qn.

Form this, assuming χ(−1) = (−1)k, we have

E ′
k,χ(z) = 2

∞
∑

n=1

χ(n)−1n−k + 2
N
∑

r=1

χ−1(r)
∞
∑

m=1

∑

n∈Z

N−k(mz +
r

N
+ n)−k

= 2L(k, χ−1) + 2
N
∑

r=1

χ−1(r)
∞
∑

m=1

N−kSk(mz +
r

N
)

(2.3)
= 2L(k, χ−1) + 2N−k (−2πi)k

(k − 1)!

∞
∑

m=1

∞
∑

n=1

nk−1qm
N
∑

r=1

χ−1(r) exp(2πi
nr

N
).

(2.4)

By the functional equation (see [LFE] Theorem 2.3.2), we have, if χ(−1) = (−1)k,

(2.5) L(k, χ−1) = G(χ−1)
(−2πi)k

Nk(k − 1)!
L(1 − k, χ),

whereG(ψ) for a primitive character ψ modulo C is the Gauss sum
∑C

r=1 ψ(r) exp(2πi u
C
).

We have
∑N

r=1 χ
−1(r) exp(2πinr

N
) =

{

χ(n)G(χ−1) if n is prime to N ,

0 otherwise,
and we get the

formula

(2.6) E ′
k,χ(z) = G(χ−1)

2(−2πi)k

Nk(k − 1)!
Ek,χ(z)

for

Ek,χ(z) = 2−1L(1 − k, χ) +
∞
∑

n=1

σk−1,χ(n)qn

for σk−1,χ(n) =
∑

0<d|n χ(d)dk−1. Here we used the convention that Ek,χ(z) = 0 if

χ(−1) 6= (−1)k. �

WhenN = 1 and χ = 1 (the identity character), we simply write σk−1(n) for σk−1,χ(n).

Exercise 2.19. Prove σk,χ(m)σk,χ(n) = σk,χ(mn) if (m,n) = 1 (i.e., m and n are
co-prime). For a prime p, what is the relation between σk,χ(p) and σk,χ(p

2)?

Exercise 2.20. Give a proof of

N
∑

r=1

χ−1(r) exp(2πi
nr

N
) =

{

χ(n)G(χ−1) if n is prime to N ,

0 otherwise.
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Exercise 2.21. Let p be a prime, and write 1p for the imprimitive identity character of
(Z/pZ)×. Prove that

Ek,1(z) − pk−1Ek,1(pz) = 2−1(1 − pk−1)ζ(1 − k) +

∞
∑

n=1

σ
(p)
k−1,1(n)qn

for σ
(p)
k−1,1(n) =

∑

0<d|n,p-n d
k−1. More generally, if N is prime to p, prove that

Ek,χ(z) − χ(p)pk−1Ek,χ(pz) = 2−1(1 − χ(p)pk−1)L(1 − k, χ) +
∞
∑

n=1

σ
(p)
k−1,χ(n)qn

for σ
(p)
k−1,χ(n) =

∑

0<d|n,p-n χ(d)dk−1.

3. Explicit modular forms of level 1

3.1. Isomorphism classes of elliptic curves. An elliptic curve E (over C) is a genus
1 Riemann surface with a specific point 0. By Weierstrass theory (cf. [GME, §2.4]) E
can be embedded into the two dimensional projective space P2 and its image is defined
as the zero set of cubic homogeneous equations (of the homogeneous coordinates of
P2), it is called a curve (a dimension 1 algebraic variety). Since E has genus 1, its
fundamental group L := π1(E, 0) is a free module of rank 2 and is isomorphic to the
homology group H1(E,Z). Therefore the universal covering of E is isomorphic to C. In
other words, E ∼= C/L for a lattice L = Zw1 + Zw2 of C. Then we may assume that
z = w1/w2 ∈ H (by interchanging wi if necessary). The choice of the basis (w1, w2) is
unique up to multiplication by SL2(Z):

(

w1

w2

)

7→ γ
(

w1

w2

)

for γ ∈ SL2(Z). The isomorphism

class of E is uniquely determined by (C, L) up to scalar multiple. This multiplication
induces the action z 7→ γ(z) on H, and z is uniquely determined by (w1, w2) modulo
scalar multiplication. Thus we get

{elliptic curves/C}/ ∼=↔ SL2(Z)\H = P1(J) − {∞}.
Thus essentially modular forms of level 1 are functions of isomorphism classes of elliptic
curves. Using this fact, we can make the theory of elliptic curves purely algebraically
(see [GME, Chapter 3]), and hence we may regard the theory of modular forms as a part
of algebraic number theory (though the original analytic definition due back to Gauss
gives a foundation of the treatment of modular forms via analytic number theory).

3.2. Level 1 modular forms. We take N = 1 and χ = 1 for the the construction of
Eisenstein series. Put σj(n) =

∑

0<d|n d
k and

E2k = 2−1ζ(1 − 2k) +
∞
∑

n=1

σ2k−1(n)qn ∈M2k(SL2(Z)).

Note that ζ(1 − 2k) for k > 0 is essentially a Bernoulli number and hence a rational
number. Put

G2k = 2ζ(1 − 2k)−1E2k ∈M2k(SL2(Z)) ∩ Q[[q]].

Writing G2k = 1 + C2k

∑∞
n=1 σ2k−1(n)qn, here is a table of Ck:
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2k 4 6 8 10 14
C2k 240 −504 480 −264 −24

Since ζ(−11) = ζ(1−12) = 691
23·32·5·7·13

, for 2k = 12, G12 is not integral (and denominator
is 691: Ramanujan’s prime). Following the tradition from the time of Weierstrass, we
define g2 = G4

12
, g3 = G6

216
and ∆ = g3

2 − 27g2
3 ∈ M12(SL2(Z)). Then the elliptic curve

E = C/Zz + Z (z ∈ H) embedded by Weierstrass ℘-function (u 7→ (℘(u) : ℘′(u) : 1))
into P2 satisfies the equation

Y 2Z = 4X3 − g2(z)XZ
2 − g3(z)Z

3.

Exercise 3.1. Explain why the curve defined by Y 2Z = 4X3 − g2(z)XZ
2 − g3(z)Z

3 and
Y 2Z = 4X3 − g2(γ(z))XZ

2 − g3(γ(z))Z
3 for γ ∈ SL2(Z) are isomorphic in P2.

The above equation gives a smooth curve if and only if the cubic equation fz(X) =
4X3 − g2(γ(z))X − g3(z) has distinct three roots. Note that ∆ is the discriminant of
fz(X). Since E = C/L is smooth, we find ∆(z) 6= 0 for all z ∈ H. On the other hand,
the q-expansion of ∆ is of the form

q +
∞
∑

n=2

τ (n)qn

by definition. Thus ∆(∞) = 0. This non-vanishing of ∆ also follows from the following
product q-expansion of ∆ (e.g., [EEK, IV, (36)]:

∆ = q
∞
∏

n=1

(1 − qn)24 ∈ qZ[[q]].

Ramanujan conjectured many things for ∆, for example,

(1) τ (p)τ (q) = τ (pq) for primes p 6= q (now a theorem of Mordell which we will
prove),

(2) τ (n) ≡ σ11(n) mod 691 for all positive integer n (perhaps, first proven by Ribet
in 1976 [R76], later we will give a proof).

Note here that the constant term of E12 is divisible by 691; so, we could write the
last congruence in aggregate as ∆ ≡ E12 mod 691 (or strictly speaking, ∆ ≡ E12

mod 691Z[[q]]). This is the first appearance in this course of congruence between mod-
ular forms. Note that Ribet proved that p > k is a congruence prime (like 691 between
a Hecke eigen cusp form and an Eisenstein series of the same weight k) if and only if
the class group of Q(µp) has a factor isomorphic to Z/pZ on which Gal(Q(µp)/Q) acts
by the (1− k)-th power of the Teichmüller character (a converse of Herbrand’s theorem
in early 20th century).

3.3. Dimension of Mk(SL2(Z)). Put J =
G3

4

∆
. Since ∆ 6= 0 over H, J is holomorphic

over H invariant under the action of SL2(Z). Thus J factors through SL2(Z)\H. Since
∆ = q+

∑∞
n=1 τ (n)qn and G4 = 1+C4

∑∞
n=1 σ3(n)qn, the function J has a pole of order

1 at ∞. Thus we can take J as a coordinate of P1(J) = SL2(Z)\(H tP1(Q)). Here is a
dimension formula for Mk(SL2(Z)):
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Proposition 3.2. We have for integers k ≥ 0

dimM2k(SL2(Z)) =

{

[

k
6

]

+ 1 if k 6≡ 1 mod 6 and k 6= 1,
[

k
6

]

if k ≡ 1 mod 6,

dimS2k(SL2(Z)) =

{

[

k
6

]

if k 6≡ 1 mod 6,
[

k
6

]

− 1 if k ≡ 1 mod 6.

We also have M2(SL2(Z)) = 0.

Here [α] is the integer with α − 1 < [α] ≤ α for α ∈ Q. See [MFM, §2.5and §4.2] for
the dimension formula for general Mk(Γ0(N), χ) and Sk(Γ0(N), χ).

We prove some lemmas before proving the dimension formula. Write the right-hand-
side of the dimension formula for M2k(SL2(Z)) above as r(2k). Put s(2k) = 2k −
12(r(2k) − 1).

Exercise 3.3. Prove that the equation 4a+6b = s(2k) has a unique non-negative integer
solution for each integer k.

Here is the list of the solutions:

k mod 6 0 1 2 3 4 5
s(2k) 0 14 4 6 8 10
a 0 2 1 0 2 1
b 0 1 0 1 0 1

We now create an integral basis of M2k(SL2(Z)). Write (a(k), b(k)) for the unique non-
negative integer solutions to 4a + 6b = s(2k). Then, following Y. Maeda, put

hi = Ga
4G

b+2(r(2k)−1−i)
6 ∆i ∈M2k(SL2(Z)) ∩ Z[[q]] for i = 0, 1, 2, . . . , r(k).

Very special feature of {hi}0≤i≤r(2k)−1 is

hi = qi +
∞
∑

n=i+1

a(i)nq
n ∈ Z[[q]].

In particular, they are linearly independent over Z. Here is a corollary of this construc-
tion of the integral basis {hi}i:
Corollary 3.4. Any f ∈ M2k(SL2(Z)) (resp. g ∈ S2k(SL2(Z))) is an integral linear
combination of {hi}0≤i≤r(2k)−1 (resp. {hi}1≤i≤r(2k)−1).

Write Sk(Γ;A) = A[[q]]∩ S2k(Γ) and Mk(Γ;A) = A[[q]]∩M2k(Γ). We thus have

S2k(SL2(Z); Z) =

r(k)−1
∑

i=1

Zhi.

Here are some facts of the dimension 1 projective space.

(1) U∞ := P1(C) − {∞} ∼= C (whose coordinate we write as t);
(2) U0 := P1(C) − {0} ∼= C whose coordinate is u := t−1.
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Let ω be a 1-differential form on P1(C) holomorphic everywhere. Write ω = f(t)dt on
U∞. If f(t) is bounded over U∞ = C, it has to be constant. Then ω has to have a pole
at ∞ as dt = −u−2du. Thus ω = 0. In other words,

H0(P1(C),ΩP1(C)/C) = 0.

If ω is holomorphic over U∞ and have a pole of order 1 at ∞, then ω = −f(u)u−2du
has order 1-pole. This is possible if f(u) = a1u +

∑∞
n=2 anu

n. In other words, |f(u)| is
bounded over U0; so, f is a constant. Then ω = 0 again. Thus writing ΩP1(C)/C)(−∞)
for the sheaf of differentials having pole only at ∞ of order ≤ 1, we have

H0(P1(C),ΩP1(C)/C(−∞)) = 0,

which implies M2(SL2(Z)) = 0 as

M2(SL2(Z)) 3 f 7→ f(z)dz ∈ H0(P1(C),ΩP1(C)/C(−∞)) = 0.

Thus to prove Proposition 3.2, we need to show that

dimM2k(SL2(Z)) ≤ r(2k)

for k 6= 1.

Proof of Proposition 3.2. Suppose k 6= 1. Consider

Tk = G14−s(2k)∆
−r(2k) = ck,−r(2k)q

−r(2k) + · · · + ck,0 +
∞
∑

n=1

ck,nq
n ∈ Z((q)).

Note that ck,−r(2k) = 1. The weight of Tk is given by 14 − s(2k) − 12r(2k) = 2 − 2k.
In particular, for each f ∈ M2k(SL2(Z)), fTk has weight 2. Since dγ(z) = j(γ, z)−2dz
for j (( a bc d ) , z) = cz + d for γ ∈ SL2(R), ω(f) = (2πi)fTkdz = f(q)Tk(q)dq/q is a
1-differential holomorphic over U∞ ⊂ P1(J). It has pole of order r(2k) + 1 at ∞ (as
dq/q = 2πidz).

Put ωm = JmdJ . Then ωm is holomorphic over U∞ and has a pole of order m+ 2 at
∞. Write ωm = c−m−2q

−m−2 + · · ·+ c−1q
−1 · · · . Note that c−m−2 is not zero. Expanding

ω(f) = (b−r(2k)q
−r(2k)−1 + · · · + b−1q

−1 +
∑∞

n=0 bnq
n)dq, we find ω(f) − b−r(2k)

c−r(2k)−1
ωr(2k)−1

is holomorphic over U∞ and has a pole of order at most r(2k) − 2. Replacing ω(f) by

ω(f)− b−r(2k)

c−r(2k)−1
ωr(2k)−1 and repeating taking off suitable multiple of ωj (j = 0, . . . , r(2k)−

1), we find that ω(f)− a0ω0 − · · ·− ar(2k)+2ωr(2k) is holomorphic over U∞ and has a pole
at ∞ of order at most 1. Since H0(P1(C),ΩP1(C)/C(−∞)) = 0, we see that ω(f) is linear
combination of ω0, . . . , ωr(2k)−1. This shows dimM2k(SL2(Z)) ≤ r(2k), which finishes
the proof. �

For a subring A of C, we put

M2k(SL2(Z);A) = M2k(SL2(Z)) ∩A[[q]] and S2k(SL2(Z);A) = S2k(SL2(Z)) ∩A[[q]].

Corollary 3.5. We have M2k(SL2(Z);A) = M2k(SL2(Z); Z)⊗ZA and S2k(SL2(Z);A) =
S2k(SL2(Z); Z) ⊗Z A. Moreover {ga2gb3|4a + 6b = 2k, 0 ≤ a, b ∈ Z} is a basis of
M2k(SL2(Z); Z[ 1

6
]).
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We quote the following celebrated result of Siegel (see [LFE, §5.2]):
Corollary 3.6. Let ck,−j (j = 0, . . . , r(2k)) be the coefficients of Tk. The for any
f =

∑∞
n=0 anq

n ∈ M2k(SL2(Z)), we have ck,0a0 + ck,−1a1 + · · · + ck,−r(2k)ar(2k) = 0 and
ck,0 6= 0.

Proof. Note that ωm = JmdJ = 1
m+1

dJm

dq
dq does not have the term q−1. Thus ω(f)

neither. The coefficient of q−1 of ω(f) is given by ck,0a0 + ck,−1a1 + · · · + ck,−r(2k)ar(2k).
We have ck,−r(2k) = 1. For Siegel’s proof of non-vanishing of ck,0, see [S69] and [LFE,
§5.2], though this is an easy computational exercise. �

For any totally real field F , Siegel then created a rational modular form of weight
2k[F : Q] such that the constant term is ζF (1 − 2k). Then the above corollary implies
ζF (1 − 2k) ∈ Q for all 0 < k ∈ Z (a generalization of Euler’s rationality of ζ(1 − 2k)
after more than 200 years). Here is a table (computed by Siegel) of Siegel numbers ck,j:

2k ck,0 ck,−1 ck,−2

4 −240 (−24 · 3 · 5) 1
6 504 (23 · 32 · 7) 1
8 −480 (−25 · 3 · 5) 1
10 264 (23 · 3 · 11) 1
12 −196560 (−24 · 33 · 5 · 7 · 13) 24 (23 · 3) 1
14 24(23 · 3) 1

4. Hecke operators

Let GL+
2 (R) =

{

α ∈ GL2(R)
∣

∣ det(α) > 0
}

and put GL+
2 (A) = GL+

2 (R) ∩GL2(A) for

A ⊂ R. For α = ( a bc d ) ∈ GL+
2 (R) and a function f : H → C, we define f |α(z) =

det(α)k−1f(α(z))(cz + d)−k if α = ( a bc d ).

Exercise 4.1. Prove (f |α)|β = f |(αβ) for α, β ∈ GL+
2 (R).

Then f ∈ Sk(Γ0(N)) (resp. f ∈Mk(Γ0(N))) if and only if f vanishes (resp. finite) at
all cusps of X0(N) and f |γ = f for all γ ∈ Γ0(N). Let Γ = Γ0(N). For α ∈ GL2(R)
with det(α) > 0, if ΓαΓ can be decomposed into a disjoint union of finite left cosets

ΓαΓ =
⊔h
j=1 Γαj , we can think of the finite sum g =

∑

j f |αj . If γ ∈ Γ, then αjγ ∈ Γασ(j)

for a unique index 1 ≤ σ(j) ≤ h and σ is a permutation of 1, 2, . . . , h. If further, f |γ = f
for all γ ∈ Γ, we have

g|γ =
∑

j

f |αjγ =
∑

j

f |γjασ(j) =
∑

j

(f |γj)|ασ(j) =
∑

j

f |ασ(j) = g.

Thus under the condition that f |γ = f for all γ ∈ Γ, f 7→ g is a linear operator only
dependent on the double coset ΓαΓ; so, we write g = f |[ΓαΓ]. More generally, if we
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have a set T ⊂ GL+
2 (R) such that ΓTΓ = T with finite |Γ\T |, we can define the operator

[T ] acting on Mk(Γ0(N)) by f 7→∑

j f |tj if T =
⊔

j Γtj. We define

∆0(N) =
{

( a bc d ) ∈M2(Z) ∩ GL+
2 (R)

∣

∣c ≡ 0 mod N, aZ +NZ = Z
}

.

Exercise 4.2. Prove that Γ∆0(N)Γ = ∆0(N) for Γ = Γ0(N).

Remark 4.1. For a character χ : (Z/NZ)× → C× and α ∈ ∆0(N), we define f |χα(z) =
det(α)k−1χ(a)f(α(z))(cz + d)−k if α = ( a bc d ). Then, if T ⊂ ∆0(N) with Γ0(N)TΓ0(N)
with finite |Γ0(N)\T |, we can define [T ] : Mk(Γ0(N), χ) → Mk(Γ0(N), χ) by f |[T ] =
∑

j f |χtj.
Lemma 4.3. Let Γ = Γ0(N).

(1) If α ∈M2(Z) with positive determinant, |Γ\(ΓαΓ)| <∞;
(2) If p is a prime,

Γ
(

1 0
0 p

)

Γ =
{

α ∈ ∆0(N)
∣

∣ det(α) = p
}

=

{

Γ
(

p 0
0 1

)

t⊔p−1
j=0 Γ

(

1 j
0 p

)

if p - N ,
⊔p−1
j=0 Γ

(

1 j
0 p

)

if p|N .

(3) for an integer n > 0,

Tn :=
{

α ∈ ∆0(N)
∣

∣ det(α) = n
}

=
⊔

a

d−1
⊔

b=0

Γ0(N) ( a b0 d ) (a > 0, ad = n, (a,N) = 1, a, b, d ∈ Z),

(4) Write T (n) for the operator corresponding to Tn. Then we get the following
identity of Hecke operators for f ∈Mk(Γ0(N), χ):

a(m, f |T (n)) =
∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · a(mn
d2
, f).

(5) T (m)T (n) = T (n)T (m) for all integers m and n, and T (m)T (n) = T (mn) as
long as m and n are co-prime.

Proof. For simplicity, we assume χ = 1. Note that (1) and (2) are particular cases of
(3). We only prove (2), (4) when n = p for a prime p and (5), leaving the other cases as
an exercise (see [IAT] Proposition 3.36 and and (3.5.10) for a detailed proof of (3) and
(4)).

We first deal with (2). Since the argument in each case is essentially the same, we
only deal with the case where p - N and Γ = Γ0(N). Take any γ = ( a bc d ) ∈ M2(Z) and
ad − bc = p. If c is divisible by p, then ad is divisible by p; so, one of a and d has a
factor p. We then have

γ = ( a bc d ) =
(

a/p b
c/p d

)

(

p 0
0 1

)

∈ Γ0(N)
(

p 0
0 1

)

if a is divisible by p. If d is divisible by p and a is prime to p, choosing an integer j with

0 ≤ j ≤ p− 1 with ja ≡ b mod p, we have γ
(

1 j
0 p

)−1 ∈ GL2(Z). If c is not divisible by
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p but a s divisible by p, we can interchange a and c via multiplication by ( 0 −1
1 0 ) from

the left-side. If a and c are not divisible by p, choosing an integer j so that ja ≡ −c
mod p, we find that the lower left corner of

(

1 0
j 1

)

γ is equal to ja+ c and is divisible by
p. This finishes the proof of (2).

We now deal with (4) assuming n = p. By (2), we have

(4.1) f |T (p)(z) =







pk−1 · f(pz) +
∑p−1

j=0 f
(

z+j
p

)

if p - N ,
∑p−1

j=0 f
(

z+j
p

)

if p|N .

Writing f =
∑∞

n=1 a(n, f)qn for q = e(z), we find

a(m, f |T (p)) = a(mp, f) + pk−1 · a(m
p
, f).

Here we put a(r, f) = 0 unless r is a non-negative integer.
The formula of Lemma 4.3 (4) is symmetric with respect to m and n; so, we conclude

T (m)T (n) = T (n)T (m). From (4), it is plain that T (m)T (n) = T (mn) if (m,n) = 1.
This proves (5). �

Exercise 4.4. Give a detailed proof of the above lemma.

The following exercise is more difficult:

Exercise 4.5. Let Γ = SL2(Z). Prove that |Γ\(ΓαΓ)| <∞ for α ∈ GL2(R) if and only
if α ∈ GL2(Q) modulo real scalar matrices.

4.1. Duality. Let A ⊂ C be a subring, and define

Sk(Γ0(N), A) =
{

f ∈ Sk(Γ0(N))
∣

∣a(n, f) ∈ A
}

.

By definition, Sk(Γ0(N),C) = Sk(Γ0(N)). We admit the following fact proven by
Shimura in 1950s:

Theorem 4.6. If A is a subring of C, we have

Sk(Γ0(N), A) = Sk(Γ0(N),Z) ⊗Z A.

We proved this when N = 1 (see Corollary 3.5) and we include some explanation
later. For any commutative algebra, we define Sk(Γ0(N);A) = Sk(Γ0(N); Z) ⊗Z A.
Letting Z[χ] be the subalgebra of Q generated by the values of Dirichlet character χ
modulo N , the same formula Sk(Γ0(N), χ;A) = Sk(Γ0(N), χ; Z[χ])⊗Z[χ]A holds true for
any Z[χ]-algebra A ⊂ C.

We let T (n) acts on Sk(Γ0(N);A) by the formula Lemma 4.3 (4). Define

hk(N ;A) = A[T (n)|n = 1, 2, . . . ] ⊂ EndA(Sk(Γ0(N);A)),

Hk(N ;A) = A[T (n)|n = 1, 2, . . . ] ⊂ EndA(Mk(Γ0(N);A))
(4.2)

and call hk(N ;A) the Hecke algebra on Γ0(N). Replacing Sk(Γ0(N)) (resp. Mk(Γ0(N)))
by Sk(Γ0(N), χ; C) (resp. Mk(Γ0(N), χ; C)) in the above formula, we can define for any
Z[χ]-algebra A, the Hecke algebras hk(N,χ;A) (resp. Hk(N,χ;A). By Lemma 4.3 (5),
hk(N ;A) is a commutative A-algebra.
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We define an A–bilinear pairing

〈 , 〉 : hk(N,χ;A)× Sk(Γ0(N), χ;A) → A

by 〈h, f〉 = a(1, f |h).
Proposition 4.7. We have the following canonical isomorphism:

HomA(Sk(Γ0(N), χ;A), A) ∼= hk(N,χ;A) and HomA(hk(N,χ;A), A) ∼= Sk(Γ0(N), χ;A),

and the latter is given by sending an A–linear form φ : hk(N,χ;A) → A to the q–
expansion

∑∞
n=1 φ(T (n))qn.

Since the proof is the same, we only prove this result for χ = 1.

Proof. We start with proving the result for a subfield A of C. Since hk(N ; C) and
Sk(Γ0(N),C) are both finite dimensional, we only need to show the non-degeneracy of
the pairing. By Lemma 4.3 (4), we find 〈T (n), f〉 = a(n, f); so, if 〈h, f〉 = 0 for all n,
we find f = 0. If 〈h, f〉 = 0 for all f , we find

0 = 〈h, f |T (n)〉 = a(1, f |T (n)h) = a(1, f |hT (n)) = 〈T (n), f |h〉 = a(n, f |h).
Thus f |h = 0 for all f , implying h = 0 as an operator.

By Theorem 4.6, we have

Sk(Γ0(N),Z) ⊗Z C = Sk(Γ0(N)),

and therefore

Sk(Γ0(N),Z) ⊗Z A = Sk(Γ0(N), A)

for any ring A. In particular, hk(N ;A) is a subalgebra of EndC(Sk(Γ0(N))) generated
over A by T (n) for all n. Then by definition hk(N ;A) = hk(N ; Z) ⊗Z A for any subring
A ⊂ C.

As for A = Z, we only need to show that φ 7→∑∞
n=1 φ(T (n))qn is well defined and is

surjective onto Sk(Γ0(N),Z) from hk(N ; Z), because this is the case if we extend scalar
to A = Q. The cusp form f ∈ Sk(Γ0(N), A) corresponding to φ satisfies 〈h, f〉 = φ(h);
so, a(n, f) = 〈T (n), f〉 = φ(T (n)). Thus f =

∑∞
n=1 φ(T (n))qn ∈ Sk(Γ0(N), A). However

f ∈ Sk(Γ0(N),Z) ⇐⇒ φ ∈ Hom(hk(N ; Z),Z),

because hk(N ; Z) is generated by T (n) over Z. This is enough to conclude surjectivity.
Since hk(N ;A) = hk(N ; Z) ⊗ A and Sk(Γ0(N),Z) ⊗Z A = Sk(Γ0(N), A), the duality

over Z implies that over A. �

Corollary 4.8. We have the following assertions.

(1) For any C-algebra homomorphism λ : hk(N ; C) → C, λ(hk(N ; Z)) is in the
integer ring of an algebraic number field. In other words, λ(T (n)) for all n
generates an algebraic number field Q(λ) over Q and λ(T (n)) is an algebraic
integer.
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(2) For any Z-algebra homomorphism λ : hk(N ; Z) → Q(λ),

Sk(Γ0(N),Q(λ))[λ] =
{

f ∈ Sk(Γ0(N),Q(λ))
∣

∣f |T (n) = λ(T (n))f for all n
}

is one dimensional and is generated by fλ :=
∑∞

n=1 λ(T (n))qn.

Proof. Since hk(N ; Z) is of finite rank over Z, R = λ(hk(N ; Z)) has finite rank d over Z.
Then the characteristic polynomial P (X) of multiplication by r ∈ R (regarding R ∼= Zd)
is satisfied by r, that is, P (r) = 0. Since P (X) ∈ Z[X], r is an algebraic integer. Then
R ⊗Z Q is a finite extension Q(λ) of degree d over Q.

Let K be a field. For any finite dimensional commutative K-algebra A, a K-algebra
homomorphism λ : A → K gives rise to a generator of λ-eigenspace of the linear dual
HomK(A,K). Applying this fact to HomK(hk(N ;K), K) = Sk(Γ0(N), K) for K = Q(λ),
we get the second assertion. �

Corollary 4.9. Let r = r(2k) = dimS2k(SL2(Z)). Then T (1), T (2), . . . , T (r) gives a
basis of h2k(1; Z) over Z.

Perhaps, except for the case of N = 1 above, no known explicit basis of hk(N ; Z) over
Z.

Proof. Out of the basis h1, . . . , hr we created in Corollary 3.4, we get a basis gi such that
〈T (i), gj〉 = a(i, gj) = δij for 1 ≤ i, j ≤ r. Thus T (1), . . . , T (r) is the dual basis of {gj}j
of h2k(1; Z). �

Look at Lemma 4.3 (4) again:

a(m, f |T (n)) =
∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · a(mn
d2
, f).

We see

〈T (m)T (n), f〉 = 〈T (m), f |T (n)〉 = a(m, f |T (n)) =
∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · 〈T (
mn

d2
), f〉 = 〈

∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · T (
mn

d2
), f〉

for all f . Thus we conclude

Lemma 4.10. For any pair of positive integers m,n, we have

T (m)T (n) =
∑

0<d|(m,n),(d,N)=1

χ(d)dk−1 · T (
mn

d2
).

In particular, for a prime p - N , if m ≥ n,

T (pm)T (pn) =
n
∑

j=0

χ(p)jd(k−1)j · T (pm+n−2j),

and if p|N , T (pn) = T (p)n.
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Because of difference of the formula above for p - N and p|N , we often write U(p) for
T (p) if p|N .

Suppose p - N . Let A,B be the root of X2 − T (p)X + χ(p)pk−1. Then T (p) = A+B
and χ(p)pk−1 = AB. Taking m = n = 1 in the above lemma, the formula

T (pm)T (pn) =
m
∑

j=0

χ(p)jd(k−1)j · T (pm+n−2j),

becomes T (p)2 = T (p2) + χ(p)dk−1; so, T (p2) = (A + B)2 − AB = A2 + AB + B2,
Inductively, we then get

Corollary 4.11. Let the notation be as above. We have AB = χ(p)pk−1 and

T (pn) = An + An−1B + · · · + ABn−1 +Bn = Tr(( A 0
0 B )

sym⊗n
)

for all n > 0.

4.2. Congruences among cusp forms. As we will see later, h2k(1; Q) is semi-simple,
and h2k(1; Z) is an order of h2k(1; Z) (i.e., a subring and is a lattice). Thus the discrimi-
nant of h2k(1; Z) is well defined and given by D(2k) := det (Tr(T (i)T (j)))1≤i,j≤r(2k). The

trace Tr(T (i)T (j)) can be computed by the trace formula (cf. [MFM, §6.8]).
Primes appearing in the discriminant of the Hecke algebra gives congruence among

algebra homomorphisms of the Hecke algebra into Q. For the small even weights k =
26, 22, 20, 18, 16, 12, we have dimC Sk(SL2(Z)) = 1, and the Hecke field hk(1; Z) = Z and
hence the discriminant is 1. As is well known from the time of Hecke that

h24(1; Z) ⊗Z Q = Q[
√

144169].

Thus S24(SL2(Z)) = Cf + Cg for two Hecke eigenforms f, g Galois conjugate each other
with coefficients in Q[

√
144169] such that f ≡ g mod (

√
144169). Here is a table by

Y. Maeda of the discriminant of the Hecke algebra of weight k for Sk(SL2(Z)) when
dimSk(SL2(Z)) = 2:

Discriminant of Hecke algebras.
weight dim Discriminant

24 2 26 · 32 · 144169

28 2 26 · 36 · 131 · 139

30 2 212 · 32 · 51349

32 2 26 · 32 · 67 · 273067

34 2 28 · 34 · 479 · 4919

38 2 210 · 32 · 181 · 349 · 1009

The occurrence of many congruences bewteen non Galois conjugates are first remarked
by Doi and Ohta [DO77]. If we find two Hecke eigenforms f, g in Sk(Γ0(N)) with f ≡ g
mod P for a prime P in Q, we call (p) = P ∩ Z a congruence prime for f and g. In
the following table, if we write 1 + 2 for splitting if h−k (p; Q) = Q ⊕K for [K : Q] = 2.
Here the sign “−” as the superscript of the Hecke algebra means the following. The
normalizer Γ∗

0(p) of Γ0(p) for a prime is generated by Weil involution
(

0 −1
p 0

)

which acts
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by ± on S2(Γ0(p)). The algebra h−k (p; Q) is the subalgebra generated over Q by Hecke
operators acting on te “−” eigenspace.

level p splitting congruence prime
67 1 + 2 5
151 3 + 6 2, 67
199 2 + 10 71
211 2 + 9 41

We ask

Problem 4.12. What are these congruence primes? Is there any formula to give the
congruence primes? Do congruence primes have some arithmetic meaning?

In this course and the 205c course in Spring 2017, we try to give an answer to this
question.

Exercise 4.13. Prove that the matrix τ = ( 0 −1
N 0 ) normalizes Γ0(N). Moreover prove

that if N is square free, the normalizer N (Γ0(N)) in SL2(R) contains Γ0(N) as a sub-
group of index 2r for the number r of primes dividing N and that N (Γ0(N))/Γ0(N) is
a (2, 2, . . . , 2) group.

We define the Weil involution W = WN by

f |W = Nk/2f(τ (z))j(τ, z)−k

on Sk(Γ0(N), χ). Note that W 2 = (−1)k and W : Sk(Γ0(N), χ) → Sk(Γ0(N), χ−1).
Moreover, if fλ is primitive in the sense of [MFM, §4.6] fλ|W = εfλ for a non-zero
constant ε.

By the way, here is a celebrated conjecture of Maeda:

Conjecture 4.14. The Hecke algebra h2k(1; Q) is a single field K of degree r := r(2k)
over Q whose Galois closure over Q has Galois group isomorphic to the permutation
group Sr of r letters.

Moreover, it seems that h2k(1; Q) is generated by just T (2) over Q (see [M15] and
[HM97]). By Corollary 4.9, h2k(1; Z) is generated over Z by T (p) for primes p ≤ r(2k).

4.3. Ramanujan’s congruence. Since Hecke operators preserve the space S2k(SL2(Z))
of cusp forms and by the dimension formula, S12(SL2(Z)) = C∆. Thus ∆|T (n) = τ (n)∆
and ∆ =

∑∞
n=1 τ (n)qn (by Lemma 4.3 and Corollary 4.8). We call such a modular form

a Hecke eigenform. Since T (m)T (n) = T (mn) as long as (m,n) = 1, we get

Theorem 4.15 (Mordell). As long as (m,n) = 1, we have τ (m)τ (n) = τ (mn).

We prove

Theorem 4.16. We have E12 ≡ ∆ mod 691.
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Proof. Consider G3
4 = 1 +

∑∞
n=1 anq

n ∈ M12(SL2(Z); Z). Note that E12 and ∆ are
both Hecke eigenforms and form a basis of Mk(SL2(Z); Q). Thus we can write G3

4 =
c(E12)E12 + c(∆)∆. Looking at the constant term, we get

1 = a(0, G3
4) = c(E12)

691

22 · 32 · 5 · 7 · 13 + c(∆)0.

Thus c(E12) = 22·32·5·7·13
691

. Now we look into the coefficient in q and get c(E12) + c(∆) =
a(1, G3

4) = 3 · 240 prime to 691, which implies that c(∆) has denominator 691. In other
words,

691c(E12)E12 + 691c(∆)∆ = 691G3
4 ≡ 0 mod 691,

and integers 691c(E12) and 691c(∆) is prime to 691. Comparing the coefficients in q, we
get E12 ≡ ∆ mod 691. �

Here is a key fact:

Proposition 4.17. Suppose that hk(N ; Q) is semi-simple. For θ ∈ Sk(Γ0(N); Z), if
θ =

∑

λ c(λ)fλ with c(λ0) having denominator P for λ0 ∈ Spec(hk(N ; Z))(Q), then we

have λ 6= λ0 in Spec(hk(N ; Z))(Q) such that fλ ≡ fλ0 mod P.

Proof. Suppose non-existence of λ0. We take sufficiently large valuation ring W in Q as-
sociated to P. Then we have an operator h ∈ hk(N ;W ) such that its eigenvalue modulo
the maximal ideal mW of W are all distinct. Then the λ-eigenspace is Ker(h−λ(h)). Sim-
ilarly, we considerH =

∏

λ 6=λ0
(h−λ(h)). Then Sk(Γ0(N);W ) ⊃ Ker(H)⊕Ker(h−λ0(h)),

and we have an exact sequence 0 → ker(H) → Sk(Γ0(N);W ) → W → 0. Note that
h−λ0(h) is invertible on Ker(H), and hence give a unit multiple of the projection pH of
Sk(Γ0(N);W ) to Ker(H). Thus Sk(Γ0(N);W ) = Ker(H)⊕Ker(h− λ0(h)). This shows
that θ = pH(θ) + (id−pH)(θ) with pH (θ), (id−pH)(θ) ∈ Sk(Γ0(N);W ). In other words,
c(λ0) does not have denominator in W , a contradiction. �

Corollary 4.18 (Ribet). If p divides the denominator of 2−1ζ(1 − 2k), there exists a
Hecke eigen cusp form f and a prime P|p in Q such that f ≡ E2k mod P.

As we will see soon, h2k(1; Q) is always semi-simple.

Proof. Write 2k = 4a + 6b for two non-negative integers a, b (a solution always exits).
Take θ = Ga

4G
b
6. Then for λ0 with E2k|T (n) = λ0(T (n))E2k, looking into the constant

term, we have c(λ0) = 2ζ(1−2k)−1 which has denominator p. Thus by Proposition 4.17,
we have f = fλ such that f ≡ E2k mod P. �

4.4. Congruences and inner product. We suppose existence of a non-degenerate
hermitian inner product satisfying the following conditions:

(P1) (·, ·) : Sk(Γ0(N)) × Sk(Γ0(N)) → C such that (f |T (n), g) = (f, g|T (n)) for all n,
(P2) (fλ, fλ) 6= 0 for each λ ∈ Spec(hk(N ; Z))(Q).

Here we say (·, ·) is hermitian if f 7→ (f, g) is C-linear and (f, g) = (g, f). Since for
f := fλ, we have

λ(T (n))(f, f) = (f |T (n), f) = (f, f |T (n)) = λ(T (n))(f, f),
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where x indicates the complex conjugation of x ∈ C, (fλ, fλ) 6= 0 implies λ(T (n)) ∈ R.
Thus Q(λ) is totally real. For µ, λ ∈ Spec(hk(N ; Z)(Q), we have

µ(T (n))(fµ, fλ) = (fµ|T (n), fλ) = (fµ, fλ|T (n)) = λ(T (n))(fµ, fλ).

If µ 6= λ, we find T (n) such that µ(T (n)) 6= λ(T (n)); so,

(fµ, fλ) = δµ,λ(fλ, fλ).

Remark 4.2. If χ 6= 1, λ may not be real valued.

Lemma 4.19. Suppose that hk(N ; Q) is semi-simple. For θ ∈ Sk(Γ0(N)), writing θ =
∑

λ∈Spec(hk(N ;Z))(Q) cλ(θ)fλ, we have cλ(θ) = (θ,fλ)
(fλ,fλ)

.

Proof. Let hk(N ; Q) =
∏

λ Q where λ runs over Spec(hk(N ; Q))(Q). Let 1λ be the

idempotent of hk(N ; Q) corresponding to λ. Then for the pairing 〈·, ·〉 between the
Hecke algebra and the space of modular forms, the linear map ` : f 7→ 〈1λ, f〉 satisfies
`(fλ) = 〈1λ, f〉 = a(1, f |λ|1λ) = 1 and `(f |T (n)) = λ(T (n))`(f) for all f ∈ Sk(Γ0(N)).
Any linear map L : Sk(Γ0(N)) → C with L(f |T (n)) = λ(T (n))L(f) is a constant
multiple of ` and in fact, L = L(fλ)` as `(fλ) = 1. Let L(f) = (f, fλ). Then

L(f |T (n)) = (f |T (n), fλ) = (f, fλ|T (n)) = λ(T (n))L(f) = λ(T (n))L(f).

This shows that L(f) = (f, fλ) = (fλ, fλ)`(f). On the other hand, we have

L(θ) =
∑

µ

cµ(θ)(fµ, fλ) = cλ(θ)(fλ, fλ).

Since (fµ, fλ) = δµ,λ(fλ, fλ), we conclude

cλ(θ) =
(θ, fλ)

(fλ, fλ)
.

�

Exercise 4.20. Writing λ for the complex conjugation of λ ∈ Spec(hk(N,χ; C))(C),

prove that cλ(θ) =
(θ,f

λ
)

(fλ,fλ)
=

(θ,f
λ
)

(f
λ
,f

λ
)

if χ 6= 1.

Exercise 4.21. Instead of requiring the hermitian property, just assuming to have a
non-degenerate bilinear pairing < ·, · >: Sk(Γ0(N)) × Sk(Γ0(N)) satisfying (P1) and
(P2) in place of (·, ·), prove the same formula as in the above lemma.

Exercise 4.22. Suppose that hk(N ; Q) is semi-simple. Take the pairing [·, ·] : hk(N ; C)×
hk(N ; C) → C given by [h, h′] = Tr(hh′) for the trace map Tr : hk(N ; C) → C. Prove
the dual pairing of Sk(Γ0(N)) of [·, ·] satisfies (P1–2).
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4.5. Petersson inner product. If f ∈ Sk(Γ0(N), χ), we have f |α =
∑∞

n>0 anq
n and if

α = 1, we have an =
∫ 1

0
f(z + u) exp(−2πnu)du. Using the above integral expression of

an, we can prove the following facts (see [MFM, §2.1]):
(1) an = O(nk/2),
(2) |f(z) Im(z)k/2| is bounded over H if and only if f is a cusp form.

Since f(q) is holomorphic on the open disk of radius 1 centered at 0 and vanishes
at q = 0, it is bounded on an open disk centered at 0. Thus |f(q)| = O(q), and
hence |f(z)| decays exponentially towards ∞ (i.e., if Im(z) → ∞). Then we get
limIm(z)→∞ |(f |α(z)) Im(z)k/2| = 0; so, for a cusp form f , |f(z) Im(z)k/2| is bounded
around all cusps of X0(N). This also follows from (1). Since

α ( z z1 1 ) =
(

α(z) α(z)
1 1

)(

j(α,z) 0

0 j(α,z)

)

,

taking the determinant, we get

det(α) Im(z) = Im(α(z))|j(α, z)|2.
Thus |f(z) Im(z)k/2| is a continuous function on the compact Riemann surface X0(N) if
f ∈ Sk(Γ0(N), χ). Since ω := y−2dx ∧ dy = i

2
y−2dz ∧ dz and dα(z) = j(α, z)−2dz, we

have ω ◦ α = ω; in particular, y−2dxdy is a measure on H invariant under SL2(R). By
Corollary 2.6, for a fundamental domain F of Γ0(N), the volume

∫

F
y−2dxdy is finite

and independent of the choice of F .

Exercise 4.23. Why is the volume
∫

F
y−2dxdy finite and independent of the choice of

F?

Because of the above fact, for a function f : X0(N) → C, we define
∫

X0(N)

f(z)y−2dxdy :=

∫

F

f(z)y−2dxdy

writing z = x+ iy ∈ H.
Take f, g ∈ Sk(Γ0(N), χ). Then we see, for γ = ( a bc d ) ∈ Γ0(N),

(fg) ◦ γ = f(z)χ(d)(cz + d)kf(z)χ(d)(cz + d)
k

= fg|j(γ, z)|2k.
In other words, fg Im(z)k : H → C factors through X0(N). Then we define the Petersson
inner product on Sk(Γ0(N), χ) by

(4.3) 〈f, g〉 =

∫

X0(N)

f(z)g(z) Im(z)k−2dxdy.

Plainly the Petersson inner product is positive definite hermitian form on Sk(Γ0(N), χ).
We quote another computational results from [MFM, §4.5–6] and [IAT, §3.4]:
Theorem 4.24. Let the notation be as above. We have

(1) 〈f |T (n), g〉 = 〈f, g|T ∗(n)〉, where T ∗(n) is the Hecke operator associated to

{αι := det(α)α−1|α ∈ ∆0(N), det(α) = n},
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(2) T ∗(n) = W ◦ T (n) ◦W−1 for the Weil involution W .

Thus if χ = 1, (f, g) = 〈f, g〉 satisfies (P1–2), and if χ 6= 1, (f, g) := 〈f, gc|W 〉 for

the Weil involution satisfies (P1–2), where a(n, gc) = a(n, g) for “−” indicating complex
conjugation. Here i a brief sketch of a proof.

Proof. Let Γ := Γ0(N) and α ∈ ∆0(N). Then we put Γα := α−1Γα ∩ Γ. then [Γ : Γα] <
∞. Decomposing Γ =

⊔

δ Γδ and multiplying α−1Γα from the left, we get

α−1ΓαΓ = α−1Γα · (
⊔

δ

Γδ) = α−1
⊔

δ

Γαδ.

Thus we get ΓαΓ =
⊔

δ Γαδ. Similarly, if Γ =
⊔

δ δαΓαα
−1, we have ΓαΓ =

⊔

δ δαΓ.
Since [Γ : Γα] = [Γ : αΓαα

−1] for α ∈ ∆0(N), we have |Γ\ΓαΓ| = |ΓαΓ/Γ| for α ∈
∆0(N).

Suppose d = |Γ\ΓαΓ| = |ΓαΓ/Γ|. Then we claim that ΓαΓ =
⊔

ν Γαν
⊔

ν ανΓ for
some common αν (ν = 1, 2, . . . , d). Let us prove this. Pick a pair (i, j) with 1 ≤ i, j ≤ d,

and decompose ΓαΓ =
⊔d
i=1 Γαi =

⊔d
j=1 βjΓ. If Γαi ∩ βjΓ = ∅, Γαi ⊂

⋃

k 6=j βkΓ, and
hence multiplying Γ from the right, we have ΓαΓ = ΓαiΓ ⊂ ⋃

k 6=j βkΓ; so, ΓαΓ is a

union of d − 1 right cosets, a contradiction. Thus we have Γαi ∩ βiΓ 6= ∅, and picking
γi ∈ (Γαi ∩ βjΓ), we find Γαi = Γγi = γiΓ as desired.

By computation, writing f ‖k α := det(α)k/2f(α(z))j(α, z)−k,

[Γ : Γα](f ‖k α, g) =

∫

Γα\H

f ‖k αg Im(z)kdµ(z)
α(z) 7→z

=

∫

αΓαα−1\H

f(z)g(α−1(z))j(α, α−1(z)) Im(α−1(z))kdµ(z) = [Γ : αΓαα
−1](f, g ‖k α−1).

Since [Γ : Γα] = [Γ : αΓαα
−1], we get (f |[ΓαΓ], g) = (f |[ΓαιΓ]) for αι = det(α)α−1 as

long as |Γ\ΓαΓ| = |ΓαΓ/Γ| taking the common left and right coset representatives. This
is true for α ∈ ∆0(N) with det(α) prime toN . Thus if ΓαΓ =

⊔

ν Γαν =
⊔

ν ανΓ, we have
ΓαιΓ = (ΓαΓ)ι =

⊔

ν Γαιν , and this we obtain the first assertion. Since Γτατ−1Γ = ΓαιΓ
for τ = ( 0 −1

N 0 ), we get the second formula as f |W = f ‖k τ . �

5. Modular L-functions

For λ ∈ Spec(hk(N,χ; Z[χ]))(Q), we define L(s, λ) =
∑∞

n=1 λ(T (n))n−s. Then writing
two roots of X2 − λ(T (p))X + χ(p)pk−1 = 0 as αp, βp for p - N and αp = λ(U(p)) with
βp = 0 for p|N , we get from Corollary 4.11

L(s, λ) =
∞
∑

n=1

λ(T (n))n−s =
∏

p

∞
∑

j=0

αj+1
p − βj+1

p

αp − βp
p−js.

Note that
∞
∑

j=0

(αj+1
p − βj+1

p )p−js = ps{(1 − αpp
−s)−1 − (1 − βpp

−s)−1} =
αp − βp

(1 − αpp−s)(1 − βpp−s)
.
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Thus we get the Euler product expansion:

(5.1) L(s, λ) =
∏

p

{(1 − αpp
−s)(1 − βpp

−s)}−1 =
∏

p

det(1 −
(

αp 0
0 βp

)

p−s)−1.

Exercise 5.1. Give an explicit real number c such that the above Euler product converge
if Re(s) > c.

5.1. Rankin product L-functions. Consider the Dirichlet series

D(s, f, g) :=
∑

n=1

anbnn
−s

for f =
∑∞

n=1 anq
n ∈ Sk(Γ0(N), χ) and g =

∑∞
n=0 bnq

n ∈ Ml(Γ0(N), ψ). We study the
Euler product of this L-function called the Rankin product of f and g.

Lemma 5.2. Suppose f = fλ and g = fµ for λ ∈ Spec(hk(N,χ
−1; Z[χ]))(Q) and µ ∈

Spec(hl(N,ψ; Z[ψ]))(Q), and put X2 − λ(T (p))X + χ(p)pk−1 = (X − αp)(X − βp) and
X2 − µ(T (p))X + χ(p)pk−1 = (X − α′

p)(X − β ′
p). Then we have

L(2 − k − l + 2s, χψ)D(s, f, g) =
∏

p

det(1 −
(

αp 0
0 βp

)

⊗
(

α′

p 0

0 β′

p

)

p−s)−1

=
∏

p

{(1 − αpα
′
pp

−s)(1 − αpβ
′
pp

−s)(1 − βpα
′
pp

−s)(1 − βpβ
′
pp

−s)}−1.

The Euler product converges absolutely and locally uniformly if Re(s) � 0.

We define L(s, λ⊗ µ) := L(2 − k − l + 2s, χψ)D(s, f, g).

Proof. The convergence follows from |λ(T (p))| = O(pk/2) and |µ(T (p))| = O(pl−1+ε) for
any ε > 0. We prove the factorization.

Put P (X) =
∑∞

n=1 λ(T (pn))µ(T (pn))Xn. The we have, dropping the subscript “p”,

P (X) =

∑∞
n=0(α

n+1 − βn+1)(α′n+1 − β ′n+1)Xn

(α − β)(α′ − β ′)

=
1

(α − β)(α′ − β ′)X

{

1

1 − αα′X
− 1

1 − αβ ′X
− 1

1 − βα′X
+

1

1 − ββ ′X

}

=
1 − αβα′β ′X2

(1 − αα′X)(1 − αβ ′X)(1 − βα′X)(1 − ββ ′X)
.

Since αβα′β ′ = χψ(p)pk+l−2, we get the formula. �

Exercise 5.3. Compute Euler factorization of the triple product
∞
∑

n=1

λ1(T (n))λ2(T (n))λ3(T (n))n−s

for λj ∈ Spec(hkj
(N,χj).
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5.2. Analyticity of L(s, λ⊗ µ). Note that

(fg) ◦ γ = fgχ−1ψ(γ)j(γ, z)
k
j(γ, z)l = fgχ−1ψ(γ)|j(γ, z)|2kj(γ, z)l−k

for γ ∈ Γ0(N). We compute
∫ ∞

0

∫ 1

0

f(z)g(z)dxys−1dy =

∫

Γ∞\H

fgys+1dµ(z)

for dµ(z) = y−2dxdy. Since

fg(z) =
∞
∑

m=1,n=1

anbm exp(2πi(mz−nz)) =
∞
∑

m=1,n=1

ambn exp(2πi(n−m)x+(m+n)iy)),

using the well known formula
∫ 1

0

exp(2πimx)dx =

{

1 if m = 0.

0 if m 6= 0,

we get
∫ 1

0

f(z)g(z)dx =
∞
∑

n=1

anbn exp(−4πny).

Then by the formula defining the Gamma function
∫∞

0
exp(−t)ts−1dt = Γ(s), integrating

∫∞

0
, we get

∫ ∞

0

∞
∑

n=1

anbn exp(−4πny)ys−1dy = (4π)−sΓ(s)

∞
∑

n=1

anbnn
−s = (4π)−sΓ(s)D(s, f, g).

Exercise 5.4. Justify the interchange of
∫∞

0

∫ 1

0
and the summation

∑

m,n if Re(s) � 0.

Note that Φ := {z|0 ≤ x ≤ 1 and 0 < y < ∞} is the fundamental domain of Γ∞.
Thus Φ is equivalent to

⋃

γ∈Γ∞\Γ0(N) γ(F ) for a fundamental domain of F of Γ0(N) for
the computation of integral. Thus we have

∫

Γ∞\H

fgys+1dµ(z) =

∫

Φ

fgys+1dµ(z) =
∑

γ∈Γ∞\Γ0(N)

∫

γ(F )

fgys+1dµ(z).

By variable change γ(z) 7→ z, we get
∫

γ(F )

fgys+1dµ(z) =

∫

F

f(γ(z)g(γ(z) Im(γ(z))s+1dµ(z)

=

∫

F

(fg(γ(z))χ−1(γ)j(γ, z)
k
ψ(γ)j(γ, z)l|j(γ, z)|−2(s+1)ys+1dµ(z)

=

∫

F

(fg(γ(z))χ−1ψ(γ)j(γ, z)l−k|j(γ, z)|2k−2(s+1)ys+1dµ(z).
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Thus summing up over γ ∈ Γ∞\Γ0(N), we get

(5.2) (4π)−2sΓ(s)D(s, f, g)

=

∫

X0(N)

fgE∗
k−l,χψ−1(s+ 1 − k)ys+1dµ(z) = 〈gE∗

k−l,χψ−1(s+ 1 − k)ys+1−k, f〉.

This implies, by (2.13) and (2.6),

(5.3) (4π)−2sΓ(s)L(2s + l − k + 2, χ−1ψ)D(s, f, g)

= 2−1

∫

X0(N)

fgE′
k−l,χψ−1(s+ 1 − k)ys+1dµ(z)

= G(χ−1ψ)
(−2πi)k−l

Nk−lΓ(k − l)
〈gEk−l,χψ−1(s+ 1 − k)ys+1−k, f〉.

It is known (e.g., [MFM, Chapter 7] or [LFE, Chapter 9]) that Ek,χ(s) can be continued
meromorphic function over C having only pole at s = 0, 1 only when k = 0 and χ = 1

giving for each s a slowly increasing function towrds each cusp (as long as it is finite
at s). Here a function f(z) is slowly increasing towards each cusp meane |f |α(z)| for
each α ∈ SL2(Q) has polynomial growth in Im(z) as Im(z) → ∞ (as long as Re(z)
is bounded). For a cusp from decay exponentially towards each cusp (said “rapidly
decreasing”), the above integral converges for any s ∈ C giving an entire function on
C as long as either χ 6= ψ or k 6= l. The L-function L(s, λ ⊗ µ) has a nice functional
equation of the form s↔ k + l + 1 − s (see [LFE, §9.5]).

5.3. Rationality of L(s, λ⊗µ). If fλ is primitive in the sense of [MFM, §4.6], we have
fλ|W = W (λ)fλ for W (λ) ∈ C with |W (λ)| = 1. For simplicity, suppose that χ is a
Dirichlet character of conductor C . Here is the rationality theorem of Shimura:

Theorem 5.5. Suppose f = fλ and g = fµ for primitive λ ∈ Spec(hk(N,χ
−1; Z[χ]))(Q)

and µ ∈ Spec(hl(N,ψ; Z[ψ]))(Q). Then we have for all integer l ≤ m < k,

S(m,λ⊗ µ) :=
Γ(m)Γ(m + 1 − l)L(m,λ⊗ µ)

N (k−l)G(χ−1ψ)(2πi)k−l+2m〈fλ, fλ〉
∈ Q(λ, µ),

and moreover for any σ ∈ Gal(Q/Q), we have

S(m,λ⊗ µ)σ = S(m,λσ ⊗ µσ).

Here Q(λ, µ) is the subfield of Q generated by λ(T (n)) and µ(T (n)) for all n. We only
prove this theorem for N = 1, k > l + 2 and m = k − 1. See [LFE, §10.2] for Shimura’s
proof.

Proof. By (5.3) applied to f = fλ and g = fµ, we have

Γ(k − l)Γ(s)L(s, λ⊗ µ)

N (k−l)G(χ−1ψ)(2πi)k−l+2s
= ∗〈gEk−l,χ−1ψ−1(s+ 1 − k)ys+1−k, fλ〉,
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where ∗ := (−1)k−12−2(k−1). Under the above simplifying conditions,

Ek−l,χ−1ψ−1(0) = 2−1L(1 − k, χψ) +
∞
∑

n=1

σk−l−1,χψ(n)qn ∈ Q[χ, ψ][[q]].

By Lemma 4.10, we have Q(χ, ψ) ⊂ Q(λ, µ). Then putting θ = Ek−l,χ−1ψ−1fµ, we have,
by Lemma 4.19,

S(k − 1, λ⊗ µ) = ∗ 〈θ, fλ〉
〈fλ, fλ〉

= ∗ · cλ(θ) ∈ Q(λ, µ).

By Exercise 4.20, we have 〈fλ, fλ〉 = 〈fλ, fλ〉. Then the rest follows from this formula. �

Exercise 5.6. Prove that Q(λ) is stable under complex conjugation and that for any
embedding σ : Q(λ) ↪→ C, we have c ◦ σ = σ ◦ c.
5.4. Adjoint L-value and congruences. Define the following Euler product conver-
gent absolutely if Re(s) > 1:

L(s, Ad(λ)) =
∏

p

{

(1 − αp
βp
p−s)(1 − p−s)(1 − βp

αp
p−s)

}−1

.

Here λ ∈ Spec(hk(N,χ; Z[χ]))(Q). Put

Γ(s, Ad(λ)) = ΓC(s+ k − 1)ΓR(s+ 1),

where ΓC(s) = 2(2π)−sΓ(s) and ΓR(s) = π−s/2Γ( s
2
).

We have the following remarkable fact (which we prove in Spring 2017):

Theorem 5.7 (G. Shimura). Let χ be a primitive character modulo N . Let λ ∈
Spec(hk(N,χ; Z[χ])(C) for k ≥ 1. Then

Γ(s, Ad(λ))L(s, Ad(λ))

has an analytic continuation to the whole complex s-plane and

Γ(1, Ad(λ))L(1, Ad(λ)) = 2k+1N−1

∫

Γ0(N)\H

|f |2yk−2dxdy,

where f = fλ and z = x+ iy ∈ H. If N = 1, we have the following functional equation:

Γ(s, Ad(λ))L(s, Ad(λ)) = Γ(1 − s, Ad(λ))L(1 − s, Ad(λ)).

Thus we get,

cλ(fµEk−l,χ−1ψ−1) +
L(k − 1, λ⊗ µ)

L(1, Ad(λ)
,

whose denominator is the congruence prime of fλ. By this, we could guess that congru-
ence prime has to be the factor of L(1,Ad(λ))

Ω
for a canonical period Ω ∈ C× which is also

the period of L(k − 1, λ⊗ µ) up to some power of 2πi and the Gauss sum G(χ−1ψ).
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