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1. Introduction

In this course, we discuss the following two topics:

(1) Basics of Galois deformation theory (and representation theory of pro-finite
groups);

(2) Sketch of proofs of different R = T theorems.

The purpose of the lectures was to introduce the audience to control theorems and
to show how such theorems have been useful in establishing that certain Hecke
algebras are universal deformation rings for certain mod p representations.

The universality of the Hecke algebra was first proved by A. Wiles [W1], assuming
a ring theoretic property of the Hecke algebra, which was in turn proved in [TW].
The appendix to [TW], contains an alternative method for proving the universality
of the Hecke algebra, assuming that the ramification of deformations outside p is
minimal. This latter method has been simplified by F. Diamond and K. Fujiwara
(see [HMI]). In these notes, we describe Fujiwara’s treatment, assuming that the
deformations are unramified outside p.

We fix a prime p > 2, an algebraic closure Q of Q and Qp of Qp and field

embeddings ip : Q ↪→ Qp and i∞ : Q ↪→ C. Let F be a number field and F (p)/F

be the maximal field extension inside Q unramified outside p and ∞. Put GF =
Gal(F (p)/F ). In this note, W is a discrete valuation ring over the p-adic integer
ring Zp with residue field F.

2. Galois deformation rings

We prove existence of the universal Galois deformation rings.

2.1. The Iwasawa algebra as a deformation ring. We can interpret the Iwa-
sawa algebra Λ as a universal Galois deformation ring. Fix a continuous character
ψ : GQ → F×. We write CLW for the category of p-profinite local W -algebras A
with A/mA = F. A character ρ : GQ → A× for A ∈ CLW is called a W -deformation

(or just simply a deformation) of ψ if (ρ mod mA) = ψ. A couple (R,ρ) made of
an object R of CLW and a character ρ : GF →R× is called a universal couple for
ψ if for any deformation ρ : GF → A of ψ, we have a unique morphism φρ : R → A
in CLW (so it is a local W -algebra homomorphism) such that φρ ◦ ρ = ρ. By the
universality, if exists, the couple (R,ρ) is determined uniquely up to isomorphisms.
The ring R is called the universal deformation ring and ρ is called the universal
deformation of ψ.

Consider the group of p-power roots of unity µp∞ =
⋃
n µpn ⊂ Q

×
. Then writing

ζn = exp
(

2πi
pn

)
, we can identify the group µpn with Z/pnZ by ζmn ↔ (m mod pn).

The Galois action of σ ∈ GQ sends ζn to ζ
νn(σ)
n for νn(σ) ∈ Z/pnZ. Then GQ acts on

Zp(1) = lim←−n µpn by a character ν := lim←−n νn : GQ → Z×p , which is called the p-adic

cyclotomic character. The logarithm power series log(1 + x) =
∑∞
n=1−

(−x)n

n
and

exponential power series exp(x) =
∑∞

n=0
xn

n! converges absolutely p-adically on pZp.

Note that Z×p = µp−1×Γ for Γ = 1+pZp by Z×p 7→ (ω(z) = limn→∞ z
pn

, ω(z)−1z) ∈
µp−1 × Γ. We define logp : Z×p → Γ by logp(ζ, s) = log(s) ∈ pZp for ζµp−1 and
s ∈ 1 + pZp = Γ.

Exercise 2.1. Compute the radius of convergence of exp(x) and log(x) in Cp under
the standard p-adic norm | · |p with |p|p = p−1.
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Let ΛW = W [[X]] (a one variable power series ring with coefficients in W ) and

Λ = Zp[[X]]. Since s 7→
(
s
n

)
=

(s−n+1)(s−n+2)···s
n! has integer valued on the set

Z+ of positive integers and p-adically continuous, it extends to a polynomial map
Zp 3 s 7→

(
s
n

)
∈ Zp. Then (1 + X)s =

∑∞
n=0

(
s
n

)
Xn ∈ Zp, getting an additive

character Zp 3 s 7→ (1 + X)s ∈ Λ×. Let γ = 1 + p; so, Γ = γZp . Consider the

character κ : GQ→ Λ× given by κ(σ) = (1 +X)logp(νp(σ))/ logp(γ).

Exercise 2.2. Prove 1 + pZp = γZp .

Since Q[µp∞ ] is the maximal abelian extension of Q unramified outside p and
∞ by class field theory (or else, by the theorem of Kronecker-Weber), we have

GQ/[GQ,GQ] = Gal(Q[µp∞ ]/Q). On the other hand, we identified Gal(Q[µp∞ ]/Q)
with Z×p by νp. We write [z] ∈ Gal(Q[µp∞ ]/Q) for automorphism of Q[µp∞ ] with

νp([z]) = z. Then we have κ([γs]) = (1 +X)s. Since ψ has values in F×p
∼= µp−1,

we may identify the character ψ with a character ψ : GQ → µp−1 ⊂ Z×p . Define

ψ : GQ → Λ× by ψ(σ) := κ(σ)ψ(σ); then ψ ≡ ψ mod mΛ, where mΛ is the

maximal ideal of Λ; so, mΛ = (p,X). Thus (Λ,ψ) is a deformation of (F, ψ) with
ψ([γ]) = (1 +X).

Proposition 2.3. The couple (ΛW = W [[X]],ψ) (for a variable X) is the universal
couple for ψ.

Proof. Since Q[µp∞ ] is the maximal abelian extension of Q unramified outside p
and ∞, each deformation ρ : GQ → A× factors through Gal(Q[µp∞ ]/Q) = Γ ×
Gal(Q[µp]/Q). Then the character ρ is determined by ρ(γ), because ρ|Q[µp] is given

by ψ and Γ = γZp . Then we have φρ : ΛW = W [[X]]→ A by sending X to ρ(γ)−1,
and we have φρ ◦ψ = ρ. �

For a given n-dimensional representation ρ : GF → GLn(F), a deformation
ρ : GF → GLn(R) is a continuous representation with ρ mod mR

∼= ρ. Two
deformations ρ, ρ′ : GF → GLn(R) for R ∈ CLW is equivalent, if there exists
an invertible matrix x ∈ GLn(R) such that xρ(σ)x−1 = ρ′(σ) for all σ ∈ GF .
We write ρ ∼ ρ′ if ρ and ρ′ are equivalent. A couple (Rρ,ρ) for a deformation
ρ : GF → GLn(Rρ) is called a universal couple over W , if for any given deformation
ρ : GF → GLn(R) there exists a unique W -algebra homomorphism ιρ : Rρ → R
such that ιρ ◦ ρ ∼ ρ.

2.2. Pseudo representations. In order to show the existence of the universal
deformation ring, pseudo representations are very useful. We recall the definition
of pseudo representations (due to Wiles) when n = 2. See [MFG] §2.2.2 for a higher
dimensional generalization due to R. Taylor.

In this subsection, the coefficient ring A is always an object in CLW with max-
imal ideal mA. We write F = A/mA. Note that 2 is invertible in A as p > 2. We
would like to characterize the trace of a representation of a group G.

We describe in detail traces of degree 2 representations ρ : G→ GL2(A) when G
contains c such that c2 = 1 and det ρ(c) = −1. Let V (ρ) = A2 on which G acts by
ρ. Since 2 is invertible in A, we know that V = V (ρ) = V+⊕V− for V± = 1±c

2
V . For

ρ = ρ mod mA, we write V = V (ρ). Then similarly as above, V = V + ⊕ V − and

V ± = V±/mAV±. Since dimF V = 2 and det ρ(c) = −1, dimF V ± = 1. This shows
that V ± = Fv± for v± ∈ V ±. Take v± ∈ V± such that v± mod mAV± = v±,
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and define φ± : A → V± by φ(a) = av±. Then φ± mod mAV is surjective by
Nakayama’s lemma. Note that φ± : A ∼= V± as A-modules. In other words,

{v−, v+} is an A–base of V . We write ρ(r) =
(
a(r) b(r)
c(r) d(r)

)
with respect to this base.

Thus ρ(c) =
(
−1 0
0 1

)
. Define another function x : G×G→ A by x(r, s) = b(r)c(s).

Then we have

(W1) a(rs) = a(r)a(s) + x(r, s), d(rs) = d(r)d(s) + x(s, r) and

x(rs, tu) = a(r)a(u)x(s, t) + a(u)d(s)x(r, t) + a(r)d(t)x(s, u) + d(s)d(t)x(r, u);

(W2) a(1) = d(1) = d(c) = 1, a(c) = −1 and x(r, s) = x(s, t) = 0 if s = 1, c;
(W3) x(r, s)x(t, u) = x(r, u)x(t, s).

These are easy to check: We have
(
a(r) b(r)
c(r) d(r)

) (
a(s) b(s)
c(s) d(s)

)
=

(
a(rs) b(rs)
c(rs) d(rs)

)
.

Then by computation, a(rs) = a(r)a(s) + b(r)c(s) = a(r)a(s) + x(r, s). Similarly,
we have b(rs) = a(r)b(s) + b(r)d(s) and c(rs) = c(r)a(s) + d(r)c(s). Thus

x(rs, tu) = b(rs)c(tu) = (a(r)b(s) + b(r)d(s))(c(t)a(u) + d(t)c(u))

= a(r)a(u)x(s, t) + a(r)d(t)x(s, u) + a(u)d(s)x(r, t) + d(s)d(t)x(r, u).

A triple {a, d, x} satisfying the three conditions (W1-3) is called a pseudo represen-
tation of Wiles of (G, c). For each pseudo-representation τ = {a, d, x}, we define

Tr(τ )(r) = a(r) + d(r) and det(τ )(r) = a(r)d(r)− x(r, r).
By a direct computation using (W1-3), we see

a(r) =
1

2
(Tr(τ )(r)− Tr(τ )(rc)), d(r) =

1

2
(Tr(τ )(r) + Tr(τ )(rc))

and
x(r, s) = a(rs)− a(r)a(s), det(τ )(rs) = det(τ )(r) det(τ )(s).

Thus the pseudo-representation τ is determined by the trace of τ as long as 2 is
invertible in A.

Proposition 2.4 (A. Wiles, 1988). Let G be a group and R = A[G]. Let τ =
{a, d, x} be a pseudo-representation (of Wiles) of (G, c). Suppose either that there
exists at least one pair (r, s) ∈ G×G such that x(r, s) ∈ A× or that x(r, s) = 0 for all
r, s ∈ G. Then there exists a representation ρ : R →M2(A) such that Tr(ρ) = Tr(τ )
and det(ρ) = det(τ ) on G. If A is a topological ring, G is a topological group and
all maps in τ are continuous on G, then ρ is a continuous representation of G into
GL2(A) under the topology on GL2(A) induced by the product topology on M2(A).

Proof. When x(r, s) = 0 for all r, s ∈ G, we see from (W1) that a, d : G → A
satisfies a(rs) = a(r)a(s) and d(rs) = d(r)d(s). Thus a, d are characters of G,

and we define ρ : G → GL2(A) by ρ(g) =
(
a(g) 0

0 d(g)

)
, which satisfies the required

property.
We now suppose x(r, s) ∈ A× for r, s ∈ G. Then we define b(g) = x(g, s)/x(r, s)

and c(g) = x(r, g) for g ∈ G. Then by (W3), b(g)c(h) = x(r, h)x(g, s)/x(r, s) =

x(g, h). Put ρ(g) =
(
a(g) b(g)
c(g) d(g)

)
. By (W2), we see that ρ(1) is the identity matrix

and ρ(c) =
(
−1 0
0 1

)
. By computation,

ρ(g)ρ(h) =
(
a(g) b(g)
c(g) d(g)

)(
a(h) b(h)
c(h) d(h)

)
=

(
a(g)a(h)+b(g)c(h) a(g)b(h)+b(g)d(h)
c(g)a(h)+d(g)c(h) d(g)d(h)+c(g)b(h)

)
.
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By (W1), a(gh) = a(g)a(h)+x(g, h) = a(g)a(h)+ b(g)c(h) and d(gh) = d(g)d(h)+
x(h, g) = d(g)d(h) + b(h)c(g). Now let us look at the lower left corner:

c(g)a(h) + d(g)c(h) = x(r, g)a(h) + d(g)x(r, h).

Now apply (W1) to (1, r, g, h) in place of (r, s, t, u), and we get

c(gh) = x(r, gh) = a(h)x(r, g) + d(g)x(r, h),

because x(1, g) = x(1, h) = 0. As for the upper right corner, we apply (W1) to
(g, h, 1, s) in place of (r, s, t, u). Then we get

b(gh)x(r, s) = x(gh, s) = a(g)x(h, s) + d(h)x(g, s) = (a(g)b(h) + d(h)b(g))x(r, s),

which shows that ρ(gh) = ρ(g)ρ(h). We now extends ρ linearly to R = A[G]. This
shows the first assertion. The continuity of ρ follows from the continuity of each
entries, which follows from the continuity of τ . �

Start from an absolutely irreducible representation ρ : G → GLn(F). Here a
representation of a group into GLn(K) for a field K is called absolutely irreducible
if it is irreducible as a representation into GLn(K) for an algebraic closure K of K.

Exercise 2.5. Give an example of irreducible representations of a group G into
GL2(Q) which is not absolutely irreducible.

We fix an absolutely irreducible representation ρ : G→ GL2(F) with det(ρ)(c) =
−1. If we have a representation ρ : G → GL2(A) with ρ mod mA ∼ ρ, then
det(ρ(c)) ≡ det(ρ(c)) ≡ −1 mod mA. Since c2 = 1, if 2 is invertible in A (⇔
the characteristic of F is different from 2), det(ρ(c)) = −1. This is a requirement
to have a pseudo-representation τρ of Wiles associated to ρ. Since ρ is absolutely
irreducible, we find r, s ∈ G such that b(r) 6≡ 0 mod mA and c(s) 6≡ 0 mod mA.
Thus τρ satisfies the condition of Proposition 2.4. Conversely if we have a pseudo
representation τ : G → A such that τ ≡ τ mod mA for τ = τρ, again we find
r, s ∈ G such that x(r, s) ∈ A×. The correspondence ρ 7→ τρ induces a bijection:

(2.1) {ρ : G→ GL2(A) : representation|ρ mod mA ∼ ρ} / ∼↔
{τ : G→ A : pseudo-representation|τ mod mA = τ} ,

where τ = τρ and “∼” is the conjugation under GL2(A). The map is surjective by
Proposition 2.4 combined with Proposition 2.6 and one to one by Proposition 2.6
we admit, because a pseudo-representation is determined by its trace.

Proposition 2.6 (Carayol, Serre, 1994). Let A be an pro-artinian local ring with
finite residue field F. Let R = A[G] for a profinite group G. Let ρ : R → Mn(A)
and ρ′ : R → Mn′(A) be two continuous representations. If ρ = ρ mod mA is
absolutely irreducible and Tr(ρ(σ)) = Tr(ρ′(σ)) for all σ ∈ G, then ρ ∼ ρ′.

See [MFG] Proposition 2.13 for a proof of this result.

2.3. Two dimensional non-abelian universal deformations. We fix an abso-
lutely irreducible representation ρ : G→ GL2(F) for a profinite group G. Assume
that we have c ∈ G with c2 = 1 and det(ρ(c)) = −1. First we consider a universal

pseudo-representation. Let τ = (a, d, x) be the pseudo representation associated
to ρ. A couple consisting of an object Rτ ∈ CLW and a pseudo-representation
T = (A,D,X) : G → Rτ is called a universal couple if the following universality
condition is satisfied:



GALOIS DEFORMATION, MODULAR LIFTING AND R = T THEOREMS 6

(univ) For each pseudo-representation τ : G → A (A ∈ CLW ) with τ ∼= τ
mod mA, there exists a unique W–algebra homomorphism ιτ : Rτ → A
such that

τ = ιτ ◦ T.

We now show the existence of (Rτ , T ) for a profinite group G. First suppose G is
a finite group. Let ω : W× → µq−1(W ) be the Teichmüller character, that is,

ω(x) = lim
n→∞

xq
n

(q = |F| = |W/mW |).

We also consider the following isomorphism: µq−1(W ) 3 ζ 7→ ζ mod mW ∈ F×.
We write ϕ : F× → µq−1(W ) ⊂ W× for the inverse of the above map. We look at
the power series ring: Λ = ΛG = W [[Ag, Dh, X(g,h); g, h ∈ G]]. We put

A(g) = Ag + ϕ(a(g)), D(g) = Dg + ϕ(d(g)) and X(g, h) = Xg,h + ϕ(x(g, h)).

We construct the ideal I so that

T = (g 7→ A(g) mod I, g 7→ D(g) mod I, (g, h) 7→ X(g, h) mod I)

becomes the universal pseudo representation. Thus we consider the ideal I of Λ

generated by the elements of the following type:

(w1) A(rs) − (A(r)A(s) +X(r, s)), D(rs) − (D(r)D(s) +X(s, r)) and

X(rs, tu)−(A(r)A(u)X(s, t)+A(u)D(s)X(r, t)+A(r)D(t)X(s, u)+D(s)D(t)X(r, u));

(w2) A(1) − 1 = A1, D(1) − 1 = D1, D(c) − 1 = Dc, A(c) + 1 = Ac and
X(r, s) −X(s, t) if s = 1, c;

(w3) X(r, s)X(t, u) −X(r, u)X(t, s).

Then we put Rτ = Λ/I and define T = (A(g), D(h), X(g, h)) mod I. By the
above definition, T is a pseudo-representation with T mod mRτ

= τ . For a pseudo
representation τ = (a, d, x) : G → A with τ ≡ τ mod mA, we define ιτ : Λ → A
with ιτ (f) ∈ A for a power series f(Ag , Dh, X(g,h)) ∈ Λ by

f(Ag , Dh, X(g,h)) 7→ f(τ (g) − ϕ(τ (g)))

= f(a(g) − ϕ(a(g)), d(h)− ϕ(d(h)), x(g, h)− ϕ(x(g, h))).

Since f is a power series of Ag , Dh, Xg,h and τ (g) − ϕ(τ (g)) ∈ mA, the value
f(τ (g) − ϕ(τ (g))) is well defined. Let us see this. If A is artinian, a sufficiently
high power mN

A vanishes. Thus if the monomial of the variables Ag , Dh, X(g,h) is of
degree higher than N , it is sent to 0 via ιτ , and f(τ (g) − ϕ(τ (g))) is a finite sum
of terms of degree ≤ N . If A is pro-artinian, the morphism ιτ is just the projective
limit of the corresponding ones well defined for artinian quotients. By the axioms
of pseudo-representation (W1-3), ιτ(I) = 0, and hence ιτ factors through Rτ . The
uniqueness of ιτ follows from the fact that {Ag , Dh, X(g,h)|g, h ∈ G} topologically
generates Rτ .

Now assume that G = lim←−N G/N for open normal subgroups N (so, G/N is

finite). Since Ker(ρ) is an open subgroup of G, we may assume that N runs
over subgroups of Ker(ρ). Since ρ factors through G/Ker(ρ), Tr(τ ) = Tr(ρ)
factors through G/N . Therefore we can think of the universal couple (RNτ , TN)
for (G/N, τ). If N ⊂ N ′, the algebra homomorphism ΛG/N → ΛG/N′ taking
(AgN , DhN , X(gN,hN)) to (AgN′ , DhN′ , X(gN′,hN′)) induces a surjective W–algebra

homomorphism πN,N′ : RNτ → RN
′

τ with πN,N′ ◦ TN = TN′ . We then define
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T = lim←−N TN and Rτ = lim←−N R
N
τ . If τ : G → A is a pseudo representation,

by Proposition 2.4, we have the associated representation ρ : G → GL2(A) such
that Tr(τ ) = Tr(ρ). If A is artinian, then GL2(A) is a finite group, and hence
ρ and Tr(τ ) = Tr(ρ) factors through G/N for a sufficiently small open normal

subgroup N . Thus we have ιτ : Rτ
πN−−→ RNτ

ιNτ−−→ A such that ιτ ◦ T = τ . Since
(A(g), D(h), X(g, h)) generates topologically Rτ , ιτ is uniquely determined.

Writing ρ for the representation ρ : G → GLn(Rτ) associated to the universal
pseudo representation T and rewriting Rρ = Rτ , for n = 2, we have proven by (2.1)
the following theorem, which was first proven by Mazur [M] in in 1989 (see [MFG]
Theorem 2.26 for a proof valid for any n).

Theorem 2.7 (Mazur). Suppose that ρ : G → GLn(F) is absolutely irreducible.
Then there exists the universal deformation ring Rρ in CLW and a universal defor-
mation ρ : G→ GLn(Rρ). If we write τ for the pseudo representation associated to
ρ, then for the universal pseudo-representation T : G→ Rτ deforming τ , we have
a canonical isomorphism of W–algebras ι : Rρ ∼= Rτ such that ι ◦ Tr(ρ) = Tr(T ).

Let (Rρ,ρ) be the universal couple for an absolutely irreducible representation
ρ : GQ → GLn(F). We can also think of (Rdet(ρ), ν), which is the universal couple

for the character det(ρ) : GQ → GL1(F) = F×. As we have studied already,
Rdet(ρ)

∼= W [[Γ]] = ΛW . Note that det(ρ) : GQ → GL1(Rρ) satisfies det(ρ)
mod mRρ

= det(ρ). Thus det(ρ) is a deformation of det(ρ), and hence by the
universality of (ΛW ∼= Rdet(ρ), ν), there is a unique W–algebra homomorphism
ι : ΛW → Rρ such that ι ◦ ν = det(ρ). In this way, Rρ becomes naturally a
ΛW–algebra via ι.

Corollary 2.8. Let the notation and the assumption be as above and as in the above
theorem. Then the universal ring Rρ is canonically an algebra over the Iwasawa
algebra ΛW = W [[Γ]].

When G = GQ (or more generally, GF ), it is known that Rρ is noetherian (cf.
[MFG] Proposition 2.30). We will come back to this point after relating certain
Selmer groups with the universal deformation ring.

2.4. Ordinary universal deformation rings. Let ρ : GQ → GL2(F) be a Galois
representation with coefficients in a finite field F of characteristic p. We consider
the following condition for a subfield F of Q(p):

(aiF ) ρ restricted to GF is absolutely irreducible;
(rgp) Suppose ρ|Dp

∼=
(
ε ∗
0 δ

)
for each decomposition subgroup Dp at p in GQ and

that ε is ramified with unramified δ (so, ε 6= δ on Ip).

Let CLW be the category of p–profinite local W–algebras A with A/mA = F.
Hereafter we always assume that W–algebra is an object of CLW . Let ρ : GQ →
GL2(A) be a deformation of ρ and φ : GQ → W×. We consider the following
conditions

(det) det ρ = φ regarding φ as a character having values in A× by composing φ
with the W -algebra structure morphism W → A;

(ord) Suppose ρ|Dp
∼= ( ε ∗0 δ ) for each decomposition subgroup Dp at p in GQ with

unramified δ (so, ε 6= δ on Ip).
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A couple (Rord,φ ∈ CLW ,ρ
ord,φ : GQ → GL2(R

ord,φ)) is called a p–ordinary
universal couple (over GQ) with determinant φ if ρord,φ satisfies (ord) and (det)
and for any deformation ρ : GQ → GL2(A) of ρ (A ∈ CLW ) satisfying (ord) and
(det), there exists a unique W–algebra homomorphism ϕ = ϕρ : Rord,φ → A such

that ϕ ◦ ρord,φ ∼ ρ in GL2(A). If the uniqueness of ϕ does not hold, we just call
(Rord,φ,ρord,φ) a versal p–ordinary couple with determinant φ.

Similarly a couple (Rord ∈ CLW ,ρ
ord : GQ → GL2(R

ord)) (resp. (Rφ,ρφ))
is called a p–ordinary universal couple (over GQ) (resp. a universal couple with
determinant φ) if ρord satisfies (ord) (resp. det(ρφ) = φ) and for any deformation
ρ : GQ → GL2(A) of ρ (A ∈ CLW ) satisfying (ord) (resp. det(ρ) = φ), there exists
a unique W–algebra homomorphism ϕ = ϕρ : Rord → A (resp. ϕ = ϕρ : Rφ → A)

such that ϕ ◦ ρord ∼ ρ (resp. ϕ ◦ ρφ ∼ ρ) in GL2(A).

By the universality, if a universal couple exists, it is unique up to isomorphisms
in CLW .

Theorem 2.9 (Mazur). Under (aiQ) , universal couples (R,ρ) and (Rφ,ρφ) ex-
ist. Under (rgp) and (aiQ) , universal couples (Rord,ρord : GQ → GL2(R)) and
(Rord,φ,ρord,φ) exist (as long as ρ satisfies (ord) and (det)). All these universal
rings are noetherian if they exist.

This fact is proven in Mazur’s paper in [M]. The existence of the universal couple
(R,ρ : GQ → GL2(R)) is proven in previous subsection (see Theorem 2.7) by a
different method (and its noetherian property is just mentioned). Here we prove
the existence of the universal couples (Rφ,ρφ), (Rord,ρord) and (Rord,φ,ρord,φ)
assuming the existence of a universal couple (R,ρ).

Proof. An ideal a ⊂ R is called ordinary if ρ mod a satisfies (ord). Let aord be the
intersection of all ordinary ideals, and put Rord = R/aord and ρord = ρ mod aord.
If ρ : GQ → GL2(A) satisfies (ord), we have a unique morphism ϕρ : R → A
such that (ρ mod Ker(ϕρ)) ∼ ϕρ ◦ ρ ∼ ρ. Thus Ker(ϕρ) is ordinary, and hence

Ker(ϕρ) ⊃ aord. Thus ϕρ factors through Rord. The only thing we need to show is
the ordinarity of ρ mod aord. Since aord is an intersection of ordinary ideals, we
need to show that if a and b are ordinary, then a ∩ b is ordinary.

To show this, we prepare some notation. Let V be an A–module with an action
of GQ. Let I = IP be an inertia group at p, and put VI = V/

∑
σ∈I(σ− 1)V . Then

by (rgp), ρ is ordinary if and only if V (ρ)I is A–free of rank 1. The point here
is that, writing π : V (ρ) � V (ρ)I for the natural projection, then Ker(π) is an
A–direct summand of V (ρ) and hence V (ρ) ∼= Ker(π) ⊕ V (ρ)I as A–modules (but
not necessarily as GQ–modules). Since V (ρ) ∼= A2, the Krull-Schmidt theorem tells
us that Ker(π) is free of rank 1. Then taking an A–basis (x, y) of V (ρ) so that
x ∈ Ker(π), we write the matrix representation ρ with respect to this basis, we

have desired upper triangular form with V (ρ)I/mAV (ρ)I = V (δ).
Now suppose that ρ = ρ mod a and ρ′ = ρ mod b are both ordinary. Let

ρ′′ = ρ mod a∩b, and write V = V (ρ), V ′ = V (ρ′) and V ′′ = V (ρ′′). By definition,
V ′′/aV ′′ = V and V ′′/bV ′′ = V ′. This shows by definition: V ′′I /aV

′′
I = VI and

V ′′I /bV
′′
I = V ′I . Then by Nakayama’s lemma, V ′′I is generated by one element, thus

a surjective image of A = R/a ∩ b. Since in A, a ∩ b = 0, we can embed A into
A/a ⊕ A/b by the Chinese remainder theorem. Since VI ∼= A/a and V ′I

∼= A/b,
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the kernel of the diagonal map V ′′I → VI ⊕ V ′I ∼= A/a⊕ A/b has to be zero. Thus
V ′′I
∼= A, which was desired.

As for Rφ and Rord,φ, we see easily that

Rφ = R/
∑

σ∈GQ

R(det ρ(σ) − φ(σ))

Rord,φ = Rord/
∑

σ∈GQ

Rord(det ρord(σ) − φ(σ)),

which finishes the proof. �

2.5. Tangent spaces of local rings. To study when Rρ is noetherian, here is a
useful lemma for an object A in CLW :

Lemma 2.10. If t∗A/W = mA/(m
2
A+mW ) is a finite dimensional vector space over

F, then A ∈ CLW is noetherian. The space t∗A/W is called the co-tangent space of

A at mA ∈ Spec(A) over Spec(W ).

Proof. Define t∗A by mA/m
2
A, which is called the (absolute) co-tangent space of A

at mA. Since we have an exact sequence:

F ∼= mW /m
2
W −→ t∗A −→ t∗A/W −→ 0,

we conclude that t∗A is of finite dimension over F. First suppose that pA = 0 and
mN
A = 0 for sufficiently large N . Let x1, . . . , xm be an F–basis of t∗A. We choose

xj ∈ A so that xj mod m2
A = xj. Then we consider the ideal a generated by xj. We

have the inclusion map: a =
∑

j Axj ↪→ mA. After tensoring A/mA, we have the

surjectivity of the induced linear map: a/mAa ∼= a⊗AA/mA → m⊗AA/mA
∼= m/m2

A

because {x1, . . . , xm} is an F–basis of t∗A. This shows that mA = a =
∑

j Axj .

Therefore mk
A/m

k+1
A is generated by the monomials in xj of degree k as an F–

vector space. In particular, mN−1
A is generated by the monomials in xj of degree

N − 1. Then we define π : B = F[[X1, . . . , Xm]] → A by π(f(X1 , . . . , Xm)) =
f(x1, . . . , xm). Since any monomial of degree > N vanishes after applying π, π is
a well defined W–algebra homomorphism. Let m = mB = (X1, · · · , Xm) be the

maximal ideal of B. By the above argument, π(mN−1) = mN−1
A . Suppose now

that π(mN−j) = m
N−j
A , and try to prove the surjectivity of π(mN−j−1) = m

N−j−1
A .

Since m
N−j−1
A /mN−j

A is generated by monomials of degree N − j− 1 in xj, for each

x ∈ mN−j−1
A , we find a homogeneous polynomial P ∈ mN−j−1 of x1, . . . , xm of

degree N − j−1 such that x−π(P ) ∈ m
N−j
A = π(mN−j). This shows the assertion:

π(mN−j−1) = m
N−j−1
A . Thus by induction on j, we get the surjectivity of π.

Now suppose only that mN
A = 0. Then in particular, pNA = 0. Thus A is an

W/pNW–module. We can still define π : B = W/pNW [[X1, . . . , Xm]] → A by
sending Xj to xj. Then by the previous argument applied to B/pB and A/pA,
we find that π mod p : B ⊗W W/pW ∼= B/pB → A/pA ∼= A ⊗W W/pW is
surjective. In particular, for the maximal ideal m′ of W/pNW , π mod m′ : B ⊗W
F ∼= B/m′B → A/m′A ∼= A ⊗W F is surjective. Then by Nakayama’s lemma (cf.
[CRT] §2 or [MFG] §2.1.3) applied to the nilpotent ideal m′, π is surjective.

In general, write A = lim←−iAi for artinian rings Ai. Then the projection maps

induce surjections t∗Ai+1
→ t∗Ai

. Since t∗A is of finite dimensional, for sufficiently large

i, t∗Ai+1

∼= t∗Ai
. Thus choosing xj as above in A, we have its image x

(i)
j in Ai. Use
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x
(i)
j to construct πi : W [[X1, . . . , Xm]] → Ai in place of xj . Then πi is surjective

as already shown, and π = lim←−i πi : W [[X1, . . . , Xm]] → A remains surjective,

because projective limit of surjections, if all sets involved are finite sets, remain
surjective (Exercise 1). Since W [[X1, . . . , Xm]] is noetherian ([CRT] Theorem 3.3),
its surjective image A is noetherian. �

2.6. Recall of group cohomology. To prove noetherian property of Galois defor-
mation ring R, we need to show the tangent space of Spec(R) has finite dimension.
In order to give a Galois theoretic computation of the tangent space of the deforma-
tion ring, we introduce here briefly Galois cohomology groups. Consider a profinite
group G and a continuous G-module X. Assume that X has either discrete or
profinite topology.

Let Tp = Qp/Zp. For any abelian p-profinite compact or p-torsion discrete
module X, we define the Pontryagin dual module X∗ by X∗ = Homcont(X,Tp)
and give X∗ the topology of uniform convergence on every compact subgroup of
X. The G-action on f ∈ X∗ is given by σf(x) = f(σ−1x). Then by Pontryagin
duality theory (cf. [FAN]), we have (X∗)∗ ∼= X canonically.

Exercise 2.11. Show that if X is finite, X∗ ∼= X noncanonically.

Exercise 2.12. Prove that X∗ is a discrete module if X is p-profinite and X∗ is
compact if X is discrete.

By this fact, if X∗ is the dual of a profinite module X = lim←−nXn for finite

modules Xn with surjections Xm � Xn for m > n, X∗ =
⋃
nX

∗
n is a discrete

module which is a union of finite modules X∗n.
We denote by Hq(G,X) the continuous group cohomology with coefficients in

X. If X is finite, Hq(G,X) is as defined in [MFG] 4.3.3. Thus we have

H0(G,X) = XG = {x ∈ X|gx = x for all g ∈ G},
and if X is finite,

H1(G,X) =
{G c−→ X : continuous|c(στ ) = σc(τ ) + c(σ) for all σ, τ ∈ G}
{G b−→ X|b(σ) = (σ − 1)x for x ∈ X independent of σ}

,

and H2(G,X) is given by

{G c−→ X : continuous|c(σ, τ ) + c(στ, ρ) = σc(τ, ρ) + c(σ, τρ) for all σ, τ, ρ ∈ G}
{G b−→ X|b(σ, τ ) = c(σ) + σc(τ ) − c(στ ) for a continuous map c : G→ X}

.

If X = lim←−nXn (resp. X = lim−→x
Xn) for finite G-modules Xn, we define

Hj(G,X) = lim←−
n

Hj(G,Xn) (resp. Hj(G,X) = lim−→
n

Hj(G,Xn)).

For each Galois character ψ : Gal(Q/F )→W× and a W -module X with contin-
uous action of Gal(Q/F ), we write X(ψ) for the Galois module whose underlying
W -module is X and Galois action is given by ψ. We simply write X(i) for X(νi)

for the p-adic cyclotomic character. In particular Zp(1) ∼= lim←−n µpn(Q) as Galois

modules.
Let G be the (profinite) Galois group G = GF or Gal(Qp/K) for a finite extension

K/Qp. By a result of Tate, Galois cohomology “essentially” has cohomological
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dimension 2; so, H0, H1 and H2 are important. If G = Gal(Qp/K) for a finite
extension K/Qp, by Tate duality (see [MFG] 4.42),

H2−i(G,X) ∼= Hom(Hi(G,X∗(1)),Q/Z)

for finite X.
For a general K-vector space V with a continuous action of G and a G-stable

W -lattice L of V , we define Hq(G, V ) = Hq(G,L)⊗W K.
Write GM = Gal(F (p)/M) for any intermediate fieldM of F (p)/F , where F (p)/F

is the maximal extension unramified outside p and ∞. By the inflation-restriction
sequence (e.g., [MFG] 4.3.4),

0→ H1(Gal(M/F ), H0(GM , X))→ H1(GF , X)→ H1(GM , X)

is exact. More generally, we can equip a natural action of Gal(M/F ) onH1(GM , X)
and the sequence is extended to

0→ H1(Gal(M/F ), H0(GM , X))

→ H1(GF , X)→ H0(Gal(M/F ), H1(GM , X))

→ H2(Gal(M/F ), H0(GM , X))

which is still exact.

2.7. Cohomological interpretation of tangent spaces. Let R = Rρ. We let
GQ acts on Mn(F) by gv = ρ(g)vρ(g)−1. This GQ–module will be written as ad(ρ).

Lemma 2.13. Let R = Rρ for an absolutely irreducible representation ρ : GQ →
GLn(F). Then

tR/W = HomF(t
∗
R/W ,F) ∼= H1(GQ, ad(ρ)),

where H1(GQ, ad(ρ)) is the continuous first cohomology group of GQ with coeffi-
cients in the discrete GQ–module V (ad(ρ)).

The space tR/W is called the tangent space of Spec(R)/W at m.

Proof. Let A = F[X]/(X2). We write ε for the class of X in A. Then ε2 = 0. We
consider φ ∈ HomW−alg(R,A). Write φ(r) = φ0(r) + φε(r)ε. Then we have from
φ(ab) = φ(a)φ(b) that φ0(ab) = φ0(a)φ0(b) and

φε(ab) = φ0(a)φε(b) + φ0(b)φε(a).

Thus Ker(φ0) = mR because R is local. Since φ is W–linear, φ0(a) = a = a
mod mR, and thus φ kills m2

R and takes mR W–linearly into mA = Fε. Moreover
for r ∈ W , r = rφ(1) = φ(r) = r+φε(r)ε, and hence φε kills W . Since R shares its
residue field F with W , any element a ∈ R can be written as a = r+ x with r ∈W
and x ∈ mR. Thus φ is completely determined by the restriction of φε to mR, which
factors through t∗R/W . We write `φ for φε regarded as an F–linear map from t∗R/W
into F. Then we can write φ(r + x) = r + `φ(x)ε. Thus φ 7→ `φ induces a linear
map ` : HomW−alg(R,A)→ HomF(t∗R/W ,F). Note that R/(m2

R+mW ) = F⊕ t∗R/W .

For any ` ∈ HomF(t∗R/W ,F), we extends ` to R/m2
R declaring its value on F is

zero. Then define φ : R → A by φ(r) = r + `(r)ε. Since ε2 = 0, φ is an W–
algebra homomorphism. In particular, `(φ) = `, and hence ` is surjective. Since
algebra homomorphisms killing m2

R + mW are determined by its values on t∗R/W , `

is injective.
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By the universality, we have

HomW−alg(R,A) ∼= {ρ : GQ→ GLn(A)|ρ mod mA = ρ}/ ∼ .
Then we can write ρ(g) = ρ(g) + u′ρ(g)ε. From the mutiplicativity, we have

ρ(gh) + u′ρ(gh)ε = ρ(gh) = ρ(g)ρ(h) = ρ(g)ρ(h) + (ρ(g)u′ρ(h) + u′ρ(g)ρ(h))ε,

Thus as a function u′ : GQ →Mn(F), we have

(2.2) u′ρ(gh) = ρ(g)u′ρ(h) + u′ρ(g)ρ(h).

Define a map uρ : GQ → ad(ρ) by uρ(g) = u′ρ(g)ρ(g)
−1. Then by a simple com-

putation, we have guρ(h) = ρ(g)uρ(h)ρ(g)
−1 from the definition of ad(ρ). Then

from the above formula (2.2), we conclude that uρ(gh) = guρ(h) + uρ(g). Thus
uρ : GQ → ad(ρ) is a 1–cocycle. Starting from a 1–cocycle u, we can reconstruct
representation reversing the the above process. Then again by computation,

ρ ∼ ρ′ ⇐⇒ ρ(g) + u′ρ(g) = (1 + xε)(ρ(g) + u′ρ′(g))(1 − xε) (x ∈ ad(ρ))
⇐⇒ u′ρ(g) = xρ(g) − ρ(g)x+ u′ρ′(g) ⇐⇒ uρ(g) = (1− g)x + uρ′ (g).

Thus the cohomology classes of uρ and uρ′ are equal if and only if ρ ∼ ρ′. This
shows:

HomF(t∗R/W ,F) ∼= HomW−alg(R,A) ∼=
{ρ : GQ → GLn(A)|ρ mod mA = ρ}/ ∼ ∼= H1(GQ, ad(ρ)).

In this way, we get a bijection between HomF(t∗R/W ,F) and H1(GQ, ad(ρ)). By

tracking down (in the reverse way) our construction, one can check that the map
is an F–linear isomorphism. �

For each open subgroup H of a profinite group G, we write Hp for the maximal
p–profinite quotient. We consider the following condition:

(Φ) For any open subgroup H of G, the p-Frattini quotient Φ(Hp) is a finite
group,

where Φ(Hp) = Hp/(Hp)p(Hp, Hp) for the the commutator subgroup (Hp, Hp) of
Hp.

Proposition 2.14 (Mazur). By class field theory, GQ satisfies (Φ) , and Rρ is a
noetherian ring.

Proof. Let H = Ker(ρ). Then the action of H on ad(ρ) is trivial. By the inflation-
restriction sequence for G = GQ, we have the following exact sequence:

0→ H1(G/H,H0(H, ad(ρ)))→ H1(G, ad(ρ))→ Hom(Φ(Hp),Mn(F)).

From this, it is clear that dimFH
1(G, ad(ρ)) < ∞ if GQ satisfies the p-Frattini

condition (Φ). The fact that GQ satisfies (Φ) follows from class field theory. Indeed,
if F is the fixed field of H , then Φ(Hp) fixes the maximal p-abelian extension M/F
of type (p, p, . . . , p) unramified outside p. Here a p-abelian extension M/F is of
type (p, p, . . . , p) if Gal(M/F ) is abelian killed by p. By class field theory, [M : F ]
is finite. �
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3. Vertical control theorem

Let N ≥ 1 and k ≥ 1 be integers. Let χ : (Z/NZ)× → C× denote a Dirichlet
character. Let Sk(N, χ) (resp. Gk(N, χ)) be the complex vector space of ellip-
tic cusp forms (resp. elliptic modular forms) of weight k for Γ0(N) with Neben
character χ.

There is an integral structure on Sk(N, χ) coming from Fourier expansion. Let
Z[χ] denote the Z-algebra generated by the values of the character χ. For each
Z[χ]-algebra A sitting inside C we set

Sk(N, χ, A) = {f =

∞∑

n=1

a(n, f)qn
∣∣ a(n, f) ∈ A}

Gk(N, χ, A) = {f =
∞∑

n=0

a(n, f)qn
∣∣ a(n, f) ∈ A}.

It is a fact that for A as above,

Sk(N, χ, A) = Sk(N, χ,Z[χ]) ⊗Z[χ] A and Gk(N, χ, A) = Gk(N, χ,Z[χ]) ⊗Z[χ] A

See [GME] III.1 or [LFE] Chapter 5 for different proofs. For a general algebra A,
not necessarily in C, we define Fk(n, χ, A) by Fk(N, χ,Z[χ]) ⊗Z[χ] A, where Fk is
Sk or Gk.

For each n = 1, 2, . . ., there is a Hecke operator T (n) which acts A-linearly on
the space Gk(N, χ, A). It is given by the formula

a(m, f |T (n)) =
∑

d|m,d|n

χ(d)dk−1a(mn/d2, f).(3.1)

See [MFG] 3.2 for a more intrinsic definition of the operators T (n). It is customary
to write U(p) for T (p) if p is a prime and p|N , because they have different effect
on Fourier expansion.

Fix a complete discrete valuation ring W lying over Zp. Let T denote the max-

imal split torus in PGL2. Thus T
∼−→Gm. We have

T(Zp) = Z×p = µp−1 × Γ,

with Γ
∼−→ Zp, via γs 7→ s, for γ = 1 + p, and s ∈ Zp. Recall the Iwasawa algebra

ΛW = W [[X]]. Hereafter, we write ΛW = W [[t]] using “t” to indicate variables (as
we use X for something else). Then

W [[T(Zp)]] = lim←−
n

W [T(Z/pnZ)] ∼= ΛW [µp−1] via Γ 3 γs 7→ (1 + t)s ∈ ΛW .

If R is a p-profinite ring, then any continuous character φ : Γ → R× extends to a
character φ : Λ→ R, which we shall again denote by φ. We may also consider φ as
a character φ : W [[T(Zp)]]→W . Thus if we write ν for the canonical inclusions

ν : Γ ↪→ T(Zp) = Z×p ↪→W×,

then we may consider ν as a character ν : Λ → W . In particular we have
νk−1(Φ(t)) = Φ(γk−1 − 1) ∈ W , for Φ(t) ∈ Λ. We may also consider ν as a
character ν : W [[T(Zp)]]→W .

Let us now assume that N is such that (p, N) = 1, and that k ≥ 2. For simplicity,
we assume that the prime p ≥ 5. This does not cause much harm if N = 1 because
the space of p–ordinary cusp forms (that we will be mainly interested in) vanishes
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if p ≤ 7 and N = 1. We fix a character χ : (Z/NZ)× → W×. Sometimes we will
think of the mod N Dirichlet character χ as a mod Np Dirichlet character. If we
need to indicate the modulus M defining χ, we will write χM instead of just χ.

There is a projective W [[T(Zp)]]-module SΓ0(N),Λ[χ] of finite type, the so called
space of ‘ordinary Λ-adic cusp forms of level Np∞’, which has an action of Hecke
operators, again denoted by T (n), such that

SΓ0(N),Λ[χ]⊗W [[T(Zp)]],νk−1 W ↪→ Sk(Np, χ,W ).

Tensoring over W [[T(Zp)]] through νk−1 does not alter the ‘Neben’ character χ
we have fixed, but tensoring over Λ produces all spaces with ‘Neben’ characters
χωa (for the Teichmüller character ω) as we will state later. Roughly, this map is
realized as follows. Define the Hecke algebra h(N, χ) to be the algebra generated
over Λ by the Hecke operators T (n) inside EndΛ(SΓ0(N),Λ[χ]). Let λ be a Λ-algebra
homomorphism of h(N, χ) into an algebraic closure of the field of fractions of Λ.
For simplicity let us assume that λ(T (n)) ∈ Λ, for n. Write

F (t, q) =

∞∑

n=1

λ(T (n))(t)qn ∈ Λ[[q]]]

for the corresponding Λ-adic cusp form in SΓ0(N),Λ[χ]. Then F (γk−1−1, q) ∈ W [[q]],
and is a classical modular form for k ≥ 2. These classical forms interpolate the
family of p-adic modular forms F (γs − 1, q) for s ∈ Zp. In fact the following
theorem is true (see [GME] §3.1–3.2):

Theorem 3.1 (Hida). Fix a mod N Dirichlet character χ with values in W×. We
have

• SΓ0(N),Λ[χ]⊗W [[T(Zp)]],νk−1W
∼−→ Sordk (Np, χ,W )

∼−→ Sordk (N, χ,W ), for
all k ≥ 3,

• SΓ0(N),Λ[χ]⊗Λ,νk−1 W
∼−→ ⊕p−2

a=0 S
ord
k (Np, χωa,W ), for all k ≥ 2,

where ω : (Z/pZ)× → C× is the Teichmüller character.

A similar assertion holds for Gk in place of Sk.
In the theorem, the superscript ord means the ordinary part of the corresponding

space of cusp forms. Let us recall what this means. For an W -module X of finite
type, and an W -linear operator T : X → X, we may decompose X

X = Xord ⊕Xnil

where both Xord and Xnil are T -stable, and moreover T : Xord ∼−→Xord and⋂∞
m=1 T

m(Xnil) = 0. The idempotent corresponding to Xord in the above decom-

position is limm→∞ Tm!.
Apply this to X = Fk(M,χ,W ) for M = N and Np with the operator

T =

{
T (p) if M = N,

U(p) if M = Np.

Then Fordk (M,χ,W ) is the ordinary part, Xord , of X = Fk(M,χ,W ), where Fk is
Sk or Gk.

The Hecke operator T (p) acting on the space Gk(N, χ,W ) and T (p) acting on
the larger space Gk(Np, χ,W ) are not equal; so, we have written U(p) for the p–th
Hecke operator acting on Gk(Np, χ,W ). These two operators T (p) and U(p) are
congruent modulo p if k ≥ 2. If further k ≥ 3, the dimension of Sordk (Np, χ,W )⊗Z
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Z/pZ coincides with the level N counterpart, because all p–new forms in the level

Np space with trivial ‘Neben’ p–character has eigenvalue ±
√
χN(p)

√
pk−2 for U(p)

(see [MFM] Theorem 4.6.17), which is divisible by
√
p if k ≥ 3. Therefore, if

e0 = lim
m→∞

T (p)m! and e = lim
m→∞

U(p)m!,

are the ordinary projectors, we conclude that the p–ordinary projector e acting
on Sk(Np, χ,W ) induces an isomorphism of e0Sk(N, χ,W ) = Sordk (N, χ,W ) onto
Sordk (Np, χ,W ) as long as k ≥ 3. Thus the isomorphism between the level N space
and the level Np space in the theorem is given by e−1 when k ≥ 3. We emphasize
that this isomorphism is induced by e and not by the natural inclusion; that is,
Sordk (N, χ,W ) is possibly distinct from Sordk (Np, χ,W ) inside Sk(Np, χ,W ). If
k = 2, the image under e of Sord2 (N, χ,W ) could be smaller than Sord2 (Np, χ,W ).

Remark 3.1. When k = 1, the above theorem is false. We describe this phenomenon
in more detail in Subsection 4.4, Remark 4.1.

Now define the Hecke algebra hordk (M,χ,W ) as the algebra generated by the
Hecke operators T (n) inside EndW (Sordk (M,χ,W )). We have:

Theorem 3.2 (Vertical control theorem;Hida). We have

• h(N, χ) ⊗W [[T(Zp)]],νk−1 W
∼−→ hordk (N, χ,W ), for all k ≥ 3,

• h(N, χ) ⊗Λ,νk−1 W
∼−→ ⊕p−2

a=0 h
ord
k (Np, χωa,W ), for all k ≥ 2.

Actually the vertical control theorems holds in a more general setting including
p = 2 and 3 (see [GME] §3.1–3.2).

4. Deformation theory of mod p modular representations

4.1. Galois representations. Assume as before that p ≥ 5, that (N, p) = 1 and
that k ≥ 2. However after this subsection, we allow a Dirichlet character modulo
Np, since χωa appears as the ‘Neben’ character of the specialization of the Hecke
algebra h(N, χ). Thus we take a Dirichlet character ψ modulo Np with values in
W×.

Fix an W -algebra homomorphism λ : hk(Np, ψ,W ) → W . The following theo-
rem is a consequence of a general theorem due to Eichler, Shimura, and Deligne:

Theorem 4.1. There exists a continuous Galois representation

ρλ : Gal(Q/Q)→ GL2(W ),

satisfying

• ρλ is unramified outside Np, and,
• det(1− ρλ(Frob`)X) = 1− λ(T (`))X + ψ(`)`k−1X2, for ` 6

∣∣Np.

Let Dp denote a decomposition group at p. If λ factors through the p–ordinary
part hordk (Np, ψ,W ), the following further information at p is due to Deligne, Mazur
and Wiles:

Theorem 4.2. Suppose that λ factors through hordk (Np, ψ,W ). Then the Galois
representation ρλ is p-ordinary. That is, there are characters ερλ

: Dp →W×, and
δρλ

: Dp →W× with δρλ
unramified, such that

ρλ|Dp
∼

(
ερλ

∗
0 δρλ

)
,
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and δρλ
(Frobp) = λ(U(p)).

For a detailed proof of the above two theorems, see, for example, [GME] IV.2.
Let ρλ be the mod p Galois representation defined by reduction:

ρλ : Gal(Q/Q)→ GL2(W )→ GL2(F),

where F is the residue field of W . Let us now impose the conditions (aiQ) and (rgp)
on ρλ, where:

(aiF ): If F/Q is a number field, then the restriction of to ρλ to F :

ρλ|F : Gal(Q/F ) ⊂ Gal(Q/Q)
ρλ−→ GL2(F),

is absolutely irreducible.
(rgp): Let Ip denote the inertia subgroup at p. Then

ρλ|Ip
∼

(
ερλ

∗
0 δρλ

)

with ερλ
6= δρλ

on Ip. In view of Theorem 4.2 above, this happens exactly
when ερλ

is ramified at p.

Note that there is a decomposition of the finite Λ-module h = h(N, χ):

h = ⊕hm

as m varies through the maximal ideals of h. Let T = hm be the local ring through
which λ : hordk (Np, ψ,W )→W factors. We write Tred for the quotient of T by its
nilradical. The two algebras T and Tord are equal if the character χ is primitive
modulo N . The following theorem is due to Hida and Wiles:

Theorem 4.3. There exists a Galois representation ρT : Gal(Q/Q) → GL2(T
red)

satisfying

• ρT is unramified outside Np,
• det(1 − ρT(Frob`)X) = 1− T (`)|TredX + χ(`)〈`〉X2 , for ` 6

∣∣Np, where 〈`〉
denotes the image of ` under the natural map

W [[T(Zp)]]→ h(N, χ)→ Tred,

and,
• ρT is p-ordinary, that is

ρT|Dp
∼

(
ερT

∗
0 δρT

)
.

with δρT
unramified and δρT

(Frobp) = U(p)|Tred.

A construction of the representation as above with coefficients in the total quo-
tient ring of Tred was first given in [H86b]. Later by the technique of pseudo-
representations invented by Wiles, we found ρT with coefficients in T in the isomor-
phism class of the representations constructed by [H86b]. The local behavior of ρT

described above then follows from Theorem 4.2. See [MFG] 2.2 for generalities on
pseudo-representations, and see [MFG] §3.2.3 for the construction of ρT by means
of pseudo-representations.
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4.2. Deformation rings. We keep the assumptions and notation of the previous
section. In particular ρλ is the reduction of the Galois representation ρλ attached
to λ : hordk (Np, ψ,W ) → W . However, to make our exposition simple, from now
on, we will assume that

N = 1.

As before, we write ψ for the Dirichlet character modulo p of λ. Thus the local ring
T = Tred is the direct factor of h(1, 1) (through which λ factors) for the identity
character χ = 1 (modulo 1). Recall Theorem 2.9:

Theorem 4.4 (Mazur). If (aiQ) and (rgp) hold, then the universal deformation

ring R = Rord and universal Galois representation ρord : Gal(Q/Q) → GL2(R)
exist.

Here R is a p-profinite local W -algebra with R/mR = F. Furthermore ρord :
Gal(Q/Q)→ GL2(R) satisfies:

• ρord is unramified outside p,
• ρord is p-ordinary, that is

ρord|Dp
∼

(
ε ∗
0 δ

)
,

with δ : Dp → R× unramified, and,
• ρord mod mR ∼ ρλ.

Moreover the couple (R,ρord) is universal in the sense that for any pair (A, ρA)
with

• A a p-profinite local W -algebra with A/mA = F,

• ρA : Gal(Q/Q) → GL2(A) an unramified outside p, p-ordinary representa-
tion in the sense above, and,
• ρA mod mA ∼ ρλ,

there is a unique map of local W -algebras ϕA : R → A, such that

ϕA ◦ ρord ∼ ρA.
See [MFG] 2.3 and 3.2.3 for a proof of the existence of the universal couple (R, ρR).

4.3. Theorem 4.5: R = T. By Theorem 4.3, we see that there exists a map of
local W -algebras

ϕT : R −→ T.

The following theorem was conjectured by Mazur only under (aiQ):

Theorem 4.5 (Wiles). For κ = Q(
√

(−1)(p−1)/2p), assume that ρλ satisfies (rgp)
and (aiκ)). (In particular it satisfies (aiQ).) Then the map ϕT : R → T is an
isomorphism of local W -algebras.

Note that the surjectivity of ϕT is obvious:

Lemma 4.6. The map ϕT : R → T is surjective.

Proof. Let T′ be the Λ-subalgebra of T generated by T (l) for all primes l 6= p.
Then TrρT has values in T′, and ϕT has image T′. We need to prove T = T′

(⇔ U(p) ∈ T′).
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Since ρT′ has values in GL2(T
′) and

H0(Ip, ρT′) ∼= T′

as ε|Ip
= ε|Ip

mod mT is non-trivial. Thus the action of Frobp on H0(Ip, ρT′) ∼= T′

is a multiplication by δ(Frobp) = U(p); so, U(p) ∈ T′. �

4.4. Theorem 4.7: Rord,φ = Tφ. We now investigate the deformation problem
when the determinant is fixed.

Fix a character φ : Gal(Q/Q) → W×, unramified outside p and ∞ and let us
assume that det ρλ = φ mod mW . Note that for each local W -algebra A as above,
we have the algebra homomorphism ιA : W× → A× giving the W–algebra structure
on A, so that it makes sense to impose the further condition

det ρA = ιA ◦ φ
on the deformation problem considered above. This new deformation problem also
has a solution; call the universal couple (Rord,φ,ρord,φ).

On the other hand φ factors through the Galois group of the maximal abelian
extension Q(µp∞) of Q unramified outside p (and ∞). Since

Gal(Q(µp∞)/Q) = Z×p = T(Zp),

we can think of φ as a character

φ : W [[T(Zp)]]→W.(4.1)

Now set

Tφ = T⊗W [[T(Zp)]],φ W = T/PφT,

where Pφ is the kernel of φ in (4.1). Also set ρTφ = ρT mod Pφ. We now have the
following key theorem:

Theorem 4.7 (Wiles-Taylor). Assume that ρλ satisfies (rgp) and (aiκ)), where

κ = Q(
√

(−1)(p−1)/2p). Then

(Rord,φ,ρord,φ)
∼
= (Tφ, ρTφ).

The above theorem was first proved by Wiles in [W1] as Theorem 3.3, under the
assumption that Tφ is a local complete intersection. The local complete intersec-
tion property was then proved by Taylor and Wiles in [TW], where they also give
another direct proof of the theorem. As mentioned in the Introduction, we wish
to describe this latter method of Taylor-Wiles [TW] incorporating improvements
due to Diamond and Fujiwara. We will follow Fujiwara’s treatment [Fu] (see also
[HMI]). Note that [Fu] (and [HMI] §3.2) also contains a generalization of the above
theorem to totally real fields.

Let us now describe the content of the above theorem in more down-to-earth
terms. Let A be a valuation ring finite flat over W . We pick any Galois representa-
tion ρ : Gal(Q/Q)→ GL2(A) which is a p–ordinary deformation with determinant
φ = ψνk−1

p for the p–adic cyclotomic character νp and a positive integer k ≥ 2,

where ψ : Gal(Q(µp)/Q)→ Z×p is a character (which could be trivial). Then by the

above theorem, we have a unique W–algebra homomorphism π : Rord,φ = Tφ → A
such that π ◦ρTφ is equivalent to ρ. Under the condition k ≥ 2, the ring Tφ is a di-
rect factor of the Hecke algebra hk(p, ψ,W ); so, we may regard π as an W–algebra
homomorphism π : hk(p, ψ,W )→ A. Since hk(p, ψ,W ) = hk(p, ψ,Z[ψ])⊗Z[ψ]W , π
induces a C–algebra homomorphism πC of hk(p, ψ,C) = hk(p, ψ,Z[ψ])⊗Z[ψ] C into
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C, which is associated to a Hecke eigenform f =
∑∞

n=1 πC(T (n))qn. Thus ρ is iso-
morphic to the p–adic Galois representation ρf associated to the Hecke eigenform
f .

Remark 4.1. When k = 1, we have a natural homomorphism

π : Tφ → hord1 (p, φ,W )

if φ is a finite order character. The homomorphism often has a non-trivial kernel
([H98]) and could have trivial image. A result of Deligne and Serre says that to each
weight 1 classical (or equivalently ‘true’) Hecke eigenform one may associate a two
dimensional Artin Galois representation. Thus the image of π is expected to be non-
trivial if ρT specializes to a Galois representation with finite image at weight 1. This
expectation was proved by Langlands [BCG] (and Tunnel) for Artin representations
whose image in PGL2(C) is a tetrahedral or octahedral group (for example, see
[GME] V.1.3). On the other hand, as was shown by Mazur-Wiles [MaW], often the
image of the specialization is infinite (so the image of π would have to be trivial in
this case). By a recent solution of Serre’s mod p modularity conjecture by Khare–
Wintenberger and Kisin, all 2-dimensional odd Artin representation is associated
to a Hecke eigenform of weight 1 (cf. [KhW] and [Kh] Theorem 7.1).

Remark 4.2. The argument of Taylor-Wiles (and also the original argument of Wiles
in [W1] proving Theorem 3.3 there) actually gives a result covering general N ≥ 1
when the ramification of the deformations is minimal (see [W1] page 455-8 for a
description of the term minimal). Then Wiles analyzed carefully the difference of
the Hecke algebra in the minimal case and those without the minimality conditions
and reached the following more general (and more convenient) result. To describe
it, we need some more notation and conditions: Let Σ be a finite set of primes
including the fixed odd prime p and QΣ be the maximal extension unramified
outside Σ and ∞. Let GΣ = Gal(QΣ/Q). We pick an absolutely irreducible odd
representation ρ : G→ GL2(F) for a finite field F of characteristic p. Hereafter all
valuation rings will be finite flat over Zp. We consider the following conditions:

(Ordinarity) ρ|Dp
∼=

(
ε ∗
0 δ

)
with δ unramified and δ 6= ε on the decomposition

group Dp at p;
(Flatness) ρ restricted to the decomposition group at p is isomorphic to a Galois

module associated to a locally free group scheme over Zp of rank |F|2;
(Irreducibility) ρ restricted to Gal(QΣ/Q) is absolutely irreducible;

Theorem 4.8 (Modular Lifting Theorem). Suppose irreducibility and either ordi-
narity or flatness of ρ. Let ρ : GΣ → GL2(W ) be a Galois representation for a
DVR W such that

• ρ ≡ ρ mod mW ;
• det ρ = νk−1

p up to finite order characters for k ≥ 2, where νp is the p–adic
cyclotomic character;
• ρ|Dp

∼= ( ε ∗0 δ ) for an unramified character δ ≡ δ mod mW when ρ is ordi-
nary;
• When ρ is flat, k = 2 and det ρ|Ip

= νp|Ip
and ρ is associated to a p–divisible

group over Zp in the sense of Tate.

Then there exist a positive integer N and a Hecke eigenform f ∈ Sk(Γ1(N)) such
that ρ ∼= ρf .
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The above theorem was proven via an R = T theorem in [W1] as Theorem 0.2
under an additional condition on mod p modularity of ρ, auxiliary ramification
outside p and irreducibility over Gal(Q/Q[µp]). The above statemnet is slightly
weaker than R = T -theorem as the identification of R and T is not specified.
The irreduciblity over Q[µp] is eased to irreducibility over Gal(Q/Q) by Skinner–
Wiles [SW]. Wiles proved the result assuming the complete intersection property
of a certain Hecke algebra in the minimal ramification case, which was in turn
proved in [TW]. By the solution of Serre’s mod p modularity conjecture by Khare–
Wintenberger, we no longer need to assume mod p modularity for ρ. The flatness
condition has now been eased by Kisin [Ki] to potential flatness over an extension
of Zp.

4.5. Theorem 4.7 + Vertical control⇒ Theorem 4.5. It turns out that Theo-
rem 4.7 and the vertical control theorem (Theorem 3.2) imply Wiles’ main theorem
(Theorem 4.5). To see this we first prove the following lemma:

Lemma 4.9. T is a free Λ-module of finite rank.

Proof. By Theorem 3.2 (for χ = 1), applied with φ = νk−1, we see that T/PφT
sits inside a Hecke algebra of weight k, and so in particular it is W -free, of finite
rank, say r. By Nakayama’s lemma the minimal number of generators of T over Λ
is r as well. Let x1, . . . , xr be generators of T, and let

π : Λr � T

(λ1, . . . , λr) 7→
r∑

i=1

λixi.

Now, by Nakayama’s lemma again, T/Pνj−1T must be W -free of finite rank r for
each j ≥ 2. This forces ker(π) ⊂ P rνj−1 for each j, and so

ker(π) ⊂ ∩j≥2P
r
νj−1 = 0,

as desired. �

Proposition 4.10. Theorem 4.7 + Vertical control =⇒ Theorem 4.5.

Proof. Choose φ = νk−1 for some k ≥ 2. Since R/PφR = T/PφT by Theorem 4.7,
we know that R/PφR is W -free of finite rank r, by Lemma 4.9. By Nakayama’s
lemma there is a surjective map Λr → R. On the other hand, by Lemma 4.6, the
map ϕT : R → T is surjective. Since T

∼−→ Λr (by Lemma 4.9), ϕT : R → T is
forced to be an isomorphism. �
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5. Horizontal control theorems

In this section we will establish horizontal control theorems on both the Galois
and Hecke sides. These will be useful in proving Theorem 4.7 above.

5.1. Galois side. Recall that ρ := ρλ was the reduction of ρλ, for fixed λ :
hordk (p, ψ,W ) → W . This representation was unramified outside p and was p-
ordinary. In addition we had imposed the conditions (aiκ)) and (rgp) on ρλ.

Let Q = {q1, . . . qr} denote a finite set of primes, with qi ≡ 1 mod p, for qi ∈ Q.
Let us consider the deformation problem, that allows, in addition, ramification at

primes in Q (we also fix a determinant φ = ψνk−1
p ). Let (Rord,φQ , ρRord,φ

Q

) be the

universal couple for this deformation problem.
We now impose the following condition: for each q ∈ Q, assume

(rgq): If

ρλ(Frobq) =

(
ᾱq ∗
0 β̄q

)
,

then ᾱq 6= β̄q .

Let Dq denote a decomposition group at q and let Iq denote the corresponding
inertia group at q. We have the following theorem on the local behavior of ρRord,φ

Q

at q:

Theorem 5.1 (Faltings). Let q ∈ Q and assume (rgq) above. Then

ρRord,φ

Q

|Iq
∼

(
φδ−1
q 0
0 δq

)
,

for some character δq : Dq → Rord,φQ

×
.

Recall that local class field theory gives us the following commutative diagram:

Gal(Qab
q /Qq)

∼
= Dab

q

dense←↩ Q×q
∪ ∪
Iabq

∼← Z×q = ∆q ×∆′q × 1 + qZq,

where ∆q, respectively ∆′q, is the p-Sylow subgroup, respectively prime-to-p part,

of F×q .
Now since ρλ is unramified at q, we have

δq(I
ab
q ) ⊂ 1 + mRord,φ

Q

.

Since 1 + mRord,φ

Q

is p-profinite, δq |Iab
q

factors through ∆q. Thus we get a map

∆Q :=
∏

q∈Q

∆q

Q

q∈Q δq−→ RφQ
×
,

via which we may consider Rord,φQ as an W [∆Q]-algebra.

We note in passing that W [∆Q] is a p-profinite local W -algebra with residue
field F.

We denote by AQ the augmentation ideal of the group algebra W [∆Q], that is,
AQ is the kernel of the augmentation map W [∆Q]→W , which sends σ ∈ ∆q to 1.

The following result establishes horizontal control for the rings RφQ:
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Proposition 5.2 (Horizontal control: Galois side). The natural map

RφQ −→ Rord,φ

induces an isomorphism

Rord,φQ /AQR
ord,φ
Q

∼−→ Rord,φ.

Proof. By the universal property of Rord,φ it suffices to show that the couple

(Rord,φQ /AQR
ord,φ
Q , ρ

Rord,φ
Q

mod AQ) is universal for the ‘unramified outside p, p-

ordinary, det = φ’ deformation problem. So say that ρA : Gal(Q/Q) → GL2(A) is
such a deformation. Since, vacuously, ρA is unramified outside Q ∪ {p}, there is a

unique morphism ϕA : Rord,φQ → A such that

ϕA ◦ ρRord,φ
Q

= ρA.(5.1)

Restricting (5.1) to Iq we see that (cf. Theorem 5.1):
(
φδ−1
q 0
0 δq

)
=

(
1 0
0 1

)
,

on Iq. Thus ϕA(δq(σ) − 1) = 0, for σ ∈ ∆q. This shows that ϕA(AQ) = 0, and we
may consider ϕA as a map

ϕA : Rord,φQ /AQR
ord,φ
Q → A.

If there is another φ : Rord,φQ /AQR
ord,φ
Q → A giving rise to ρA, the pull back of

φ has to coincide with ϕA by the universality of Rord,φQ . Thus this ϕA is unique;

so, (Rord,φQ /AQR
φ
Q, ρRord,φ

Q

mod AQ) is universal for the ‘unramified outside p, p-

ordinary, det = φ’ deformation problem. �

5.2. Hecke side. We now establish horizontal control on the Hecke side. This is
a much more delicate matter (compared to the Galois side), and the proof will use
some algebraic geometry. Since we can choose φ congruent to det ρλ modulo p, we
may assume that φ = νk−1 with k ≥ 3 and ψ = χ = 1.

Let NQ =
∏
q∈Q q, and consider the space of cusp forms on Γ1(NQ) ∩ Γ0(p).

We can define Hecke algebras hordk (p,Γ1(NQ), ψ,W ) as the algebra generated by
all the Hecke operators inside EndW (Sk(Γ1(NQ) ∩ Γ0(p)). We have the following
commutative diagram

hordk (p,Γ1(NQ), ψ,W ) ⊃ TφQ
↓ ↓

hordk (p, ψ,W ) ⊃ Tφ,

where the first vertical maps is the natural projection, and TφQ is defined as a local

factor of the pre-image of Tφ under this projection. The choice of TφQ depends on

the choice of the αq out of the two eigenvalues of ρλ(Frobq) for q ∈ Q as we will
see later.

Since the new Hecke algebra is defined with respect to Γ1(NQ)∩Γ0(p), the action
of 〈`〉 factors through T(Zp × (Z/NQZ)) instead of T(Zp). We decompose

T(Zp × (Z/NQZ)) = Γ× µp−1 ×∆′Q ×∆Q
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so that ∆Q is the p–Sylow subgroup of (Z/NQZ)×. The action of the quotient
group Γ0(NQ)/Γ1(NQ) = (Z/NQZ)× gives rise to an action of

∆Q ⊂ T(Zp × (Z/NQZ))

on the Hecke algebra hordk (p,Γ1(NQ), ψ,W ). This action induces a canonical W–
algebra homomorphism of the completed group algebra W [[T(Zp × (Z/NQZ))]]

into TφQ. Since TφQ is local, this algebra homomorphism factors through a local

ring of W [[T(Zp × (Z/NQZ))]], which is canonically isomorphic to Λ[∆Q] (that
is, the quotient of W [[T(Zp × (Z/NQZ))]] by the augmentation ideal of the group
algebra W [µp−1 × ∆′Q]). For primes ` - pNQ, we write 〈`〉 for the image of ` ∈
T(Zp × (Z/NQZ))]] in TφQ.

As in Theorem 4.3 we can construct a continuous Galois representation:

ρ′ = ρ′
Tφ

Q

: Gal(Q/Q)→ GL2(T
φ
Q),

with det ρ′
Tφ

Q

(Frob`) = `k−1〈`〉 and U(q)|Tφ

Q

≡ αq mod m for the maximal ideal

m = mTφ

Q

of TφQ. Thus the choice of TφQ depends on the choice of the root αq for

each q ∈ Q, but the isomorphism class of the W–algebra TφQ and that of the Galois

representation ρ′ are independent of the choice, because the algebra is generated
by T (`) for primes ` with ` - pNQ and the Galois representation is determined by
Tr(ρ′(Frob`)) = T (`). Since det ρ′ ≡ φ mod m, the ratio φ/ det ρ′ has a p–power

order. Since p is odd, we have a unique
√
φ/ det ρ′. We define

ρTφ

Q

=
√
φ/ det ρ′ ⊗ ρ′

Tφ

Q

,

which satisfies det ρTφ

Q

= φ and ρTφ

Q

≡ ρλ mod m.

We can now state the horizontal control on the Hecke side:

Theorem 5.3 (Horizontal control: Hecke side). Fix φ = νk−1 for k ≥ 2. Then

• TφQ/AQTφQ
∼−→ Tφ, where AQ is the augmentation ideal inside W [∆Q],

• TφQ is W [∆Q]-free of rank dQ, say, and,
• dQ = d is independent of Q.

5.3. Proof of Theorem 5.3. In this section, we shall give a brief sketch of the
proof of Theorem 5.3, referring the reader to [GME] III.1-2 for more details. For
simplicity, we assume an extra condition: k ≥ 3, in order not to worry about the
reduction modulo p of modular curves of level divisible by p.

Let W be a complete d.v.r. over Zp with p ≥ 5. Let S be a scheme over W. Let

E
π−→ S be an elliptic curve over S. Assume that π∗ΩE/S = WSω. Consider the

functor

W − Schemes −→ Sets

S 7→ [(E, ω)/S ],

where [ ] means the set of isomorphism classes. This functor is represented by
the affine scheme M = Spec(A) where

A =W[g2, g3,
1

∆
],

with ∆ = 27g3
2 − g2

3. Each W–algebra homomorphism φ : A → A gives rise to the
elliptic curve E/A : y2 = 4x3 − φ(g2)x− φ(g3) with differential ω = dx

y
.
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Now say S = Spec(A) is affine. Then λ ∈ Gm(S) = A× acts on the above
functor via

(E, ω) 7→ (E, λω).

It therefore acts on A. LetAj denote the corresponding eigenspace under the action
of Gm corresponding to λ · x = λ−jx. Then we may decompose (e.g. [GME] I.6.5)

A = ⊕j∈ZAj .
Let A =W[g2, g3] ⊂ A, and let Aj be the integral closure of Aj in A. We have

A = ⊕j≥0Aj
Note that g2 ∈ A4 and g3 ∈ A6.

Definition 5.1. For any W–algebra A, a modular form of weight k integral over
A is an element f ∈ Ak ⊗W A.

This definition agrees with the earlier definition of modular forms of level one,
since Gk(1, 1,W) = Ak is classically known to be spanned overW by the monomials
ga2g

b
3 for 4a+6b = k, where g2 (resp. g3) is the weight 4 (resp. weight 6) Eisenstein

series inGk(SL2(Z)) normalized so that its constant term is equal to 1. Polynomials
of g2 and g3 with this skewed homogeneity condition: 4a+6b = k are called isobaric
polynomials of weight k. The above definition includes A = W/pnW, giving a
geometric definition of modular forms (independent of its analytic behavior). We
write Gk(1, 1, A) for Ak ⊗W A, which is consistent with our earlier definition.

Let (E,ω) → M denote the universal elliptic curve, defined over A by the
equation Y 2 = 4X3−g2X−g3 with ω = dX

Y . For each elliptic curve (E, ω)/S , with
S = Spec(A), there is a unique morphism ι : S →M such that

(E, ω) = (S ×ι,M E, ι∗ω).

We define f(E, ω) = i∗(f) ∈ A, where ι∗ : A → A is the pullback map of ι. Note
that this makes f a function on pairs (E, ω)/S=Spec(A) such that

• f(E, ω) ∈ A,
• we have φ(f(E, ω)) = f((E, ω) ⊗A,φ B) if φ : A → B is a W–algebra

homomorphism,
• the values of f(E, ω) only depend on the isomorphism class of (E, ω), and,
• f(E, λω) = λ−kf(E, ω), for λ ∈ A×.

By Fourier expansion, we can embed A intoW((q)) =W[[q]][ 1q ]. Then we define

Tate(q) = E⊗AW((q)) ([?]). We write ω∞ for the image of ω on Tate(q). The curve
Tate(q) is canonically embedded into the projective space P2

/W((q)) using the equa-

tion Y 2Z = 4X3−g2XZ2−g3Z3. Since the coefficients of the above equation is con-
tained inW[[q]], the curve Tate(q)/W((q)) canonically extends to a proper flat curve
Tate′(q)/W[[q]] defined by the same equation. Removing singular locus of Tate′(q)
concentrated at q = 0, we get a flat group scheme (Tate(q), ω∞)/W[[q]] , which is
called the Tate curve. Its special fiber at q = 0 is isomorphic to Gm/W as easily seen
(by manipulation of the equation; see [GME] II.5); so, Tate(q)/W[[q]] is no longer
an elliptic curve, but, removing the fiber Gm at q = 0, Tate(q)/W((q)) is an elliptic

curve. Writing the special fiber Gm at q = 0 as Spec(W[t, t−1]) (so, t is the local
parameter of Gm at the origin), we find ω∞ = dt

t . By evaluating f ∈ Gk(1, 1, A)
at (Tate(q), ω∞)/W((q)), we get the q–expansion f(q) = f(Tate(q), ω∞) ∈ W((q)).
Since Gk(1, 1, A) is made up of isobaric polynomials of g2 and g3 of weight k, the
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expansion coincides with the analytic Fourier expansion by substituting exp(2πiz)
for q if A is embedded into C, and the q–expansion f(q) actually falls in A[[q]]. If it
falls further in qA[[q]], we call f a cusp form. We write Sk(1, 1, A) for the subspace
of cusp forms.

Now let N be a positive integer prime to p. We introduce a level N structure.
Consider the functors

℘N :W − Schemes −→ Sets

S 7→ [(E, ϕΓ(N) : (Z/NZ)2
∼−→ E[N ], ω)/S],

℘Γ1(N) :W − Schemes −→ Sets,

S 7→ [(E, ϕΓ1(N) : Z/NZ ↪→ E[N ], ω)/S], and,

℘Γ0(N) :W − Schemes −→ Sets

S 7→ [(E,C, ω)/S],

where [ ] = { }/ ∼= denotes isomorphims class and C is a subgroup scheme of
E[N ] defined over S, cyclic of order N (that is, C ∼= Z/NZ after changing basis to
a finite étale extension of S). We often use the symbol: φΓ0(N) to indicate the level
structure “C” of Γ0(N)–type (to make our notation consistent with the other level
structures of Γ1(N) and Γ(N) type).

These functors are representable by the schemes MN = MΓ(N) = Spec(AN ),

respectively MΓ1(N) = Spec(AΓ1(N)
N ), MΓ0(N) = Spec(AΓ0(N)

N ). Here the super-

script “Γ” of AΓ
N indicates symbolically the subring fixed by the modular group

Γ. Define the ‘bars’ of these algebras by the integral closure of A in each algebra,

and put MΓ = Spec(AN,0) and MΓ = Proj(AΓ

N ) for Γ = Γ0(N) and Γ1(N). Then

MΓ −MΓ is the set of cusps of MΓ.
Now let Q be a finite set of primes as in Section 5.1. Recall that NQ =

∏
q∈Q q.

To simplify the notation, we write M?
Q and A?

Q, etc. forMΓ?(NQ) and AΓ?(NQ)
NQ

in

this section. Note that M1
Q →M0

Q is étale, and moreover that

M
1

Q = Proj(A1

Q)→ Proj(A0

Q) = M
0

Q

is an étale Galois covering with Galois group (Z/NQZ)×, the Galois action of a ∈
(Z/NQZ)× being given by (E, φ1

N , ω) 7→ (E, φ1
N ◦ a, ω). We remark that étaleness

at cusps holds because NQ is square free. This can be easily checked by using the
fact that the monodromy group at infinity is given by upper unipotent subgroup of
GL2(Z/NQZ) (and that Bruhat-Tits decomposition holds for GL2(Fq) for primes
q ∈ Q). This shows that

H0((Z/NQZ)×,A1

Q/p
nA1

Q) = A0

Q/p
nA0

Q

for all 0 < n ∈ Z. We now make the following definition:

Definition 5.2. Gk(Γ?(NQ), A) = A
?

Q,k ⊗W A = H0(M
?

Q, ω
k), where ωk is the

invertible sheaf overM?

Q generated by degree k homogeneous elements in A?

Q.

The subspace of cusp forms Sk(Γ?(NQ), A) in Gk(Γ?(NQ), A) is defined to be
made up of modular forms f whose q–expansion f(Tate(q), φ?

N , ω∞) is without
constant term for any choice of φ?

N . This definition is again consistent with the
earlier one. Note that we have written here Sk(Γ0(NQ), A) for Sk(NQ, 1, A) defined
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in the previous section to emphasize two different level groups Γ1(NQ) and Γ0(NQ).
Using our new notation, what we have shown is:

H0((Z/NQZ)×, Gk(Γ1(NQ), A)) = Gk(Γ0(NQ), A),

H0((Z/NQZ)×, Sk(Γ1(NQ), A)) = Sk(Γ0(NQ), A)

A variant of this is that if ξ : (Z/NQZ)× → A is a character then

Sk(Γ1(NQ), A)[ξ] = Sk(NQ, ξ, A).

This follows by a similar argument applied to the sheaf ωk(ξ) obtained from ωk
/M

1
Q

by twisting it by the character ξ of Gal(M1
Q/M

0
Q). Applying this to A =W/pnW

and taking injective limit with respect to n, we get

Sk(Γ1(NQ),W ⊗Zp
Qp/Zp)[ξ] = Sk(Γ0(NQ), ξ,W)⊗Zp

(Qp/Zp).(5.2)

We now take W to be W to prove the horizontal control theorem on the Hecke
side. Writing the q–expansion at ∞ of a cusp form f as f(q) =

∑∞
n=1 a(n, f)q

n, it
is easy to deduce from (3.1) that the pairing (f, h) 7→ a(1, f |h) induces a perfect
Pontryagin duality between hk(Γ1(NQ),W ) and Sk(Γ1(NQ),W ⊗Zp

Qp/Zp). Since
k ≥ 3, we know that the projector e induces an isomorphism of the Hecke algebra
hordk (p,Γ1(NQ), ψ,W ) onto hordk (Γ1(NQ),W ) for ψ = 1. By duality, (5.2) may be
rephrased as

hk(Γ1(NQ),W )/Σσ∈(Z/NQZ)×(σ − ξ(σ))hk(Γ1(NQ),W ) = hk(NQ, ξ,W ).(5.3)

Since TφQ is local, the algebra homomorphism of W [∆Q] into TφQ factors through

its augmentation quotient; so, it induces the trivial character on ∆′Q. Thus on TφQ,

what matters is only the action of ∆Q; so, (5.3) yields

(5.4) TφQ/Σσ∈∆Q
(σ − ξ(σ))TφQ is a local ring of hordk (NQ, ξ,W )

Taking ξ = 1 and applying the fact that the local ring TφQ of hk(NQ, 1,W ) with

given eigenvalues αq of ρ′
Tφ

Q

(Frobq) (q ∈ Q) is isomorphic to Tφ in hk(1, 1,W ), we

conclude

TφQ/Σσ∈∆Q
(σ − 1)TφQ

∼= Tφ.

Since W [∆Q] is a local ring, by Nakayama’s lemma, this shows that the minimal

number of generators of TφQ over W [∆Q] is d = rankW Tφ; so, we have an W [∆Q]–

linear surjection π : W [∆Q]d → TφQ. By tensoring

W = W [∆Q]/Σσ∈∆Q
(σ − ξ(σ))W [∆Q]

over W [∆q] with π, the linear map π induces a surjection

πξ : W d → TφQ/Σσ∈∆Q
(σ − ξ(σ))TφQ.

Since the right-hand-side isW–free by (5.4) with minimal number of generators d by
Nakayama’s lemma, it has to beW–free of rank d. Thus πξ is an isomorphism. Since

Ker π ⊂ ⋂
ξ Ker πξ = 0 regarding πξ as a linear map: W [∆Q]d → TφQ/Σσ∈∆Q

(σ −
ξ(σ))TφQ, we know that π is an isomorphism. This finishes the proof. �
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6. Taylor-Wiles systems

In this section we introduce the commutative algebra machine invented by Taylor
and Wiles [TW] (with simplifications due to Faltings, Diamond and Fujiwara) which
allows one to deduce the equality of the Hecke algebra and universal deformation
ring in Theorem 4.7. We prefer to work axiomatically and a bit more generally
here (over arbitrary number fields rather than Q); this section can in fact be read
independently of the previous ones. Our treatment follows that of Fujiwara [Fu].

Fix an odd prime p. Let W be an extension of Zp. Let F be a number field, and
let OF denote the ring of integers of F .

Consider the set Q defined via

Q = {q ⊂ OF
∣∣ q prime, Nq ≡ 1 (mod p)}.

For each finite subset Q ⊂ Q, let

• ∆Q = the p-Sylow subgroup of
∏

q∈Q(OF /q)
×,

• W [∆Q] = the corresponding group algebra over W , and,
• AQ the augmentation ideal of W [∆Q].

Definition 6.1 (Taylor-Wiles system). For each m = 1, 2, . . ., fix a finite subset
Qm ⊂ Q. A Taylor-Wiles system is a local W -algebra R, and a collection of tuples
(Rm, Tm,Mm), indexed by m = 1, 2, . . ., where

• Rm is a local W -algebras, with a map Rm → R,
• Tm is a local W -algebras, with a map Rm → Tm,
• Mm is a Tm-module,

satisfying:

• Rm (so Tm) is a W [∆Qm
]-algebra,

• Rm/AQm
Rm

∼−→ R,
• As a W [∆Qm

]-module, Mm is free of finite rank d, which is independent of
m.

Theorem 6.1 (Isomorphism Criterion). Let R, (Rm, Tm,Mm) be a Taylor-Wiles
system. Assume that the following conditions hold:

(TW1): If q ∈ Qm then Nq ≡ 1 (mod pm),
(TW2): |Qm| is independent of m, say this cardinality is r,
(TW3): Rm is generated by at most r elements as a W -algebra,
(TW4): Assume that the kernel of

R→ EndW (Mm/AQm
Mm)

is independent of m, and let T = R/kernel.

Then R is a complete intersection, free of finite rank over W . Moreover, the natural
map

R � T,

is an isomorphism.

Proof. Fix m. For each q ∈ Qm, let ∆q, be the p-Sylow subgroup of (OF/q)
×.

By (TW1) we know that this is cyclic of order at least pm. Let δq be a generator of

∆q. Suppose that 1 ≤ n ≤ m. Note that ∆q/ < δp
n

q > is cyclic of order pn. Thus,

W [∆q]

(δp
n

q − 1)

∼−→ W [[S]]

(1 + S)p
n − 1

,
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via δq 7→ 1 + S.
By (TW2) we know that the cardinality of Qm is r (and this number is inde-

pendent of m). Suppose that Qm = {q1, . . . , qr}. Let In ⊂ W [∆Qm
] be the ideal

generated by pn, δp
n

q1 − 1, . . . , δp
n

qr
− 1. Then we have

W [∆Qm
]

In

∼−→ W [[S1, . . . , Sr]]

(pn, (1 + S1)p
n − 1, . . . , (1 + Sr)p

n − 1)
,

via δqi
7→ 1 + Si, for i = 1, . . . , r.

Let us set An = W [∆Qm
]/In. It is an easy computation to check that |An| =

pntp
nr

, where t = rankZp
(W ). In particular the cardinality of An is independent of

m. Now define

Rn,m = image

(
Rm
InRm

→ EndAn

(
Mm

InMm

))
,

R̃n,m =
Rn,m
AQm

.

Since Mm is free over W [∆Qm
] of rank d (independent of m) there are natural

maps

An
α→ Rn,m

β
↪→ EndAn

(
Mm

InMm

)
= Md(An).

Since β is injective we see that |Rn,m| ≤ |An|d
2

is bounded independently of m.
Also β ◦ α is injective, so that α is injective as well. This will be used below.

By (TW3), Rm is generated by r elements over W , and thus, so is Rn,m. Pick
generators f1, . . . , fr of Rn,m.

Now fix n, and suppose m,m′ ≥ n. We say two triples
(
(Rn,m, α, β), R̃n,m, (f1, . . . , fr)

)
and

(
(Rn,m′, α′, β′), R̃n,m′, (f ′1, . . . , f

′
r)

)

are isomorphic if there is an isomorphism of An-algebras

ι : Rn,m
∼−→ Rn,m′

inducing

ι : R̃n,m
∼−→ R̃n,m′ ,

such that ι(fj) = f ′j and such that the following two diagrams commute:

An
α→ Rn,m

β
↪→ Md(An)

‖ ↓ ι ‖
An

α→ Rn,m′

β′

↪→ Md(An)

and

Rn,m −→ R̃n,m
↓ ι ↓ ι

Rn,m′ −→ R̃n,m′.

Since the cardinality of Rn,m is bounded independently of m, we see that for n = 1,
there exists infinitely m ≥ 1 (call this set N1 ⊂ N) such that the

(
(R1,m, α, β), R̃1,m, (f1, . . . , fr)

)
,

are mutually isomorphic.
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Suppose, for purposes of induction, that we have constructed Nn ⊂ Nn−1 ⊂
· · · ⊂ N1 ⊂ N such that

(
(Rn,m, α, β), R̃n,m, (f1, . . . , fr)

)
,

are mutually isomorphic for all n ∈ Nn. Then, again, by varying m ≥ n+ 1 in Nn
we may pick an infinite subset Nn+1 ⊂ Nn, such that

(
(Rn+1,m, α, β), R̃n+1,m, (f

(n)
1 , . . . , f(n)

r )
)
,

are mutually isomorphic for m ∈ Nn+1.
Now, for each n, let m(n) denote the minimal element in Nn, and let the corre-

sponding triple be
(
(Rn,m(n), α, β), R̃n,m(n), (f1, . . . , fr)

)
.

Note that the following diagram commutes:

Rm(n+1)

In+1Rm(n+1) −−−−→ EndAn+1

(
Mm(n+1)

In+1Mm(n+1)

)

y mod In

y
Rm(n+1)

InRm(n+1)
−−−−→ EndAn

(
Mm(n+1)

InMm(n+1)

)
.

Moreover Rn,m(n+1) (and its tuple) is isomorphic to Rn,m(n) (and its tuple) since
both m(n + 1) and m(n) ∈ Nn. This shows that the process of going modulo In
yields a projective system of tuples

(
(Rn,m(n), α, β), R̃n,m(n), (f

(n)
1 , . . . , f(n)

r )
)
,

as n varies. Denote the projective limit by
(
(R∞, α∞, β∞), R̃∞, (f

(∞)
1 , . . . , f(∞)

r )
)
.

Let us now set

A := lim
←
An = W [[S1, . . .Sr ]], andB := W [[T1, . . . Tr]].

By the injectivity of the α and β at each level, we have maps

A
α∞

↪→ R∞
β∞

↪→ Md(A).(6.1)

Also we have a map

B � R∞(6.2)

Ti 7→ f
(∞)
i .

The maps (6.1) show that R∞ is a torsion free A-module of finite type, and so
by the going-up and going-down theorems, the Krull dimension of R∞ is given by
dim(R∞) = r + 1. This shows that the map (6.2) must be injective. For if it were
not, we could always choose some 0 6= f in its kernel K, and a height 1 prime P of
B containing f , and we would get the absurdity:

r + 1 = dimR∞ = dimB/K ≤ dimB/(f) = dimB/P = r.

This shows that R∞ is isomorphic to the power series ring B = W [[T1, . . . Tr ]].
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We now claim that R̃∞ is a complete intersection, free of finite rank over W . To
see this note that we have an exact sequence

Rr∞ −→ R∞ −→ R̃∞

(xi) 7→
∑

Sixi

This shows that R̃∞ is the homomorphic image of a power series ring over W

in r variables, with kernel generated by r elements, i.e. that R̃∞ is a complete

intersection. The fact that R̃∞ is free of finite rank over W follows from the
following lemma:

Lemma 6.2. Let A ↪→ B be power series rings over W in the same number of
variables. Assume that as an A-module B is of finite type. Then B is A-free.

Indeed, in our situation, since A ↪→ B ↪→ Md(A), B is indeed an A-module of

finite type. Thus R∞ is A-free (of finite rank), and so R̃∞ is W -free (of the same
rank). This proves the claim.

We now claim that R̃∞ = T . For this we need one more general lemma, (which
follows the Auslander-Buchsbaum formula):

Lemma 6.3. Say A ↪→ B are power series rings over W in the same number of
variables. Say L is a B-module. Then L is A-free ⇐⇒ L is B-free.

Let L = lim←nMm(n)/InMm(n) = lim←nA
d
n = Ad. By Lemma 6.3 L is a

free B-module (of finite rank), and so consequently L/InL = Mm(n)/InMm(n) is
R∞/InR∞ = Rn,m(n)-free. Now note that generally, for a C-module X, which is
free of finite rank, and an ideal A ⊂ C, C/A acts faithfully on X/AX, and so we
may consider C/A ⊂ End(X/AX). Applying this to our situation we see

R̃n,m(n) ⊂ EndW
(
Mm(n)/(In + AQm(n)

)Mm(n)

)
.

Now note that the following diagram is commutative (see (TW4)):

Rm(n) � Rn,m(n) � R̃n,m(n) ⊂ EndW
(
Mm(n)/(In + AQm(n)

)Mm(n)

)

‖ ↑
Rm(n) � T ⊂ EndW

(
Mm(n)/AQm(n)

Mm(n)

)

Letting n→∞, we see that the map R∞ � R̃∞ factors through T :

R∞ � T � R̃∞.(6.3)

On the other hand we see that under the map R∞ � T , the ideal (S1, . . . , Sr)

maps to 0, so that we have a map from R̃∞ = R∞/(S1, . . . , Sr) � T . Along with

(6.3) this says that R̃∞
∼−→ T .

We now claim that in fact R
∼−→ T . Let

Kn = ker(R∞ � Rn,m(n)),

and m∞ the maximal ideal of R∞. Then for each N > 0, there exists n(N) >> 0,
such that Kn(N) ⊂ mN

∞. Consider the following commutative diagram with exact
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rows:

Rrm(n(N)) −→ Rm(n(N)) −→ R −→ 0

↓ ↓ ↓
Rrn(N),m(n(N)) −→ Rn(N),m(n(N)) −→ R̃n(N),m(n(N)) −→ 0

‖
T/pn(N)T

Tensoring this with R∞/m
N
∞ (over R∞) we get another commutative diagram with

exact rows:

(Rrm(n(N))/m
N
∞)r −→ Rm(n(N))/m

N
∞ −→ R/mN

∞ −→ 0

↓ ↓ ↓
(Rrn(N),m(n(N))/m

N
∞)r −→ Rn(N),m(n(N))/m

N
∞ −→ T/mN

T −→ 0,

where mT is the maximal ideal of T . By our choice of n(N) the first two vertical
maps are isomorphisms, so that

R/mN
R
∼−→ T/mN

T ,

for all N > 0. Taking limits, we see that R
∼−→ T , and this finishes the proof of the

Theorem 6.1. �

Theorem 6.4 (Freeness Criterion). Let the hypothesis and assumptions be as in
Theorem 6.1. Assume in addition that

(TW5): There is an R-module M , such that Mm/AQm
Mm

∼
=M , as R-modules for

each m = 1, 2, . . ..

Then M is a free T -module.

Proof. We have

M = lim
←
M/pnM = lim

←n
Mm(n)/(In + AQm(n)

)Mm(n) = L/(S1, . . .Sr)L.

But L is a free R∞-module (of finite rank) and R̃∞ = R∞/(S1, . . .Sr)R∞ = T . So
M is a free T -module (of finite rank). �

7. Proof of Theorem 4.7

We use the isomorphism criterion of Theorem 6.1 to give a proof of Theorem 4.7.
In our proof, the Galois cohomological argument is a version of the argument

of Wiles in [W1] Chapters 1 and 3. In [TW], this type of argument is applied to
the Taylor-Wiles system obtained from the topological cohomology groups MQ =
H1(X1(pNQ),Zp); so, a new aspect of the proof here is the use of the Hecke algebra

TφQ in place of the cohomology groups.

We refer the reader to [MFG] 3.2.7-8 for further details of the argument and to
[MFG] 4 for the Tate duality theorem, Poitou-Tate exact sequence, local and global
Euler characteristic formulas etc. that we use below.

Let F = Q. Let p ≥ 5 and W/Zp be as in previous sections. Let

Qm = {q ∈ Q
∣∣ q ≡ 1 (mod pm) and ρλ(Frobq) has distinct eigenvalues}.

It is a fact (shown by Wiles) that under the condition (aiκ)), there are infinitely
many primes in Qm.
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We now show that there exist sets Qm ⊂ Qm for m = 1, 2, 3, . . ., satisfying
(TW1), (TW2) and (TW3), such that, if, in the notation of Sections 4.4 and 5,

R := Rord,φ, Rm := Rord,φQm
and Tm := Mm := TφQm

,

with φ = νk−1, then, {R, (Rm, Tm,Mm)m∈N} is a Taylor-Wiles system in the
sense of Definition 6.1. In fact many of the requirements of the definition have
already been checked (see in particular Proposition 5.2 and Theorem 5.3). Indeed
Theorem 5.3 shows that (TW5), and therefore (TW4), holds.

As a result we will get, by Theorem 6.1, that:

Rord,φ
∼−→ Tφ

which is the desired conclusion of Theorem 4.7.
Fix m, and fix a finite set Q ⊂ Qm of arbitrary cardinality. Denote by QQ∪{p}

the maximal extension of Q unramified outside p, ∞ and the primes in Q. Let
GQ = Gal(QQ∪p/Q). Let Ad = Ad(ρλ) be the three dimensional GQ-module over
F, arising from the adjoint representation on the 2 by 2 matrices over F of trace 0.

For each q ∈ Q ∪ {p}, let Bq be an F-subspace of H1(Dq , Ad). We define the
Selmer group attached to the data

• the GQ-module Ad, and,
• the local conditions Bq , for q ∈ Q ∪ {p},

as follows. Set

SelQ(Ad) := β−1
Q




∏

q∈Q∪{p}

Bq



 ,

where βQ is the natural restriction map:

βQ : H1(GQ, Ad) −→
∏

q∈Q∪{p}

H1(Dq , Ad).

Eventually we will choose the following local conditions in the definition of the
Selmer group. We will assume that

• Bq = H1(Dq , Ad), for each q ∈ Q, and,
• Bp is given by

Bp = ker
(
H1(Dp, Ad)→ H1(Ip, Ad/Ad0)

)
,

where Ad0 is the sub-representation of Ad consisting of matrices of the form
( 0 ∗

0 0 ).

This is because of the following lemma.

Lemma 7.1. Let RQ denote the universal deformation ring (with fixed determi-
nant) as above. Let tQ = mRQ

/m2
RQ

+ mW be the cotangent space of RQ. Then

with the choice of local conditions Bq as above, we have

HomF(tQ,F)
∼−→ SelQ(Ad),

and the number of generators of RQ as a W -algebra is equal to dimSelQ(Ad).

This is a standard formula for the tangent space of a universal deformation ring.
One can find a proof of this fact and related topics in [MFG] 2.3.4, 3.2.4 and 5.2.4.

Now let us consider the Selmer group attached to the dual representation of
Ad. Set Ad∗ = HomF(Ad,F) and set Ad∗(1) = Ad∗ ⊗F µp. (In our case since
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Ad ⊂M2(F), the non-degenerate pairing (X, Y ) 7→ Tr(XY ) shows that Ad∗
∼−→ Ad.

Thus we have Ad∗(1)
∼−→ Ad(1)).

Theorem 7.2 (Local Tate duality). For r = 0, 1, 2, there is a natural duality
between H2−r(Dq , Ad) and Hr(Dq , Ad

∗(1)) = Hr(Dq , Ad(1)).

For an arbitrary subspace Bq ⊂ H1(Dq , Ad), with q ∈ Q ∪ {p}, let B⊥q ⊂
H1(Dq , Ad

∗(1)) denote the orthogonal compliment of Bq under the pairing of The-
orem 7.2. Define the Selmer group SelQ(Ad∗(1)) with respect to the subspaces B⊥q
as follows. For the restriction map

β∗Q : H1(GQ, Ad
∗(1)) −→

∏

q∈Q∪{p}

H1(Dq , Ad
∗(1)),

SelQ(Ad∗(1)) := β∗Q
−1




∏

q∈Q∪{p}

B⊥q



 .

Note that for the eventual choice of Bq that we have mentioned above, we have
B⊥q = 0 for q ∈ Q.

Theorem 7.3 (Poitou-Tate exact sequence). Let Bq be arbitrary subspaces of
H1(Dq , Ad), for q ∈ Q ∪ {p}. Then, there is an exact sequence

0→ SelQ(Ad)→ H1(GQ, Ad)→
∏

q∈Q∪{p}

H1(Dq, Ad)

Bq
→ SelQ(Ad∗(1))

→ H2(GQ, Ad)→
∏

q∈Q∪{p}

H2(Dq , Ad)→ H0(GQ, Ad
∗(1))∗ → 0.

Note that the condition (aiκ)) holds ⇐⇒ Ad is an absolutely irreducible GQ-
module. Consequently

H0(GQ, Ad) = 0 = H0(GQ, Ad
∗(1))∗.(7.1)

We need another formula:

Theorem 7.4 (Global Euler characteristic formula).

dimH0(GQ, Ad)− dimH1(GQ, Ad) + dimH2(GQ, Ad)

= dimH0(Gal(C/R), Ad)− dimAd.

Let c denote complex conjugation. Since det ρλ(c) = −1, we have ρλ(c) ∼(
1 0
0 −1

)
, so that the eigenvalues of c on Ad are −1,+1,−1. This means that the

value of the expression on the RHS of Theorem 7.4 is = 1− 3 = −2.
Now let us assume that we have made the choice of the local conditions at

q ∈ Q ∪ {p}, as mentioned above. We set

dQ = dim SelQ(Ad)− dimSelQ(Ad∗(1)).

By the Poitou-Tate exact sequence, the global Euler characteristic formula, local
Tate duality, and (7.1), we have:

dQ = hp + 2 +
∑

q∈Q

dimH0(Dq , Ad
∗(1)),(7.2)
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where

hp = dimH0(Dp, Ad
∗(1)) − dim

H1(Dp, Ad)

Bp

depends only on p. We now impose an additional condition:

(Sel) Assume that φ = νk−1 with k 6≡ 2 (mod p− 1).

Proposition 7.5. Recall that Q ⊂ Qm. Assume that (Sel) holds. We have

(1) hp + 2 ≤ 0,
(2) dimH0(Dq , Ad

∗(1)) = 1, for all q ∈ Q.

Proof. Since the cohomological dimension of Dp is 2, the exact sequence

0→ Ad0 → Ad→ Ad/Ad0 → 0,

yields the following long exact sequence in cohomology:

0→ image(u)→ H1(Dp, Ad/Ad0)→ H2(Dp, Ad0)

→ H2(Dp, Ad)→ H2(Dp, Ad/Ad0)→ 0

where u is the map defined by

u : H1(Dp, Ad)→ H1(Dp, Ad/Ad0).

Thus we have,

dim image(u) =

dimH1(Dp,
Ad

Ad0
)− dimH2(Dp, Ad0) + dimH2(Dp, Ad)− dimH2(Dp,

Ad

Ad0
).

Now consider the following commutative diagram

H1(Dp, Ad)
↓ u ↘ δ

0 → H1(Dp/Ip,
Ad
Ad0

Ip
) → H1(Dp,

Ad
Ad0

) → H1(Ip,
Ad
Ad0

)Dp → 0,

where the bottom row comes from the inflation-restriction sequence, and the map
δ is defined by the triangle above. Note that by the definition of the Selmer group,

hp = dimH0(Dp, Ad
∗(1))− dim image(δ).

In any case we see that

dim image(δ) ≥ dim image(u) − dimH1(Dp/Ip, Ad/Ad0)
Ip .

But

H1(Dp/Ip, (Ad/Ad0)
Ip)

∼−→ (Ad/Ad0)
Ip/(Frobp − 1)(Ad/Ad0)

Ip .

Moreover there is an exact sequence

0→ H0(Dp/Ip, (Ad/Ad0)
Ip)→ (Ad/Ad0)

Ip
Frobp−1−−−−−→

(Ad/Ad0)
Ip → H1(Dp/Ip, (Ad/Ad0)

Ip)→ 0.

This shows that

dimH1(Dp/Ip, Ad/Ad0)
Ip = dimH0(Dp/Ip, Ad/Ad0)

Ip = H0(Dp, Ad/Ad0).

Putting things together we get:

dim image(δ) ≥ dimH1(Dp, Ad/Ad0)− dimH2(Dp, Ad0)

+dimH2(Dp, Ad)− dimH2(Dp, Ad/Ad0)− dimH0(Dp, Ad/Ad0).
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Proposition 7.6 (Local Euler characteristic formula).

dimH0(Dp,
Ad

Ad0
)− dimH1(Dp,

Ad

Ad0
) + dimH2(Dp,

Ad

Ad0
) = dim(

Ad

Ad0
) = 2.

Consequently we have:

hp = dimH0(Dp, Ad
∗(1)) − dim image(δ)

≤ dimH0(Dp, Ad
∗(1)) − 2 + dimH2(Dp, Ad0)− dimH2(Dp, Ad)

= −2 + dimH0(Dp, Ad
∗
0(1)),

where the last equality follows by local Tate-duality (applied twice!)
We now claim that when (Sel) holds, H0(Dp, Ad

∗
0(1)) = 0. Note that part (1)

of the proposition then follows immediately. To see this note that by (Sel) we may
write

ρλ|Ip
=

(
ψ ∗
0 1

)
,

where ψ is a non-trivial power of the Teichmüller character. Thus we see that
H0(Dp, Ad

∗
0(1)) = 0.

As for part (2), note that q ∈ Q =⇒ q ≡ 1 (mod p), so Ad∗(1) = Ad(1) = Ad.
Consequently since the eigenvalues of Frobq on Ad are ᾱq/β̄q , 1, and β̄q/ᾱq, we see
that dimH0(Dq , Ad

∗(1)) = 1 by (rgq). �

Remark 7.1. The condition (Sel) is not necessary in the sense that Proposition 7.5
also holds under other hypothesis.

Corollary 7.7.

dQ ≤ |Q|.

Proof. This follows immediately from (7.2) and Proposition 7.5. �

Let

r := dimSel∅(Ad
∗(1))

be the dimension of the Selmer group when Q = ∅. Our next objective is to
show that for each m, we may choose Q ∈ Qm above such that |Q| = r, and so that
SelQ(Ad∗(1)) = 0. Lemma 7.1 and Corollary 7.7 will then show that these choices of
Q will satisfy (TW1 - 3). Indeed, since SelQ(Ad∗(1)) = 0, we see that dQ = dim tQ,
and so each RQ will be generated by at most r elements as a W -algebra.

Proposition 7.8. There are infinitely many sets Q ∈ Qm such that

(1) |Q| = r = dimSel∅(Ad
∗(1)), and,

(2) SelQ(Ad∗(1)) = 0.

Proof. Let Q ∈ Qm be arbitrary. Since B⊥q = 0 for all q ∈ Q, we have

SelQ(Ad∗(1)) ⊂ ker β′Q

where

β
′

Q : H1(GQ, Ad
∗(1)) −→

∏

q∈Q

H1(Dq , Ad
∗(1))
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is the map obtained from β∗Q by ignoring the restriction at p. In fact one may check

that kerβ′Q ⊂ ker β†Q, where

β†Q : H1(G∅, Ad
∗(1)) −→

∏

q∈Q

H1(Dq , Ad
∗(1))

We now show that when the cardinality of |Q| is sufficiently large, β†Q is injective.

This will force the vanishing of SelQ(Ad∗(1)) when |Q| is sufficiently large.
First let us introduce some notation. Let hQ = Gal(QQ∪p/K(µp)) ⊂ GQ. When

Q = ∅, we write G (respectively h) for GQ (respectively hQ). Let K be the fixed
field of ker ρλ, and let G = Gal(K(µp)/Q).

It is a fact that

H1(G,Ad(1)) = 0.

Consequently, the inflation-restriction sequence yields:

0 = H1(G,Ad(1))→ H1(G, Ad(1))
ι→ H1(h, Ad(1))G = HomG(h, Ad(1)).

Now fix 0 6= x ∈ kerβ†Q, and let f = fx : h→ Ad(1) be the image of x under the
map ι.

Since ρλ satisfies (aiκ)), we see that ρλ is not induced from κ. Consequently the
image of ρλ in PGL2(F) has cardinality divisible by p or is isomorphic to one of the
groups A4, S4 or A5. A lemma of Wiles then shows that there is an element σ ∈ G

such that

(1) ρλ(σ) has order `, where ` ≥ 3 is a prime different from p, and,
(2) σ fixes Q(µpm) (so det ρλ(σ) = 1).

We claim that we may additionally assume that

(3) f(σ`) 6= 0.

To see this, let L be the fixed field of the kernel of f . Then X = Gal(L/K(µp)) is
an abelian extension of exponent p. We have the exact sequence

0→ X → Gal(L/Q)→ G→ 0.

Note that G acts onX via conjugation, and f : X → Ad(1) = Ad is an isomorphism
of G modules (note that f 6= 0, f is injective, and Ad is irreducible, so f is surjective
as well). Now let σ′ satisfy the conditions (1) and (2) above. Then Ad(ρλ)(σ

′) has
three distinct eigenvalues on Ad and therefore on X, and one of them is equal to
1. Write

X = X[1]⊕X′,
where X[1], X′ 6= 0, σ′ = 1 on X[1] and σ′ − 1 is an automorphism of X′. Since
f is an isomorphism, we see that f(X[1]) 6= 0. Thus we may choose an element
τ ∈ X[1] such that f(τ ) 6= 0.

Since Gal(K(µpm)/K(µp)) is abelian on which Im(ρ) acts trivially by conjugation
and on Gal(L/K), Im(ρ) acts by irreducible representation, we see that L and
K(µpm) are linearly disjoint over K(µp). We now set

τ ′ := 1× τ ∈ Gal(K(µpm )/K(µp)) ×Gal(L/K(µp)) = Gal(L(µpm )/K(µp)).

Since τ ∈ X[1], τ ′ commutes with σ′ in Gal(L(µpm)/Q). Then, noting that σ′
` ∈ X,

we have

f((τ ′σ′)`) = f(τ ′
`
σ′
`
) = `f(τ ′) + f(σ′

`
).
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Since ` 6= p, `f(τ ′) 6= 0, and so one of τ ′σ′ or σ′ satisfies (1), (2) and (3) above.
This proves the claim.

Now choose a prime q 6∈ Q such that Frobq = σ in Gal(L(µpm)/Q). Then the

fact that f(Frob`q) 6= 0 implies that βQ∪{q}(x) 6= 0. By (2) we see that q ≡ 1 mod

pm. Further (1) and (2) imply that the characteristic roots α and β of ρλ(σ) satisfy
αβ = 1 and hence are primitive `th roots of unity. Since ` ≥ 3, we have α 6= β.
This shows that

Q ∪ {q} ∈ Qm.
We have shown that for 0 6= x ∈ ker βQ, there is a prime q 6∈ Q, such that

Q ∪ {q} ∈ Qm, and βQ∪{q}(x) 6= 0. Iterating this statement, we may assume that

Q ∈ Qm is such that β†Q is injective.

Now, by the local Euler characteristic formula, dimH1(Dq , Ad
∗(1)) = 2. So we

may now remove primes from Q, one at a time, preserving the injectivity of β†Q, at

least until we reach |Q| = r. This finishes the proof of the proposition. �

Since we have proved Proposition 7.8 we have in fact completed the proof of
Theorem 4.7 as well. �



GALOIS DEFORMATION, MODULAR LIFTING AND R = T THEOREMS 38

References

Books
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