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Modular p-adic Z-functions and p-adic Hecke Algebras
Haruzo Hida
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In this short article we discuss how the number of varables of modular L-
functions is determined by the data from the algebraic group on which the modular
forms are defined. To give vou an idea about the L-functions before going mto this
MmN lopic, we start with an interesting story of Euler about the values of the Riemann
zeta function. This story provides a good introduction to the subject. The Riemann
zeta function is defined by the following infimte series, which is absolutely convergent
on the right half of the complex plane defined by Rels) > 1-
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This series must be a result of 3 naive question: What number can one get out of
the sum of negutive powers of all natural numbers? Then it is natural to think about
the sum of positive powers of all naturl numbers. OF course, one cannot compute
the outrageows sum: 1* + 2% £ 3 4 g 0b 4 of growing integers withoul some
trick. Euler proposed the following trick 1o compute this sum in the oud 18th century.
Euler first supposed that the value J{ &) (0 < k € Z) actually exists. Then one is
forced to have the following Interesting identity:

=2 =k} = 2(—k) - 2ir(—k)
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When & = 0, we get

L0 =l =t P =P e () o Y

!
P i {the sum of a geometric series).
h 1 |

1SR Mathensatics Swbjesd € Luciifecarion Prunary 11640
This amscke origmably appeared i Bapagiese m Shguku 44 (4] (1992}, 2he. 04
The author i partially suppeeried by an NSF Erumt,

LRk s hbabemaral Socu
L R TRV TR ¥ T e

T

T T - iy

Y ———



Lk HARLIESD HITA

Thas would tell us that S0 = L. Ingeneral, by the well-known formuli: ¢ 50" = mt",
we have that
. : Y i :
r 7(-k) = (1 =P )[l=k) = ‘,.} }
1) Z(-k) =1 (k) (rm e

Euler was net playmng an empty game, ond he proved the following striking
formula for m a positive Intcger:
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The lefi-hand side is the value of an actually converging mfinite series and s the value
of the complex analytic function Jix ) which is well defined on the right hali-plane
given by Rels) > 1. The main part of the right-hand side 15 the value a1 £ = 1 of the
derrative of a simple rational function ¢/(1 + 1, Thus, this 15 a formula connecting
two fundamentally different ohjects, which was distovered by Euler almast 150 years
ago. This formula looks even magcal. To the author, the fun in studying number
theory lies m learning and findimg this sort of “magical relation” connecting two (o
more! fundamentally different objects.

From today's view poini, the Riemann zets function has an analytc continwstion
to € = {1} having a simple pole at 5 = 1 |as proved by Riemann): the formula of
Euler for J{ k) actually gives the value ut » = —& of the analytic continuation, and
the formula {2} is a special cuse of the functionsl equation (proved by Riemann

‘I'1.| — 3 —i:‘:ri:_j_. ll.l.

L 2065 ) cosimsf2)
We refer o [WB4] for histonical matters about Euler and to [K75] and [H93b, §52.1-
2.2] for proofs of the above fcts.
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There 1s another example of number-theoretic equality. Looking mto the formula
of Euler, Kummer found the following fuct m the 19th century. He fixed o prime p
[which we assume 1o be odd for simplicity!. Then for iwo nonnegative integers &
and &'

(1) k=k'modp'(p— 11 =1 =p"1Z(-k) = (1 = p" 1Z(- &' mod p""'

In other words, as long as & and &' stay i the same residue class modulo p - 1.
and if & and & are close under the p-adic topology, then the values (1 = p" 121 =k
and (1 - p' 1.21—&") are close 1o the same extent. This imphies immediately that the
function & — (1 — p* |21~k | for positive integers £ = — I modip - 1) extends to
continuous function defined on the p-adic integer nng 7, having values in £, We
write this function as 2, e, £k} =1 = p* ) Z(=k]).

We give here o bre! explunation of p-adic numbers. The reader who knows the
subject well can skip this paragraph. For cach integer n. we define its p-adic absolute
value to be nl, = p il p* divides w exactly (i, a/p" is an mieger but a/p ' is
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not an mieger | We simply put (0, = 0. Thén it is easy 1o check that this norm has
all the basic properties of the usual absolute value:
i) |l =0 x =0,

(i) Ly, == |x|elid
il
{unn} (o =+ vl < mad x| (] )
Then the function ply, v! = |v = i, is & metric and gives u structure of a metnc

space to L. For example, if p =5 5 close to 0 [3s = ), 25 =5 15 closer wo O
(1281 = :'I: and 125 = 5 15 extremely close 10 0 ([125]y = ;5. Thus. this p-adic
space is an outrageous workd hard to imagine for us living in the Euchdean world.
We take the completion Z, of Z under this metric (see [H93b, §1.3] for detals of
p-adic numbers). The ring £, is called the p-adic mteger ring. We write Q. for the
field of fractions of Z_. Then 4}, naturally contains the rational numbers and

Pl = |pz |z ek 7{; €0, :;;LF'"}Z the disk of radius p~",

The ring Z, 1s then a closed unit disk i Q. and hence, 15 4 compact ring, The fact
in (3) then implies that Z.E.',.l' ~k) = zri—kﬁ < bk — &', os long as k nml k' belong
to the set of mtegers [ = (o (= —1modip — |) and 0 < w & £}, It 15 easy 10
check that I is a dense 5I.J.1'l:-|.‘t of Z . (under the p-adic tapology ). Thus, 2 [=1)
extendds 1o a continuous function on £, having values in €, We can 1.1.'1":1". that £,
has values in £, using formula (1. The bmomial polynomial

wfy— [heisfr=pma1)

()-{ == e

i if =1

i5 a polynomial with rational coefficients. This can be thought of as a polynomial
function of » on £, having values in £ on the set of all pﬂﬂli‘-‘t integers. Then by
continuity, the values ()} fall in Z. for all » & &g, be, [{)]p = 1. Thus, the binom:al
Expansion

1+) =¥ (;]

il

converges in £, for all « € Z 07 |z, < |, That is. on the multiphicative group

W=z edu|z—1ip< I} =14+ pl. CE
the p-adic power =* = (1 = [z = 1))' = % = ('}iz = 11" 5 a well-defined p-adic
analytic function m v Here the “ peadic analyticiry” means that the function can be
expanded into an absolutely convergent power series at every » € £, This p-udic
power satisfies all the formal properties of the usual comples. power: = = 2",

= 1, and sovon. As 1z well known. the senes | = I-,. 15 a p-adic ':-illl'-'-l'l_'r GUEnce
and obviously § = wlz) = im,_.. =" € &, satshies ¢ = Thus, ¢ 15 & character
of £, having values in the subgroup g (of £} of the [p - 1ith roots of unity, 1ts
also easy 1o check Kerlen) = W (here we remmd the reader that we always assume
p o be odd), Thus, we can define a canonical projection = — {z) of £ onto ¥
by {2z} =iz )"z, Then we can think of the peadic analyie function s &= (20", and
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{2V =" n = Ui p -~ 18 lor mtegers . Then we defing the p-adic function
Celsl lve &, = (1}) by

|:.|,I_| -;.;.|. g) =i [} {2y I_I 'E..' -

Obviously this function C, has o singulanity ol s = 1. From (1) we Know the lollowing
striking formule due basically 1o Kummer:

(3] ikl =11- plit-k) for all positive k = — 1 modip - 1)

Later it was shown by Kubota and Leopoldt that C.(s) is actually a p-adic ana-
Ivtic function defined on £, - {1} and has a u:lllph' pole at v = 1. Moreover,
Twusawa showed the edistence ol o power seriesa @ & Z_[[T]] such that {.(yv) =
' =1} "' = 1) forw=1+p (whichis a lﬂ].'l-t'lnl-l.‘r:lcui generator of W = '.t". oA
peadic analyvtic function [a.....5,) is called an Iwoasawa function it there exists o
power senies P in ALY, AL Tor a peadically complete valuation ring 4 over X,
stich that iy, .. .5 =" —1,, . 8™ — 11, Thus, (e’ — 10,05 is an Iwasiwa
function. The formuls 15) connects the complex analytic function Cls ) and the p-adic
analvtic function {.[+) at positive integers & = — 1 mod{p - 1), Then it 15 nateral to
call {, the p-adic Riemann #eta function. We agn refer to [H93b, 553.4-3.5] for
the proof of these facts,

h2

Now we enter mto the principal subpeet of the note. Although the L-functions
we often encounter in number theory are functions of one complex or p-adic variable,
there is no apparent resson not to hwve L-functions of several vamables. Probably.
we pumber theorists are oo familine with one-varuble L-functions o notice the
following fundamental guestion:

Wiy do L-funcrions have onfv e variohbe?

An explanation 1o thes fac scems (o have been offered first by A, Wal. To
explain this, we consider the adele nng A of Q. The formal defimtion of A 15 as
follows: A is the subring of R = [].Q, generated by the disgonal image of Q and
Z < R, where 7. = 1. Z.. Here p runs over all primes mcluding 2. The Held
Q is considered 10 be a :.ui:mr:;t of the product B =[] Q, via the diagonal map

Q50 lo...mn,. . )¢ R [[L0Q, Therng Z is a product of compact
rings Z.. and hence, 15 compact. A% s casily seen, A = @+ £« R n the produc
Rx[1,Q Since Z - R1Q = Z, we know that

AJE = R Q/Z.
We put on Z < R the product topalogy of the compact ring Z and the number line
R. Then we extend this topology on Z =« R to A by translation by clements in Q.
Thus A 15 a locally compact nng. Elements in A are called adeles (see [H93b, 58.1]
for details of adeles). In particular, we look into the multiplicative group A" of this
ring whose elements are called afédes. If 2 = (2,) 15 andele, then = can be written as
tr + 2o with 2o © Z = Rand o = ©. Thus. there are only finnedy many mrmca- P such
that ||, # |, By defimtion, (2.0, 15 a power of p such that |2,.0z,], . Thus,

g

the rational pumber o = [ (=, . is well defined because (z.|, = 1 for all hIJI: fintely
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many primes p. Then jaz.). = |, and thus. az, = £°. We can also replace o by
—av, I necessary, to ensure that oz, € R, where =, denotes the component of =
i Rand R” is the group of all positive real numbers. This implies @z = 2° = R,
and thus, we have a nustural surjective group homomorphism i 2° — A" JQ R,
(2 =z, 1)) Itis then immediate thai

ZNQ R = {1}

Thus, + 1= an isomorphism Z* = AT /Q R, Defining the adele norm |=|, by
1Za ! [, 12, we also have from the above argument the product formula

mly=1 Toralae Q)

The notion of adéles was created basically to supply a good ool to describe class
field theory. We fix an algebraic closure @ of Q. We may identify Q with the totality
of all roots in € of polynomaal equations with coefficients Q. A Gulois extension
K/F in Q is called abelian if GallK/F) is an abelan group. Abeluin extensions
have a remarkable property that the composite of any two abelian EXtensions is again
abelian, Thus, there exists the maximal abelian extension writien F.( Q) over F
which s the composite of all abeliun extensions of £, The extension F.s is the fixed
field of the commutator subgroup of GallQ/F). A typical example of an abelian
extension of Q is the field generated by all Nth roots of unity for any given integer
N> L I we write { = exp{2my'~T/N). then the field is just Q(Z). Note that

py ={yeQ 12" =1)

{4 (nE(EINE])
[E/NEE eyelic group of order N

1

For each automorphism o of Qi) & ' takes £ 1o another Nth root of unity '
lola] € Z/NE). Since J™'=' is ugain a generator of the eyelic group gy . ala ) belongs
to the umit group (Z/NZ)" . Nuturally, erier) = alrlalz), and ¢ is determined by
the value aia). It is well known that a GallQUl/Q) — (Z/NZ)" is u surjective
tsomarphism. This, Qs contams Nth roots of unity for all . 'We can identify the
group wo. of all roots of umity with Q/Z = A/Z « R via Qs aexpilnia) € ..
Although Q. is an infinite extension of Q. we can still think of the huge abelian group
GallQu/Q). Observing that Aut{A/Z « R} = Z* wia multiphcation by elements of
£" . we have a group homomorphism, called the eyclotomic character:

(6) o GallQu/Q) — Autlp, ) = AullA/Z x Ri=Z° = A* JQ"R”

given by 07 = 0" Class field theory cluime that o is in fact a surpective isomorphism:
GallQy:/Q) = A" QR

This fact wis actually conceived, before the appearunce of class field theory, by
Kronecker as his fiimous theorem nsserting that Gy, 15 generated by roots of umity.
The analogous fact i true for any number field (i, finite extensions of Q). That
is, defining & locully compact ring £, = F “o A (2= APV a5 wopological spaces)
and regarding F as o subfield of Fy by F 2 a0 s a 5 1. we have & canonical Artin
reciprocity homomorphism: F' /F " — Ciall Fu / F ) whose kernel is the connected
componcit of the idele cluss group Cp = £/ F* and which is surjective. The ahove
identity 15 another number=theoretic ulentity connecting quite different objects.

L T e - f—
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For any infimite Galos extension K/Q, there 5 a natural topology on Galt K /QJ,
called the Krull topology. Its fundamental system of neighborhoods of 118 gven
by the set of all subgroups tht fix a finite extension of Q. Under this topology.
Gn!fﬁjﬁl 15 it compact group (see [NB&, L1]1. Then the lsomorphism o s m fact
an momorphism of (wo compaict groups.

since GallQ,,/Q) is wotally disconnected, it does not have many nontrivial com-
plex (quasi) choracters. Hiwever, the usefulness of characters for studying a given
group is something everyone knows by experience. In particular, complex characters
wre easy to handle Class field theory offers a way 10 get meaningful comples charac-
ters. The idea s to inflate the Galos group giving a nontrivial connected component.
We consider A" /Q” instead of GallQu/ Q1 =A" /(Q"R_. Then we have a nontnivial
group of quasicharscters:

Homgn (A" /Q°.C" 1
There are mfintely muny connected components in the space Hom,.. (A /Q7 A7)
which is represented by finte-order characters  of A” /Q”. The conmected compo-
nent containing o 5 somorphic 1o © via € 2 5 — J vilely. In particular, we look
at the prineipal component corresponding to the trivial 5

HomgulA" /27Q7.C" )= {Ixfy s & C) = C.

For any idéle =, we define s finite part =¢ by =2 Thiis, = hus the same
component as = at each prime p. bt s infinite companent is equal to 1. Note that
for each positive integer a1, |, |y = 0", and

£ I w
-y
[ - '..I- — = ; | ]
r ¥ AT i .I -ﬂr'*-
Tl | "

can be considered 1o be 1 function on the principal connected component
JII"'I'I'I.-_.."LIA !i‘u.|rr |

of Hom, (A" Q7 C ) cormesponding to the identity Charaeter This 15 the reason

that {(x) has only one complex vanable. Note that A" /7" Q" =R’ because A" =

Z QR and Z°Q" 7R = [1}. Thus, we again obtain

Homu!A* /Z°Q,C" | = Homgu(R.,C* ) 2 € vid (¥ — X7} s

which s the domain on which 2is | s defined.

L3

We now argue in the same way (0 show that the peiilic Riemann zetu lunchion
necessarily has only one variable. When we considered the complex zeta function
Zix), we removed the factor R at mfinity from the denominator of A" Q"R =
GaliQ../Q) 1o obtnn the right group on which L-functions are defined. Since the
Jomuin on which (v is defined is given by HomgmiA” ,."i'l'.J' LCT ), we remove
the factor &7 atl p (eoan the densminator i‘{,}' and insert R” to 1 the mfnity
companent. Then we expedt 1o have Homel A /U7Q7.Q0 ) as the domam of
the p-adic Ricmann zeta function, where U = RY « [, % - Note here that
the group A" /L7707 1% a quotient group of A JE Q" = GallQu/Q). Therelore,
ihere is a subficld X' of Qyp, such that Gal[ X/ = A" JLIPQ The field X is given
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by Q1P "y which is the fisld generated by all p-power roots of unity s we see from
the construction of o in (6). Thus. we have the cvelatomic character

(7] 2o AT UPQE = GallQO Ve Q) = 27,

which satisfies y12) = = for 2 & £ Since 7 15 & compact group Lt is a closed disk
of radius p° centered at 1), the image of 27 under the continuous homomorphism
lies in the maximal compact subgroup of QF, which 15 agan Z7 . For each finie
group G, wrnting A[G] for the group algebm of & over a given commutative ring A,
we know that

Hom,, (G. 47 | = Hom,. 4| A[G], 4).

Similarly. any continucus homomorphism o £° — £ induces modulo p* a group
homomorphism ¢, 1 £~ (£ p" L) " such that @, mod p" = ¢, for all m > n. Note
hete thian ZI,'_ = W o g, £, = W vih 5 v ' (e = 1 + p), and [(Z/p"&)" 5@
cyche group of order p* "(p — 1) [here we sill assume that p is odd). Thus, any
x€ Wr gy Il for some y £ EI:- Thit 15, &.{x] = 1 for all x € B .
Hence, @, must factor through Z_ /W = (Z/pZ)" . As a consequence of this
argument, we have

Hﬂﬂkx.nl.?:zr'. '?'r. i= !E‘i_l HI:JI‘I'I-_'_-.“E;"F*EJ e IEJ"F"II 1
- lim Homy, . (Z,[(Z/p"2)* 1 \Z/ ")

= Hm,,,,.,,.[z,.[i:ﬁ;, || A
where £ [[£]]] = imZ [[£/p" £ | is called the continuous group algebra of £
In peneral. for :m.‘h'pmlimt: group G = lim &, for finite groups G, the continuous

group algebra 15 defined by
2,061 = limZ,1G.].

where the trunsition map p: £.0G.] — £.[6G] (m 2 n) is obtained by p(Z u,2) =
Lra, plg ] from the transition map g7 G, — G,

Wiriting g for the group of {p — Lith roots of wnity in Z7, we have, as already
seen, £ = W o= p 11 p— | i3 invertible in an integral domain 4 (for example, in
Ly {F e ot p: & p1 $ oo )& E) and i A contains all (p — 1jth
roots of unity, then the group algebra Alu] 15 isomorphic 1o the produet of coples
of A4 indexed by characters of 4 having values in 4", We wrile & for the set of
all characters of g, Then g = (o la = 0...., p = 2} for the inclusion o g — 4",
Each projection of A[u] onto the component A indexed by e is sctually given by the
algebra homomorphism corresponding to eo®, Note that Z7 /W7 = g« (I]HT ),
and hence,

Zop = (W) = Z, (W )= [] 200707
7]

T

Z012: 0= [T 2.1w1
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Thus., we see than
Hom gy (L, L7 ) = Hamg - g1 L Z T Zx)
= [ Home. g 2,411, 2;)

o= ]

The last sdentification 13 gwen just because any Z.-algebra homomorphism ol
Z 127 1] mto Z, must factor through a component Z,[[ W] for a unique S £ 4. We
know that B s a evelic group of onder p”. Thus,

W |2 E T - 22T 4 T — 1) ey =14+ T),
Then it 15 easy to see (cf. [Wal2, Theorem 7.1]) that
A= Z W] = ZNTT = imZ[T)10 + T — 1.

Thus, any continuous algebra homomaorphism & of A into Z, is determined by its
vilue a1 7. Since limy, . 77 =010 A, lim. o &{r) = L and henee, dl1l =u' &
W, Thus,

Homy gt Z AW L) =&, vin@—slorgilT|=u

In particular, the domain on which J,(x) 15 defined 1 the component
Homz, .o Z WL Z,)

corresponding to the wlentity characier J = ', .
We now fix an algebrmc closure Q of Q.. Thus () 1 a subfield of C a5 well
as Q.. There is a natural p-adic norm | |, on Q, extending | [, on Q,. We can

take Homz_ i oot (AW 11Q, 1 in place of Homg . up(Z W] Z- 5. 1015 casy 1o
se¢ that

(8]  Homg . ool E 1] ﬁl = | {h = QI' T, I} =0 wiag=alT]

As we have already noted, (0" — 1105 is an Iwasawa funchion, e, (w' = L8 ) =
iy’ - 1) for ® e Z][T]]. Thus in fact, we may regard (a(5) as a function on I
given by x,(x] = @ix) for x € . This is the pomt of view taken in [172]. In
particular. the p-adic Riemann zeta function is legitimately of one variable.

4

The principke behind our argument m 52 and &3 15 to regard cach L-function
as 3 function of characters. Then the values of characters can be conswlered as
cigenvalues of the regular representation on a suitable space of functions on QH\A" =
GL,(Q)\ GL,{A). That is, for each function ¢: GLi Q) GLi (A} — C, we define
the representation B of GLi(A) by [Rigldliv) = elxg). A tymeal choice of such
spaces is the Ly-space on GL Q) GL (A] with respect o the Haar meusure on
GL,(Q1" GL,[A). Actually. for each Hecke character $, we muy regard J as the
eigenvector of the operstors Rigl: Rigld = Jgls with cigenvalue Jle ),

Now we explore the same question for nonabelan L-functions. The idea of
Langlands is to use the topalogical space GL, Q)1 GL.(A). The group GL. (AI/RZ
is a locally compact group having a Haar measure dpsle]. Sinee GL, Q0 acts
discretely on GL, AR, we have a fundamental domam @ m GLIAR) of
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GiL, (Q). We then define the ivariant measure g on v = GL. Q1 GL (AR
by [, @dulal = [, @duin]. We fix a Hecke character £ of A” /Q" and consider
measurable functions ¢ GL.(A) — C satisfymg

M ¢laczx) = Sziplx)  Tor all scalar matnces = € A and o = GL,(Q).

For two functions ¢ and &' satisiving (1}, the function x - Eﬁm':.u:l Jidet(x)) " is
invarwant ander left multipheation by R and right multiplication by GL,(Q). Thus,
we can define the nner product of such fanciions by

Ve | = J[‘Vl.'I_' vl Lo & ldetia )] dut v
o N

Then the Lx-spoce La(S) is defined with respect 1o this inner product. 'We can et
GLLAT act on L245) by (Rolgt@)ia) = élap). We thus have a representation R:
that satisfies (R (g o, B:(g)eé' | = [Sldetie) ) lg, @) Thus, the twisted representation
R:2 8 V=R 2127 )g) = [Sidet(g)) " R0 g)) is unitary und has a spectral
decomposition. 1115 known by Langlands’ theory of Esenstein senes [L76] that we
have

R; = GE-L o W {ﬂ} comtmuous '-'um}.

The continuous sum is a1 most (i — | -dimensional. We may also consider the regular
representation & on LylGL, Q1 GL.(A)) defined in & way similar to R;. Thus,
the regular representation R on L-1GL, Q) GL, (A}l has at most an s-dimensional
contnuous spectrum, and we write this fact spmbolically as

Ew éfr B i iy {@j (continuous s.uml.r.l'q} for n fixed £,

where 7 is the spuce of umitary churacters of G = A" /Q” (which is isomorphic o
the disjoint umion of = | R beciuse Homges (A" Q7,0 ) 1s a disoint union of C).
Now we nssume that = is cuspadal, ie.. & 15 realized on the subspace

Li3) = {r.'- £ L:ig) f glxm)dn = O Tor almost all x £ GL.,M'I} ;
N LA A

where in the above definiion v runs over all standard umipotent subgroups in
GL,(Q}. The representation on the space L3(J) 15 known to be decomposed mio
a discrete sum of irreducible representations in which each irmeducible representa-
ton occurs at most once. We then know that = us above can be decomposed as
@, mp & ey for local representations 7, of GL, (Q,) and n. of GL,(R). Morcover.
for all but fnitely many p, the representation =, has a vector m its representation
space fixed by A, = GL,|Z,). Such representations having & nontrivial fixed vector
bv K, = GL,(Z,) are called sphencal (or unramified). If n, is spherical and
irreducible, then the vectors fixed by K, form a one-dimensional space iz, We
then define an action of the double coset K gk, for g & ML) 7 GL,IQ.] on
Fiz.! by

K gk, - E?:-j:. v for any disjoint decomposition K¢ K, = H""‘H’"

Singe xl .’il,.g.li',.': - ks an average of e e over o double cosel B gk L, it oz Gills in
Fiegl Thus, ¢ b5 an eigenvector of all operators of the lorm ol T =3 =K gk, ).
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We write 21T for the agenvalue of T, We specify these operators as follows: first,
decomposing the set (¢ © M. | detig)Z, = p™&7} into a disjomt union
of double cosets K gk ., we define the Hecke operator 7. by L.=(K gk} We
write Tiip)h = alK. = K lor the dagonal matrix o, having ¢ p%5 and w -7 s as
dwgonal entnes. Then we con show [ShT1. Theorem 3.21) that the formal power
series 300 AT X s oa rational function, and in fact, we have

L E.-:I]".. X =L X1 fork: (X)= E e e T X

Wedefine Lis,z, o) = L, . tp "1 il & op, is sphencal for each quasscharacter
i ol Q. There s a representation theorenc way of defining a polynonual L, ., 1X)
of degree < m with L. ., (0} = | even for nonsphencal =, x5, [GIT2]. We define
Liscwa )= Lo [p 71 ! for such 7, and 5. and we set

Liv,msn) ='l-l Lix,m, cm,) for cach Hecke chiracter o: QA" — €7,

which converges absalutely if Rels ) is sufficiently large, has an analytic continuation
to the entire complex plane. and sutishies a good functional equation [GJa72). Thus,
we may regard Lis= g ) as a function defined on the connected component of the
spectrum, which s somorphic to the connected component of the space ol Hecke
characters Homy, (Q° A" C" lvia z <o +~—=n. Thus. Liv, a = gl is of one vanable

LS

When we consider the commiutative algebraie group G = GLI1), there 15 a sur-
fective homomeorphism GL, Q) GL, A onte GaliQ,.,/Q. Thus, the automorphic
side GL(QV GL (A} and the Galois side GallQ.-/Q) are directly linked. In the
nonabeliun case, the sutomorphie sde 15 just a topological space GL, Q) GL, (AL
and at the Galois side there is no way 1o define naively an extension Qi ., of Q
which replaces Qu, = Qyy  in the sense thit the irreducible factors of the regular
representation of GL,(A) on L-1GL, Q) GL, (Al comespond 1o the irreducible
representations of Gal(Qy, , /Q). Thus, the automorphic side and the Galos side
seem 1o come apart in the nonabelun case

Even in the sbelian case, we need to replace the actual Galois group by QA"
1o get many complex quasichimcters. Thus, we need to find & good group extending
GaliQ/Q! for the Galois side. The first attempt 1o find such 4 group was made by
A, Weil. He tound. up o isomorphism, a system of groups called the Weil groups
[W51] isee alse [TT9]): To get Q7 A" . we extended the Galois group Gali(),. /(]
by the connected component of ©F A®. Thus. to get the nonabelian version of
QA7 we need to mflate the total Galois group Gal(Q/Q! by a subtable connected
component which hus to be compatible with class field theory over all hnite extensions
FQy. Thus, the Weill groups W are indexed by finite extensions £/Q and are m fact a
system of triples (W (2. {rp |) consisting of a locally compact topological group Wy
satisfying Iy 2 W, if £ 2 F, a sunective homomorphism : #y — GallQ/Q) of
topaological groaps inducing Wy /I, = Hom, (E, Q) for all finiee extensions EJF/Q
and snother isomorphism of topological groups ey Cp 2 W7 < W ]IV W] for
each fintie extension £/ F m Q, where [Wy - W3 | 15 the closure ol the commutator
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subgroup [, © W, ). The system is characterized by the following properties:
(W1} The compaosite: € —— W7 T Gall E ./ E) gives the Artin reciprocity
map of class field theory for E;
(W2) The following diagrums are commutative; for & = @lu ) € Gal(Q/Q) and
for E/F

r —— iﬂ
{' — f_"."
F | |r

L, e W ) e W™

[T [T | [tronsfer.  norm ' i l
; | ' "

5 gl - ——— e

[ I ——i= L H i p - |.-|-'| .

where the transter map 15 defined as lollows: For each group G and its subgroup,
choosing a complete representative set £ for H'\ G, we define the transfer r: G/[G - G]
— Hf|H : H] by ol - G =], 4 0. mod{# - HY;

(W3} Writing H'; g = Wy/| Iy - W], we have that groups. 1y = hm Wy
as topological r

The existence of the system { W } is shown by using the data of the “canonical
I-cocyele” appearing in class field theory. and hence, is highly aruficial {see [T79] tor
the construction). Similardy, we can also construct the local Weil group by replacing
finite extensions £/ {resp. € | by finite extensions F/Q, (resp. £ | and by using
local class field theory in place of global class field theory. In this local case, we
can actually see the group in an explicit manner. Write &y for the residue field of
an algebraic extension £/Q.: particulir, ky = k is an algebraic closure of ky.
Then Frob: x — &% for g = ¥ &y is a topological generator of Gial (& Jky ). Then IF
is capomcally given by the subgroup of Gullllll,,."F | consisting of amomorphisms &
which induce on & 1 power of Frob, The kernel of the natural map: W — Gallk &y )
‘with dense image | is called the inertia subgroup of I, We write [, for the inertia
group of Wy . Then we define 0 F* — W by the reciprocity map such that
rela) induces x —x™ - onk fora e F* and o =[F : Q] Then the compatibility
of local and globul class field theory implies the exstence of a natural morphism
i, Wy, — Wy making the lollowing diagram commutative:

Wy, —=— GallQ,/Q,)
a | n

GaliQ/Q).

Wy
OF course, the last vertical inclusion map depends on our embedding of Q into Q,
We have a natural  Frobenius element Frob, = o, (Frob) in Wy module [, For
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any continuous representation £ WY, o« End, (17) for o fimite-dimensional C-vector
space 1, we consider the subspace 1’ fxed by the werta group [,. Then £{Frob,)
has meaning on 1" because Frob is determined modulo /.. Then we define the
E-function of £ by

n &)= ]__[Llu:lllrd—p &{Frobg))l 171

As A, Weil proved. these L-funcoons (which converge on o suitable nght halt-plane|
have meromorphic continitions on the whole complex plane and sausfy o good
functional equation. Our desire 1 to find o good clussification map

t1 {isomorphism classes of continuous irreducible representations of
Wy into GL,(C)) — llrmlumhh.- representatins OCCUITIng on EBI.'T'I:J}

preserving L-Tunctions (1.¢, Lisirl) = Lis.a)) and to describe its image. We
can think of the corresponding problem for Wy, . This problem is called the lo-
cal Langlands conjecture [T79, 4.1.7]). which hus been proven for muany values of
A (see [HeBS] and [Ku87]), that s, supercuspidal representations of GL.(Q,) are
classified by representations of the local Weidl group via L-functions and its £ -factors,
Actually, enlarging the Weil group a hute (the enlarged group is called the Deligne-
Werl group W, b we can extend this conjecture 10 a correspondence between all
semistmple representations of W), and local admissible representations of GL.(Q,)
isee [TT9. §4]). The local conjecture 15 successfully solved because the local Galois
group is solvable (that 15, it can be approximated by abelian groups). The Weil group.
comstructed out of all known abehian data from class field theory, tries to describe
nonabelian objects. Therefore, it i like peering mto the whole nonabelian workd
through a small hole of the established abelin theory. Since the global Galods group
15 highly nonabelian, the image of 1 is small [T79, (2.1-2.3)]. The representations of
Wy consist of representations of Artin Lype, e, those having finite image | factoring
through GallQ/Q)), representations of Hecke type. L. twists of representations of
Artin type by Hecke characters. and induced represemtations of previcus types. We
call sutomorphic representations in the image representations of Weil type. Even the
Hasse-Weil zeta function of modular elliptic curves without comples multplication
cannot be associated to an automoerphic representation of Weil tvpe. Thus, we need
10 look at all the algebrine objects, simultancously, which vield “good” (abelian and
nonabelian} Galoss representations. This idea is first conceived by Grothendieck as
hes theory of motves and is later elaborated by Deligne [DMOSS2). Admitting the
standard congectures, we see that the citegory of motives is (Tannakion and | equiva-
ket to the (Tannakian| categary of algebraic representations of a huge proalgebraic
group = which is an extension of Gal(Q/Q). Al irreducible aleebraic representations
of the motwvic Galois group # should be somehow classified by algebraic automorphc
representutions (Langlands’ hypothesis), but even the formulation of this expectation
1. not yet clear (see [C90]). Here the word “algebraic™ means, on the Galois side, a
morphism of the proalgebrasc group ¥ into the algebraic group GL(n) and, on the
- automarphic side, that the finite part of the automorphic representation is defined
over a number field
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Under the somorphism oo GallQy Q) = A" Q"R . the group £ corre-
sponds to the mage of the mertia group 1. at p in GallQ/ Q). Thus, it 15 natural
to call a Hecke character £ QA" — € unramified at p if J s trivial on Z7. A
Hecke character S s unramified @t all but finitely many primes p. A Hecke characier
£ iscalled algebrme if Sz = 27 for 2o € RY. Thisdefinition is compatible with the
defminon of algebraic automorphic representations, 1.e, & is algebraic in the above
sense il and only if J(z] stays in a number field E for all = & A]. According to
Weil, we can attach 1o an algebraie £ a (continuous) Galois character J - into E |
for the 7 -adic completion E » of E for each prime ideal .# of E. The character 2,
s characterized by the lallowang properties:
(il If p is prime 1o # then $ - s unramified a1 p if and ondv if § 15 unramified
ul
(] If p s prime to 2 and £ 15 unramified a1 p, then £ - Frob, ) = $(p, ). where
Py 15 the mage of p & Q (but not the image of pQ~] in A",

We then define

Lisigl= H (1 = &ipshpt1-! = H i1 =& +(Frob,jp~ """,

P amrammigie:] {# urramified

Thus, if we conssder Gulois characters having values in an ¥ -adic feld, then we do
nol need to enlarge the Galois group. Thes (act is partially true in the nonabelian
case. To cach (Grothendieck) motive My of runk n with coefficsents in a number
field E, we can associate o compatible system £ = (£} - of #-adic Galois rep-
resentations indexed by prime sdeals of £, Without referring 1o motives, we can
define a compatible system £ of 7, © GallQ/Q) — GL,(E | as follows. First of all,
<.+ i5 unramified outside N for an integer N independent of o ] is the residual
characteristic of ¥ 1. Let V(£ /) be the representation space of J - and consider the
subspace 1°(Z, )" fixed by /.. Then {{Frob,) actually acts on F(3, )%, Here the
system £ = {J, } » 15 called compatible if

LX) = detlil — X3 «(Froby ). o ) & E[X] for all p outside N/

15 independent of ¥ We then define

Exl) =L L)\
r

When 5 15 attached 10 5 motive M, this L-function 15 called the L-function of the
motive MW and s wroitten @ Lis, M1 I the classificstion map referred 1o as the
Langlands hvpothesis

¢ |sunple motives} — {algebraic ireducible cuspidal automorphie representations |
exists, then it must satsfy the idemuty of L-functions: Lis M) = Lis. M)

i

We now turn to the p-adic case  Hereafter, unless otherwise mentioned, we
suppose that p > 2 and » = 2 f(re, we consider the algebraic group GL(2) )
The Tundamental guestion is:

Whai type of space showld we take as a p-adic analog of LY1E)7
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Here we only think aboul automorphic representutions of p-power conductors 1o
make our argument simple. Such representations always possess a vecior mvariant
under the group U'ip™ ) of the matrices i GL:(Z) which are umpotent at p. Thus,
even in the complex cuse, we can replace L2105} by mvariant vectors under L' p™ ).
There are several dilferent chosces of such analogs. A naive {algebro-geometnic)
definition of the space of p-adic modular forms is possible [KT8], but here we mive a
cohomological definition of a p-adic analog of £71J) which can be casily extended 10
GLi2}y tor all number felds £, We consader the following open compact subgroups

of CiLa0&;

L'.,;'._-{(.:’ :r} :_.-,..\-.'(:‘: :;)_(:. ;.}mmp’i} and
E'I;r"'-ﬂl'."ff'l.

The group GL:(R) acts on C-R vin ;2] = <= fory = [ # | }. We then set GLI(R) =
(v € GLAR) | 1K) = H | Tor the upper half complex plane i = {= £ C | Imiz] = 0}.
Then for GLI{R) = {x « GL:R) | detix) > 0}, we have GL; (R)/C = H via
o e gl = 1), where €, = SO-IRIR " is the pull-back image of the standard maximal
compact subgroup of PGL2(R). For easch open compact subgroup 5 of GLA(A, ),
we consider the guatient opologeal space

9

Yi5) = GLAQN GLaIAYSC, = GL, Q) GL; (ANSC L.

where GL- (Al = GLyIA, ) « GL,{R) and GL; Q) = GL:1QI 1 GL; (A). IS 18
sulliciently smiall =0 that § © Ul p' | for sone p° = 4, then X085 ) 15 an open Biemuinn
surfaee with fmitely many connected components which are somorphic te VM for
some congruence subgroup [ 1= SL.0E T 5) of SL=0%) ([SETY. Chapier 6] and
[H93b]). In particular, we wrile X p' ) for X{(Lp' )L

Let A be a complete valuation ring in ﬁr with finite residue field. and letr K be
its quotient field. Assume that [K Q] < oo, Take an A-module M with an action
of

&, =, =detlu,ln, " € GLAE,] | u € §}.

Then we let GL-{Q) (resp. SC. ) act om GLalA] < M from the left (resp., from the
rght) as lollows: alx.mir = (oo ). This action 15 a discrete action if we use
the discrete topology on M and the product topology on GL3(A] « M. We then
define the quotient space M = GL2QV {GL:(A) = M}/SC, . This space M is
a covenng spuce of the Riemann surfoce X15) which is locally homeomorphic 1o
X5 We consader the sheal of continious sections of M = W, on Y5 We alsa
write M for this sheall Then we can consider the cohomuology groups

HUXISLM)L,  HAXSLM), and Hi(XIS), M)
where H'IVIN), W is the vsual cohomology group of compact support and

Hel XIS M is the natural image of K (V{51 M) in the wsual cohomology group
HUXISL M) (see [H93b, Chapter 6]). Then if § & W are two opent compact



Al EL S TSNS AN HECEE ALGEHR AN i

subgroups, writmg M for any one of H', B!, and ), we have the restriction map
and the trace moap [H93h, 56.3)

resy f HOTNES )L MY — HUXT), M)

and
Trep: HUXTWL M) — HHXI(S) M)

Take two open subgroups 5 and 1. Let W =aSa ' 0 F, and let 07" = o~ W =
STa 'Vafora £ GL:A, ). Suppose that M s actually a module over the
semigroup generated by ol 5 amd 1 in GL=(Q), ). Then we can define a morphisim
of sheaves [a]: My — M, . by [allcom) = [va.aim). It s easy 1o see that this is
well defined. Then by the funcioriality of cohomology theory, [a] induces a morphism

[a]: HIUXIW)L A — HXIW") M),
Then we can define the Hecke operator [Sod7]: #1X(5), M) = BUX (V) AM) by
{.':l.l'l I"] Tr| mi 'ill.'li ' flfﬁl.‘ i

It is caisy to see that the operator [So 1] depends only on the double coset Sal” but not
on the choice of o, We now apply the above argument o the fbllowing modules. Let
s & )" — 4" beacharacter. Let 8 be any A-module. Let M = Lin. v, 5 B)
for (m,v] & Z° (1 > 0) be the A-module of homogeneous polynomials in B[X. ¥] of
degree i Here BLY, V] denotes the polynomial module (in X and ¥ ) with coeflicients
m B, Welet S(p' ), act on PV Y] by

(8 WP Y ) o= JldVdetin) PULX Y ') for w = (H -:: ) ;
u

Then we write = (n, v,2: B) for M. For the seTgroup

A Iﬁ — {n’ = {:‘ :';\} £ GL:'IA.-.I i r -H:izp'nﬂp_: EI:I‘_‘_; IJ'E;-}a

we let A" act on Lin o 5oA) setting
e PLY. Y ) = Jla,ldetla)” PULY, Y ), )

Thus, we have the operator |5as] for 0 £ A, To the triple (n, v, 5, we attach a
character of the group 7. L2 piven by (w2 v w"z""-"Z{z). Then it is known
that HL0X (p ). 20 v, 35 K D) = 0f the character sttached 10 (n, v, &) does not factor
through G =27 « (A" /Q" U'"R" ), where we consider G as 1 quotient ol L7 « 7
viin the isomorphism #: A" Q" L/ FR” = LI £1} [see (7)), We call a charucter i
ol G arithmetic if there enist mtegers o = 0 and v such that 1o a small neighborhood
of | in G, & coincides with the character: (w2} i ' 297,

An anthmetc character ¢ of G determines the data (n.e.2). Thus, we shall
hereafter write ¥ (2o 81 for 200, v 8, B). Using this action, we define the operator

L | =
L oz

Tz} maov 8 ( . “) ':.J. (S=Up'llizeZ =Afnd).
There 1s another set of operators acting on ML Xip' b %z B)) for Yip') =
XiULp')). Poreach - € F with -, = Z°. we can think of the action (=) =

wil.zp 1 ' [828] We have written 1'(g) (resp.. i) as gl lresp, Tsig)) for primes
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¢ prime to pon paragraph 4 (see (L)) These operators [Fim), (23] are mutually
commutative and compatible with the restriction map

res, . Hu(X{p ), 20 Bl) — HplXip' ). Zlp:B)) fors>r
Therefore. we have
Tizloms,, =res . aT(z) amd {z) ores., = res., of=).

To define & Hecke algebra, we can take as B either K or K/A. The two chosces of B
yield the same result. We deline the Hecke algebra h.{p": A} to be the A-subalgebra
of the A-linear endomorphism algebra of Mo X(p' ), F o B)) (B = K or Kid)
generated by T'(z) and (=) lorall = € Z. The algebra h.(p"; 4) is commutative with
wlentity 7'(1) and is free of finite rank over 4. Therefore, it 15 & compact ring. The
restriction of these operators sctingon ML X (p' ). Z (o K1) w HL X p' ), e K))
viekds an A-algebra homomaorphism of b, (p'; A) onto h.(p'; A) for 5 > r. We then
take the following two limits

F(Blg=HpXip™ ), g BY) = lim Hp X (p" ), Fip: B))
and
b (p™: Al =limh,(p"; 4}
Then the Hecke algebra b (p™ . 4) s a compact ring and naturally acts on #(8)
In fact, we can define the p-adic topology on 7 {K) so that the natural images
of [p 7 (A)} form a fundamental system of neighborhoods of 0. Then the Hecke
algebra acts on #7{K| via bounded operators. We may tuke the p-adic completion
FI(K) of 7(K) as a p-adic analog of the subspace of L2(Z) [or even the symbolic
continuous sum [ L3 dC) fived by Ulp™ ) =7, Ulp'). The important fact is that
the pair
(. ip™ A {T(z). (=1))
s independent of . Hence, there exists an somorphism of b, [ p™ 4 onto b, | p™ 4]
for any two anthmetic characters & and w of G which takes T(z) to Tiz) and =)
to (2} [HEM]. Thus, we may write this universal ohject as hyg = hi p™; 4),;. Then
the algebro-geometne spectrum Specih) s a p-adic analog of the complex spectrum
of [ L3I 1dZ. It seems that in the p-adic case the spectrum is large compared 1o the
complex case. We have two continuous characters

A" JUNQIR = L3 NEN} — by 20 (2
il
TZp = bgrwe— Tlu)
This extends to an algebra homomorphism
0] T 2 IG]) — by tand T x { }: Z)|W = W] —bg).

We thus propose to tuke the space Spec(h)(Q ) = Hom -aig (L Q) Lor s irreducible
components ! as a natural domain on which modular p-adic L-functions should be
defined. As was already seen in 53, the connected and irreducible component of
Specl £.[[G]]) 15 given by Spec Z.[[W']]). and Epnc\lf.,[.[ii'ﬁ;llﬂrl 15 wsomorphic o
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the p-adic open unit disk D (see (5)). Smce the morphism (10 induces a covening
map Specih)(Q ) — 0 = D), we are templed to conjecture

CoMIECTURE, T dimgerssdons of eaell frredueibe component of Spncl.l]fﬂ'luj iy i
pecilic space 18 greater tan o cgual o 2, Moreover, the natiwral covering Specth) —
Specl £ [IW =« W) v domimant o coch trredueiile compenont,

Here we imphatly assumed that b is Noetherian, We will discuss this gquestion
later (Corollary 3). The compecture also mplies that the Krull dimension of the
coordinate ning of each irreducible component is greater than or equal o 3. Here for
the first time we encounter the situation where the dimension of the space on which
a p-adic L-function should be defined 15 larger than 1. We will later see that some
irreducible components are finite covenings of D« D, and therefore, have dimension
2 [Theorem 6 and [H93h, 17.6]).

We can almost automatically extend the above definition of h to any number
field . We briefly explain how o define the p-adic Hecke algebra for GL(2) .
Sice A = Ay x Rfor Ay = {2 & A | = = 0). we have Fy, = F, = Fg for
Fa, =F2pA; and fg = F g R Let I be the set of all fickds embedding F into Q
and fix two embeddings (. Q — Cand i,: Q —Q,. Let 4 and K be as above, but
we assume that A contains I for all o £ 1. Let € be the mteger ring of F, and sct
Fp =8 Ty dy and & = 2 L, which will be regarded as u subring of Fy . Then
we define subgroups Ul p" ) of GL:(Fy ) in the same way as (9) replacing F A by .
Similarly, we write €. for the pull-back image of the standard maximal compact
subgroup of PGL; [ Fy) in the identity (connected ) component GL: { Fy). We define
a topological group G and ¢ by

G=8 = (K [FTUVE | o8 xid |F7) =G,

where U = {z e #7 |z, = 1}. Itis easy to see that G is un open compact subgroup
of G. A character o0 G — K is called arithmetic if there exist [ -tuples of integers n =
(e = 0y wnd o = (1 1,0y such that on & small open neighborhood of the dentity
of Gr. g comerdes with (uw, =)= w' =*°%, where w” = []_., w™, From an arithmetic
. we recover the data (n v, ) (which we write as {nlp), vlp). Zlp)1 il necessary),
where J is a finite-order character of @ given by $iz) = {l,z)z"" . For any
A-module B. we consider the polynomial module B[, ¥, L., with indeterminate
(Xar ¥oloor. We write Lig, B) for the space of polynomials homogeneous in each
par {Xe, ¥l of degree uy for the f-tuple w = nip). 11 ¢ factors through (6 p'#) <
then we get L'(p'} act on Liy; B) by

IL':| "F{_r‘. o ;:H?‘Jdlﬂ'll'.' PliX,. F.--II"I.II for i = (" :}'
L J

For the semigroup

\ by . :
(A} A= {n - (‘: r}] EGL:Fy. ) | @, € M:0,) 0, Flcep d'-‘,}.
we let A" oot on Lig: B by

o' PLN;, Yol = &a, ) dotlog, ) PULY,. :I",,:'u';:.
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Them for cach r. we can define a sheal (2 B) of locally constant sections of the
COVETITE space
GLAFVIGLAF ) = Ll BHU p 10

BT

Alp' ) = OLaF ) GEAF U p" W5
The topological space X (' ) s a Riemannian mamfold of [real) dimension 2y + 3
if r 15 sufficiently Jarge, where /) (resp., 1) 15 the number of real (resp.. complex)
pluces of F. We then consider HL X p' | = 1@ ). We can define Hecke operators
scung on the cohomelogy group for § {p) by

: 4
sevoedadt 0¥l wuaa o
riz)==s; L.‘-.-tl” :;].\J forzeX =FnNF,

and

I '|.‘~':."..] for - € F with =, & &,
n the same manner as in the case of F = Q. For each prime ideal # of @ prime
w p, wewnte 7.7 (resp., (F) ] for Tim) for a prime element = of the #F-ndic
completion @ » regarded as an element of F ;. The operators T0(.¥ | and () are well
defined independently of the choice of = We know (see [HaB7] and [H93a]) that

HulX{8).Fa:K) =40} nlgl20and j¢ [y + ro, 0+ 2l |

and for all j & [ry « riry 4 2rz] the d-subalgebras h_(p': A ; of
Endg (. X1p' ) Fla: K1)
generated by all Tiz) and (=) are canonically somorphic 1o cach other. Thus, we
may concentrate our attention on FRIX(S ) 2 (e B)) for ¢ = 1y + r- when 8 is
A field of characteristic 0. We may also define h.(p'; 4) by the A-subalgebra of
Ends (Ho X (p" ), 2w Kf4))] generuted by all T(z) and (=), For this algebra, we
sctually need to consider H,. for general . but for simplicity, we discuss only the
yth cohomolugy group. Since we have a natural map of sheaves 7 Fig K] =
F g Kfd], we have an A-algebra homomorphism
i g A = b Al determined by hom=noplhl

MNaturally g takes Tiz) and (=) 1o Tiz) and (=), and hence, p i sunpective. In the
S AANNET s in l,h_:- s of £ = 0 we have wo natural projective systems of
triples: (h.(p" ). T(z) (z)}, and {h.(p':A), Ti=), = b We form the following
two linnis:

fhlp™: ), Tiz1. (23} limih (" A) Tz} (=5}

and
{he(p™ AL TIz)02)) = lim{h, (p"; A), T(2), (2)}.

We then ask
Quesnos 1. Is poan womorphism for e = 1,2, .., x?

- It known that ¢ 1s an somorphism when F = Q because HUX [ p' 1, K/4) is
divisible. When F s totally real. it is expected that Kerip) is small {for example, is
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torsion or even pseudonull over A[[G]]1. but the pseudonullity is not yet proven. If F
has comples places. the answer 10 Question | is known 1o be negutive in some Gases.
Writing ¢ for complex conjugation. it is known [HaB7] that #,(X(8). 2@ K1) =
[0} if m. # n, for some o < J (see also [H93a]). However, there are plenty of
examples of nonvanishing of H,1X 181, i@ K /A1) even if n = 0 {[Ta], [H93a]).

Questios 2. Are the algebras by p™> 4] and k0 p™, A independent of » if
nigl# 07

When F s totlly real, it is seen in [HE9D] that b.(p™ A4 ) is independent of .
There 1% o partial result of this type for the nearly ordinary part of the nng h.(p™: 4)
valid for arbitrary F [ Theorem 40

QuasTion 3. How mumy connected components does Specth,{p™: 417 have?

This can be mterpreted us asking: how many congruence classes modulo p are
there of the eigenvalues of Hecke operators of p-power level” It is classically known
[S¢7$] that there ure only finitely many connected components when F = Q. and it
is not hard 1o extend the prool of the finiteness in [Se75] to totally real F, because
we can now attach a Galois representation to such u system ol eigenvalues ([TaR9],
[BREY|

We decompose G = 4 « W ior u finite group g and W somorphic 1o £, lor somé
d = d{F) > 0. We always have d (F) = [F : Q] +r:+ | +dip F) fordip F) = 0
and §p. F) = 0 if the Leopoldt conjecture is true for p and F. Each irreducible
component of Specl A[[G]]) is somorphic to Speci A[] W] whirse space -.'ifﬁrv\ﬂluﬂl
points is isomorphic 1o the product of & copies of the open umt disk: 0« - = 0.
In particular, the [Krull) dimension of A[[W]] is o + 1. We have a natural algebra
homomorphsm

iy AG] —bhoip=:a) and T = (2 AllGl] — ko lp™:4)
Thus, Specth, [ p™: 411 and Specll.(p™ 4)] are covering spaces of Spec] A[[ W]

Question 4. Are there some irreducible components of Speclh (p™:4)) or
Specth.(p™: A} that dominate Speci || W]))7
When F s totally real, there are such components: the immeducible components

of the nearly ordinary part (Theorem 6). When # has some complex places. the
answer ks probably negative [see Theorem 6 and [H%3a, Theorem 3.2]0

W

We now speculate why we expect that byl p™:d) ;15 independent of ¢ (as long
as mle) £ 0}, and at the same time we explain how to construet the maximal GLI2)-
extension Fy,y o . unramified outside p which is the GLI2) analog of Qg0 =
Q1) Let b (pid)pir=1,2 .. 5c) be the closed subalgebra of b, (p's A
gencrited over A[[W]) by Tiz) with =, = 1. It is well known from the theory of
primitive [or new) forms (see [MIB9, Chapter 4] for F = Q) that &7 (', A1 is reduced
(e, has mo nonirvial mlpnl:nl clements ). since n[l‘;-'" W “: A 1 the Flﬁ'ljli'l."tl'i'l: liman
of (A7 (g )b, T = B p =i A) is also reduced. For any profimite local algebra
R aver A[[W]] und an ] W]}-algebra homomorphism «° A5 (p™ Ay — R.a
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continuous Cralods representation = GaliQ/F) — GL: B} i5 called A-residual if the
following conditions are satisfied.

(R1) = 15 unramified ouside p;

(B2} for the Frobenius element Frob . for each prime ideal % prime 1o p, we
have

deti 1 — w(Frob )X ) = | —A{T(F X + NPT )X

The existence of a <-residual represemtation is known, when F is totally real, in the
following cases ([MB9], |GvBE], |WiSH], [TaR9]. [BRR9], [H8%] [HT93b), [H93b,
§7.5]);

(e} R s Beld

(it R 15 un imegral domam and for the maximal ideal » of R, the (imod «)-
residual representation 15 irreducible {see Corollary | below);

(i) the {4 mod .« -residual representation is absolutely irreducible.
Thus, the pomts of Specth ©') parametrize residual representations. However, there
muay be several J-residual representations for 4 given point . To get objects that
are parametrized exactly by points of Specih '), we introduce the notion of pseu-
dorepresentanons first given by Wiles [Wik8]. Let & = & be the Galois group of the
musimal extension of F unramified outside p. Let x be & [continuous) representation
of G e CeL-0 /). We assome the exislence of an element ¢ £ & of order 2 such
that detinic)) = =1, I F has a real place v, the complex conjugation at v s often
taken us ¢, Then by the assumption that p > 2, we may assume that

il {x ﬂl l;l)

For cach @ € G, we write (o) = ("7 7"} and define 4 function x: G x G — R

i ifen
by xia.t) = blaleir). Then these functions satisfy the following properties:
(PRI As functions on & or &, a.d, and x are continuons,
(PR} alot) = alalalr) + xia. t), dier) = die)d{t) + x(r, o), and
ctar, pp ) = almluiplxin, p) + oy Witixie, p)

+almjad{phele.y )+ of(r)d (p)xia, y).

(PR3] all) =il =dle)= 1. alc) = =1, and
ximp) = xlpzi=10 'If_P =1 &re,

{PEA) ximtixlp.nl = xlagixipn)

The properties [PR3) and (PR4) follow directly from the defimition, and the first hall
of (PR2) can be proven by computing directly the muluplicative formula

(uan Blar) (u-:fl hir) ] _ fular) Mlor) )
clm) rFIn_-J elr) dir) )~ Lelor) dlor) [°
Then i sddinion 1o the frst two formulas of [PR2). we also have

blorl = wiajbiri+ bieldir) and elor) = cielolt) + dialeic)



AEHE LFUMOTIONS AN HECKE ALGEBRAS T8

Thus, we know thar
xlotopr) = Motlelpy) = lalajbic] = bMaidiziieiplelz ] +d{piclyl)

alelaiyixir. pl+alyidic)xio p) + alohdiplxie.p)

+ '“‘“‘”i’”-"'ﬂa;'j.

For any topological algebra K, we now define a prewdorepresestarion of & mio R o
be a triple n" = (a.d, x| consisting of continuous functions on & and G- satislymg
the conditions (PR1-4). We define the trace Triz') (resp.. the determinant det(='))
of the pseudoreprésentation o' to be u function on G given by

Trin'Ve) = alal+dlag)l (resp., detin'}e) = ala)dia) = sia.a}).

Then we hinve

ProPoOSITION | (Wiles), Lot 2" = la, o, ¢ ) be o pyindorepresentation of G inio an
imtegral domatn B with quotient field Q. Then there exists ¢ continuons represenialion
121 G — GLAQ) with the same trace and deteriminamt as n'.

Here we only poim out how o construct the representation = out of x' (see
[WiBR]. [H93b, 77.5] for a detailed proof). We divide our argument into two cases:

Case 1. there exist p and 3 © & such that x(p.y) £ 0,
il

Case 2. xlmrl=0forall .1 in G.
Case 1. We define =ia) = (7 "] by setting

ild | el
clo) e vipe) and bea) = xla p)felp v)
Then it is easy 1o check using (PR2, 4) that = actually gives 4 representation.

Cast: 2. In this case, by (PR2) we hinve alo ot = alor) und d (g 1f(x] = do7)
for all e r = &,

Then we simply put ={er} = (" ° | which does the job.
The following corollary is obvivus from the above explunation,

CoroLiary | Let R be a profinite locad T ~algebra with maximal ideal =, Let
r' = la.d, x) be a prevcdorepresentation of G inte R, Suppose there exist p,y € G stich
thar x{p, 7)€ R™, Then there exists o continsous representation m; G — GL2 R} with
the same trace and determingnr as =", In particular, if the Galois represemation into
GLy R/ = | associared ro n' mod = cxists amd is frreducible, then we have o contineous
represemtation 7m0 O — GL:R) with the same trace amd determinand as x'.

We wrnite & for the residue field of 4. We consider the category & consisting
of all profinite local A-algebras with residue field = For two maps o X — 2 and
F: ¥ — & of sets, their fiber product is defined by X =, ¥ = [ix,yle X = ¥ |
alxl = fiylt For three objects R, R, and R in & and morphisms o, K, — R,
there exists a fiber product R, #» B: in & that is gven by the set-theoretic fiber
product. We write 70 R =g R — K, for the projection map, Let #:5#{R) be the

L=

e N T R T T R S P S T e



idn HAKL AL il

set of all pseudorepresentations {with respect to ) of Gy having values in the ring
R. Then we hove a matural map

(hn)
7 FRIR xRy — FRR) g FR(R) givea by pixl=prem x pon

ProposiTios 2,

(i} The carmamical miovpltism 3@ PRIR) « g Ra| = PR Ry % sy PRIR) isu
foffe e rian.

(H) (Wiles) Led o oo o D dwn apdemiols of B, Let-rla) avd w4 b pendforepresen-
tations it Rl and RS, respeerivel. Suppose that wlal und =06} are comparitle:;
thaar i, there evist funciions i and det on o dense subser £ of 6 with values in Rjame
stwch thaet for alff @ = X,

Trimieliwll = trieimode  ongd  Telx(dled) = wle)mod «,
detizlaliol) o detislmods and  detizla)ie)) = detle ) mod £,

Then there exivts o psedorepresentation sle ©O0f G inro RS ar & swch thar
Trizlamdllal) = wrig) amd detiz{anidf)ia)} = detle) on X

Prosor. The first assertion 15 obvious from the definition.  To prove (1), we
consider the exact sequence

0= Rfn\d — Rfaii R« < Rja+ £ =0,
o — g mod e 5o mod . i i b (g = b)) modia + £1.

We consider the pseudorepresentation = = als) = =i#) with values in Kfs = R/4,
The function a = Tri=) vanishes wdentically on £ Since this function is contingous on
G and E s dense in G, oo Trin ) vanishes on G Thus, Triz) has vilues in B/ o
IT we write = = (a4, ), then

ale}l = "N Triziall = Trizlar)}), dig) =27 Trizle)) + Teixlac))),

il
el ) = alar) — wlelals ).

Thus & itsell has values m R/ 4 and gives the desired pseudorepresentution. ()

Apoint o b5 (p*d) = Q, of Speeih (p>  A1Q, ) is called algebraic if it

factors through 4 (p'; 4) for some finite . Then the following theorem follows
mmmediately from Propositions | and 2.

Treores | I Wives [WilBl]), Les R be a doead ring of b (™. AL If g A-resubol
Feprreseniation exisis for every algebeaie 4 factoring theough B, then there exist o Praenchio-
represehiation =) Grp — R amd o continits repreverttation m: Gy — GL@) such
thart Telm{Frob . | = Telr'(Frob o)) = T{.7 ) and det{n{ Frob . )} = detiz'(Frob, || =
NIFNF) for all priowe tdeals & prime to p, where @ is the total guotient ring of R.

Proor. Smee G s wnramified outside p, the set £ of Frobenius elements for
primes outside p s dense in G [ Tehebotarey density theorem). We set tr(Frob, ) =
AT (g) and det(Frob, ) = #igixliy)lq . Lot 5 be the subset of Speci R | consisting
of algebraic pomnts. We adentily < £ 5 with the prome kdeal P = Kerfil, je, 2: R —
R/F. We number cach clement of S and write § = { £}, and =, for the residual
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representation attached to /. We construct outl of each residuul representation =,
for £ = &, pseudorepresentation &), Then all the 275 are compatible. Then by the

above proposition, we cun consiruct 3 pseudo-representation = mio B[] | P, so
thait

i=|
Trin' (o)) = Triz" (o))mod[ | P, onE

Jel
Both sides ol this congruence are contmuous functions, and hence,
Trla' ())& Teia" le)modPyv--n Py on G

Mote that, h} definition, if 7" = lerj. el x50 then o, la) = i-[Tr-In:" ol = Trie" lae )l
o (o} = (Trin' (o)) + Trin' tae))), and x i ¢} = a/lar) - adelalr). Therelore,
we have

dyle) = o iolmod Py PPy, dilgl=d_jloimod £y 00 Py

and
Milewr) = o _lerimod Py i< Py .

Thus. we can define a pseudorepresentation = into B = mR/P O P by
xilmr) = !'n_'rlﬂJ L ).

Then we can construct the nepresentation = out of =’ by Proposition |, because we
already know that @ is a direct sum of ficlds (1e. R is reduced) (o

For any given continuous pseudorepresentation ='; G, — R for a profinite
algebra R over 2., there exists the largest closed normal subgroup Hin') among
closed normal subgroups H such that =' factors theough G/H . In fuct, fia') is
the maximal closed normal subgroup n {7 € G | 2'log) = ='lo) = »'(ys) for all
7 &G} IFR is an integrul domain and if there exists an absol utely irmeducible Galois
representalion @ attached 1o o', then Kerir') = Kerln), because the Isomor phism
class of such representations over the quotient field of R is umigue.  Theorem |
shows the existence of u big pseudorepresentution = Gy — b7 [ p™: 4) such that
Teix'(Frob. ) = T1.¥) and deils AFroby )} = NLFWF) for all priowe ideals 7
primg L r. as long as there exist pseudorepresentations attached 1o algebrie points
of Specl i (p™: A}), We write Pt . tor the fixed ficld of H(2') for the meeudonep-
resenlaton 7' Gy = b (p™:d) if = exists. This is one of the cundidates for the
maximal p-ramified GLI2)<extension. For each homomorphism +. & (p™: 4) — R
of profinite A-algebras, we call 4 pseudorepresentation =, : Gy — B i-residual if
Trlx.(Frob s }) = AT} for all primes ¥ poime to p.

To describe 0 more theoretical candidate for Fovz , Tound by Mazur [M89], we
assume the existence of a J-residual peeudorepresentation ¥ for an algebra homomior-
phism £ 4" Lp™ 4} — w, In [M89], Mazur studied the universal deformation of
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cach -residual representation. Following his argument, we study here the universal
deformation of each s-residunl pseudorepresentstion. We consider the funcior

FRy F —dets given by FlelR) = (g € PR(R) | cmod -y = 7},

where =g 15 the maximal ideal of & and (s mod ag] = (a’.d". x") pven by o'ls) =
alaimod me, of'la] = dlaimodsg, o) = vl simod me for # = (o d, 5 )
Then we have

TuroneMm 2, The fuvictor P08y is reproseritafle m &, That i3, there eXists o wiique
parir [RY =™ ) lup ro isomorpliisnes) eonsisting of @ Noctherian profinite A-algebra R™
il i pevidorepreseniagion 7 Gy — RY sueh tha

Homz (R".Ri 3 g —wpor™ € PR:AR)
imehices am frnmarphiong Homg (R™, R = P& R) for all afiects B of #.

Proor. Let 5 be the category of Artnian local A-algebras with residue field .
We only need to show the prorepresentability of 2% restricted 1o #,. Let o B, — R
[f = 1,2} be morphisms in &, and let y: PRAR, =g R1) — PRAR|) % oy,
F#: | R be the natural map as in (11}, To show the representability by a Noether-
ian ring m ¥ of the covarant functor 2258, we need to check the four critena of
Schiessinger [SchéB]. However, the three criteris denoted as (Hy ), [H:l, and (Hy)
n [SchbB] automatically fellow from Proposition 20). The remaining cntenion (Hai)
follows mmediately from

[F) P | TI/(TY))  is u finite set

We now prove (F1 We write s[ 7]/ 77 ) as sfe] with £* = 0 {i.e.. ¢ 15 the image of T).
Write ® = (a.4.%). and take & = |a.d, ¥} & F#erfe]l. If there exist p.y € Gy such
that ¥ p, g1 = 0, then one defines a representation @ G — GLalx ) as in Proposition
| using ¥(p.q). Il there are no py £ Gy as above, we st 2la] = I:‘:' I-I.:__]. Sel
H = Kerlp), Wa e H. ¢lel = (] and therelore, ¥ia, g} = ¥{p.a) =0 for all
g & H. Forall r € G, we have by (PR4) that ¥le. clx{p. g} = Flan|¥ip.r) =0
This shows Tla.r) = 0 for all # = H because ¥ip.y) # 0. From Fir,el5lp.q] =
¥lr.pl®[p ol =0, we conclude

[ 12@) vightl=Nit.o)l=0 forall re Gand o e H
Wi stlses hanve
(12b) dlel=dle)=1 faech

Then by (PR2), we have

xlar, a3 ) = ale)aipicind) + a7 hditlele,a)
(12¢) + almhdidxnie, p) + d{rld{)xlm, 7).
We see, observing v(1, =] = x{s, 1) =0}, that

xiwdy) = aly)vied) + o (dixio ) fr = 1im {13}l

viord)] = glelxir,d) & dlelxiad) (7 =1in (121}
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Therefore by (124, b, £), we have, writing a = & 1. g, d=dadc,adx=aFoxe.
adp) = x{mdl 4 x'lay) HdyeHandr € G
2lar,d) = lad) + e d) ToreHandds G
Therelore, for each @ £ G the maps ,x: H 28 — xiod) € wand x.0 H 30—
v'[d,7) & k are homomorphisms of groups. Thus, if we wrte M’ for the closed

subgroup of H topologically generated by /1 7(H. H |, then B H/H'] < 4+ by class
ficld theory, and x'(e, v) =0 for all &, € H'. By {12al,

{12d) xlati=0 and xids,vr) =alrldiaicld,s) forallare #'
Then by [12d) and (PRI, we see that
(12¢) a'lar) =ua'la)+u'ls), d'lmr) = d'le) =d'l7) forulle.re H.

Let H” be the subgroup of ' wopologically generated by H'0(H' 1’1 Then
again, we have #(H/H") < +x and

112f) aH 1 =0 and d'(H")=0.
Then we have
(12g) alyel =aiyl. dive) = dly), snd xidazr)=xldyl lare H".

Note that #” does not depend on the choice of m. Therefore, all the elements of
F#s(xfe]) are functions of the finite group G/, and thus, HiPRz(k]e])) < +0oc.
1

ProposiTion 3. B™ s generated fy Tele™ )G ) over A,

Proot. Let R, be the A-subalgebra topologically generated by Tria™ Gy 1)
Since =™ is determined by its trace, 2% has values in Ry, Therefore, we have a
deformation | Ry, 77 ). For each delormation (A, =) of (< 2], we have a morphism
et Ry — A such that # = @, o 7%, The morphism 2, 1s unigue because R 15 gencr-
ated by the traces, Therefore, (R, 2™ is already universal and hence R = R, [

Let j# be @ s-residual representation. In [M39], Mazur considered mstead of
P the following funclor

F(R)={p: G —~ GL:AR) | pmod =g = F}/ =,

where p is sssumed 1o be a continuous homomorphism and p = o if there exists
a matrix a © GL:(R) with o = (] )mod =y such that pla) = ap'iaia! for all
o & (. Then Mazur proved

Taeores 3 (Mazur), ff j iv absohwely frredueible, then 85 15 representable By o
wrtigue pair (R, o™ up to isowsorphisms for a Novtherian local ving R™ in & amd
PP £ Sl RET),

It is easy to show

CoroLLARY 2. Lot 7 be the psevdorepresentation aetached to p. Then R i
conomically isomerphic to the subalgebra of R™ topelogically gemerated by fraces of
T e AL

Agsuming that there are only finmitely many connected components af b (p=14)
and that Questions 1 and 2 have affirmative answers, we write b (resp. b'7) for
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holp>iA) lresp, by ([ p™i4]). We further assume, extending by scalar if ILTERSATY,
thiat all the local rings of b7 huve & as their residue field. We further assume that
there exidts a pseudorepresentation 7° Gy — b such that Triz)iFrob . | = T1.7] for
all primes ¥ prime (o p. Let 7, be the set of local rings of 'Y (= the se1 of connected
components of Specth’™ 11 For each § € m,, we have a pseudorepresentation 7, —
mmed = To %y we can attach, by Theorem 2, the universul deformation (RY. 7Y
Let my be the propecied image of = to 5, Then (5. my ) 15 o deformauon of .. and
hence, there exists a natural ring homomorphism 2 ¢ RS — 5 sausiying oy o1l =
mo- Wesel H = &3, . RU Then we have a surjective ring homomorphism @ H
b Then by Proposition 3. the following fact is clear:

CoroLLARY 3. The ring howsatnorphizm @ H -« h'"' i surfectove, and hemee, WY
is Noetherian, The ulpchra B s geserated fopedogivally over W by Tim,.) fur ulf prime
tdeals o whove poin F, and henee, s Novtherian, where =, b a prime element fn F,,

Then we ask in the spirit of [M%9] and (M9
QuesTion 3. [s @ injective”

We can think of the field ¥, . ¢ lixed by Keri@B, =7 |, which s an extension
al Fird , Then Question 5 15 just asking whether or not Foe  =Feus y

L2,

‘8

In the discussion of the previous parsgraph, we only used the Hecke operators
Fiziwithz, =1, The existence of Fipiimh, (p™ 4} plays a key role in the definition
of the ordinary part of h,[p ™ .4}, which is the most miniigeable part of the algebra
Simceh,(p™:d)isa prodinnte algebra, we can find two wempotents o, and ¢¥ = 1 — ¢,
n hip™:A) for uny gven element h in b lp™ A1 such that el & (eph, (p™:a))
and lum, o (e h )" = 0 [see [HE%, H4] and [H93b. 47.2)). We apply this argaument
toh = Tipl. We write ¢ = ¢, oo and put h:_"'d = Iy % ) = ch Ap™ A4
Simularly, we define &2 % = 02 g4 out of b p; A} and Fipl. We write
agamn Tiz)and (2} € b "™ for eT{z) and ¢!z). Then we can prove [H93a], [H9%4b|:

Thkow 4. The triple (L ' Rt P o B B irlependent of @ {as
feongr s mie) # 0). The some ascertion holids for (B 0™ 40 (Tiz), = irF
I faiafiy rel,

We wrie Ih'r"".'."l:l. 20 Arespe URS™ Tiz) 02100 for the universal triple
||'I: .-|¢iP-. = ,__f (=)A=} [ resp,, ”lr: "":I‘n-" A} 3 Th=pi=h) “.h':” F i “1_1"“:._ reall.
A pomt P & Hom g (" Q.1 = Specih’ "‘",Iiijl_l 15 called writhmeric i the
composition @1 FP) = Poull = { 1): G — tj‘r is urithmetic, OF course, 21 P} may be
different from . We write ¢ P) - riplPl)l nlP) = ni@(P)), and v{P) = el P,
Then

THEOREM 5. Eweht writhmeti poui P© Specih® o M, facters through
-l'll: ',..’"I.,.h- “ ) For dach arithietic peint P < Hom o, (00, Q). we haree PLTLF )
EQand PILF)) € Q fiw all privic ideals ¥ prreee fie g e mere exive o Heoke
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characier o whase infinity cype s given by v P+ 2e0P ) a wndgue alpebraic cspiodal
. : 1 T K - - —r o i
chitomerpine represcittation 7P accarring e L2S ) such thar 2P = = 2 (P and

Lisa AP '=1 -PTIFUNLF" + PUFINIFIY™ favall Jang foop.

When F 15 waally real, the shbove two theorems are proven in [HE9b. 2.5 [see
also [HEM. 53] and [H93b, 57.3]). In general, the results follow from the main result
i [H93a] (see [H94b] for the prool ).

Let Lis, =(F}} be the standard £-function of 71 #) introduced in 83, Lot =P
bhe the contrugredient representation of =i #). For two arithmetic pomts P .m_l:l Q.
we consider the external tensor product representation xl P = mQ)" of GLalFy) =
GLFy). Wewrite Lis.n(P) < n{Q@)" ) for the standard L-tunction of =(R) = =(Q)"
[(H9a]. Writing

Lina (PN ={l1 - aN(#)" )} — gN(F)2))

and
LiemsAQ) 1= {11 —a'N{77 1 - N () g |

we have the following locil Euler factor:

Elsm: Pl = ns00)7)
={ll —aa’NLF) {1 = af NLF) )] - B’ N{FV) - g N () ] s

Write Lis) for one of the above L-functions and L. (s for the -factor of L(x).
We suppose that the functional eiuation of Lis) s given by 5 w4 ] -y Then
W G an integer. We call L{1) critical if L (5) is finite at 5 = land s = w, We
call #(P) (resp., ={P) = =) ) entical, if L{1, =l P)) (resp., LIl x( P} =) s
critical. Note that our automorphic representations = £ and xl @] are algebraic,
Thus, there should exist corresponding motives M P and MIQ) (see [BR93)). It
®(P) {resp.. =(P} ~ 2(Q)" ) is critical. then AP} (resp., M{P) = M) i
eritical m ithe sense of Deligne [D79], where MIQ)" is the dual of Mg, Thus. we
have well-defined motivic pertods e “{TMUPHL and o (M Pl MIQ1 (1)), which
Are niizero complex numbers, We write ¢*(P) tresp, ¢ " (F, @) for the identity
component of ¢ (MIFH1)) (resp., e (M(P) = M@V (1)), Then the algebraicity
conjecture [[3] telis ys

H ¥ -
e I'I—:I,_.l?r— £ UrlP)] and E i—' ':_—'fl;—!&l[{u € Qin(P) & =ig)),
where Qi=(p)) tresp, Qin(P) & nlQ)7) is the number fiekd Echerated by PLT(.7))
ltesp., PIT(.7)) and QUTI7))) for all 7 prime 1o P Iwhich is the field of definition
of the finite part of ={ £ (resp., = F) = =2{@)").

If an clement L of the otal quotient nng of b (resp., b5 g oond ) g given,
then we can think of [ a5 3 Lp-adic meromorphic) function on Specih® '""Jlfﬁl._l
(resp., Specih® ¢ . Specily ""'_hl‘}, 0 by LiP) = PlL) resp,, LIP Q)= P5OLLY)
u&r_lﬂng s lh_t: valoe is well defined. Here we have regarded £y o ﬁr (resp.,
PEg); b org yeonl Q) a5 an A-algebra homomorphism, snd sl for & & = vnd
(resp, &+ & B" ™5 ") i in W (pesp, Bt & and Pls) = 0 | resp.,

|
|
|
|
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PEQ(s) £ 0), then PIL) = PsL)/P(s) (resp., PEQIL) = (PEQLIPEOs)).
Then we can ask

Quesmion 6. Can we find a p-adic meromorphic function L, (P} (resp., L, (P Q)
on Spec(h” ™)(Q,) (resp., Spec(h® "2 W 4)(Q,)] imterpolating the values
LiLe(PH/fe"(P) € QinlP)) (resp., Lil,alP) = =(@)")/c"(P.Q) & QlalP) =

m(Q)" 1) as long as 2{P) (resp., m{P) = =(Q)7) is critical.

When F is totally real, the algebrascity compecture is known for Lil, =zl P]}
by Mazur and Manin (see [H93b, 56.4]) and also by Shimura [Sh88, %0] and for
LiLmiP) x = @)"] by Shimura [Sh83] (sec also [H93b, §10.4]). When F has com-
plex places, an approximation of the algebrascity conpecture for Lis. m{P)) is known
([H94a]). When F contains CM-fields, a partial result is given for the algebracity
conjecture for Lil.=(P) = =(@)"] in [H%a]. When F < Q, the transcendental
Tactors vary depending on r(P) and v P) for L1, ®F)) and on o P), ml @), v(P),
and v(@) for Lil.a{P) o« nl@)") lcf [ShES), [H94a])). Thus, when F # Q, there
might be several p-adic L-functions interpolating different combinations of special
values. In any case, the answer to the above question is affirmative when F =
([Ki91), [G592], and [HI3b, 5574 and 10.4]). When F is totally real, the answer
15 known, so far, to be partially affirmative [H91]. We can ask similar questions
for various Langlends L-functions of the polynomial representations of the L-group
of GL{2)r. For example. the adjoint lift p-adic L-function exists on S.pw{h'_!i_.;""l
[H 0]

As for Question 4, we have the following partial answer

Throwesm 6. The alpebra W' ™ iy of finite type over AllWN. & F is totally real
aned B* "™ £ 0, thren B0 jy g torstom-free Al W]|-module. In particular, in thiv case
the natural map Specih® M) Specl A|| W]J) is domimane, {f F has some camnplex

places, then the image of Speclh™ ™) ix contained in o praper coved suhscheme of

SpeciA[[W])).

The above fact is proven in [H89b] for towally real fields £, Thus, the p-udic
space attached to each irreducible component of #* ° has dimension equal to [F :
Q]+ 1 ~dip. F). which prows at least linearly with respect to the degree [F Q]
For general number fields, it follows from the main result of [H93a] [see [H9b] for
the proof)l. Thus, we mav ask

Question 7. Characterize the image of Speclh® ™) in Spect A[[W)I.

It F is totally real and if the Leopoldt conjecture is true for F and p. the
dimension of the scheme Specii® ) », Q, 15 [F : Q)+ . In particular, it is
equial 10 2 when F = Q. This value coincides with the dimension of the continuous
spectrum in the complex case. We may thus ask

Question 8. Is the dimension (over Q) of the ineducible components of the
pradic nearly ordinary Hecke algebra for GLin) g (suitably defined) equal to the
maximum of the dimension of the continuous complex spectrum for GL(#) i which
i5 equal to »)7

It is quite plausible that the dimension i less than or equal to . However, there
15 no compelling reason to expect that the answer is exactly s, The final point we
would like to make explicit i
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Quesmios: 9. What kind of arithmetic of FZ}74, _ do the above p-adic L-functions

For the connected component of Spec(h* “!} corresponding 1o the representation
of Weil type (§6). there might be some chance 1o relate these padic L-f!mm?ns to
@ Certain main conpecture of the Iwasawa theory. Partial results are obtained in this
direction when F s totally real ([MT90), [Ti#9], [HT91], [HT93s. b]). When the
representation attached 1o the connecied component s not of Weil type, there are
some speculations but their meaning is not vet clear M9,
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