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Abstract. In this article, we will first study various paradoxes such as the fa-
mous Banach-Tarksi paradox, and discuss in detail the techniques to construct

these paradoxes. We point out that these paradoxes preclude the existence of

a certain measure. In section two we introduce the notion of amenability, the
existence of a certain measure on a group. We give examples of groups that

bear this kind of measure, and prove some basic properties of them. As an

application of the theory of amenable groups, we show that Lebesgue mea-
sure on R and R2 has an isometry-invariant, finitely additive extension to all

sets. Finally, we introduce the concept of supramenability, the existence of a

certain measure normalizing an arbitrary subset, and point out its connection
with growth rate of groups. Using theory of growth rate, we show that abelian

groups are not only amenable but supramenable and no paradoxical subsets

exist in R.

1. Paradoxical Decomposition

In Dialogues Concerning Two New Sciences, Galileo observed that there is a one-
to-one correspondence between the set of positive integers and the set of squares:
“If I inquire how many roots there are, it can not be denied that there are as many
as there are numbers because every number is the root of some square.” This seems
paradoxical because the set of all positive integers, containing the set of nonsquares,
seems more numerous than the set of squares. Galileo deduced from this that “the
attributes of “equal”, “greater”, and “less”, are not applicable to infinite, but only
to finite, quantities”. This was later clarified by Cantor’s theory of cardinality.
Let N denote the set of natural numbers, A the set of squares, and B the set of
nonsquares. X ∼ Y means there is a bijection between X and Y . What Galileo
observed is that N ∼ A but A ( N. The operation ∼ appears to preserve size but
here it seems to change size. It is not hard to see that N ∼ B. We say N ∼ A ∼ B
is a paradoxical decomposition of N. This idea of decomposition can be generalized
with group action.

Definition 1.1 (Equidecomposability). Let G = (G, ·) be a group acting on a
space X and A,B,E ⊂ X.

(i) A and B are finitely G-equidecomposable, written A ∼ B, if there exist finite
partitions A = ∪ni=1Ai and B = ∪ni=1Bi and group elements g1, · · · , gn ∈ G
such that Bi = giAi for all 1 ≤ i ≤ n.
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(ii) E is finitely G-paradoxical if E can be partitioned into two disjoint subsets A
and B such that A ∼ B ∼ E.

Similarly, we may define countably equidecomposable and countably paradoxical
by replacing finite with countable in the above definition. If not mentioned, we
assume we are talking about finite equidecomposability paradoxes. It is easy to see
that ∼ is an equivalence relation: if A, B are equidecomposable with n pieces and
B, C are equidecomposable with m pieces, then A ∼ C with at most mn pieces.
We mostly consider the possibility of paradoxes when X is a metric space and G is
a subgroup of the group of isometries of X. In the case that G is the full group of
isometries of X, a subset E ⊂ X is paradoxical means E is (finitely) G-paradoxical
where G is the group of isometries of X.

We are interested in paradoxical sets not only because it is paradoxical, but
also because it precludes the existence of finitely additive, invariant measure that
measures all sets.

Remark 1.2. Let G acts on X. Suppose µ is finitely (resp. countably) additive,
G-invariant measure on P(X). Let E be G-paradoxical witnessed by Ai, gi, Bj , hj .
Then µ(E) ≥

∑
µ(Ai) +

∑
µ(Bj) =

∑
µ(giAi) +

∑
µ(hjBj) ≥ µ(

⋃
giAi) +

µ(
⋃
hjBj) = µ(E) + µ(E) = 2µ(E). It follows that any finitely (reps. countably)

additive and G-invariant measure on P(X) must give either a zero measure or an
infinite measure to a finitely (resp. countably) G-paradoxical set. Therefore, para-
doxical sets provide significant obstructions to constructing measures that measure
all sets.

Example 1.3. If G acts transitively on X, then two finite subsets of X are finitely
G-equidecomposable iff they have the same cardinality, and any two countably infi-
nite subsets of X are countably G-equidecomposable. In particular, any countably
infinite subset of X is countably G-paradoxical. The case when X = N and G = SN
is discussed in the first paragraph.

Before we move on to geometric paradoxes, we first need a powerful tool. When-
ever one has an equivalence relation on the collection of subsets of a set, one may
define another relation, 4, by A 4 B iff A is equivalent to a subset of B. Then 4 is
a reflexive and transitive relation on the equivalence classes. If the cardinality rela-
tion is used, i.e. A ∼ B if there is a bijection from A to B, then Schröder-Berstein
theorem of classical set theory states that 4 is antisymmetric as well, i.e. A 4 B
and B 4 A implies A ∼ B. Thus 4 is a partial order on the equivalence class. Ba-
nach realized that the proof of the Schröder-Berstein theorem could be generalized
to any equivalence relation satisfying two abstract properties and in particular the
generalization applies to G-equidecomposability. From now on A 4 B is only used
in the context of equidecomposability: A 4 B means A is finitely (or countably)
G-equidecomposable with a subset of B.

Theorem 1.4 (Banach-Schröder-Berstein theorem). Let G act on X and A,B ⊂
X. If A 4 B and B 4 A, then A ∼ B. Thus 4 is a partial ordering of the ∼-classes
in P(X).

Proof. Observe that the relation ∼ satisfies the following conditions:

(a) if A ∼ B then there is a bijection f : A → B such that C ∼ g(C) whenver
C ⊂ A;

(b) if A1∩A2 = ∅ = B1∩B2, and if A1 ∼ B1 and A2 ∼ B2, then A1∪A2 ∼ B1∪B2.
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Let f : A → B1 and g : A1 → B be bijections given by the assumption, where
A1 ⊂ A and B1 ⊂ B. Let C0 = A \ A1 and define Cn+1 = g−1(f(Cn)) by
induction; let C =

⋃∞
n=0 Cn. It is easy to see g(A \ C) = B \ f(C). So A \ C ∼

B \ f(C) since g is a bijection. Also C ∼ f(C) since f is bijection. It follows that
A = C ∪ (A \ C) ∼ f(C) ∪ \(B \ f(C)) = B. �

Note that this proof serves as a proof of the classical Schröder-Berstein theorem
as well, since the cardinality relation satisfies properties (a) and (b). An immediate
corollary below dramatically eases the verification of equidecomposability and shows
that every paradoxical set admits a paradoxical decomposition.

Corollary 1.5. E ⊂ X is G-paradoxical iff there are disjoint sets A,B ⊂ E with
A ∪B = E and A ∼ E ∼ B.

Proof. Suppose A,B are disjoint subsets of E with A ∼ E ∼ B. Then E ∼ B ⊂
E \ A ⊂ E. It follows from Banach-Schröder-Berstein theorem that E \ A ∼ E.
Hence A and E \A give a paradoxical decomposition of E. �

Let us first establish a countable equidecomposability paradox on R.

Theorem 1.6 (Vitali 1905 AC1). Let R act on itself by translations. Then [0, 1]
and R are countably R-equidecomposable.

Proof. By the Banach-Schröder-Berstein theorem, it suffices to show that some
subset of [0, 1] is countably R-equidecomposable with R. Consider the equivalence
relation on R given by x ∼ y iff x− y ∈ Q and let R/Q denote all the equivalence
classes. By the axiom of choice, for each equivalence class, we may choose a rep-
resentative for some number in [0, 12 ]. Thus we can partition R =

⋃
x∈E x + Q for

some E ⊂ [0, 12 ]. Since R y R is transitive, by example 1.3 Q ∩ [0, 12 ] is countably
Q-equidecomposable with Q. Therefore,

R =
⋃
x∈E

x+ Q ∼
⋃
x∈E

x+

(
Q ∩

[
0,

1

2

])
⊂ [0, 1].

�

Of course, the same theorem holds if [0, 1] is replaced by any other interval. As a
consequence of the Banach-Schröder-Berstein theorem, any subset of R containing
an interval is countably R-equidecomposable with R. In particular, any subset of
R that contains an interval is countably R-paradoxical.

Following remark 1.2, any countably additive translation-invariant measure that
measures every subset of R must assign a zero or infinite measure to any set contain-
ing an interval. Moreover, observe that any countably additive translation-invariant
measure on P(Rn) induces a countably additive translation-invariant measure on
the subsets of R, by the correspondence E ↔ E × [0, 1]n−1. Therefore,

Corollary 1.7 (AC). There is no countably additive, translation invariant measure
defined on all subsets of Rn and normalizing [0, 1]n.

This corollary naturally leads to the question of whether measures exists satis-
fying a weaker set of conditions. The usual compromise is to restrict the measure
to Lebesgue measurable sets and live with the fact that some sets are not Lebesgue

1In this article, theorem whose proof uses the axiom of choice will be marked by AC.
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measurable. Another obvious compromise is to require only finite additivity in-
stead of countable additivity. Finitely additive measures had been studied prior to
Lebesgue, and it is natural to ask whether there exists a finitely additive, isometry-
invariant measure defined for all subsets of Rn. So, next we turn our attention to
finite geometric equidecomposability paradoxes on R2.

Sierpiński-Mazurkiewicz paradox. SO(2)nR2 ⊂ Isom(R2) = O(2)nR2 is the
subgroup of orientation-preserving isometries of the isometries of R2. Let SO(2)n
R2 acts on R2 via (θ, v).x = eiθ+v for v ∈ R2 and θ ∈ R/2πZ, where eiθ denotes the
counterclockwise rotation by θ around the origin. Does there exists a SO(2) nR2-
paradoxical subset of R2? It turns out the key is to study the paradoxical sets
with respect to the left translation action of a group on itself. If the group G is
paradoxical with respect to the left translation action, we say G is paradoxical.

Recall that a free group F with generating set S is the group of all reduced
words with letter from {s, s−1 : s ∈ S}, where a word is reduced if there are no
adjacent letters of the form ss−1 or s−1s. The group operation is concatenation,
and the identity is the empty word. For example, the free group on two generators
{a, b} consists of words of the form a, a2, ab, a−2, bab, ba−1b−1a, etc., and all of these
elements are considered distinct. We shall occasionally be interested in the action
of a semigroup S on a set X, where a semigroup is a set with an associative binary
operation and an identity. A free semigroup with a generating set T is simply
the set of all words with letter from T and with concatenation as the semigroup
operation.

Free groups are the paradigms of paradoxical groups.

Proposition 1.8. A free group of rank 2, F2, is a paradoxical group.

Proof. Let a, b be the two generators of F2. For each x ∈ {a±1, b±1}, let W (x)
denote the set of reduced words that begin with x. We can partition F2 = {1} t
W (a) tW (b) tW (a−1) tW (b−1), where 1 denote the empty word. Furthermore,
observe that aW (a−1) = F2 \W (a). This implies W (a) ∪W (a−1) ∼ F2. Similarly,
W (b) ∪W (b−1) ∼ F2. �

The most important technique in constructing a paradoxical decomposition is
the transfer of a replicating partition of a paradoxical group to a set on which it
acts. A paradoxical decomposition of a group is easily lifted to a set on which the
group acts freely, i.e. the action has no nontrivial fixed points.

Proposition 1.9 (AC). If G is paradoxical and G acts freely on X, then X is
finitely G-paradoxical.

Proof. By the axiom of choice, we can partition X as X = tx∈EG.x for some
subset E of X. Let A,B ⊂ G witness that G is paradoxical, i.e. G = A t B with
A ∼ G ∼ B. Observe that

X = tx∈EG.x = tx∈E(A.x tB.x) = (tx∈EA.x) t (tx∈EB.x)

with tx∈EA.x ∼ tx∈EG.x = X and tx∈EB.x ∼ tx∈EG.x = X. Hence X is finitely
G-paradoxical. �

Since a subgroup of a group acts freely by left translation on the whole group,
we have the following immediate corollary.
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Corollary 1.10 (AC). A group with a paradoxical subgroup is paradoxical. In
particular, any group which contains an isomorphic copy of F2 is paradoxical.

There is an easy converse to Proposition 1.9.

Proposition 1.11. For arbitrary action G y X, if X is G-paradoxical then G is
a paradoxical group.

Proof. Let x ∈ X be an arbitrary. Let Ai, Bj ⊂ X, gi, hj ∈ G witness that X
is G-paradoxical, i.e. X = ∪igiAi = ∪jhjBj . Let A = ∪iAi, B = ∪jBj , and
GY = {g ∈ G : g.x ∈ Y } for Y ⊂ X. It is not hard to see that GAi

, GBj
, gi, hj

witness that G is paradoxical, and GA ∼ G ∼ GB . �

Sierpiński and Mazurkiewicz proved the existence of a paradoxical subset of plane
using the idea in Proposition 1.9. However, SO(2) n R2 does not contain a free
subgroup of rank 2 but instead a free semigroup of rank 2. The existence of a free
subsemigroup of SO(2)nR2 is the key to prove the existence of a paradoxical subset
of the plane. The semigroup ping-pong lemma below gives a sufficient condition
when two elements of a group generates a free semigroup.

Lemma 1.12 (Semigroup ping-pong lemma). Let G acts on X and let g, h ∈ G.
Suppose there exists nonempty subset A of X such that gA and hA are disjoint
subsets of A. Then g, h generate a free semigroup.

Proof. Let w,w′ be two distinct words generated by g, h. If w is empty, then w′ is
nonempty so w′A ( gA or w′A ( hA whereas wA = A. Without loss of generality
assume both w,w′ are nonempty. Suppose w = st and w = s′t′, where s, s′ ∈ {g, h}.
If s 6= s′, then wA and wA′ are disjoint; if s = s′, then t 6= t′ and the lemma follows
by induction on the length of words. �

Theorem 1.13 (Sierpiński-Mazurkiewicz paradox 1914). There exists a nonempty
finitely SO(2) nR2-paradoxical subset of the plane.

Proof. Identify R2 with C. Let g to be the rotation g.x = ωx for some transcenden-
tal phase ω = eiθ. Such a phase must exist since the set of algebraic numbers on the
unit circle is countable. Let h be the translation h.x = x+ 1. Observe that g and h
act on the set A of polynomials in ω with nonnegative integer coefficients, and that
gA and hA are disjoint. By the semigroup ping-pong lemma, g, h generates a free
semigroup S. It is easy to see that S is countable, for S has the same cardinality
as the set of finite binary strings. Note that each element in SO(2) n R2 has at
most one fixed point. Let E be the set of fixed points of elements in S, which is at
most countable. Let x ∈ R2 \ E and S.x be the S-orbit of x. g(S.x), h(S.x) ⊂ S.x
and g(S.x) ∩ h(S.x) = ∅. Therefore, S.x is finitely SO(2) nR2-paradoxical. �

Note that the Sierpiński-Mazurkiewicz paradox does not invoke the axiom of
choice. The proof of the Sierpiński-Mazurkiewicz paradox is quite constructive.
Following the proof of Theorem 1.13, we see that the set S.(0, 0) = A = {a0 +
a1e

iθ + · · ·+ ane
inθ : n ∈ N, ai ∈ N} is finitely SO(2) n R2-paradoxical. Let g and

h be as in the above proof. gA = {a1eiθ + · · · + ane
inθ : n ∈ N, ai ∈ N} ∼ A and

hA = {a0 + a1e
iθ + · · ·+ ane

inθ : n ∈ N, ai ∈ N, a0 6= 0} ∼ A. The existence of such
a set is by no means contradictory. After all, A is countable and so has measure
zero; from measure theoretic point of view, A is paradoxical implies 2 ·0 = 0, which
should not be surprising at all.
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The ideas of the Sierpiński-Mazurkiewicz paradox form the foundation of much
of the early history of geometric paradoxes. At the same year, Hausdorff discovered
an amazing paradox on the sphere that led to the famous Banach-Tarski paradox.

Hausdorff Paradox. Hausdorff paradox shows that barring a countable subset
the sphere is finitely SO(3)-paradoxical. The new feature in R3 is that the group
SO(3)nR3 of rigid motions contains a free group of rank 2 (not just a free semigroup
such as in SO(2) n R2). The ping-pong lemma below gives a sufficient condition
when two elements of a group generate a free semigroup.

Lemma 1.14 (Ping-pong lemma). Let G be a group acting on a set X, let Γ1,Γ2

be two subgroups of G, and let Γ be the subgroup of G generated by Γ1 and Γ2;
assume |Γ1| ≥ 3 and |Γ2| ≥ 2. Assume there exist two nonempty subsets X1, X2

in X, with X2 6⊂ X1, such that (Γ1 \ {1})X2 ⊂ X1 and (Γ2 \ {1})X1 ⊂ X2. Then
Γ ' Γ1 ∗ Γ2, the free product of Γ1 and Γ2.

Proof. Let w be a nonempty reduced word with letters from disjoint union of Γ1\{1}
and Γ2 \ {1}. We need to show that the element of Γ defined by w (again written
w) is not the identity.

If w = a1b1a2b2 · · · ak with a1, · · · , ak ∈ Γ1 \ {1} and b1, · · · , bk−1 ∈ Γ2 \ {1},
then

w(X2) = a1b1 · · · ak−1bk−1ak−1(X2) ⊂ a1b1 · · · ak−1bk−1(X1)

⊂ a1b1 · · · ak−1(X2) ⊂ · · · ⊂ a1(X2) ⊂ X1.

As X2 6⊂ X1, this implies w 6= 1.
If w = b1a2b2a2 · · · bk, choose a ∈ Γ1 \ {1}; the previous argument shows that

awa−1 6= 1 so that w 6= 1. If w = a1b1 · · · akbk, choose a ∈ Γ1 \ {1, a−11 } and
again awa−1 6= 1 implies w 6= 1. If w = b1a2b2 · · · ak, choose a ∈ Γ1 \ {1, ak} again
awa−1 6= 1 implies w 6= 1. �

Hausdorff showed that if φ and ρ are rotations through 180◦, 120◦, respectively,
about axes containing the origin, and if cos 2θ is transcendental where θ is the angle
between the axes, then φ and ρ are free generators of Z/2Z ∗ Z/3Z. The approach

we will be using in the lemma below is due to Świerczkowski. His approach avoids
transcendental numbers, and uses perpendicular axes and the same angle for each
rotation. It is worth mentioning that if SO(3)×SO(3) is given the product topology,
then {(φ, ρ) ∈ SO(3) × SO(3) : φ, ρ generate a free group of rank 2} is comeager
and hence dense, but we shall be content by giving a specific pair of generators.

Lemma 1.15. SO(3) has a free subgroup of rank 2.

Proof. Let φ and ρ be counterclockwise rotations around the z-axis and x-axis, each
through the angle arccos 3

5 . Then φ±1,ρ±1 are represented by matrices as follows:

φ±1 =

 3
5 ∓ 4

5 0
± 4

5
3
5 0

0 0 1

 , ρ±1 =

1 0 0
0 3

5 ∓ 4
5

0 ± 4
5

3
5

 .
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Let X1 = 5Z.


xy
z

 : x, y, z ∈ Z, x ≡ ±3y (mod 5), z ≡ 0 (mod 5)

 and let X2 =

5Z.


xy
z

 : x, y, z ∈ Z, z ≡ ±3y (mod 5), x ≡ 0 (mod 5)

, where 5Z denote the

integral power of 5. Let X = X1 ∪ X2. It is easy to check that X2 6⊂ X1,
(Γ1 \ {1})X2 ⊂ X1, and (Γ2 \ {1})X1 ⊂ X2, where Γ1 = 〈φ〉 and Γ2 = 〈ρ〉. It
follows from the ping-pong lemma that 〈φ, ρ〉 = 〈φ〉 ∗ 〈ρ〉, a free subgroup of rank
2. �

Each element of the free subgroup of SO(3) constructed above fixes all points
on some line in R3 so the action is not free and Proposition 1.9 can not be applied
directly. A naive approach to this difficulty turns out to be fruitful.

Theorem 1.16 (Hausdorff paradox 1914 AC). There is a countable subset E of
S2 such that S2 \ E is finitely SO(3)-paradoxical.

Proof. Let F2 ⊂ SO(3) be the free subgroup constructed in the above lemma. Each
nontrivial rotation in F2 has exactly two fixed points on the unit sphere, namely
the intersection of the axis of rotation with S2. Let E be the collection of all such
fixed points; since F2 is countable, so is E. Now, if p ∈ S2 \ E and g ∈ F2, then
g.p ∈ S2 \ E as well: for if h fixes g.p, then g−1hg fixes p. Hence F2 acts freely
on S2 \ E. By Proposition 1.9, we may transfer the replicating partition of F2 to
S2 \ E and so S2 \ E is finitely SO(3)-paradoxical. �

A countable subset of the sphere can be dense, and so the paradoxical nature
of Hausdorff paradox is not apparent yet. Still, countable sets are very small in
measure compared to the whole sphere. We shall see immediately how the countable
set E can be absorbed completely, yielding the Banach-Tarski paradox: S2 is finitely
SO(3)-paradoxical.

Banach-Tarski Paradox.

Theorem 1.17 (Banach-Tarski paradox on the sphere AC). S2 is finitely SO(3)-
paradoxical.

Proof. By the Hausdorff paradox, it suffices to show S2 is finitely SO(3)-equidecom-
posable with S2 \ E, where E is a countable subset of S2. Let l be a line through
the origin that misses the countable set E. Let A be the set of angles θ such
that for some n > 0 and some p ∈ E, ρ(p) ∈ E where ρ is the rotation about l
through angle nθ. Then A is countable, so we may choose an angle θ not in A;
let ρ be the corresponding rotation about l. Then ρn(E) ∩ E = ∅ if n > 0. It
follows that for all 0 ≤ m < n, ρm(E) ∩ ρn(E) = ∅. Let C = ∪n≥0ρn(E). Then
S2 = C ∪ (S2 \ C) ∼ ρ(C) ∪ (S2 \ C) = S2 \ E as desired. �

The above proof may be called proof by absorption, since it shows how a trou-
blesome set can be absorbed in a way that essentially renders it irrelevant. The
Banach-Tarski paradox on the unit sphere can be easily extended to one on the
unit ball with absorption of the origin.

Corollary 1.18 (Banach-Tarski paradox AC). The unit ball B in R3 is finitely
SO(3) nR3-paradoxical and so is R3 itself.
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Proof. The radial correspondence E 7→ {αE : 0 < α ≤ 1} gives us a paradoxical
decomposition of B \ {0} from the paradoxical decomposition of S2. Hence it
suffices to show that B is finitely SO(3) n R3-equidecomposable with B \ {0},
i.e. a point can be absorbed. Let p = (0, 0, 12 ) and let ρ be a rotation of infinite
order about an axis though p but missing the origin. Then, just as in the proof
above, the set C = {ρn(0) : n ≥ 0} can be used to absorb 0: ρ(C) = C \ {0} so
B = C ∪ (B \C) ∼ ρ(C)∪ (B \C) = B \ {0}. If, instead, the radial correspondence
of S2 with all of R3 \ {0} is used one gets a paradoxical decomposition of R3 \ {0}
using rotations. Then exactly as for the unit ball, R3 \ {0} ∼ R3, i.e. R3 is finitely
SO(3) nR3 paradoxical. �

The Banach-Tarski paradox is very bizarre indeed. A ball, which has a definite
volume, may be taken apart into finitely many pieces that may be rearranged via
rotation to form 2, or even 109 balls, each identical to the original one! Rotation
preserves volume, and this is why this result has come to be known as a paradox.
A resolution is that there may not be a volume for the rotations to preserve; the
pieces in the decomposition will have to be Lebesgue non-measurable.

The following result on nonexistence of measure is an immediate corollary of the
Banach-Tarski paradox and Remark 1.2. Note that to prove the assertion about
Rn it suffices to consider R3 because a measure in a higher dimension induces one
in R3 as described before Corollary 1.7.

Corollary 1.19 (AC). There is no finitely additive, rotation-invariant probability
measure on P(S2) and for n ≥ 3 there is no finitely additive, isometry-invariant
measure on P(Rn) normalizing the cube.

There are properties that are preserved by finite equidecomposability in R3,
though volume is not one of them. If A is bounded, then so is any set finitely
equidecomposable with A; the same is true if A has nonempty interior. Banach
and Tarski showed that any two subsets of R3, each having these two properties,
are equidecomposable. Thus they generalized their already surprising result so that
it applies to solids of any shape. The following strong form of the Banach-Tarski
paradox is informally known as the ”pea and the sun paradox”, i.e. a pea can be
chopped up into finitely many pieces and reassembled to form a ball size of the sun!

Theorem 1.20 (Banach-Tarski paradox AC). If A and B are two bounded subsets
of R3 with nonempty interior, then A and B are finitely SO(3)nR3-equidecomposable.

Proof. It suffices to show A 4 B, for then by symmetry and Banach-Schröder-
Berstein theorem A ∼ B. Let K and L be solid balls such that A ⊂ K and L ⊂ B.
Let n be large enough such that K may be covered by n (overlapping) copies of
L. Now, if S = tni=1L, then duplicating L by Banach-Tarski paradox and using
translations to move the copies around gives L ∼ S. Therefore, A ⊂ K 4 S ∼ L ⊂
B, so A 4 B. �

The Banach-Tarski paradox can be easily extended to higher dimensions. The
idea is simple with induction. Let n ≥ 3. Except for the north and south pole,
Sn can be cut into layers of scaled Sn−1. Apply the paradoxical decomposition for
Sn−1 to each of the layer to obtain a paradoxical decomposition of Sn minus the
poles. Then absorb the poles as in Corollary 1.18.



PARADOXICAL DECOMPOSITION AND AMENABILITY 9

Theorem 1.21 (Banach-Tarski paradox in Rn≥3 AC). Sn−1 is finitely SO(n)
paradoxical for n ≥ 3. If n ≥ 3, the unit ball in Rn is SO(n) nRn-paradoxical and
so is Rn itself.

Proof. The Banach-Tarski paradox in R3 shows that the result is true for n = 3. We
proceed from there by induction. Consider Sn in Rn+1. Suppose Ai, Bj ⊂ Sn−1

and σi, τj ∈ SO(n) witness that Sn−1 is finitely paradoxical. Define Ãi, B̃j to

partition Sn \ {(0, · · · , 0,±1)}, by putting (x1, · · · , xn, z) in Ãi or B̃j according to
which of the Ai, Bj contains (x1, · · · , xn)/|(x1, · · · , xn)|. Extend σi, τj to σ̃i, τ̃j by
fixing the new axis. In matrix form,

σ̃i =


0

σi
...
0

0 · · · 0 1

 .
Then Ãi, B̃j , σ̃i, τ̃j provide a paradoxical decomposition of Sn \ {(0, · · · , 0,±1)}.
But any two-dimensional rotation of infinite order, viewed as rotation the last two
coordinates and fixed the first n − 1 coordinates, can be used as usual (see proof
of Corollary 1.18 to show that Sn \ {(0, · · · , 0,±1)} ∼ Sn. Hence by induction Sn

is finitely paradoxical. The rest of the theorem follows exactly as Corollary 1.18
follows from the Banach-Tarski paradox on S2. �

This concludes our discussion on paradoxical decomposition and nonexistence of
measure as a consequence. In the next section, we will explore the opposite, where
existence of certain invariant measure precludes any paradoxes.

2. Amenability

In the first section we saw that the main idea in the construction of a paradoxical
decomposition of a set was to first get a decomposition in the group acting on the set,
and then transfer to the set. An almost identical theme pervades the construction
of invariant measures on a set X acted upon by a group G. If there is a finitely
additive, left-invariant measure defined on all subsets of G, then this measure on
G can be used to produce a finitely additive, G-invariant measure defined on all
subsets of X. Such measures on X yield that X is not G-paradoxical.

It was von Neumann who realized that such a transference of measures was pos-
sible, and he began classifying the groups that admit measures of this sort. In this
section we study properties of the class of groups equipped with a finitely additive
invariant measure. As an application, we obtain the nonexistence of Banach-Tarski-
type paradoxes in R and R2.

Definition 2.1 (Amenability). A (discrete) group G is amenable if G admits a
finitely additive, left-invariant probability measure on P(G).

Remark 2.2 (Topological Amenability). We may generalize the notion of amenabil-
ity to topological groups. Let G be a locally compact Hausdorff group. G is called
(topologically) amenable if there exists a finitely additive, left-invariant probability
measure on the Borel subsets of the group. Saying that G is amenable with the
discrete topology (which is locally compact) is the same as saying G is amenable in
the nontopological sense as in definition 2.1 since every set is Borel in the discrete
topology. Note that a topological group that is amenable as an abstract group is
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topologically amenable: simply restrict the measure on P(G) to the Borel sets. If
G is compact, then the Haar measure is a countably additive, left-invariant Borel
probability measure; hence compact groups are topologically amenable. As an ex-
ample, SO(3) is a compact subgroup of GL3(R) so it is topologically amenable;
however, we have shown SO(3) contains a free group of rank 2 in Lemma 1.15 and
so it is a paradoxical group and hence not amenable as a discrete group.

Here is the observation made by von Neumann that a finitely additive invariant
measure on a group G can be transferred to a measure of this sort on the set G
acts on.

Proposition 2.3. Let G be an amenable group acting on X. Then there exists a
finitely additive, G-invariant probability measure on P(X); hence X is not finitely
G-paradoxical.

Proof. Let x ∈ X. If µ is a measure on G, define ν : P(X) → [0, 1] by ν(A) =
µ({g ∈ G : g.x ∈ A}). It is easy to see that ν is a finitely additive, G-invariant
measure on P(X) and ν(X) = 1. Therefore, X is not G-paradoxical. �

A mean on G is a linear functional m : l∞(G) → C such that m is positive, i.e.
f ≥ 0 =⇒ m(f) ≥ 0, and m is unital, i.e. m(1) = 1. A mean is automatically
bounded with norm one, for if f ∈ l∞(G) then there exists a α ∈ T such that

|m(f)| = αm(f) = m(αf) = Rem(αf)

= m(Reαf) ≤ ||Reαf ||∞ ≤ ||αf ||∞ ≤ ||f ||∞.
So ||m|| = 1 for every mean on G. The mean m is left-invariant if m(g.f) = m(f)
for all g ∈ G and f ∈ l∞(G), where g.f(h) = f(g−1h).

There is a canonical correspondence between means on G and finitely additive
probability measure on P(G). Given each mean m, define a finitely additive prob-
ability measure µ by µ(A) = m(χA), where χA is the characteristic function of A;
given a finitely additive measure µ, define a mean m on G by m(f) =

∫
fdµ. Thus,

we have the following Proposition:

Proposition 2.4. G is amenable iff G admits a left-invariant mean.

Similar to remark 1.2, a measure on G precludes G from being paradoxical: if µ is
such measure and G is paradoxical, fix disjoint sets A,B ⊂ G such that A ∼ G ∼ B
and note that µ(G) ≥ µ(A ∪ B) = µ(A) + µ(B) = 2µ(G), contradicting µ(G) = 1.
In other words, if G is paradoxical, then G is not amenable. In fact, a deep theorem
of Tarski proved that the converse is true. See Wagon [2] for details.

Theorem 2.5 (Tarski’s theorem 1929 AC). G is not amenable iff G is paradoxical.

Next we give some classes of examples of amenable groups and summarize some
closure properties of amenable groups.

Proposition 2.6.

(i) Every finite group is amenable.
(ii) (AC) If G is amenable and Γ ≤ G, then Γ is amenable.
(iii) If N CG, then G is amenable ⇐⇒ N,G/N are amenable.
(iv) If G and H are amenable then so is G×H.
(v) (AC) If G is the direct union of a directed system of amenable groups {Gα :

α ∈ I}, then G is amenable.
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(vi) (AC) Z is amenable.
(vii) (AC) Every abelian group is amenable.
(viii) (AC) Every solvable group is amenable. In particular, every nilpotent group

is amenable.

Proof.

(i) Suppose G is finite. Then µ(A) = |A|/|G| yields the desired measure on G.
(ii) Let µ be a measure on G and let Γ be a subgroup of G. Let R be a set

of representatives for the collection of right cosets of Γ in G. Note that
ν(A) = µ(AR) = µ(∪r∈RAr) is the desired measure on Γ.

(iii) Let µ be a measure on G. Define ν : P(G/N) → [0, 1] by ν(A) = µ(∪A).
It is easy to check that ν is a measure on G/N . Conversely, let µ, ν be
measures on N and G/N , respectively. Then µ induces a measure µC on each
C ∈ G/N given by µC(A) = µ(g−1A), where γ ∈ C. As µ is left-invariant,
µC is independent of the choice of g. Now observe that

λ(A) =

∫
G/N

µC(A ∩ C)dν(C)

defines a measure on G.
(iv) Let ι be the embedding h 7→ (eG, h) into G × H. Then ι(H) C G × H with

G×H/ι(H) ' G. So by part (iii), G×H is amenable if G and H are amenable.
(v) Given G = ∪{Gα : α ∈ I} where each Gα is amenable with measure µα, and

for each α, β ∈ I there exists γ ∈ I such that Gα and Gβ are each subgroups

of Gγ . Consider the topological space [0, 1]P(G). This space is compact by
Tychonoff’s theorem. For each α ∈ I, let Mα consist of finitely additive
probability measure µ : P(G) → [0, 1] such that µ(gA) = µ(A) whenever
g ∈ Gα. Then each Mα 6= ∅, as witnessed by µ(A) = µα(A ∩ Gα). And it
is easy to check Mα is a closed subset of [0, 1]P(G). Since Mα ∩Mβ ⊃ Mγ

if Gα, Gβ ⊂ Gγ , the collection {Mα : α ∈ I} has the finite intersection
property. By compactness, there exists µ ∈ ∩α∈IMα, and such a µ witnesses
the amenability of G.

(vi) Let ω ∈ βN be a free ultrafilter. Then

µ(A) = lim
n→ω

|A ∩ {−n, · · · , n}|
2n+ 1

defines a measure on Z. Here limn→ω an denote the unique real number a
such that for each neighborhood U of a the set {n : an ∈ U} ∈ ω.

(vii) Any group is the direct union of its finitely generated subgroups so by (v) a
group is amenable iff all its finitely generated subgroups are amenable. Let G
be a finitely generated abelian group. By the fundamental theorem of finitely
generated abelian groups, G ' Zr × Z/k1Z × · · ·Z/kmZ for some r ≥ 0 and
integers k1 | k2 | · · · | km. Hence any finitely generated abelian group is
amenable by (iv), (i), and (vi).

(viii) Let G be a solvable group. Then there exists normal series {1} = G0 C
G1 C · · · C Gn = G such that Gi+1/Gi is abelian for all i < n. Therefore,
G is amenable by (iii) with induction. Every nilpotent group is solvable so
nilpotent groups are amenable.

�
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Example 2.7. In R, Isom(R) = O(1) nR. Since O(1) nR/R ' O(1) ' Z/2Z, the
normal series {1}CRCO(1) nR shows that Isom(R) is solvable. Similarly in R2,
Isom(R2) = O(2) n R2 and the normal series {1}C R2 C SO(2) n R2 C O(2) n R2

shows that Isom(R2) is solvable. By Proposition 2.6, Isom(R) and Isom(R2) are
amenable and hence R and R2 are not finitely paradoxical with respect to their
isometry group.

For countable discrete group, there are two nice characterizations of amenability.

Theorem 2.8. Suppose G is countable. Then the following are equivalent:

(i) G is amenable.
(ii) G satisfies the Reiter’s property: there exists a sequence of nonnegative func-

tions fn ∈ l1(G) such that ||fn||1 = 1 for all n, and limn→∞ ||g.fn− fn||1 = 0
for all g ∈ G.

(iii) G admits a Følner sequence, i.e. a sequence of finite subsets Fn ⊂ G such

that limn→∞
|gFn4Fn|
|Fn| = 0 for all g ∈ G.

Proof. (i) =⇒ (ii): Let K = {f ∈ l1(G) : ||f ||1 = 1, f ≥ 0}, and fix a mean
m ∈ l∞(G)∗. We know m is in the unit ball of l∞(G)∗ by the remark before
Proposition 2.4. We will first show m is in the weak∗ closure of K. Suppose

not. As K
wk∗

is compact convex by Banach-Alaoglu theorem, by Hahn-Banach
separation theorem there exists φ0 ∈ l∞(G) separating m from K, i.e. for all
f ∈ K,Re〈φ0, f〉 ≤ Re〈φ0,m〉 − ε for some ε > 0. By replacing φ0 with Reφ0, we
may assume φ0 is real-valued. Note that ||φ0||∞ ≥ φ0(g0) ≥ ||φ0||∞ − ε/2 for some
g0 ∈ G. If f = χ{g0}, then since ||m|| ≤ 1

||φ0||∞ ≥ m(φ0) = 〈φ0,m〉 ≥ 〈φ0, f〉+ ε = φ0(g0) + ε ≥ ||φ0||∞ + ε/2,

a contradiction. Hence m ∈ Kwk∗

. It follows that there is a net fi → m in the
weak∗ topology with fi ∈ K, i.e. for all φ ∈ l∞(G), 〈fi, φ〉 → m(φ). Next we
observe that g.fi → g.m in the weak∗ topology:∑

h∈G

g.fi(h)φ(h) =
∑
h∈G

fi(g
−1h)φ(h) =

∑
h∈G

fi(h)φ(gh)

=
∑
h∈G

fi(h)g−1.φ(h) = 〈fi, g−1.φ〉 → m(g−1.φ) = g.m(φ).

By left-invariance of m, g.fi → m = g.m. It then follows that fi − g.fi → 0 in
the weak∗ topology. Since the counting measure is σ-finite, (l1(G))∗ ' l∞(G). It
follows that the weak∗ topology on l1(G) when viewed as a subspace of (l∞(G))∗

is the same as the weak topology. Hence fi − g.fi → 0 weakly.
Now fix ε > 0. Enumerate G = {gn}n≥1. Fix n ≥ 1 and consider the convex

subset
C = {(f − g1.f, f − g2f, · · · , f − gn.f) : f ∈ K}

of the Banach space l1(G)⊕n with the norm ||(f1, f2, · · · , fn)|| =
∑n
i=1 ||fi||1. Then

0 ∈ Cwk. By Mazur’s theorem, B
wk

= B
||·||

for any convex subset B of a Banach

space. So, 0 ∈ C
||·||

and therefore there exists fn ∈ l1(G) with ||fn||1 = 1 and
fn ≥ 0 such that

∑n
i=1 ||fn − gi.fn|| <

1
n .

(ii) =⇒ (iii): If ψ, φ ∈ l1(G), and ψ, φ ≥ 0, then by Tonelli’s theorem

||ψ||1 =

∫ ∞
0

||χ{ψ>t}||1dt and ||ψ − φ||1 =

∫ ∞
0

||χ{ψ>t} − χ{φ>t}||1dt.
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By the Reiter property, for any n ≥ 1, there exists f ∈ l1(G) with f ≥ 0, ||f ||1 = 1
such that

∑n
i=1 ||f − gi.f ||1 < 1

n . Let Xt = {h ∈ G : f(h) > t} for t > 0.

Xt is finite since f ∈ l1(G). Also note that {h ∈ G : g.f(h) > t} = g−1Xt so
||χ{f>t} − χ{g.f>t}||1 = |g−1Xt4Xt| for all g ∈ G. Combining with the above
equation, we get

n∑
i=1

||f − gi.f ||1 =

n∑
i=1

∫ ∞
0

||χ{f>t} − χ{g.f>t}||1dt

=

n∑
i=1

∫ ∞
0

|g−1Xt4Xt|dt <
1

n
=

1

n
||f ||1 =

∫ ∞
0

|Xt|
n
dt.

Hence there exists {kn} such that Fn = Xkn satisfies
∑n
i=1 |g

−1
i Fn4Fn| < |Fn|

n .
(iii) =⇒ (i): Let {Fn}n≥1 be a Følner sequence, and let ω ∈ βN be a free

ultrafilter, and observe that

µ(A) = lim
n→w

|A ∩ Fn|
|Fn|

defines a finitely additive probability measure on G. Note that

|µ(gA)− µ(A)| = lim
n→ω

||gA ∩ Fn| − |A ∩ Fn||
|Fn|

= lim
n→ω

∣∣|A ∩ g−1Fn| − |A ∩ Fn|∣∣
|Fn|

≤ lim
n→w

|g−1Fn4Fn|
|Fn|

= 0.

Therefore, µ is left-invariant.
�

Remark 2.9. For uncountable discrete groups, one can generalize with Følner nets
replacing Følner sequences. In general, a discrete group G is amenable iff G satisfies
the Følner condition: for any finite subset Γ ⊂ G and ε > 0, there exists finite subset

F ⊂ G such that for any g ∈ Γ, |gF4F ||F | < ε.

Example 2.10. Fn = [−n, n] for n ∈ N is a Følner sequence for Z.

In Example 2.7, we showed that there is a measure on Isom(R) and Isom(R2) so
by Proposition 2.3 there is a finitely additive isometry-invariant probability mea-
sure on R and R2. With the following equivalent formulation of amenability in
terms of the Hahn-Banach extension property, we can show in fact there exists a
finitely additive isometry-invariant measure that extends a particularly nice one,
the Lebesgue measure.

Definition 2.11 (Hahn-Banach extension property). A group G satisfies the Hahn-
Banach extension property if G is a group of linear operators on a real vector space
V , F is a G-invariant linear functional on a G-invariant subspace V0 of V , and F
is dominated by a sublinear functional such that p(g(v)) ≤ p(v) for g ∈ G and

v ∈ V , then there exists a G-invariant linear functional F̃ on V that extends F and
is dominated by p.

Theorem 2.12. G is amenable iff G satisfies the Hahn-Banach extension property.
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Proof. Suppose G is amenable with measure µ. By Hahn-Banach theorem, there
exists a linear functional F0 on V that extends F and is dominated by p. Then for
any v ∈ V , define fv : G → R by fv(h) = F0(h−1v). Since F0(h−1v) ≤ p(h−1v) ≤
p(v), fv is dominated by p(v). Define F̃ (v) =

∫
fvdµ. Then F̃ (v) ≤ p(v) and F̃

is a linear functional on V . Moreover, F̃ extends F , and the G-invariance follows
from that of µ. Conversely, let V = l∞(G), the collection of bounded real-valued
functions on G, and let V0 be the subspace of constant functions. The action of G on
l∞(G) given by g.f(h) = f(g−1h) is linear, and V0 is G-invariant. Let F (αχG) = α
and p(f) = sup{f(g) : g ∈ G}. Then by the Hahn-Banach extension property, there

is a left-invariant linear function F̃ on l∞(G) dominated by p with F̃ (χG) = 1. If

f ≥ 0, then p(−f) ≤ 0 and so F̃ (−f) ≤ p(−f) ≤ 0. Hence F̃ (f) = −F̃ (−f) ≥ 0.

This shows that F̃ is positive. Therefore, F̃ is a left-invariant mean on G and G is
amenable by Proposition 2.4. �

Corollary 2.13. If G is an amenable group of isometries of Rn , then there is a
finitely additive, G-invariant extension of the Lebesgue measure to all subsets of
Rn. In particular, the Lebesgue measure on R, or R2 has an isometry-invariant,
finitely additive extension to all sets.

Proof. Suppose G is an amenable group of Isom(Rn). Let V0 be the space of all
Lebesgue integrable real-valued functions on Rn, and let V be the space of all
functions f : Rn → R such that for some g ∈ V0, f(x) ≤ g(x) for all x ∈ Rn.
Isom(Rn) acts on V and V0 in the obvious way and we let F be the G-invariant
linear functional on V0 defined by F (f) =

∫
fdm. Finally, define a G-invariant

sublinear functional p on V that dominates F by p(f) = inf{F (g) : g ∈ V0, g ≥ f}.
By the Hahn-Banach extension property, there exists a G-invariant linear functional
F̃ on V , and define the desired measure µ on P(Rn) by µ(A) = F̃ (χA) if χA ∈ V ;
µ(A) = ∞ otherwise. It is easy to see that µ is finitely additive and G-invariant.

Since F̃ (χA) =
∫
χAdm = m(A) if A has finite Lebesgue measure, µ extends

m. Finally, note that µ(A) ≥ 0; for if f ≥ 0, then F̃ (−f) ≤ p(−f) ≤ 0 and

F̃ (f) = −F̃ (−f) ≥ 0. �

Remark 2.14. Recall from Corollary 1.2 that there is no countably additive translation-
invariant measure on all subsets of Rn that normalizes the cube. But the group
of translations is abelian and hence amenable by Proposition 2.6, so if only finite
rather than countable additivity is desired, then such measure do exists by the
preceding corollary.

Corollary 2.15. If G is an amenable group of isometries of Rn, then no bounded
subset of Rn with nonempty interior is G-paradoxical. In particular, no bounded
subset of R or R2 with nonempty interior is finitely paradoxical.

Proof. By the preceding corollary, there exists a finitely additive G-invariant ex-
tension of m to all subsets of Rn. Then 0 < µ(A) <∞ for any bounded set A with
nonempty interior, so A is not G-paradoxical. �

We’ve seen in Proposition 2.6 that most groups are amenable. We also know
from Corollary 1.10 that any group with a free subgroup of rank 2 is not amenable.
Day conjectured that this is the only way a group can fail to be amenable and this
became known as the von Neumann conjecture. This was unsolved until Ol’shanskii
in 1980 showed that the conjecture is false by constructing an example of a torsion
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paradoxical group. A torsion group has no element of infinite order and therefore
has no free subgroup of any rank. Nevertheless, Tits showed that the conjecture is
true for linear groups, i.e. subgroups of GLn(F) for some field F. See Wagon [2] for
details on Tits alternative.

If a group has a subgroup of finite index with a certain property, we shall say
that the group virtually has the property.

Theorem 2.16 (Tits alternative). G ⊂ GLn(F).

(i) If F has characteristic 0, then either G has a free subgroup of rank 2 or G is
virtually solvable.

(ii) If F has nonzero characteristic, then either G has a free subgroup of rank 2
or G has a normal solvable subgroup H such that G/H is locally finite, i.e.
every finite subset generates a finite subgroup.

In particular, Tits’ theorem applies to any group of Euclidean isometries since
the Euclidean affine group GLn(R)nRn is isomorphic to a subgroup of GLn+1(R).

Corollary 2.17. LetG ⊂ Isom(Rn). ThenG is amenable iffG has no free subgroup
of rank 2.

3. Supramenability and Growth Conditions in Groups

In this final section we shall present some connections between the amenability of
a group and the growth rate of a group, i.e., the speed at which new elements appear
when one considers longer and longer words using letters from a fixed finite subset
of a group. This approach to amenability sheds light on a basic difference between
abelian and solvable groups. Both types of groups are amenable, but their growth
rates can be quite different. This will explain why there is a paradoxical subset of
the plane by Sierpiǹski-Mazurkiewicz paradox, but no similar subset of R exists.
The notional of amenability is based on the existence of a probability measure, but
we are often interested in invariant measure that assign specific subsets measure
one. The following definition is the appropriate strengthening of amenability that
guarantees the existence of such measures for any nonempty subset of a set on
which the group acts.

Definition 3.1 (Supramenability). A group G is supramenable if for any nonempty
subset A ⊂ G, there exists a finitely additive, left-invariant measure µ : P(G) →
[0,∞] with µ(A) = 1.

Of course, if G is supramenable, then no nonempty subset of G is paradoxical.
The converse is true by Tarski’s theorem.

Theorem 3.2 (Tarski’s theorem). G is supramenable iff no nonempty subset of G
is finitely paradoxical.

The main result on actions of such groups is that supramenability of the group
can be transferred to the set on which the group acts.

Proposition 3.3. Let G be a supramenable group acting on X, and A is a
nonempty subset of X. Then there is a finitely additive, G-invariant measure
µ : P(X)→ [0,∞] such that µ(A) = 1; hence no nonempty subset of X is finitely
G-paradoxical.
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Proof. Fix x ∈ A. Define GB = {g ∈ G : g.x ∈ B} for every B ⊂ X. Note that
1 ∈ GA. By supramenability of G, there exists a finitely additive, left-invariant
measure ν : P(G) → [0,∞] with ν(GA) = 1. Define the desired measure µ on
P(X) by µ(B) = ν(GB). Then µ(A) = ν(GA) = 1 and the finite additivity of ν
follows from that of µ. Finally, if g ∈ G, Gg.B = g.GB , whence the G-invariance of
µ follows from that of ν. �

Of course, any nonamenable group fails to be supramenable, but the Sierpiǹski-
Mazurkiewicz paradox provides an example of an amenable group that is not supra-
menable. In Example 2.7, we showed that Isom(R2) is amenable, but the existence
of a paradoxical set of the plane and the preceding proposition implies O(2) n R2

is not supramenable. This can be shown more directly by constructing a free sub-
semigroup of rank 2 in O(2) n R2 as in Theorem 1.13. In fact, free semigroups of
rank 2 play much the role for supramenability that free groups of rank 2 do for
amenability. As we now show, a group that contains a free subsemigroup of rank 2
can not be supramenable.

Proposition 3.4. If G contains a free subsemigroup of rank 2, then G is not
supramenable.

Proof. Let S ⊂ G be the semigroup generated by g and h. Observe that gS and
hS are disjoint subsets of S that are clearly finitely G-equidecomposable with S.
Hence, S is finitely G-paradoxical. �

Now we summarize the known closure properties of supramenable groups.

Proposition 3.5.

(i) Every finite group is supramenable.
(ii) If G is supramenable and Γ ≤ G, then Γ is supramenable.

(iii) If N CG and G is supramenable then G/N is supramenable.
(iv) (AC) If G is the direct union of a directed system of supramenable groups

{Gα : α ∈ I}, then G is supramenable.
(v) If H ≤ G and [G : H] < ∞, then H is supramenable implies G is supra-

menable.

Proof.

(i) If A ⊂ G is nonempty, let µ be defined by µ(B) = |B|/|A|.
(ii) Let Γ be a subgroup of a supramenable group G and let A be a nonempty

subset of Γ. Simply restrict a measure on P(G) that normalizes A to P(Γ).
(iii) If A is a nonempty subset of G/N , let µ be a left-invariant measure on P(G)

that normalizes ∪A. Define ν on P(G/N) by ν(B) = µ(∪B).
(iv) Let A be a nonempty subset of G. Since each Gα is contained in a Gβ that

intersects A, we may assume without loss of generality that each Gα intersect
A by simply deleting from the system any subgroups that miss A. Consider
the topological space [0,∞]P(G), which is compact by Tychonoff’s theorem.
For each α ∈ I, let Mα consist of those finitely additive µ : P(G) → [0,∞]
such that µ(A) = 1 and µ is Gα-invariant. Each Gα is supramenable, so
if µα is a Gα-invariant measure on P(Gα) with µα(A ∩ Gα) = 1, then the
measure defined by µ(B) = µα(B ∩ Gα) lies in Mα. So Mα 6= ∅. As in
Proposition 2.6(v), Mα is closed and Mα∩Mβ ⊃Mγ if Gα, Gβ ⊂ Gγ implies
{Mα : α ∈ I} has the finite intersection property. By compactness, there
exists µ ∈ ∩α∈IMα and such a µ is G-invariant measure normalizing A.
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(v) Let A be a nonempty subset of G and {g1, · · · , gm} be right coset representa-
tives of H in G. Since H is supramenable, apply Theorem 3.3 to the action of
H on G by left multiplication to obtain an H-invariant measure ν on P(G)
with ν(∪giA) = 1. Note that 0 <

∑
ν(giA) < ∞. Define µ on P(G) by

µ(B) = 1∑
ν(giA)

∑
ν(giB). Then µ is finitely additive and µ(A) = 1. More-

over, for any g ∈ G, the set {gig} is a set of representative of the right cosets
of H. Hence µ(gB) = 1∑

ν(giA)

∑
ν(gigB) = 1∑

ν(giA)

∑
k ν(hkgkB), and the

H-invariance of ν then yields that µ(gB) = µ(B).

�

We now discuss growth rates in groups and how they relate to supramenability.
Recall that the length of a reduced word gm1

1 · · · gmr
r (gi not necessarily distinct,

gi 6= gi+1, mi > 0) is
∑
mi; the identity is assumed to have length 0.

Definition 3.6 (Growth rate of a group). If S is a finite subset of a group G, then
the growth function γS : N→ N is defined by setting γS(n) equal to the number of
elements of G obtainable as a reduced word of length at most n using elements of
S ∪ S−1 as letters.

γS is of course nondecreasing. Also, γS(0) = 1 and γS(1) = |{1}∪S∪S−1|. Since
γS(n+m) ≤ γS(n)γS(m), it follows that γS(n) ≤ γS(1)n, so γS is always bounded
by an exponential function. If G contains a free subsemigroup of rank 2, and S
contains two free generators of such a semigroup, then γS(n) ≥ 2n, the number
of words in S with only positive exponents and with length exactly n. Hence
if G contains a free subsemigroup of rank 2, then the growth function exhibits
exponential growth, with respect to some choice of S.

Definition 3.7. A group G has subexponential growth if for any finite S ⊂ G
and any b > 1, there exists N > 0 such that γS(n) < bn for n ≥ N ; equivalently,
limn→∞ γS(n)1/n = 1. Otherwise G is said to have exponential growth.

Before we give examples of groups of subexponential growth, we should first
point the important connection with supramenability.

Theorem 3.8.

(i) Let G acts on X and let A be a nonempty subset of X. If G has subexponential
growth, then A is not finitely G-paradoxical.

(ii) (AC) If G has subexponential growth, then G is supramenable.

Proof.

(i) Suppose on the contrary that A is finitely G-paradoxical. Then there exists
two injective piecewise G-transformation F1 : A → A and F2 : A → A such
that F1(A) ∩ F2(A) = ∅. Let S be the set of all elements of G occurring as
a part of the G-transformation in F1 and F2. Since G has subexponential
growth, there is an integer n such that γS(n) < 2n. Consider the 2n functions
{Hi : 1 ≤ i ≤ 2n} obtained as compositions of a string of n functions that
are either F1 or F2, so each Hi looks like F1 ◦ F2 ◦ F2 ◦ · · · ◦ F2 ◦ F1. Suppose
i 6= j. Let k be the first (rightmost) of the n positions where Hi and Hj

differ. Since the function obtained by restricting Hi and Hj to the rightmost
k− 1 compositions is injective, and since F1 and F2 map A into disjoint sets,
Hi(A) ∩ Hj(A) = ∅. Then for any x ∈ A, the set {Hi(x) : 1 ≤ i ≤ 2n} has
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2n elements. But each Hi(x) has the form wx where w is a word of length n
composed of elements of S. This contradicts the fact that γS(n) < 2n.

(ii) Consider the left translation action of G on itself. By part (i), G contains
no nonempty finitely paradoxical subset. By Tarski’s theorem, G is supra-
menable.

�

Proposition 3.9.

(i) Every finite group has subexponential growth.
(ii) Every abelian group has subexponential growth.

(iii) A subgroup or a homomorphic image of a group of subexponential growth has
subexponential growth.

(iv) If H ≤ G and [G : H] <∞, then H has subexponential growth implies G has
subexponential growth.

(v) A direct union of groups of subexponential growth has subexponential growth;
in particular, a group has subexponential growth iff all of its finitely generated
subgroups are.

Proof. (i) For any S ⊂ G, γS(n) ≤ |G| so γS(n)1/n → 1.
(ii) Suppose G is abelian. Let S = {g1, · · · , gr} ⊂ G. Any word in S is of the

form gm1
1 gm2

2 · · · gmr
r , where mi ∈ Z. Hence the number of group elements

that arise from words of length n is at most (2n + 1)r since −n ≤ mi ≤ n
for every 1 ≤ i ≤ r. Thus γS(n) is dominated by n(2n+ 1)r, a polynomial of
degree r + 1. This shows that abelian groups have subexponential growth.

(iii) The subgroup case follows from the fact that γS with respect to H ≤ G is
bounded by γS with respect to G. Let N CG and let S be a finite subset of
G/N . Let S′ be a finite subset of G whose image under G→ G/N is S. Then
γS(n) in G/N is bounded by γS′(n) in G.

(iv) Let g1, · · · , gr be a set of representative for the right cosets of H in G with
g1 = 1. Given a finite S ⊂ G, let S′ consists of the finitely many h ∈ H
that arises when each gis is written in the form hgk, where s ∈ S and 1 ≤
i ≤ r. Suppose w = s1s2 · · · with si ∈ S is a word of length at most n
from S. Since s1 = 1s1 = g1s1, there exists h1 ∈ H and 1 ≤ k1 ≤ r such
that s1 = h1gk1 . Similarly, there exists h2 ∈ H and 1 ≤ k2 ≤ r such that
gk1s2 = h2gk2 . By induction, w = h1 · · ·hmgkm , where m ≤ n is the length
of w. So, each w ∈ G that arises as a word of length at most n from S can
be represented as w′gi, where 1 ≤ i ≤ r and w′ is a word of length at most
n from S′. Therefore, γS(n) in G is at most r · γS′(n) in H. It follows that
lim γS(n)1/n ≤ lim r1/nγS′(n)1/n = 1, so G has subexponential growth.

(v) Suppose G is the union of the directed system of subgroups {Gα : α ∈ I} and
G has exponential growth. If this failure is witnessed by γS then choose α ∈ I
such that S ⊂ Gα. Since γS only refers to elements in the group generated
by S, Gα must have exponential growth too.

�

In the above proposition, we have explained why abelian groups has subexpo-
nential growth. Combined with Theorem 3.8, we know that abelian groups are
supramenable. In particular, this yields a proof that abelian groups are amenable
that is completely different from the proof of Proposition 2.6. This new proof us-
ing growth rate is somewhat more informative, because in addition to proving the
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stronger conclusion regarding supramenability, it shows quite clearly and effectively
why the existence of a finitely G-paradoxical set in any action of G implies that G
has exponential growth.

Corollary 3.10. The isometry group of the line Isom(R) = O(1) n R has subex-
ponential growth. Therefore no nonempty subset of R is finitely paradoxical.

Proof. Note that RC Isom(R) and Isom(R)/R ' O(1) ' Z/2Z. Since R is abelian,
Isom(R) has subexponential growth by Proposition 3.9 (ii) and (iv). The conclusion
then follows from Theorem 3.8 (i). �

So, in summary no nonempty subset of R is finitely paradoxical because Isom(R)
is supramenable. But there exists paradoxical subset of R2 because SO(2) n R2

contains a free subsemigroup of rank 2 and hence not supramenable; an example
is the Sierpiński-Mazurkiewicz paradox. As a consequence of the amenability of
Isom(R) and Isom(R2), Lebesgue measure on R and R2 has a finitely additive,
isometry-invariant extension to all sets. However, Isom(R2) is solvable and hence
amenable so all of R2 is not finitely paradoxical. In R3 however, SO(3) is not
amenable because it contains a free subgroup of rank 2. This lead to the Banach-
Tarski paradox that S2 is finitely SO(3)-paradoxical and R3 is finitely paradoxical.
In fact, as shown in Theorem 1.20, all bounded sets of R3 with nonempty interior are
finitely equidecomposable. Banach-Tarski paradox also exists in Rn for all n ≥ 3:
Sn−1 is finitely SO(n)-paradoxical and Rn is finitely paradoxical when n ≥ 3.
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