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One of the crucial differences between Kähler and non- Kähler geometry has to do with 
the difference between a closed form of type (p,p) being exact in the usual sense of being 
in the image of d  versus the same form being expressible as  ∂ ∂  of another form. On 
Kähler manifolds these two things are the same. This is the fact known as the   ∂ ∂  
Lemma, derived from Hodge Theory for Kähler manifolds. [ see the insert for details].  
But on non- Kähler manifolds they are potentially different.    
 
[Insert: The ∂∂  Lemma: On a compact Kähler manifold, if a form  ω of type (p,p) is d-

exact, then there is a (p-1,p-1) form θ such that ∂∂θ=ω .   
The proof involves harmonic theory.  For this, recall that if D is any one of the operators  
d, ∂  or  ∂ , then there is a harmonic decomposition : 
 
                         image (D)   +   image (D*)   +   ker (DD* + D*D) 
 
where  D* is the formal adjoint of D relative to the inner product on forms determined by 
the Kähler metric.  This decomposition is orthogonal relative to the (integrated) inner 
product of forms.   The crucial fact for our purposes is that (because the metric is Kähler), 
the operator DD* +D*D,  the D-Laplacian,  is the SAME operator, up to constant factors,  
whichever one of the D possibilies is involved. The ordinary, real Laplacian extended to  
act on complex forms by complex linearity preserves (p,q) type and is the same operator ,  
except for a factor of ¼,  as the ∂   or  ∂   Laplacians .   So a (p,q) form is harmonic  
(Laplacian =0) in the d-sense if and only if it is ∂  harmonic if and only if it is 
 ∂ -harmonic. 
 
Turning now to the situation of an exact form of type (p,p), write (d )ω α β= +   where α 

is type (p,p-1) and β is type (p-1, p). Since d =∂  + ∂  we must have  

( )( )ω α β

α α β

= ∂ + ∂ +

= ∂ + ∂ + ∂ + ∂β
 

 
Examining types, we get  0α∂ =  and 0β∂ =  so that ω α β= ∂ + ∂ .  
Now note that since  0α∂ =  , the Hodge decomposition  for ∂ from above gives that  
α=∂ f + h , where f is a (p-1, p-1) form and h is a (p,p-1) form that is ∂ -harmonic.   Now 
note that being ∂  harmonic is the same thing as being ∂ -harmonic so that  h is  
∂ -harmonic and in particular ∂  h=0.  Thus ∂ α = ∂ ∂  f. 
Similarly there is a (p-1,p-1) form g such that∂ β= ∂ ∂ g.   
Since ∂  =-  ∂ ∂ ∂   , we obtain  that ( f g)ω = ∂∂ − + . End of insert] 
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For example, on S6, if it had a complex structure, the first Chern form would be exact, 
because the deRham cohomology H2(S6, R) is 0.  But in principle it could fail to be the 
case that the (1,1) form representing the first Chern form is expressible as  ∂ ∂  of a 
function. (Note that a complex structure on S6 , if there is one , necessarily cannot admit a  
Kähler metric, because of the vanishing of the 2-cohomology of S6).  In fact, just for fun 
and to illustrate the importance of the  ∂ ∂  Lemma, we give a proof that there is no 
complex structure on S6 for which the first Chern form is expressible as ∂ ∂  of a function 
(for some Hermitian metric on S6: note that the first Chern form is uniquely determined 
up to  ∂ ∂  of a function in any case): 
 
To prove this, suppose that S6 did have such a complex structure, and fix a Hermitian 
metric.   Then let (z1, z2, z3) be a holomorphic local coordinate system.  For the fixed 
Hermitian metric, the volume form  can of course be written locally as  

1 2 3 1 2Vdz dz dz dz dz dz∧ ∧ ∧ ∧ ∧ 3   for some positive function V on the coordinate patch. 

The first Chern form is then given by  1
ic l

2π
= − ∂∂ og V . 

As usual, the formula is local but the differential form defined is global. [easy and 
standard calculation: changing coordinates changes V by the real Jacobian of the 
coordinate transformation, but this is the absolute value squared of the holomporphic 
Jacobian J. Since 2log J  is locally expressible as the sum of a holomorphic and a 

conjugate holomorphic function, it is annihilated by   ∂ ∂  .] 
 
 
The form c1 is closed and hence, by vanishing of the second deRham cohomology, is 
expressible as d of some global 1 form. Suppose that in fact c1 were ∂ ∂  f, for some 
function f.  Then it would follow that  ∂ ∂ log (ef V)= 0, for any locally defined V defined 
as earlier. That is , log efV is plurisubharmonic, and hence is the real part of some 
holomorphic function h (locally, one can assume this works by shrinking coordinate 
systems if necessary). Thus efV itself is expressed  2exp(h / 2)  .  So labeling our 
coordinate cover by index α,  we have a collection of holomorphic functions Fα with the 
holomorphic (3,0)  forms Ωα defined by  1 2F dz dz dzα 3∧ ∧  having the property that   

f volume forme ( ) α α⋅ = Ω ∧Ω ., namely F exp(h / 2)α =  for the corresponding h.  
 
Note that in this situation, one obtains that the quotient  Fα/ Fβ  has absolute value 1. Since 
it is holomorphic, it follows that it is constant, so that there exist constants θαβ with Fα/Fβ 
=  exp(  2 πi θαβ) . These θ 's form a Cech cocycle with coefficients in R/Z. From the 
topology of S6 (that the first cohomology is 0 for any coefficients) , one deduces that 
there exist θα  ,constants in R/Z, with  θαβ = θα -  θβ.  Then the form exp(- 2 πi θα) Ωα is 
globally defined. It is clearly closed: 0∂ =   by type considerations and  0∂ =   because it 
is holomorphic. It cannot be exact since the integral of it wedged with its conjugate is 
positive. Thus it represents a nontrivial element in the deRham cohomlogy H3 (S6 , R) , a 
contradiction. 
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Note that this most definitely does not prove that S6 has no complex structure!! Indeed, it 
conjecturally  does have one. Rather, it proves any complex structure on S6, which of 
course would clearly be non- Kähler, would also have to fail to satisfy the ∂ ∂   Lemma. 
 
 

Hermitian Yang Mills—continued (Li, Yau, Zheng revisited) 
 
We return to considering not general vector bundles, but specifically the tangent bundle 
in the Inoue case. The tangent bundle is stable (this follows from the Inoue condition 
contradicted: recall that the idea is to prove that there are no manifolds in the class  with 
the property  that for all line bundles the space of holomorphic sections of the 
holomorphic cotangent bundle tensored with the line bundle is 0 alone). Stability implies 
that there is an Hermitian Yang-Mills connection, that is a metric h such that the 
curvature form of the associated type (1,0) Hermitian connection has curvature form Fh of 
the type  Idα ⊗ .  This is called a "projectively flat connection".  (Note that the statement 
that α=0  in this case in the first Li, Yau, Zheng  paper is in error, corrected in their 
second paper [Illinois Journal]. )  To complete the proof, we need to classify the complex 
surfaces(or more generally complex manifolds of all dimensions)for which such a 
connection exists. The exact result is this: 
 
Theorem: Suppose that M is an Hermitian manifold with  Kähler form ω satisfying  

n 1 0ω −∂∂ =  and with the tangent bundle projectively flat. Then either  
 

(1) M is flat, that is Fh=0, and balanced in the sense that dωn-1 =0 
or 

(2) M has a finite cover by a Hopf manifold, that is a manifold of the form Cn – {0} / 
a Z action. 

 
Note: This solves the Inoue question since ,with n=2, the first case would make the 
manifold  Kähler, contradicting b1= 1, while the manifold is not  finitely covered by a 
Hopf manifold in the Inoue situation.   
  
 Proof of the Theorem  
(We want to look at this because it illustrates a method of getting geometric structures. 
Later on we shall see that this is in fact an instance of a typical way to build geometric 
structures. In particular, one can do similar things for Hermitian symmetric spaces. If 
only the n=2 specific case here were of interest, one could in fact do the proof more 
simply, but the general method is of interest.) 
   
The proof will be completed in Part II.   
 
 
 

 3


