
Twistor Spaces and Balanced Metrics on Complex Manifolds 
 

 
Complex manifolds of complex dimension 1 (Riemann surfaces) are of course 
always Kähler, that is admit Kähler metrics, on account of the obvious dimension 
situation: dω=0 simply because it is a 3-form!  This dimensional necessity 
naturally does not apply in complex dimension 2 or higher, but as it happens, 
most compact complex surfaces in fact are Kähler.  Moreover, the non-Kähler 
examples occurring in the Kodaira classification are well-understood with the 
exception of some of the Class VII0 surfaces, and it seems likely that the 
classification of these latter will be completed soon. 
  
But in complex dimension 3, things are quite different. There are in fact vast 
collections of compact complex manifolds of complex dimension 3 that are 
guaranteed to admit no Kähler metric.  One set of examples arises from the 
"twistor space" construction.  This construction associates to certain (real) 4-
manifolds a complex manifold of complex dimension 3 that is Kähler only in very 
specific and special cases. 
 
The twistor space construction begins with a compact  4-manifold  M4 that admits 
what is called an  anti-self-dual metric. Recall here that the Weyl tensor is the 
tensor the vanishing of which is equivalent to local conformal flatness. This is 
obtained from the Riemannian curvature tensor R by taking its traceless part. 
Explicitly it is given by  

  
 
where the circle product is defined by 
 

 

     
              

 
 
The curvature tensor R can be considered as an endomorphism from 2-forms to 2-
forms(the curvature operator). Then R on self-dual 2-forms, that is, R restricted to  
the +1 eigenspace of * on 2-forms, can be considered as a pair of maps, into  the 
self-dual and anti-self dual spaces respectively. The first of these , the map of self 
dual into the self dual component of the R image, is given by (s/12) + W+ , s being 
the scalar curvature, this notation defining W+ as a map.  Similarly W-  is anti-
self-dual part of R on anti-self-dual forms  - multiplication by the scalar curvature 
s /12.  A metric is called anti-self-dual if one of W+ or W-  is 0. 
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An abundance of such examples is provided by the theorem of Taubes that if N is 
any  compact 4-manifold, then the connected sum of N with sufficiently many 
copies of  S2   x   S2    has an anti-self-dual metric in the sense indicated. 
 
Now consider an compact oriented 4-manifold M with a Riemannian metric g. 
Then attached to M is a bundle consisting of , for each x in M, the almost 
complex structures J on the tangent space TxM which are compatible with the 
orientation and which satisfy  g(JX, JY)= g(X,Y) for all tangent vectors X and Y 
in TxM.  In other words. J acts as an orthogonal transformation on TxM with 
respect to the metric g.    The set of all such almost complex structures on TxM for 
a fixed x in M is identifiable with S2 as follows: Choose some unit vector X in 
TxM.   Then JX must be unit and perpendicular to X,  but subject to that 
restriction JX can be chosen arbitrarily. So ,since the orthogonal complement of X 
is a three-dimensional subspace, JX can be chosen arbitrarily within a copy of S2 . 
Once JX is chosen, J is determined. For the orthogonal complement of the J-
invariant subspace span(X,JX) is necessarily J invariant and on this two-
dimensional complement, J acts isometrically with  J composed with J = - Id.  But 
which of the two possible such isometries is involved is determined by the 
requirement that J preserves orientation on all of TxM.    
 
The total space of this bundle B of g-compatible orientation-compatible almost 
complex structures on the tangent spaces of M has itself an almost complex 
structure. This is defined almost tautologically.  First note that at any point of B, 
namely a point of the form (x, J) where J is an almost complex structure of the 
required sort on TxM, there is a natural subspace of the tangent space of B at that 
point, with the subspace being isomorphic to TxM.   This "horizontal subspace" is 
obtained in the usual way from the natural connection on almost complex 
structures. Namely, given any vector X in TxM, and curve C(t) tangent to X in M, 
we can parallel translate J along C so that we have a parallel lift of C into B which 
projects back into M as C.  (Here the parallel translation is relative to the natural 
notion of covariant derivative of endomorphisms of the tangent space arising from 
the Riemannian connection determined by g).  The set of B- tangent vectors at 
(x,J) of such lifts is the "horizontal subspace" we are looking for.   Now J itself 
acts on this horizontal subspace since J acts on TxM by definition , and  we have 
an obvious  identification of TxM and the horizontal subspace.  We extend this J 
on the horizontal subspace to an almost complex structure on the whole tangent 
space of B at (x,J) by making this extension act on the tangent space of the fibre 
via the standard almost complex structure of S2. In other words , we define  JB  on 
the tangent space of B at (x,J) as the direct sum of  J on the horizontal subspace 
via identification and J on S2. It is easy to check that the latter is independent of 
how the identification of the fibre with  S2     is chosen in the discussion above. 
 
So B , the so-called "twistor space", is thus an almost complex manifold, for any 
oriented 4-manifold M.   It is natural to ask when is the almost complex structure 
of B integrable. This turns out necessarily to happen if the metric of M is anti-
self-dual in the sense defined earlier. (result of Atiyah-Hitchin-Singer, 1986).  
 
We introduce the notation for B , "Tw(M)" ,for "twistor space of M".  
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Note that by the result of Taubes, given any oriented 4-manifold M, there is a 
manifold of the form Tw(M # S2 x  S2   #...... #S2 x  S2 )   which is a complex 
manifold(of complex dimension 3) .   
 
These twistor spaces have natural Hermitian metrics. Namely, one gets a metric 
on the twistor space by  the combination of the metric of M and of the natural 
metric on metric-compatible almost complex structures(which have a natural 
metric induced from the M metric, since they are tensors). This corresponds to the 
splitting of the tangent space of Tw(M) at each point already discussed: we put 
the M-metric on the horizontal subspace and the metric on the fibre tangent space 
that arises from the fact that the fibres are M-tensors. This is easily checked to be 
Hermitian relative to the almost complex structure that we have discussed already. 
 
Now in general these twistor  spaces cannot be expected to be Kähler relative to 
any Hermitian metric at all. For one thing, van Kampen's Theorem shows that   M 
# S2 x S2   #...... #S2 x S2 has the same fundamental group as M itself and hence so 
does the twistor space associated(this follows from the homotopy exact sequence 
of the fibration) . In particular, it could surely be that the first Betti number of 
Tw(M # S2 x  S2   #...... #S2 x  S2 ) could be odd, and thus the twistor space could 
not be Kähler in this case.   But actually the manifold Tw(M # S2 x  S2   #...... #S2 x  
S2 ) is even more rarely Kähler than this type of example suggests. Indeed , 
Hitchin has shown that a twistor space obtained in this way can be Kähler only 
when the underlying 4-manifold  is CP2  or S4 . In the first case, the twistor space 
Tw(CP 2) is a flat manifold and in the second case Tw(S4) is CP3  . 
 
Speculatively, one might try to prove the smooth 4-dimensional Poincare 
Conjecture (that a smooth manifold homeomorphic to S4  is diffeomophic to the 
standard S4) using these general ideas. One could try to deform the metric to be 
anti-self-dual(interesting question in itself) and then prove that the twistor space is 
Kähler and of the homotopy type of CP3 . From the construction, it seems likely 
that it would in fact be diffeomorphic to  (standard ) CP3  , associated to the idea 
that exotic differentiable structures, e.g., on the sphere, tend not to happen in 
dimension 6. Then one could try to reason back to the original S4 situation.  
 
One might also be able to approach the famous question of whether S6  has a 
complex structure via similar ideas. Namely ,supposing that such a structure 
existed, one could "blow up" one point to get a topological (indeed 
diffeomorphic) CP3  and then hope to study the question of complex structures on 
CP3  to see whether this was possible in the first place.  
 
 
 
 
We have already introduced the idea of a balanced metric on a complex manifold, 
namely a metric with the property that the n-1 power of its Kähler form is closed, 
where n is the complex dimension: i.e., dωn-1 =0.    Now for twistor spaces that 
arise from the anti-self-dual situation and are hence complex, we have observed 
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that, except for a couple of special instance, dω fails to be zero on the whole 
complex 3-dimensional  twistor space, no matter what Hermitian metric is chosen 
on the space.  But the natural metric on the whole space does have dω2 =0. 
Complex twistor spaces have balanced metrics!! 
 
There are other reasons why balanced metrics are interesting: 
 
First, the existence of a balanced metric does detect explicitly a nontrivial 
property of the complex manifold. In a general sense, there is an "obstruction" to 
the existence of a balanced metric. Namely, on a compact complex manifold with 
a balanced metric no compact complex submanifold of codimension 1(or more 
generally no compact codimension 1 subvariety) can be homologous to 0. (Of 
course on a Kähler manifold the statement holds with the restriction "of 
codimension 1" deleted).  This follows the usual patter of the similar result for 
submanifolds of Kähler manifolds, regardless of codimension: 
Specifically, let D be a compact subvariety  of codimension 1 in M. Then  

1 0n

D
ω − >∫  since ωn-1 is a positive form. On the other hand, if D were homologous 

to 0, then by Stokes Theorem, d ωn-1   = 0 would imply that the integral was 0.  
 
Note that a compact complex manifold definitely can have codimension 1 
compact complex submanifolds that are homologous to 0.  For example, consider 
the complex structure on S2p+1  x  S1  , p>0,  obtained by regarding S2p+1  x  S1  as  
Cp+1   with the origin removed divided out by the action of scalar multiplication by 
2, say. Then the image in S2p+1  x  S1   of a complex dimension p complex linear 
subspace of Cp+1   with the origin removed is a compact complex submanifold of 
codimension 1. And of course it is homologous to 0 since S2p+1  x  S1   has 
homology =0 in real dimension 2p.    
 
 
A similar construction can be used to find codimension 1 compact submanifolds 
of the Calabi Eckmann complex manifold structures on S2p+1  x S2q+1 ,p,q>0. 
Namely, there is in this case a fibration with torus fibres                                       
F: S2p+1  x S2q+1  CPp xCPq, and if N is any codimension 1 submanifold of 
CPpxCPq   (of which there are of course many), then F-1 (N) is a codimension 1 
complex submanifold of CPpxCPq . And this is of course homologous to 0 since 
again the homology of S2p+1  x S2q+1 is 0 in real dimension 2(p+q)-2. 

→

 
Thus the Calabi –Eckmann manifolds have no balanced metrics, extending the 
well-known fact that they have no Kähler metrics.  
 
A second reason for the importance of the balanced metric condition is that it is a 
birational invariant: if a compact complex manifold M admits a balanced metric 
then so does any compact complex manifold birationally equivalent to  M.  This is 
not obvious, however! 
 
In the case of complex dimension 2, this reduces to the result shown by Kodaira, 
that being Kähler is a birational invariant for compact , complex surfaces.  
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This is shown as follows: If a complex surface is Kähler, then the blow up of a 
point(obtained by replacing a point of the surface by a CP1 ) is also Kähler: 
Kodaira proved this as part of his proof of the projective embedding result now 
known as the Kodaira Embedding Theorem. Actually , he proved this particular 
thing for all dimensions, and indeed showed that the same is true for blowing up 
along the normal bundle of a complex  sub-manifold of codimension at least two. 
Now every compact complex surface is obtained by blowing up points of one of 
the minimal models that occur in the Kodaira classification of surfaces result. And 
blowing up is a birational transformation: the manifold obtained by blowing up is 
birationally equivalent to the original manifold. So to prove that being Kähler is a 
birational invariant one need only check that the blowing up of points on the non-
Kähler surfaces of the classification does not lead to Kähler manifolds, which can 
be done explicitly.  
 
But in higher dimensions, a difficulty arises. While it is still true that the blowing 
up preserves being Kählerian(for some metric), Hironaka (Ann. Math 1962) gave 
an example where the blow-up was Kählerian but the original manifold was not. 
The example was birational to CP3 in fact. The way that the example was shown 
to be non-Kähler was to exhibit a holomorphic curve that was homologous to 0. 
The construction actually involves a family Mt , t in a neighborhood of 0, with all 
Mt  except M0 , which is nonKähler. 
 
 Note that the existence of the curve described is consistent with the birational 
invariance of balanced metrics which implies that the example has a balanced 
metric.  The example is birational to CP3 . So   the curve homologous to 0  has 
codimension two while it is only for a submanifold of  codimension 1 that the 
existence a balanced metric implies non-zeroness of the homology class of the 
submanifold. 
 
It is worthwhile looking at the proof of the birational invariance of the property of 
admitting a balanced metric. The argument involves the characterization by M.L. 
Michelson of when a balanced metric exists in terms of currents. (This is related 
to the Harvey-Lawson Kähler criterion discussed earlier, that a complex manifold 
admits a Kähler metric if and only if it has no closed positive (1,1) current which 
is  the (1,1) part of a boundary).  The result for balanced metrics is this: 
 
Define a compact complex manifold M to be homologically balanced if every  d-
closed 2n-2 current with its (n-1,n-1) component nonzero and positive represents 
a nonzero class in the 2n-2 homology of M. 
 
Then: 
 
(Michelson)  A compact complex manifold M has a balanced metric if and only if 
it is homologically balanced. 
 
The proof (of the if part, the only if being clear from a previous argument) of this 
begins with the observation from linear algebra that a (real) positive (n-1,n-1) 
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form is the n-1 power of one and only one (real) positive (1,1) form. Thus one can 
attempt to find the balanced metric with Kähler form ω by looking for the 
(n-1, n-1) form Ω that is going to be ωn-1 .    For this, one uses a Hahn-Banach 
argument similar to the one used to justify the Harvey-Lawson Kähler criterion 
(cf. Lecture 3: this type of argument was introduced by D. Sullivan in 1976).  
Namely, one wishes to find a positive (n-1,n-1) form that is closed. For this, one 
notes that the set of positive (n-1,n-1) forms constitutes a (real) convex (half) 
cone. If this failed to intersect the subspace of closed forms then an application of 
the Hahn-Banach Theorem would produce a codimension 1 subspace of the (n-
1,n-1) forms, one part of the complement of which contained the cone and with 
the hyperplane containing the closed (n-1, n-1) forms. Then +- the defining 
function of this hyperplane would be positive on the cone. And the defining 
function would be in the image of (adjoint) of d acting on currents,  projected into 
its (n-1, n-1 ) part. This would contradict the hypothesis of the theorem. (see M.L. 
Michelson, Acta.  Math. 149(1983) for details). 
 
This characterization makes it possible to deal with the "blowing down" question, 
that is , to show that if M M→ is a blow-up along the normal bundle of a 
submanifold of a compact complex manifold M and if M  admits a balanced 
metric then so does M. (Note that this was precisely what went wrong with 
birational invariance of being Kähler in Hironaka's example).  This is related to 
the fact that currents push forward so that the Michelson condition can be moved 
from M  to M.   From this, one obtains the remarkable result that admitting a 
balanced metric is a birational invariant.  
 
This has, in particular, relevance to Moishezon spaces. Recall that a Moishezon 
space is by definition a compact complex manifold(or other places, manifold with 
singularities, but we restrict our attention to manifolds) of complex dimension n 
for which the transcendence degree of the field of meromorphic functions is n . 
(C.L. Siegel proved long ago that the transcendence degree was  n . A 
Moishezon space is one where the maximum possible value is attained.)  Such a 
space is bimeromorphic to a projective algebraic manifold.  So one deduces that 
Moishezon  spaces admit balanced metrics. (In general, they need not admit 
Kähler metrics.) 

≤

 
A second interesting aspect of the balanced metric situation involves questions of 
deformation invariance. Kodaira proved that a small deformation of a Kähler 
manifold admits a Kähler metric. This is referred to as "local deformation". 
Explicitly , it means that if Mt is a family defined for t near 0 (and equal to 0), 
then if M0 is Kähler, so is Mt for t near 0. (This is actually natural to expect since 
Kähler metrics are given locally by the Levi  form(s) of potential functions on the 
open sets of  some open covering, and  the Levi Laplacian of each such a local 
potential will be a positive definite form for any sufficiently nearby complex 
structure,  on a slightly smaller open set, the collection of all of which will still 
cover M). But "global deformation" is wrong: the fact that Mt  is Kähler for all t 
near 0 need not imply that M0 is Kähler. (One sees easily how the idea of using 
local potentials fails: there may be no limiting local potential and even if there 
were, it might not have a positive definite Levi form.)  
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For balanced metrics, one has the following result: In the same notation as in the 
previous paragraph, if M0 is balanced(admits a balanced metric) and if M0 
satisfies the d dbar Lemma, then Mt is balanced and satisfies the d dbar Lemma. 
(Recall that the d dbar Lemma is the assertion that if a type (p,p) form  φ  is d-
exact, that is φ = dα for some 2p-1 form α, then there is a form β such that φ is 

β∂∂ .  This is always true on Kähler manifolds as shown earlier and is important 
for Kähler geometry. )  This shows that balanced metric plus the d dbar Lemma 
gives one a situation similar to Kähler in a sense. 
 
There are in fact counterexamples to the local deformation stability of balanced in 
the absence of the d dbar Lemma. Also, the global situation is unclear: is it the 
case that if Mt  is balanced and has the d dbar Lemma for all t near 0 that M0 is 
balanced and has the d dbar Lemma satisfied? This is unknown(the Hironaka 
example referred to earlier does not apply, since there is a curve in the M0  which 
is homologous to 0 so that manifold is not balanced). 
 
Michelson also showed that the balanced condition had a useful property relative 
to fibre spaces: If f :M C is a fibre space with irreducible fibres  over a curve C 
,possibly with some singular fibres, and if the nonsingular fibres are balanced, 
then M is balanced, provided that the fibration is essential topologically, that is, 
that the pull-back of the fundamental class in C is not homologically 0 in M. 

→

 
 
Robert E Greene  
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