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Last time: 
 General idea: build geometric structures using methods of (usually nonlinear) partial 
differential equations. Prototypical/motivating case: try to build a complex structure 
( local coordinate systems with holomorphic transition functions) from an almost 
complex structure. In (real) dimension 2, there is no obstruction to this, no “integrability 
condition”. The reason is that the general condition , 0∂ ∂ = ,is automatically satisfied in 
this case because of dimension conditions. In general, ( )∂ ∂ Ω  for any  will have q 
degree in terms of (p,q) types at least 2 and hence will necessarily  be 0 in the real 
dimension 2 case. Thus the general Newlander –Nirenberg condition is always satisfied 
in the real dimension 2 case. Note: 

Ω

0∂ ∂ =  condition is equivalent , by tensor 
calculation , in any dimension to  the more usual condition of vanishing of the Nijenhuis 
tensor N, defined by 
                       N(X,Y)=[X,Y] +J([JX,Y]) + J([X,JY]) – [JX,JY] . 
  [ The real dimension 2 case can be done without Newlander-Nirenberg by using 
isothermal parameters of Korn-Lichtenstein et. al. –see notes for lecture 1].  
 
 
 
 The Newlander-Nirenberg Theorem is fundamental because it does the smooth ,  
case. The result was known before in the real analytic , C

C∞

ω  category. This comes from 
Cartan-Kähler theory for exterior differential systems, which gives a general result in the 
real analytic category case. E.g, in the real analytic situation, if the tangent bundle admits 
a G-connection, torsion-free, then there are charts for a G structure[in the sense that the 
transition functions have tangent-space maps, that is differentials, that belong to G at 
each point so that the reduction of the structure group of the tangent bundle to G is in fact 
realized in coordinate charts. This corresponds, in the reduction of Gl(2n , R) to  G= Gl(n, 
C) case, to finding a set of charts with holomorphic transition functions, because a 
(smooth) function on an open set in R2n to R 2n is holomorphic if and only if its real 
differential is complex linear, namely, its differential commutes with the almost complex 
structure tensor J.] 
 
 
The deformation parametrization of the complex structures on a compact Riemann 
surface Σg of genus g is by quadratic differentials, that is holomorphic sections of the 
square of the canonical bundle, i.e. H0( Σg, K2) , K= the canonical bundle= (in this 
dimension) the bundle of (1,0) forms. [See notes for lecture 1].  For complex projective 
structures, which will be discussed in more detail later, the corresponding item is  
H0(Σg, K3). 
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Returning now to the situation of  complex manifolds  and almost complex structures, we 
look at this question: 
Suppose  V     M  is a complex vector bundle with complex fibre dimension k. So the 
transition functions have values in Gl(k, C) which are a priori not necessarily 
holomorphic functions on the the overlaps of trivializing open sets in M. 
 
Question:  Is it possible to choose trivialization (relative to some open cover) that do in 
fact have the transition functions holomorphic? 
 
In other words, can every topological(or smooth) complex vector bundle be realized as a 
holomorphic vector bundle? 
 
In the general setting, there is an integrability condition again when trying to apply the 
Newlander Nirenberg Theorem here. Namely, one would like to apply the Newlander –
Nirenberg Theorem to an almost complex structure on the total space that induced the 
complex structure already given on each fibre(complex vector space). Finding an 
integrable such almost complex structure is equivalent to the existence of a connection on 
the complex vector bundle which has curvature of type (1,1). That is, the (0,2) and (2,0) 
parts of the curvature form need to be 0. 
 
 Again, this turns out to be automatic in the case that M is a Riemann surface[ For line 
bundles, this is much more elementary: Line bundles L are determined topologically by 
their first Chern class c1 (L), which is in the integer 2-cohomology of the Riemann 
surface. This cohomology is isomorphic to Z. Moreover, there is a holomorphic line 
bundle L  with c1(L) corresponding to a generator of Z. It suffices to take the line bundle 
associated to a divisor with one point , coefficient=±1. Then the tensor powers (positive, 
negative or zero)  of this L realize all topological possibilities, since their first Chern 
classes account for all of the second integer-coefficient cohomology.] 
 
So in the Riemann surface case, every complex line bundle has a holomorphic 
representative.  
 
This viewpoint is useful for analyzing the following situation: Suppose M is a Kähler 
manifold and we are looking for maps of Σ     M    that are holomorphic, Σ   a Riemann 
surface. That is , we are looking for holomorphic curves in M.  
 
In this situation, the holomorphic curve has the special property that it is area-minimizing 
(in the induced metric)  within its homology class. This is called the “Wirtinger 
inequality”. It is easy to prove but important.  
The proof consists of noting that if ω is the Kähler form of M, ω is closed and 1ω = . 

Thus the norm of w pulled back to any real-two-dimensional submanifold Σ'  (not 
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necessarily complex!) is also less than or equal to 1. If Σ' is in the homology class of Σ, 

then since ω is closed
'

ω ω
∑ ∑

=∫ ∫ . 

 
But then 1ω ≤   on Σ' gives 

'

( ')areaω
∑

≤ ∑∫  so the proof is complete. 

 
(This gives rise to the idea introduced by R. Harvey and B. Lawson of a “calibrated 
geometry”: Suppose Ω is  a form that is closed and has norm≤ 1.  

Then if F:N  M has * 1F Ω = , then N is volume minimzing in its homology class by 

the same argument. The condition that * 1F Ω =  is automatic in the Kähler situation, with 

Ω = a power of the Kähler form and F a holomorphic embedding or immersion.) 
 
 A good guiding principle in general is to look at the converse of statements to see when 
it holds. So a natural thing to do here is to look at when the converse of the Wirtinger 
idea applies. [Note: One kind of converse is more or less immediate: If a 2- homology 
class has a holomorphic representative ,which is consequently absolutely minimzing of 
volume with the class, then any other absolute minimizer in the class is necessarily 
holomorphic or anti-holomorphic. This follows from just observing that if the chain of 
inequalities in the proof are all equalities then the pullback of  the Kähler form must have 
norm 1 at every point. And this is possible only if the embedding is holomorphic or anti-
holomorphic.]   The interesting/challenging kind of converse is to try to find conditions 
under which the area minimizer in a class is necessarily holomorphic or anti-
holomorphic. 
 
In this situation, we start with Σg   and with a smooth , but not necessarily holomorphic 
map(embedding or immersion) F:Σ     M,  into a Kähler manifold M. And suppose that 
this is area minimizing in its homology class. (Actually, we shall need only that it is a 
local stable minimum, as we shall discuss momentarily). Then the first variation must be 
0, so that Σ as a submanifold of M is a minimal surface. Then we look at the second 
variation. Just as the second order part of a Taylor series must be non-negative definite at 
a local minimum of a function (since f(t)= f(0) + t f(0) + (t2/2) f (0) + …) so the second 
variation must be nonnegative for any variation of the map F. Namely, using the usual I 
notation for the index form, 

2
0 ( , ) curvature termI s s s≤ = ∇ +∫  

where s is any vector field normal to F. The “index form” is in effect the second 
derivative of the area function.  
 
For real co-dimension 1 [ in the general minimal surface case; this cannot happen in the 
Riemann surface into Kähler manifold case], things are simplified because there is no 
normal connection, since there is (locally)  a unique unit normal up to± . Thus one can  
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simplify the ∇s term.  Most arguments about minimal surfaces are like this and apply in 

this case. Write s =fN, where N is the unit normal. Then the first term  is just 2df  

and 
2 2( , ) Ricci( , )I s s df f N N= +∫ . 

 
If one takes f=1 identically then I becomes Ricci( , )N N∫  only.  
 
For instance, one shows that if the Ricci curvature is positive, then no (real)  hypersurface 
is stably minimizing, i.e., a compact manifold with positive Ricci curvature has no stable 
minimal hypersurface. This implies that the first Betti number is 0. (well known 
otherwise) [ Other proofs: Bochner technique shows that a harmonic 1-form must vanish 
identically. Alternatively, Myers’ Theorem –complete manifold with Ricci bounded 
below by a positive constant is compact--implies that the universal cover is compact so 
that the fundamental group is finite and hence again first Betti number is 0.]    
 
Higher co-dimension: In general there will not be a parallel section of the normal 
bundle(existence of such would imply that the holonomy in the normal bundle reduces 
and in general this is not the case), i.e., there is no “covariant constant” normal section 
and one is stuck with the ∇s term in the index form. 
 

Complex case: I(s,s) =
2

curvature terms∂ +∫   

 
 
Now look at the pullback of the tangent bundle of M  to Σ, namely the complex(but 
probably not holomorphic) vector bundle .  Use  that any complex vector bundle over a 
Riemann surface can be made holomorphic. Then use the Riemann-Roch Theorem (under 
suitable conditions) to get a section s with 0s∂ = .  
 
 
 
This technique was first used by Siu-Yau (1980) to prove the Frankel Conjecture [that 
compact Kähler manifolds of positive bisectional curvature were biholomorphic to CPn]. 
Namely, if bisectional curvature is positive, then a stable minimal surface is holomorphic 
or antiholomorphic. This gives a technique to get rational curves.(Here one uses that 
every complex vector bundle over the sphere is equivalent to a sum of line bundles to get 
normal sections). The role of the curvature hypothesis is that with s chosen as in the 
previous paragraph, the curvature term will be negative unless the surface is holomorphic 
on anti-holomorphic. 
 
The  result of Micallef-Moore on positive curvature operator and positive isotropic 
curvature is proven by using some of the same ideas: 
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The ideas here are an extension of the stable minimum idea. Here one gets not positivity 
of index but rather control of the dimension of the  maximal negative subspace, i.e., the 
Morse index.  Namely, look at the maps of S2 into a Riemannian manifold M and 
consider the index form I as before. This is a quadratic form on variation vector fields. 
Look at the maximum dimension of a subspace on which the form is negative 
definite(=union of the negative eigenspaces). This (finite) dimension is the Morse index 
by definition. Note that the positive part is infinite dimensional. It is easy to increase 
area[e.g., by making things “bumpy”, with large values of the derivative of the normal 
variation vector field] . “There is much more freedom to go up than down”. 
 
Micallef-Moore control Morse index under assumption of positive isotropic curvature of 
M. [This is a curvature condition which is implied by the more usual condition of positive 
curvature operator, that is , the curvature tensor R being  positive as an operator from 
wedge 2 of the tangent space to itself]. Positive isotropic curvature is defined by first 
extending the inner product to the complexified tangent space (no conjugation to make an 
Hermitian metric , straight complex linear extension). Then look at “isotropic” complex 
vectors, i.e.,v= X+iY such that the complexified inner product of this with itself is 0, 

,v v = 0 . Then what is required for PIC(positive isotropic curvature) is that for any two 
such isotropic vectors v,w that span a complex 2-plane containing only isotropic vectors,  

( , ) ,R v w w v  is positive . 

 
The general idea of M-M is that positivity of curvature  should imply that minimal 
surfaces (or more generally minimal submanifolds) tend to have more directions in which 
the index is negative. [This is of course an idea that goes back much further, e.g., Synge’s 
Theorem that a compact even dimensional orientable manifold of positive sectional 
curvature must be simply connected, which is proved by constructing a shrinking of a 
geodesic of minimal length in a given nontrivial free homotopy class of curves, a 
contradiction which shows that the manifold has trivial free homotopy and is hence 
simply connected.] A high dimensional sphere is an example: a standardly embedded  2-
sphere has (at least) an n-2 dimensional space of deformation fields with negative second 
variation of area, namely, the space of parallel normal vectors. 
 
To get the index estimate, one needs to find deformation vector fields with negative 
second variation. This is done by complexifying the tangent bundle of M and pulling it 
back to S2 via the map into M. Using the result noted, that this bundle can be made 
holomorphic and also the result(Grothendieck) that a holomorphic vector bundle over S2 
splits as a sum of holomorphic lines bundles, one can use the Riemann-Roch Theorem to 
find holomorphic sections of the pullback bundle. These give rise to isotropic 
deformation vector fields for F which have negative second variation (on account of the 
PIC condition).  This method is derived(as acknowledged by M&M) from the similar 
situation that had been treated already in Siu and Yau’s proof of the Frankel 
Conjecture(see below).  
 
Thus under the particular curvature assumption(PIC) , M-M show the Morse index of any 
2-sphere minimally embedded in the manifold Mn , n> 3, has index at least   n/2 -3/2.           
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Now Morse theory more or less works in this setting (more detail in a moment), and one 
expects that the Morse theory (assuming simple connectivity) of C∞  (S2, M)  gives 
homotopy information that will give the homotopy of M shifted by two levels(just as the 
Morse theory of the loop space gives the homotopy of M shifted by one level).   Carrying 
this through yields that the homotopy groups of M are zero up to and including 
dimension [n/2].  By Poincaré Duality, this gives that M is a (homotopy) sphere and 
hence homeomorphic to a sphere.  
(This is about manifolds of dimension at least 4 and hence does not use the 3-dimensional 
Poincaré Conjecture). 
 
 
[This result is closely related to the historic Berger-Klingenberg Quarter Pinched Sphere 
Theorem as well as to results of the Bochner technique. The B-K Theorem is that a 
compact simply connected manifold with sectional curvature strictly between ¼ and 1 is 
homeomorphic to a sphere. Now it is (pointwise) algebraic that this “quarter pinching”  
implies PIC, but  there are PIC curvature tensors that are not quarter pinched (even up to 
scaling).  So the BK Theorem  in dimension 4 or greater is implied by the (later) 
Micallef-Moore result. (Strictly speaking, this would be true only up to homotopy, but by 
now the Poincaré  Conjecture is known in all dimensions so this distinction has become 
moot).  Actually, since the quarter pinching implies PIC is point-wise, a  stronger result is 
obtained: one needs only sectional curvature between A/4 and A where A may depend on 
the point. Recently, Brendel and Schoen have shown that such pointwise quarter pinching 
in fact implies that the manifold is diffeomorphic to the standard sphere. This was 
previously unknown even if the A involved(previous notation) was independent of the 
point.  Since ¼ is optimal (e.g., the standard metric on complex projective space), this 
result brings to a conclusion this whole line of investigation of pinched positive curvature 
implying resemblance to the standard sphere. This pointwise quarter –pinched 
diffeomorphism result improves results of Ruh(pointwise but dimension dependent) , 
Sugimoto-Shiohama(uniform but independent of dimension, larger constant than ¼), and 
many others, where various stronger pinching conditions were required.   Historically, 
these questions were  also approached  from the viewpoint of the Bochner technique. 
This technique gives, in  a result of Meyer extending the result of Bochner-Yano, which 
required ½ -pinching of eigenvalues,  that  positive curvature operator implies vanishing 
of all Betti numbers except the nth (and 0th). But this ,while an interesting confirmation, 
is not sufficient to give the whole homeomorphism, homotopy, or diffeomorphism - type 
results. (This result was reproved  by Poor, using ideas of Chern on the relationship 
between  holonomy  and the Laplacian. ) In dimension 2, everything is automatic from 
classification of surfaces, and in dimension 3, the Poincaré  Conjecture disposes of the 
situation.  Historically, Hamilton proved for three dimensions that positive Ricci 
curvature and simply connectivity implied diffeomorphism to S3, prior to the Poincaré 
Conjecture proof.] 
 
 
 
Making Morse theory work: 
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Idea of Sachs-Uhlenbeck:  Look not at the usual energy function  of harmonic map theory 

but instead at the α-energy, α>1, namely,  by definition, ( )2 1df
α

+∫  

 
If α=1, this is the usual energy situation. But α>1 works better analytically. In the α 
greater than 1 case, one gets the classical condition for Morse theory, “Condition C” of 
Palais/Smale so that Morse theory works in the usual way. Then one takes a limit as  α 
goes to 1. 
 
 This makes the Micallef-Moore program described above literally work, One gets 
homotopy groups to be zero up to [n/2] , which suffices to get a homotopy sphere (use 
Poincare duality). Specifically, M-M use the method of Sacks-Uhlenbeck to show that if 
the homotopy groups of M are 0 up to level k but the kth group is nonzero, k at least 2, 
then there is  a nonconstant minimal (harmonic) two-sphere of index not greater than k-2. 
Combining this with the index estimate above( index at least n/2 -3/2) shows that k is at 
least [n/2] +1. That is , the homotopy groups are 0 up to and including [n/2]. And, as 
already  noted above, this suffices via the Hurewicz Theorem combined with Poincare 
Duality to show that M is a homotopy sphere and hence is homeomorphic to a sphere. 
 
 
Generalization to situations with weaker curvature conditions and also higher 
dimensions.  
 
This generalization is not entirely possible but it is desirable to the extent it is possible.  
 
Approach (for the complex case) via integrability of complex bundles as discussed briefly 
already. 
 
Siu/Yau: Compact Kähler manifold with bisectional curvature >0 is necessarily 
biholomorphic to CPn(Frankel Conjecture) 
 
[Bisectional curvature:  If X and Y are unit vectors that are perpendicular then B(X,Y)= 
-R(X,Y, X,Y) – R(X,JY, X,JY).  This depends only on the span of X and Y.   Positivity 
of this is intermediate between positivity of all sectional curvature—it is a sum of 
sectional curvatures—and holomorphic sectional curvature--- B(X, JX) = the sectional 
curvature of the J invariant 2-plane spanned by X and JX , since in this case the second 
term in the definition of B vanishes. 
A compact Kähler manifold with positive holomorphic sectional curvature, and hence of 
one with positive bisectional curvature,  is simply connected, by an argument almost 
exactly along the lines of the proof of Synge’s Theorem: If c is a smoothly closed arc-
length-parameter geodesic in the manifold, then J applied to the tangent vector c' of c is a 
parallel  unit normal along c which is smooth, including at the (nominal) endpoints of c. 
Deformation of c along this normal field has negative second variation since the 
curvature term in the second variation formula is the negative of the holomorphic section 
curvature of the plane spanned by c' and Jc' , the term involving the covariant derivative 
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of the deformation vector field being zero in this case. This is a contradiction if c is the 
minimal curve in a nontrivial free homotopy class. Since positive bisectional curvature 
implies positive holomorphic sectional curvature, the manifolds involved in the Frankel 
Conjecture are automatically simply connected. Thus the fact that H2 is nonzero makes π2 
also nonzero so that there are nontrivial homotopy classes of maps of S2 over which one 
might hope to minimize. This would of course not necessarily be the case without the 
simple connectivity, e.g., a complex torus. Alternatively, one could detour around this 
variant of the Synge’s Theorem argument in proving the Frankel Conjecture by passing 
to the simply connected cover, which is necessarily compact by Myers Theorem, since 
the Ricci curvature is positive if the bisectional curvature is. But if the universal cover is 
biholomorphic to CPn then so was the original manifold since CPn has no complex 
quotients. So it suffices to prove the result under the explicit assumption of simple 
connectivity. That CPn has no complex quotients follows easily from e.g.,  the Lefschetz 
Fixed Point Theorem: With the Kaher metric normalized so that the cohomology class of 
the Kähler form is a generator of the second cohomology with integer coefficients, the 
pullback of the cohomology class of the  Kähler form by a biholomorphism again has this 
property and hence is +1 or -1 times the class of the original Kähler form.  Checking on 
X, JX shows the multiple is +1 from which it follows that the Lefschetz number of the 
map is (n+1). So  the bihomorphic map has a fixed point and hence cannot be a nontrivial 
covering transformation.] 
 
 
 
More general result than Siu/Yau on matter related to the Frankel Conjecture : 
  
Mori: If the tangent bundle of a compact Kähler manifold is positive, then M is 
biholomorphic to CPn.  
 
Mori’s work includes more information on construction of rational curves and gives rise 
to structural results, even with just nonnegativity conditions . [for more on “Mori theory”, 
cf. e.g., Campana and Peternell, Recent Developments in the Classification of Compact 
Kähler Manifolds, Several Complex Variables, MSRI Pub. 37(1999) available on-line] 
 
The crucial point in the Frankel Conjecture is to find a rational curve. [Then restriction to 
it of the tangent bundle ,which splits as a sum of line bundles, makes it possible to apply 
a characterization of CPn by Kobayashi-Ochiai to obtain the final result: see Siu/Yau 
Inventiones Math. 59,1980 for details]. This rational curve is obtained by the method  
already discussed. (Siu/Yau argument came first and was motivation for M-M). It is 
possible to estimate degree of rational curve here, same as estimating area,   
(special argument for this case). 

nω ≤∫

 
Philosophical difference between Siu/Yau and Mori: 
Siu/Yau is Kähler geometry, Mori is really not, but rather in effect Finsler geometry. 
Namely, positivity of the tangent bundle is equivalent to the existence of a Finsler metric 
with positive curvature.  
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The idea of finding rational curves has a symplectic analogue, developed by Gromov. 
The idea is to create a map analogous to a rational curve, a "pseudoholomorphic curve". 
Gromov showed that if one such existed then one got a rigidity result, that a symplectic 
structure on a manifold homeomorphic to  CPn   had a pseudoholomorphic curve, then 
that manifold with that structure was symplectomorphic (diffeomorphic by a symplectic 
map) to  CPn with the  standard structure. 
  
Whether this always happens(whether such a  pseudoholomorphic curve always exists) 
remains an unsolved problem. Taubes proved an affirmative answer if the symplectic 
manifold is diffeomorpic to CP2. 
 
 
 
Return to almost complex structure questions: 
 
Complex dimension 2:  Suppose a real 4-manifold has an almost complex structure. This 
happens if and only if there are cohomology classes, a 2-class c1    and a 4-class c2 , with 
the necessary relationship to the second Stieffel-Whitney class and the first Pontryagin 
class of M[see notes for lecture 1]. Then we want to know if there is an associated 
complex structure.  
 
Note first that there is the Riemann-Roch formula of Hirzebruch: 
 
If     V    M is a holomorphic vector bundle and if Hi (M, V) denotes the sheaf 
cohomology  for the sheaf of germs of local holomorphic sections of V, then 
 

( 1) dim ( , ) ( ) ( )i iH M V ch V Todd M− =∑ ∫  
 
where the righthand side is a purely topological item involving characteristic classes 
(ch(V) is the Chern character, Todd(M) is the Todd class of M ). 
 
From the Atiyah-Singer Index Theorem , this is true even in the non-Kähler case. 
 
Now one needs to realize something very simple but useful: 
 
In complex dimension 2, there are only two terms on the left hand side with a +, namely  
H0 (M,V)  and H2(M,V) and the second one of these is the same dimension as  
H0 (M,V*⊗  K). So we get 
 
dim H0 (M, V)  + dim H0 (M,V*⊗  K) = dim H1 (M,V)  + a topological item 
  
and the right hand side is thus greater than or equal to the topological item, namely 
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( ) ( )ch V Todd M∫ .  [This is the two-dimensional analogue of what is known in Riemann 
surface theory with V a line bundle as the Riemann inequality, in which case the 
topological term is just 1-g + degree (V), where degree(V)  is the integrated Chern class 
of V]. 
 
In most instances, one is interested in V built from the holomorphic tangent bundle or its 
dual via exterior products. One then  uses topological information to get holomorphic 
sections of either V or V*⊗K. 
 
This gives obstructions to the existence of integrable almost complex structures. 
 
Work of van de Ven: For a compact  complex manifold of complex  dimension 2, 

 2
2 18c c≥

This implies that there are many almost complex 4-manifolds with no complex structure. 
 
  
Yau [Topology, 1976] gave examples of real four-dimensional manifolds with 
topologically trivial tangent bundle and hence with all Chern numbers 0 which admit no 
complex structure [event though they obviously have an almost complex structure!]. 
This is not possible if the manifold is simply connected since the Euler number being 0 in 
this case implies that the first Betti number must be nonzero [the first Betti number 
equals the third by Poincaré duality, so if the first Betti number were zero, there would be 
no negative terms in the Euler characteristic sum and the Euler characteristic would thus 
be at least 2].   [Both the van de Ven and Yau results depend on information from the 
classification of complex surfaces by Kodaira and are thus specific to the complex 
dimension 2 case].   
 
 

Robert E. Greene  
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