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1.(a) First note that any rational ball B(p,r) is uniquely determined by the point p € Q™ and r € Qx¢
(this means positive rationals). Hence we have an injection into Q"*!. So it suffices to show that Q" is
countable for any n > 1. This is true for n = 1. Assume true for some n > 1. Now for any ¢ € Q the set
{(q,p) : p € Q"} is in bijection with Q", hence countable by assumption. Then

Q"= J{le:p):peQ}
q€Q

is a countable union of countable sets, hence countable. By induction the result follows.

1.(b) Let By = {B(p,r) : p € Q", r € Qs and B(p,r) C U}. Since each B(p,r) € By is contained in U it
is clear that

U Bencu
B(p,r)€Byu

Now take any = € U. Since U is open there is some £ > 0 such that B(z,e) C U. Be density of the
rationals we know there is some p € Q™ such that ||z — y|| < /3. By density of the rationals, again, we know
that there is some r € Q with /3 < r < £/2. Then note that € B(p,r) and for any y € B(p,r) we have

ly =zl <lly —pll +llp—zll <e/2+¢/3 <¢,

so B(p,r) C U. It follows that
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2. For each A € A let By = {B(p,r) : p € Q", r € Qs¢ and B(p,r) C Uy} and let B = UxcaBy. By question
1.(a) we know that Uy = Upp,ryes, B(p,r), hence

S C U Uy, = U U B(p,r) | = U B(p,r).
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By question 1.(a) we see that B is countable (being a subset of a countable set). Write B = {B(p;,r;) : i > 1}.
For each ¢ > 1 take A; € A such that B(p;,r;) € By,, i.e. B(p;,r;) C Uy,. Then
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3. Assume S does not contain any condensation point of itself. Then for every x € S there is some g, > 0
such that B(x,e;) NS is at most countable. Now
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and by question 2 we can find some countable subcollection {z; : ¢ > 1} such that
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which is a countable union of at most countable sets, hence countable.

4.(a) Let C C R™ be the set of condensation points of S and take z € R™ ~ C. Since z is not a conden-
sation point of S there is some € > 0 such that B(z,e) NS is at most countable. Take y € B(x,¢) and set
0 =€ — ||z — y||. Then we have that B(y,d) C B(x,e) and B(y,d) NS C B(x,e) N S. Thus B(y,d) NS is at
most countable, so y € R™ \ C, that is B(z,e) C R™ \ C. It follows that C is closed.

4.(b) Let C denote the condensation points of S and let p € C. For each n > 1 we see that B(p,1/n) NS
is uncountable, hence (B(p,1/n) N.S) \ {p} is uncountable. By question 3 there exists some z, € B(p,1/n)
with z,, # p and z,, a condensation point of S. Since ||x,, — p|| < 1/n for all n > 1 we see that the sequence
(xn)n>1 converges to p.

5.(a) Let C denote the set of condensation points of S. Assume that S~ C is uncountable. Then, by question
3, S\ C has a condensation point belonging to S\ C, i.e. there is some p € S\ C such that for any € > 0,
B(p,e) N (S ~\ C) is uncountable. Hence, for every € > 0, B(p,e) N .S is uncountable and p is a condensation
point of S. This is a contradiction.

5.(b) Let C denote the set of condensation points of S. By the definition of condensation points of S we see
that any condensation point of S is adherent to S. Since S is closed we conclude C' C S (note this is not
true for arbitrary S, for example the set of condensation points of the open interval (0,1) in R is the closed
interval [0, 1]). Then write S = C' U (S \ C). By questions 4 we see that C is perfect and by 5.(a) we see
that S \ C is countable.

6. Let C denote the Cantor set. Then C = N2, E, where each E, is a union of 2" closed intervals each
of length 37" constructed inductively as follows. Let Ey = [0,1]. Assuming F,, is constructed we construct
E, 11 by deleting from E,, the open interval (a; + 3=+ b; — 3=+ from each of the 2" closed intervals
[a;,b;] in E,. Note that since each E,, is a finite union of closed intervals it is closed. Then C is closed as it
is the intersection of a collection of closed sets. It remains to show C' contains no isolated points.

Take any z € C. Then z € E,,, as above, for each n > 1. Hence for each n > 1 we see that x lies in some
closed interval [ay, 4, by ;] of length 3™ and for each n > 1, ay4,b,; € C. So for each n > 1 set x, = an
unless = a,;, in which case we set x,, = b, ;. Then we have, for all n > 1, that z, € C, z, # = and
|z — x| <37™. So (z,)n>1 is a sequence of elements of C, distinct from z and converging to x, so z is not
isolated. It follows that C is perfect.

7. Let S C R"™ be a perfect set. Since any closed subset of a complete metric space is complete we see that
S is complete. So it suffices to show that any complete metric space without isolated points in uncountable.

Clearly any finite metric space contains isolated points. Say (X, d) is a countable complete metric space
without isolated points. Write X = {z,, : n > 1}. Consider the sets U,, = X \ {x,}. Since {z,} is closed,
U, is open. Since z, is not isolated, for all ¢ > 0, B(z,,c) N U, # 0, hence U, is dense in X (any other
point not equal to x is already contained in U,,). By the Baire Category Theorem N2, U, is dense in X. But
52, U, = 0, a contradiction.



