Math 121 Howework II

1.(a) First note that any rational ball $B(p, r)$ is uniquely determined by the point $p \in \mathbb{Q}^{n}$ and $r \in \mathbb{Q}_{>0}$ (this means positive rationals). Hence we have an injection into \mathbb{Q}^{n+1}. So it suffices to show that \mathbb{Q}^{n} is countable for any $n \geq 1$. This is true for $n=1$. Assume true for some $n \geq 1$. Now for any $q \in \mathbb{Q}$ the set $\left\{(q, p): p \in \mathbb{Q}^{n}\right\}$ is in bijection with \mathbb{Q}^{n}, hence countable by assumption. Then

$$
\mathbb{Q}^{n}=\bigcup_{q \in \mathbb{Q}}\left\{(q, p): p \in \mathbb{Q}^{n}\right\}
$$

is a countable union of countable sets, hence countable. By induction the result follows.
1.(b) Let $\mathcal{B}_{U}=\left\{B(p, r): p \in \mathbb{Q}^{n}, r \in \mathbb{Q}_{>0}\right.$ and $\left.B(p, r) \subseteq U\right\}$. Since each $B(p, r) \in \mathcal{B}_{U}$ is contained in U it is clear that

$$
\bigcup_{B(p, r) \in \mathcal{B}_{U}} B(p, r) \subseteq U
$$

Now take any $x \in U$. Since U is open there is some $\varepsilon>0$ such that $B(x, \varepsilon) \subseteq U$. Be density of the rationals we know there is some $p \in \mathbb{Q}^{n}$ such that $\|x-y\|<\varepsilon / 3$. By density of the rationals, again, we know that there is some $r \in \mathbb{Q}$ with $\varepsilon / 3<r<\varepsilon / 2$. Then note that $x \in B(p, r)$ and for any $y \in B(p, r)$ we have

$$
\|y-x\| \leq\|y-p\|+\|p-x\|<\varepsilon / 2+\varepsilon / 3<\varepsilon
$$

so $B(p, r) \subset U$. It follows that

$$
U \subseteq \bigcup_{B(p, r) \in \mathcal{B}_{U}} B(p, r)
$$

2. For each $\lambda \in \Lambda$ let $\mathcal{B}_{\lambda}=\left\{B(p, r): p \in \mathbb{Q}^{n}, r \in \mathbb{Q}_{>0}\right.$ and $\left.B(p, r) \subseteq U_{\lambda}\right\}$ and let $\mathcal{B}=\cup_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$. By question 1. (a) we know that $U_{\lambda}=\cup_{B(p, r) \in \mathcal{B}_{\lambda}} B(p, r)$, hence

$$
S \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}=\bigcup_{\lambda \in \Lambda}\left(\bigcup_{B(p, r) \in \mathcal{B}_{\lambda}} B(p, r)\right)=\bigcup_{B(p, r) \in \mathcal{B}} B(p, r)
$$

By question 1.(a) we see that \mathcal{B} is countable (being a subset of a countable set). Write $\mathcal{B}=\left\{B\left(p_{i}, r_{i}\right): i \geq 1\right\}$. For each $i \geq 1$ take $\lambda_{i} \in \Lambda$ such that $B\left(p_{i}, r_{i}\right) \in \mathcal{B}_{\lambda_{i}}$, i.e. $B\left(p_{i}, r_{i}\right) \subseteq U_{\lambda_{i}}$. Then

$$
S \subseteq \bigcup_{B(p, r) \in \mathcal{B}} B(p, r)=\bigcup_{i=1}^{\infty} B\left(p_{i}, r_{i}\right) \subseteq \bigcup_{i=1}^{\infty} U_{\lambda_{i}}
$$

3. Assume S does not contain any condensation point of itself. Then for every $x \in S$ there is some $\varepsilon_{x}>0$ such that $B\left(x, \varepsilon_{x}\right) \cap S$ is at most countable. Now

$$
S \subseteq \bigcup_{x \in S} B\left(x, \varepsilon_{x}\right)
$$

and by question 2 we can find some countable subcollection $\left\{x_{i}: i \geq 1\right\}$ such that

$$
S \subseteq \bigcup_{i=1}^{\infty} B\left(x_{i}, \varepsilon_{x_{i}}\right)
$$

Then

$$
S \subseteq\left(\bigcup_{i=1}^{\infty} B\left(x_{i}, \varepsilon_{x_{i}}\right)\right) \cap S=\bigcup_{i=1}^{\infty}\left(B\left(x_{i}, \varepsilon_{i}\right) \cap S\right)
$$

which is a countable union of at most countable sets, hence countable.
4. (a) Let $C \subseteq R^{n}$ be the set of condensation points of S and take $x \in \mathbb{R}^{n} \backslash C$. Since x is not a condensation point of S there is some $\varepsilon>0$ such that $B(x, \varepsilon) \cap S$ is at most countable. Take $y \in B(x, \varepsilon)$ and set $\delta=\varepsilon-\|x-y\|$. Then we have that $B(y, \delta) \subseteq B(x, \varepsilon)$ and $B(y, \delta) \cap S \subseteq B(x, \varepsilon) \cap S$. Thus $B(y, \delta) \cap S$ is at most countable, so $y \in \mathbb{R}^{n} \backslash C$, that is $B(x, \varepsilon) \subseteq \mathbb{R}^{n} \backslash C$. It follows that C is closed.
4.(b) Let C denote the condensation points of S and let $p \in C$. For each $n \geq 1$ we see that $B(p, 1 / n) \cap S$ is uncountable, hence $(B(p, 1 / n) \cap S) \backslash\{p\}$ is uncountable. By question 3 there exists some $x_{n} \in B(p, 1 / n)$ with $x_{n} \neq p$ and x_{n} a condensation point of S. Since $\left\|x_{n}-p\right\|<1 / n$ for all $n \geq 1$ we see that the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to p.
5.(a) Let C denote the set of condensation points of S. Assume that $S \backslash C$ is uncountable. Then, by question $3, S \backslash C$ has a condensation point belonging to $S \backslash C$, i.e. there is some $p \in S \backslash C$ such that for any $\varepsilon>0$, $B(p, \varepsilon) \cap(S \backslash C)$ is uncountable. Hence, for every $\varepsilon>0, B(p, \varepsilon) \cap S$ is uncountable and p is a condensation point of S. This is a contradiction.
5.(b) Let C denote the set of condensation points of S. By the definition of condensation points of S we see that any condensation point of S is adherent to S. Since S is closed we conclude $C \subseteq S$ (note this is not true for arbitrary S, for example the set of condensation points of the open interval $(0,1)$ in \mathbb{R} is the closed interval $[0,1])$. Then write $S=C \cup(S \backslash C)$. By questions 4 we see that C is perfect and by 5 .(a) we see that $S \backslash C$ is countable.
6. Let C denote the Cantor set. Then $C=\cap_{i=0}^{\infty} E_{n}$ where each E_{n} is a union of 2^{n} closed intervals each of length 3^{-n} constructed inductively as follows. Let $E_{0}=[0,1]$. Assuming E_{n} is constructed we construct E_{n+1} by deleting from E_{n} the open interval $\left(a_{i}+3^{-(n+1)}, b_{i}-3^{-(n+1)}\right)$ from each of the 2^{n} closed intervals $\left[a_{i}, b_{i}\right]$ in E_{n}. Note that since each E_{n} is a finite union of closed intervals it is closed. Then C is closed as it is the intersection of a collection of closed sets. It remains to show C contains no isolated points.

Take any $x \in C$. Then $x \in E_{n}$, as above, for each $n \geq 1$. Hence for each $n \geq 1$ we see that x lies in some closed interval $\left[a_{n, i}, b_{n, i}\right.$] of length 3^{-n} and for each $n \geq 1, a_{n, i}, b_{n, i} \in C$. So for each $n \geq 1$ set $x_{n}=a_{n, i}$ unless $x=a_{n, i}$, in which case we set $x_{n}=b_{n, i}$. Then we have, for all $n \geq 1$, that $x_{n} \in C, x_{n} \neq x$ and $\left|x-x_{n}\right| \leq 3^{-n}$. So $\left(x_{n}\right)_{n \geq 1}$ is a sequence of elements of C, distinct from x and converging to x, so x is not isolated. It follows that C is perfect.
7. Let $S \subseteq \mathbb{R}^{n}$ be a perfect set. Since any closed subset of a complete metric space is complete we see that S is complete. So it suffices to show that any complete metric space without isolated points in uncountable.

Clearly any finite metric space contains isolated points. Say (X, d) is a countable complete metric space without isolated points. Write $X=\left\{x_{n}: n \geq 1\right\}$. Consider the sets $U_{n}=X \backslash\left\{x_{n}\right\}$. Since $\left\{x_{n}\right\}$ is closed, U_{n} is open. Since x_{n} is not isolated, for all $\varepsilon>0, B\left(x_{n}, \varepsilon\right) \cap U_{n} \neq \emptyset$, hence U_{n} is dense in X (any other point not equal to x is already contained in U_{n}). By the Baire Category Theorem $\cap_{i=1}^{\infty} U_{n}$ is dense in X. But $\cap_{i=1}^{\infty} U_{n}=\emptyset$, a contradiction.

