
Math 121 Howework I

1.(a) We have, for any (x1, y1), (x2, y2) ∈ X × Y , since dx(x1, x2) ≥ 0 and dY (y1, y2) ≥ 0, that

D((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) ≥ 0.

Then D((x1, y1), (x2, y2)) = 0 if and only if dX(x1, x2) = 0 and dY (y1, y2) = 0, which happens if and only if
x1 = x2 and y1 = y2, that is (x1, y1) = (x2, y2). Also

D((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) = dX(x2, x1) + dY (y2, y1) = D((x2, y2), (x1, y1).

Now take (x3, y3) ∈ X × Y . Then

D((x1, y1), (x3, y3)) = dX(x1, x3) + dY (y1, y3)
≤ dX(x1, x2) + dX(x2, x3) + dY (y1, y2) + dY (y2, y3)
= D((x1, y2), (x2, y2)) +D((x2, y2), (x3, y3)).

And so (X × Y,D) is a metric space.

1.(b) Let ((xn, yn))n≥1 be a sequence in X × Y . Assume that ((xn, yn))n≥1 converges to (x, y) in X × Y .
Then for any ε > 0 there is some N ≥ 1 such that for all n ≥ N we have D((xn, yn), (x, y)) < ε. Hence for
any n ≥ N

dX(xn, x) ≤ dX(xn, x) + dY (yn, y) < ε and dY (yn, y) ≤ dX(xn, x) + dY (yn, y) < ε,

so (xn)n≥1 converges to x in X and (yn)n≥1 converges to y in Y .
Now assume (xn)n≥1 converges to x in X and (yn)n≥1 converges to y in Y . Fix ε > 0. There is some

N1 ≥ 1 and N2 ≥ 1 such that for all n ≥ N1 we have dX(xn, x) < ε/2 and for all n ≥ N2 we have
dY (yn, y) < ε/2. Hence for all n ≥ max{N1, N2} we have

D((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) < ε/2 + ε/2 = ε,

so ((xn, yn))n≥1 converges to (x, y) in X × Y .

2. Let ((xn, yn))n≥1 be a sequence in X × Y . Let σ1 : N → N be an stictly increasing function such that
the subsequence (xσ1(k))k≥1 of (xn)n≥1 converges in X. Now consider the sequence (yσ1(k))k≥1 in Y . It has
a convergent subsequence so let σ2 : N → N be an increasing function such that (yσ2(k))k≥1 is a convergent
subsequence of (yσ1(k))k≥1. Since (xσ2(k))k≥1 is a subsequence of (xσ1(k))k≥1, which is convergent, (xσ2(k))k≥1

is convergent. By question 1.(b) the subsequence ((xσ2(k), yσ2(k)))k≥1 of ((xn, yn))n≥1 converges.

3. First note that since d(x, y) ≥ 0 for all x, y ∈ X we clearly have d̂ = min{1, d(x, y)} ≥ 0 for all x, y ∈ X.
Now d̂(x, y) = 0 if and only if d(x, y) = 0 which happens if and only if x = y. Next we see easily that
d̂(x, y) = min{1, d(x, y)} = min{1, d(y, x)} = d̂(y, x).

Now take z ∈ X. We want to show d̂(x, z) ≤ d̂(x, y)+ d̂(y, z). First assume that at least one of d(x, y) ≥ 1
or d(y, z) ≥ 1 holds. Then either d̂(x, y) = 1 or d̂(y, z) = 1 or both and

d̂(x, z) = min{1, d(x, z)} ≤ 1 ≤ d̂(x, y) + d̂(y, z).

Now assume that both d(x, y) < 1 and d(y, z) < 1. Then

d̂(x, z) = min{1, d(x, z)} ≤ d(x, z) ≤ d(x, y) + d(y, z) = d̂(x, y) + d̂(y, z).

Hence (X, d̂) is a metric space.

4.(a) Denote, for each i ≥ 1, by d̂i the metric on Xi given by d̂i(xi, yi) = min{1, di(xi, yi)}. Note that for
each i ≥ 1 and any xi, yi ∈ Xi we have d̂(xi, yi) ≤ 1. Hence the series

∞∑
i=1

2−id̂(xi, y1)
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converges since the series
∑∞
i=1 2−i converges. So dπ is defined.

Since dπ is a sum of nonnegative terms it is clearly nonnegative. Since each term in the summation
defining dπ((xi), (yi)), for (xi), (yi) ∈

∏∞
i=1Xi, is nonnegative, it follows that dπ((xi), (yi)) = 0 if and only

if each of these terms is equal to zero, i.e. d̂(xi, yi) = 0 for all i ≥ 1. Hence dπ((xi), (yi)) = 0 if and only if
xi = yi for all i ≥ 1, i.e. (xi) = (yi). Also

dπ((xi), (yi)) =
∞∑
i=1

2−id̂(xi, yi) =
∞∑
i=1

2−id̂(yi, xi) = dπ((yi), (xi)).

Now take (zi) ∈
∏∞
i=1Xi. Since each of

∑∞
i=1 2−id̂(xi, yi) and

∑∞
i=1 2−id̂(yi, zi) are convergent we have

dπ((xi), (zi)) =
∞∑
i=1

2−id̂(xi, zi)

≤
∞∑
i=1

2−i(d̂(xi, yi) + d̂(yi, zi))

=
∞∑
i=1

2−id̂(xi, yi) +
∞∑
i=1

2−id̂(yi, zi)

= dπ((xi), (yi)) + dπ((yi)), (zi)).

So (
∏∞
i=1Xi, dπ) is a metric space.

4.(b) Let ((xji ))j≥1 be a sequence of elements in
∏∞
i=1Xi, i.e. for each j ≥ 1, (xji ) is an element of

∏∞
i=1Xi.

First assume that ((xji ))j≥1 converges to some (xi) in
∏∞
i=1Xi. Fix arbitrary n ≥ 1 and ε > 0. Letting

ε′ = min{ε, 1}, there is some N ≥ 1 such that dπ((xji ), (xi)) < 2−nε′ for all j ≥ N . Then for all j ≥ N we
have

d̂n(xjn, xn) ≤ 2n
∞∑
i=1

d̂i(x
j
i , xi) = 2ndπ((xji ), (xi)) < ε′.

Since ε′ ≤ 1 we get that d̂n(xjn, xn) = dn(xjn, xn) < ε′ ≤ ε for all j ≥ N . Hence each (xji )j≥1 converges to xi
in Xi.

Now assume that for each i ≥ 1 the sequence (xji )j≥1 converges to some xi in Xi. Fix ε > 0 and take
M ≥ 1 such that 2−M < ε/2. For each 1 ≤ i ≤ M there is some Ni such that for all j ≥ Ni we have
di(x

j
i , xi) < ε/(2M). Then for any j ≥ max{N1, . . . , NM} we have

dπ((xji ), (xi)) =
∞∑
i=0

2−id̂(xji , xi)

=
M∑
i=0

2−id̂i(x
j
i , xi) +

∞∑
i=M+1

2−id̂(xji , xi)

≤
M∑
i=0

di(x
j
i , xi) +

∞∑
i=M+1

2−i

< M(ε/(2M)) + 2−M

< ε.

Hence ((xji ))j≥1 converges to (xi) in
∏∞
i=1Xi.

5. First we want to show that a sequence ((xji ))j≥1 in
∏∞
i=1Xi is Cauchy if and only if each sequence (xji )j≥1

is Cauchy in Xi.
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First assume that ((xji ))j≥1 is Cauchy. Fix arbitrary n ≥ 1 and ε > 0. Letting ε′ = min{ε, 1}, there is
some N ≥ 1 such that dπ((xji ), (x

k
i )) < 2−nε′ for all j, k ≥ N . Then for all j, k ≥ N we have

d̂n(xjn, x
k
n) ≤ 2n

∞∑
i=1

d̂i(x
j
i , x

k
i ) = 2ndπ((xji ), (x

k
i )) < ε′.

Since ε′ ≤ 1 we get that d̂n(xjn, x
k
n) = dn(xjn, x

k
n) < ε′ ≤ ε for all j, k ≥ N . Hence each (xji )j≥1 is Cauchy.

Now assume that for each i ≥ 1 the sequence (xji )j≥1 is Cauchy. Fix ε > 0 and take M ≥ 1 such that
2−M < ε/2. For each 1 ≤ i ≤ M there is some Ni such that for all j, k ≥ Ni we have di(x

j
i , x

k
i ) < ε/(2M).

Then for any j, k ≥ max{N1, . . . , NM} we have

dπ((xji ), (x
k
i )) =

∞∑
i=0

2−id̂(xji , x
k
i )

=
M∑
i=0

2−id̂i(x
j
i , x

k
i ) +

∞∑
i=M+1

2−id̂(xji , x
k
i )

≤
M∑
i=0

di(x
j
i , x

k
i ) +

∞∑
i=M+1

2−i

< M(ε/(2M)) + 2−M

< ε.

Hence ((xji ))j≥1 is Cauchy.
Assume each (Xi, di) is complete. If ((xji ))j≥1 is a Cauchy sequence in

∏∞
i=1Xi then, by above, each

(xji )j≥1 is Cauchy in Xi. By assumption each (xji )j≥1 converges. By question 4.(b) it follows that ((xji ))j≥1

converges and so
∏∞
i=1Xi is complete.

Now assume (
∏∞
i=1Xi, dπ) is complete. For each i ≥ 1 let (xji )j≥1 be a Cauchy sequence in Xi. Then

the sequence ((xji ))j≥1 is Cauchy in
∏∞
i=1Xi. By assumption ((xji ))j≥1 is convergent. Then each (xji )j≥1 is

convergent by problem 4.(b). Hence each Xi is complete.

6. Let ((xji ))j≥1 be a sequence in
∏∞
i=1Xi. We will contstruct, inductively, strictly increasing functions

σn : N→ N such that, for all n ≥ 1, ((xσn+1(k)
i ))k≥1 is a subsequence of ((xσn(k)

i ))k≥1 and for each i ≥ 1 the
sequence (xσi(k)

i )k≥1 converges in Xi.
Since X1 is sequentially compact the sequence (xj1)j≥1 has a convergent subsequence. Let σ1 : N→ N be

a strictly increasing function such that (xσ1(k)
1 )k≥1 is a convergent subsequence. Assume we have constructed

σ1, . . . , σn as above. Since Xn+1 is sequentially compact (xσn(k)
n+1 )k≥1 has a convergent subsequence. Let

σn+1 : N → N be a strictly increasing function such that (xσn+1(k)
n+1 )k≥1 is a convergent subsequence of

(xσn(k)
n+1 )k≥1.
For σn, n ≥ 1, as above define the strictly increasing function σ : N → N by σ(k) = σk(k) and consider

the subsequence ((xσ(k)
i ))k≥1 of ((xji ))j≥1. For any i ≥ 1 and n ≥ i we have that (xσn(k)

i )k≥1 is a subsequence
of (xσi(k)

i )k≥1. Hence the sequence (xσ(k)
i )k≥i is a subsequence of (xσi(k)

i )k≥i. Since a subsequence of a
convergent sequence converges to the same limit and convergence does not depend on any finite number of
beginning terms, it follows that (xσ(k)

i )k≥1 is convergent. By problem 4.(b), ((xσ(k)
i ))k≥1 is convergent. Hence∏∞

i=1Xi is sequentially compact.
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