Math 121 Howework I

1.(a) We have, for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, since $d_{x}\left(x_{1}, x_{2}\right) \geq 0$ and $d_{Y}\left(y_{1}, y_{2}\right) \geq 0$, that

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) \geq 0
$$

Then $D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0$ if and only if $d_{X}\left(x_{1}, x_{2}\right)=0$ and $d_{Y}\left(y_{1}, y_{2}\right)=0$, which happens if and only if $x_{1}=x_{2}$ and $y_{1}=y_{2}$, that is $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$. Also

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)=d_{X}\left(x_{2}, x_{1}\right)+d_{Y}\left(y_{2}, y_{1}\right)=D\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right.
$$

Now take $\left(x_{3}, y_{3}\right) \in X \times Y$. Then

$$
\begin{aligned}
D\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) & =d_{X}\left(x_{1}, x_{3}\right)+d_{Y}\left(y_{1}, y_{3}\right) \\
& \leq d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)+d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right) \\
& =D\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)+D\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)
\end{aligned}
$$

And so $(X \times Y, D)$ is a metric space.
1.(b) Let $\left(\left(x_{n}, y_{n}\right)\right)_{n \geq 1}$ be a sequence in $X \times Y$. Assume that $\left(\left(x_{n}, y_{n}\right)\right)_{n \geq 1}$ converges to (x, y) in $X \times Y$. Then for any $\varepsilon>0$ there is some $N \geq 1$ such that for all $n \geq N$ we have $D\left(\left(x_{n}, y_{n}\right),(x, y)\right)<\varepsilon$. Hence for any $n \geq N$

$$
d_{X}\left(x_{n}, x\right) \leq d_{X}\left(x_{n}, x\right)+d_{Y}\left(y_{n}, y\right)<\varepsilon \quad \text { and } \quad d_{Y}\left(y_{n}, y\right) \leq d_{X}\left(x_{n}, x\right)+d_{Y}\left(y_{n}, y\right)<\varepsilon
$$

so $\left(x_{n}\right)_{n \geq 1}$ converges to x in X and $\left(y_{n}\right)_{n \geq 1}$ converges to y in Y.
Now assume $\left(x_{n}\right)_{n \geq 1}$ converges to x in X and $\left(y_{n}\right)_{n \geq 1}$ converges to y in Y. Fix $\varepsilon>0$. There is some $N_{1} \geq 1$ and $N_{2} \geq 1$ such that for all $n \geq N_{1}$ we have $d_{X}\left(x_{n}, x\right)<\varepsilon / 2$ and for all $n \geq N_{2}$ we have $d_{Y}\left(y_{n}, y\right)<\varepsilon / 2$. Hence for all $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

so $\left(\left(x_{n}, y_{n}\right)\right)_{n \geq 1}$ converges to (x, y) in $X \times Y$.
2. Let $\left(\left(x_{n}, y_{n}\right)\right)_{n \geq 1}$ be a sequence in $X \times Y$. Let $\sigma_{1}: \mathbb{N} \rightarrow \mathbb{N}$ be an stictly increasing function such that the subsequence $\left(x_{\sigma_{1}(k)}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ converges in X. Now consider the sequence $\left(y_{\sigma_{1}(k)}\right)_{k \geq 1}$ in Y. It has a convergent subsequence so let $\sigma_{2}: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function such that $\left(y_{\sigma_{2}(k)}\right)_{k \geq 1}$ is a convergent subsequence of $\left(y_{\sigma_{1}(k)}\right)_{k \geq 1}$. Since $\left(x_{\sigma_{2}(k)}\right)_{k \geq 1}$ is a subsequence of $\left(x_{\sigma_{1}(k)}\right)_{k \geq 1}$, which is convergent, $\left(x_{\sigma_{2}(k)}\right)_{k \geq 1}$ is convergent. By question 1.(b) the subsequence $\left(\left(x_{\sigma_{2}(k)}, y_{\sigma_{2}(k)}\right)\right)_{k \geq 1}$ of $\left(\left(x_{n}, y_{n}\right)\right)_{n \geq 1}$ converges.
3. First note that since $d(x, y) \geq 0$ for all $x, y \in X$ we clearly have $\hat{d}=\min \{1, d(x, y)\} \geq 0$ for all $x, y \in X$. Now $\hat{d}(x, y)=0$ if and only if $d(x, y)=0$ which happens if and only if $x=y$. Next we see easily that $\hat{d}(x, y)=\min \{1, d(x, y)\}=\min \{1, d(y, x)\}=\hat{d}(y, x)$.

Now take $z \in X$. We want to show $\hat{d}(x, z) \leq \hat{d}(x, y)+\hat{d}(y, z)$. First assume that at least one of $d(x, y) \geq 1$ or $d(y, z) \geq 1$ holds. Then either $\hat{d}(x, y)=1$ or $\hat{d}(y, z)=1$ or both and

$$
\hat{d}(x, z)=\min \{1, d(x, z)\} \leq 1 \leq \hat{d}(x, y)+\hat{d}(y, z)
$$

Now assume that both $d(x, y)<1$ and $d(y, z)<1$. Then

$$
\hat{d}(x, z)=\min \{1, d(x, z)\} \leq d(x, z) \leq d(x, y)+d(y, z)=\hat{d}(x, y)+\hat{d}(y, z)
$$

Hence (X, \hat{d}) is a metric space.
4.(a) Denote, for each $i \geq 1$, by \hat{d}_{i} the metric on X_{i} given by $\hat{d}_{i}\left(x_{i}, y_{i}\right)=\min \left\{1, d_{i}\left(x_{i}, y_{i}\right)\right\}$. Note that for each $i \geq 1$ and any $x_{i}, y_{i} \in X_{i}$ we have $\hat{d}\left(x_{i}, y_{i}\right) \leq 1$. Hence the series

$$
\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(x_{i}, y_{1}\right)
$$

converges since the series $\sum_{i=1}^{\infty} 2^{-i}$ converges. So d_{π} is defined.
Since d_{π} is a sum of nonnegative terms it is clearly nonnegative. Since each term in the summation defining $d_{\pi}\left(\left(x_{i}\right),\left(y_{i}\right)\right)$, for $\left(x_{i}\right),\left(y_{i}\right) \in \prod_{i=1}^{\infty} X_{i}$, is nonnegative, it follows that $d_{\pi}\left(\left(x_{i}\right),\left(y_{i}\right)\right)=0$ if and only if each of these terms is equal to zero, i.e. $\hat{d}\left(x_{i}, y_{i}\right)=0$ for all $i \geq 1$. Hence $d_{\pi}\left(\left(x_{i}\right),\left(y_{i}\right)\right)=0$ if and only if $x_{i}=y_{i}$ for all $i \geq 1$, i.e. $\left(x_{i}\right)=\left(y_{i}\right)$. Also

$$
d_{\pi}\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(x_{i}, y_{i}\right)=\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(y_{i}, x_{i}\right)=d_{\pi}\left(\left(y_{i}\right),\left(x_{i}\right)\right)
$$

Now take $\left(z_{i}\right) \in \prod_{i=1}^{\infty} X_{i}$. Since each of $\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(x_{i}, y_{i}\right)$ and $\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(y_{i}, z_{i}\right)$ are convergent we have

$$
\begin{aligned}
d_{\pi}\left(\left(x_{i}\right),\left(z_{i}\right)\right) & =\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(x_{i}, z_{i}\right) \\
& \leq \sum_{i=1}^{\infty} 2^{-i}\left(\hat{d}\left(x_{i}, y_{i}\right)+\hat{d}\left(y_{i}, z_{i}\right)\right) \\
& =\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(x_{i}, y_{i}\right)+\sum_{i=1}^{\infty} 2^{-i} \hat{d}\left(y_{i}, z_{i}\right) \\
& \left.=d_{\pi}\left(\left(x_{i}\right),\left(y_{i}\right)\right)+d_{\pi}\left(\left(y_{i}\right)\right),\left(z_{i}\right)\right)
\end{aligned}
$$

So $\left(\prod_{i=1}^{\infty} X_{i}, d_{\pi}\right)$ is a metric space.
4.(b) Let $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ be a sequence of elements in $\prod_{i=1}^{\infty} X_{i}$, i.e. for each $j \geq 1,\left(x_{i}^{j}\right)$ is an element of $\prod_{i=1}^{\infty} X_{i}$. First assume that $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ converges to some $\left(x_{i}\right)$ in $\prod_{i=1}^{\infty} X_{i}$. Fix arbitrary $n \geq 1$ and $\varepsilon>0$. Letting $\varepsilon^{\prime}=\min \{\varepsilon, 1\}$, there is some $N \geq 1$ such that $d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}\right)\right)<2^{-n} \varepsilon^{\prime}$ for all $j \geq N$. Then for all $j \geq N$ we have

$$
\hat{d}_{n}\left(x_{n}^{j}, x_{n}\right) \leq 2^{n} \sum_{i=1}^{\infty} \hat{d}_{i}\left(x_{i}^{j}, x_{i}\right)=2^{n} d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}\right)\right)<\varepsilon^{\prime}
$$

Since $\varepsilon^{\prime} \leq 1$ we get that $\hat{d}_{n}\left(x_{n}^{j}, x_{n}\right)=d_{n}\left(x_{n}^{j}, x_{n}\right)<\varepsilon^{\prime} \leq \varepsilon$ for all $j \geq N$. Hence each $\left(x_{i}^{j}\right)_{j \geq 1}$ converges to x_{i} in X_{i}.

Now assume that for each $i \geq 1$ the sequence $\left(x_{i}^{j}\right)_{j \geq 1}$ converges to some x_{i} in X_{i}. Fix $\varepsilon>0$ and take $M \geq 1$ such that $2^{-M}<\varepsilon / 2$. For each $1 \leq i \leq M$ there is some N_{i} such that for all $j \geq N_{i}$ we have $d_{i}\left(x_{i}^{j}, x_{i}\right)<\varepsilon /(2 M)$. Then for any $j \geq \max \left\{N_{1}, \ldots, N_{M}\right\}$ we have

$$
\begin{aligned}
d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}\right)\right) & =\sum_{i=0}^{\infty} 2^{-i} \hat{d}\left(x_{i}^{j}, x_{i}\right) \\
& =\sum_{i=0}^{M} 2^{-i} \hat{d}_{i}\left(x_{i}^{j}, x_{i}\right)+\sum_{i=M+1}^{\infty} 2^{-i} \hat{d}\left(x_{i}^{j}, x_{i}\right) \\
& \leq \sum_{i=0}^{M} d_{i}\left(x_{i}^{j}, x_{i}\right)+\sum_{i=M+1}^{\infty} 2^{-i} \\
& <M(\varepsilon /(2 M))+2^{-M} \\
& <\varepsilon
\end{aligned}
$$

Hence $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ converges to $\left(x_{i}\right)$ in $\prod_{i=1}^{\infty} X_{i}$.
5. First we want to show that a sequence $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ in $\prod_{i=1}^{\infty} X_{i}$ is Cauchy if and only if each sequence $\left(x_{i}^{j}\right)_{j \geq 1}$ is Cauchy in X_{i}.

First assume that $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ is Cauchy. Fix arbitrary $n \geq 1$ and $\varepsilon>0$. Letting $\varepsilon^{\prime}=\min \{\varepsilon, 1\}$, there is some $N \geq 1$ such that $d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}^{k}\right)\right)<2^{-n} \varepsilon^{\prime}$ for all $j, k \geq N$. Then for all $j, k \geq N$ we have

$$
\hat{d}_{n}\left(x_{n}^{j}, x_{n}^{k}\right) \leq 2^{n} \sum_{i=1}^{\infty} \hat{d}_{i}\left(x_{i}^{j}, x_{i}^{k}\right)=2^{n} d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}^{k}\right)\right)<\varepsilon^{\prime}
$$

Since $\varepsilon^{\prime} \leq 1$ we get that $\hat{d}_{n}\left(x_{n}^{j}, x_{n}^{k}\right)=d_{n}\left(x_{n}^{j}, x_{n}^{k}\right)<\varepsilon^{\prime} \leq \varepsilon$ for all $j, k \geq N$. Hence each $\left(x_{i}^{j}\right)_{j \geq 1}$ is Cauchy.
Now assume that for each $i \geq 1$ the sequence $\left(x_{i}^{j}\right)_{j \geq 1}$ is Cauchy. Fix $\varepsilon>0$ and take $M \geq 1$ such that $2^{-M}<\varepsilon / 2$. For each $1 \leq i \leq M$ there is some N_{i} such that for all $j, k \geq N_{i}$ we have $d_{i}\left(x_{i}^{j}, x_{i}^{k}\right)<\varepsilon /(2 M)$. Then for any $j, k \geq \max \left\{N_{1}, \ldots, N_{M}\right\}$ we have

$$
\begin{aligned}
d_{\pi}\left(\left(x_{i}^{j}\right),\left(x_{i}^{k}\right)\right) & =\sum_{i=0}^{\infty} 2^{-i} \hat{d}\left(x_{i}^{j}, x_{i}^{k}\right) \\
& =\sum_{i=0}^{M} 2^{-i} \hat{d}_{i}\left(x_{i}^{j}, x_{i}^{k}\right)+\sum_{i=M+1}^{\infty} 2^{-i} \hat{d}\left(x_{i}^{j}, x_{i}^{k}\right) \\
& \leq \sum_{i=0}^{M} d_{i}\left(x_{i}^{j}, x_{i}^{k}\right)+\sum_{i=M+1}^{\infty} 2^{-i} \\
& <M(\varepsilon /(2 M))+2^{-M} \\
& <\varepsilon .
\end{aligned}
$$

Hence $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ is Cauchy.
Assume each $\left(X_{i}, d_{i}\right)$ is complete. If $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ is a Cauchy sequence in $\prod_{i=1}^{\infty} X_{i}$ then, by above, each $\left(x_{i}^{j}\right)_{j \geq 1}$ is Cauchy in X_{i}. By assumption each $\left(x_{i}^{j}\right)_{j \geq 1}$ converges. By question 4.(b) it follows that $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ converges and so $\prod_{i=1}^{\infty} X_{i}$ is complete.

Now assume $\left(\prod_{i=1}^{\infty} X_{i}, d_{\pi}\right)$ is complete. For each $i \geq 1$ let $\left(x_{i}^{j}\right)_{j \geq 1}$ be a Cauchy sequence in X_{i}. Then the sequence $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ is Cauchy in $\prod_{i=1}^{\infty} X_{i}$. By assumption $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ is convergent. Then each $\left(x_{i}^{j}\right)_{j \geq 1}$ is convergent by problem 4.(b). Hence each X_{i} is complete.
6. Let $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$ be a sequence in $\prod_{i=1}^{\infty} X_{i}$. We will contstruct, inductively, strictly increasing functions $\sigma_{n}: \mathbb{N} \rightarrow \mathbb{N}$ such that, for all $n \geq 1,\left(\left(x_{i}^{\sigma_{n+1}(k)}\right)\right)_{k \geq 1}$ is a subsequence of $\left(\left(x_{i}^{\sigma_{n}(k)}\right)\right)_{k \geq 1}$ and for each $i \geq 1$ the sequence $\left(x_{i}^{\sigma_{i}(k)}\right)_{k \geq 1}$ converges in X_{i}.

Since X_{1} is sequentially compact the sequence $\left(x_{1}^{j}\right)_{j \geq 1}$ has a convergent subsequence. Let $\sigma_{1}: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function such that $\left(x_{1}^{\sigma_{1}(k)}\right)_{k \geq 1}$ is a convergent subsequence. Assume we have constructed $\sigma_{1}, \ldots, \sigma_{n}$ as above. Since X_{n+1} is sequentially compact $\left(x_{n+1}^{\sigma_{n}(k)}\right)_{k \geq 1}$ has a convergent subsequence. Let $\sigma_{n+1}: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function such that $\left(x_{n+1}^{\sigma_{n+1}(k)}\right)_{k \geq 1}$ is a convergent subsequence of $\left(x_{n+1}^{\sigma_{n}(k)}\right)_{k \geq 1}$.

For $\sigma_{n}, n \geq 1$, as above define the strictly increasing function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ by $\sigma(k)=\sigma_{k}(k)$ and consider the subsequence $\left(\left(x_{i}^{\sigma(k)}\right)\right)_{k \geq 1}$ of $\left(\left(x_{i}^{j}\right)\right)_{j \geq 1}$. For any $i \geq 1$ and $n \geq i$ we have that $\left(x_{i}^{\sigma_{n}(k)}\right)_{k \geq 1}$ is a subsequence of $\left(x_{i}^{\sigma_{i}(k)}\right)_{k \geq 1}$. Hence the sequence $\left(x_{i}^{\sigma(k)}\right)_{k \geq i}$ is a subsequence of $\left(x_{i}^{\sigma_{i}(k)}\right)_{k \geq i}$. Since a subsequence of a convergent sequence converges to the same limit and convergence does not depend on any finite number of beginning terms, it follows that $\left(x_{i}^{\sigma(k)}\right)_{k \geq 1}$ is convergent. By problem 4.(b), $\left(\left(x_{i}^{\sigma(k)}\right)\right)_{k \geq 1}$ is convergent. Hence $\prod_{i=1}^{\infty} X_{i}$ is sequentially compact.

