Math 121 Howework I

1.(a) We have, for any $(x_1, y_1), (x_2, y_2) \in X \times Y$, since $d_x(x_1, x_2) \ge 0$ and $d_Y(y_1, y_2) \ge 0$, that

$$D((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) \ge 0$$

Then $D((x_1, y_1), (x_2, y_2)) = 0$ if and only if $d_X(x_1, x_2) = 0$ and $d_Y(y_1, y_2) = 0$, which happens if and only if $x_1 = x_2$ and $y_1 = y_2$, that is $(x_1, y_1) = (x_2, y_2)$. Also

$$D((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) = d_X(x_2, x_1) + d_Y(y_2, y_1) = D((x_2, y_2), (x_1, y_1)) = D((x_2, y_2), (x_1, y_2)) = D((x_2, y_2), (x_2, y_2)) = D((x_2, y_2)) = D((x_2,$$

Now take $(x_3, y_3) \in X \times Y$. Then

$$D((x_1, y_1), (x_3, y_3)) = d_X(x_1, x_3) + d_Y(y_1, y_3)$$

$$\leq d_X(x_1, x_2) + d_X(x_2, x_3) + d_Y(y_1, y_2) + d_Y(y_2, y_3)$$

$$= D((x_1, y_2), (x_2, y_2)) + D((x_2, y_2), (x_3, y_3)).$$

And so $(X \times Y, D)$ is a metric space.

1.(b) Let $((x_n, y_n))_{n \ge 1}$ be a sequence in $X \times Y$. Assume that $((x_n, y_n))_{n \ge 1}$ converges to (x, y) in $X \times Y$. Then for any $\varepsilon > 0$ there is some $N \ge 1$ such that for all $n \ge N$ we have $D((x_n, y_n), (x, y)) < \varepsilon$. Hence for any $n \ge N$

$$d_X(x_n, x) \le d_X(x_n, x) + d_Y(y_n, y) < \varepsilon \quad \text{and} \quad d_Y(y_n, y) \le d_X(x_n, x) + d_Y(y_n, y) < \varepsilon,$$

so $(x_n)_{n\geq 1}$ converges to x in X and $(y_n)_{n\geq 1}$ converges to y in Y.

Now assume $(x_n)_{n\geq 1}$ converges to x in X and $(y_n)_{n\geq 1}$ converges to y in Y. Fix $\varepsilon > 0$. There is some $N_1 \geq 1$ and $N_2 \geq 1$ such that for all $n \geq N_1$ we have $d_X(x_n, x) < \varepsilon/2$ and for all $n \geq N_2$ we have $d_Y(y_n, y) < \varepsilon/2$. Hence for all $n \geq \max\{N_1, N_2\}$ we have

$$D((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

so $((x_n, y_n))_{n \ge 1}$ converges to (x, y) in $X \times Y$.

2. Let $((x_n, y_n))_{n\geq 1}$ be a sequence in $X \times Y$. Let $\sigma_1 : \mathbb{N} \to \mathbb{N}$ be an stictly increasing function such that the subsequence $(x_{\sigma_1(k)})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ converges in X. Now consider the sequence $(y_{\sigma_1(k)})_{k\geq 1}$ in Y. It has a convergent subsequence so let $\sigma_2 : \mathbb{N} \to \mathbb{N}$ be an increasing function such that $(y_{\sigma_2(k)})_{k\geq 1}$ is a convergent subsequence of $(y_{\sigma_1(k)})_{k\geq 1}$. Since $(x_{\sigma_2(k)})_{k\geq 1}$ is a subsequence of $(x_{\sigma_1(k)})_{k\geq 1}$, which is convergent, $(x_{\sigma_2(k)})_{k\geq 1}$ is convergent. By question 1.(b) the subsequence $((x_{\sigma_2(k)}, y_{\sigma_2(k)}))_{k\geq 1}$ of $((x_n, y_n))_{n\geq 1}$ converges.

3. First note that since $d(x, y) \ge 0$ for all $x, y \in X$ we clearly have $\hat{d} = \min\{1, d(x, y)\} \ge 0$ for all $x, y \in X$. Now $\hat{d}(x, y) = 0$ if and only if d(x, y) = 0 which happens if and only if x = y. Next we see easily that $\hat{d}(x, y) = \min\{1, d(x, y)\} = \min\{1, d(y, x)\} = \hat{d}(y, x)$.

Now take $z \in X$. We want to show $\hat{d}(x, z) \leq \hat{d}(x, y) + \hat{d}(y, z)$. First assume that at least one of $d(x, y) \geq 1$ or $d(y, z) \geq 1$ holds. Then either $\hat{d}(x, y) = 1$ or $\hat{d}(y, z) = 1$ or both and

$$\hat{d}(x,z) = \min\{1, d(x,z)\} \le 1 \le \hat{d}(x,y) + \hat{d}(y,z).$$

Now assume that both d(x, y) < 1 and d(y, z) < 1. Then

$$\hat{d}(x,z) = \min\{1, d(x,z)\} \le d(x,z) \le d(x,y) + d(y,z) = \hat{d}(x,y) + \hat{d}(y,z)$$

Hence (X, \hat{d}) is a metric space.

4.(a) Denote, for each $i \ge 1$, by \hat{d}_i the metric on X_i given by $\hat{d}_i(x_i, y_i) = \min\{1, d_i(x_i, y_i)\}$. Note that for each $i \ge 1$ and any $x_i, y_i \in X_i$ we have $\hat{d}(x_i, y_i) \le 1$. Hence the series

$$\sum_{i=1}^{\infty} 2^{-i} \hat{d}(x_i, y_1)$$

converges since the series $\sum_{i=1}^{\infty} 2^{-i}$ converges. So d_{π} is defined. Since d_{π} is a sum of nonnegative terms it is clearly nonnegative. Since each term in the summation defining $d_{\pi}((x_i), (y_i))$, for $(x_i), (y_i) \in \prod_{i=1}^{\infty} X_i$, is nonnegative, it follows that $d_{\pi}((x_i), (y_i)) = 0$ if and only if each of these terms is equal to zero, i.e. $\hat{d}(x_i, y_i) = 0$ for all $i \ge 1$. Hence $d_{\pi}((x_i), (y_i)) = 0$ if and only if $x_i = y_i$ for all $i \ge 1$, i.e. $(x_i) = (y_i)$. Also

$$d_{\pi}((x_i), (y_i)) = \sum_{i=1}^{\infty} 2^{-i} \hat{d}(x_i, y_i) = \sum_{i=1}^{\infty} 2^{-i} \hat{d}(y_i, x_i) = d_{\pi}((y_i), (x_i)).$$

Now take $(z_i) \in \prod_{i=1}^{\infty} X_i$. Since each of $\sum_{i=1}^{\infty} 2^{-i} \hat{d}(x_i, y_i)$ and $\sum_{i=1}^{\infty} 2^{-i} \hat{d}(y_i, z_i)$ are convergent we have

$$d_{\pi}((x_i), (z_i)) = \sum_{i=1}^{\infty} 2^{-i} \hat{d}(x_i, z_i)$$

$$\leq \sum_{i=1}^{\infty} 2^{-i} (\hat{d}(x_i, y_i) + \hat{d}(y_i, z_i))$$

$$= \sum_{i=1}^{\infty} 2^{-i} \hat{d}(x_i, y_i) + \sum_{i=1}^{\infty} 2^{-i} \hat{d}(y_i, z_i)$$

$$= d_{\pi}((x_i), (y_i)) + d_{\pi}((y_i)), (z_i)).$$

So $(\prod_{i=1}^{\infty} X_i, d_{\pi})$ is a metric space.

4.(b) Let $((x_i^j))_{j\geq 1}$ be a sequence of elements in $\prod_{i=1}^{\infty} X_i$, i.e. for each $j \geq 1$, (x_i^j) is an element of $\prod_{i=1}^{\infty} X_i$. First assume that $((x_i^j))_{j\geq 1}$ converges to some (x_i) in $\prod_{i=1}^{\infty} X_i$. Fix arbitrary $n \geq 1$ and $\varepsilon > 0$. Letting $\varepsilon' = \min\{\varepsilon, 1\}$, there is some $N \ge 1$ such that $d_{\pi}((x_i^j), (x_i)) < 2^{-n} \varepsilon'$ for all $j \ge N$. Then for all $j \ge N$ we have

$$\hat{d}_n(x_n^j, x_n) \le 2^n \sum_{i=1}^{\infty} \hat{d}_i(x_i^j, x_i) = 2^n d_\pi((x_i^j), (x_i)) < \varepsilon'.$$

Since $\varepsilon' \leq 1$ we get that $\hat{d}_n(x_n^j, x_n) = d_n(x_n^j, x_n) < \varepsilon' \leq \varepsilon$ for all $j \geq N$. Hence each $(x_i^j)_{j\geq 1}$ converges to x_i in X_i .

Now assume that for each $i \ge 1$ the sequence $(x_i^j)_{j\ge 1}$ converges to some x_i in X_i . Fix $\varepsilon > 0$ and take $M \ge 1$ such that $2^{-M} < \varepsilon/2$. For each $1 \le i \le M$ there is some N_i such that for all $j \ge N_i$ we have $d_i(x_i^j, x_i) < \varepsilon/(2M)$. Then for any $j \ge \max\{N_1, \ldots, N_M\}$ we have

$$d_{\pi}((x_{i}^{j}), (x_{i})) = \sum_{i=0}^{\infty} 2^{-i} \hat{d}(x_{i}^{j}, x_{i})$$

$$= \sum_{i=0}^{M} 2^{-i} \hat{d}_{i}(x_{i}^{j}, x_{i}) + \sum_{i=M+1}^{\infty} 2^{-i} \hat{d}(x_{i}^{j}, x_{i})$$

$$\leq \sum_{i=0}^{M} d_{i}(x_{i}^{j}, x_{i}) + \sum_{i=M+1}^{\infty} 2^{-i}$$

$$< M(\varepsilon/(2M)) + 2^{-M}$$

$$< \varepsilon.$$

Hence $((x_i^j))_{j\geq 1}$ converges to (x_i) in $\prod_{i=1}^{\infty} X_i$.

5. First we want to show that a sequence $((x_i^j))_{j\geq 1}$ in $\prod_{i=1}^{\infty} X_i$ is Cauchy if and only if each sequence $(x_i^j)_{j\geq 1}$ is Cauchy in X_i .

First assume that $((x_i^j))_{j\geq 1}$ is Cauchy. Fix arbitrary $n\geq 1$ and $\varepsilon > 0$. Letting $\varepsilon' = \min\{\varepsilon, 1\}$, there is some $N\geq 1$ such that $d_{\pi}((x_i^j), (x_i^k)) < 2^{-n}\varepsilon'$ for all $j,k\geq N$. Then for all $j,k\geq N$ we have

$$\hat{d}_n(x_n^j, x_n^k) \le 2^n \sum_{i=1}^{\infty} \hat{d}_i(x_i^j, x_i^k) = 2^n d_{\pi}((x_i^j), (x_i^k)) < \varepsilon'.$$

Since $\varepsilon' \leq 1$ we get that $\hat{d}_n(x_n^j, x_n^k) = d_n(x_n^j, x_n^k) < \varepsilon' \leq \varepsilon$ for all $j, k \geq N$. Hence each $(x_i^j)_{j \geq 1}$ is Cauchy.

Now assume that for each $i \ge 1$ the sequence $(x_i^j)_{j\ge 1}$ is Cauchy. Fix $\varepsilon > 0$ and take $M \ge 1$ such that $2^{-M} < \varepsilon/2$. For each $1 \le i \le M$ there is some N_i such that for all $j, k \ge N_i$ we have $d_i(x_i^j, x_i^k) < \varepsilon/(2M)$. Then for any $j, k \ge \max\{N_1, \ldots, N_M\}$ we have

$$\begin{aligned} d_{\pi}((x_{i}^{j}),(x_{i}^{k})) &= \sum_{i=0}^{\infty} 2^{-i} \hat{d}(x_{i}^{j},x_{i}^{k}) \\ &= \sum_{i=0}^{M} 2^{-i} \hat{d}_{i}(x_{i}^{j},x_{i}^{k}) + \sum_{i=M+1}^{\infty} 2^{-i} \hat{d}(x_{i}^{j},x_{i}^{k}) \\ &\leq \sum_{i=0}^{M} d_{i}(x_{i}^{j},x_{i}^{k}) + \sum_{i=M+1}^{\infty} 2^{-i} \\ &< M(\varepsilon/(2M)) + 2^{-M} \\ &< \varepsilon. \end{aligned}$$

Hence $((x_i^j))_{j>1}$ is Cauchy.

Assume each (X_i, d_i) is complete. If $((x_i^j))_{j\geq 1}$ is a Cauchy sequence in $\prod_{i=1}^{\infty} X_i$ then, by above, each $(x_i^j)_{j\geq 1}$ is Cauchy in X_i . By assumption each $(x_i^j)_{j\geq 1}$ converges. By question 4.(b) it follows that $((x_i^j))_{j\geq 1}$ converges and so $\prod_{i=1}^{\infty} X_i$ is complete.

Now assume $(\prod_{i=1}^{\infty} X_i, d_{\pi})$ is complete. For each $i \geq 1$ let $(x_i^j)_{j\geq 1}$ be a Cauchy sequence in X_i . Then the sequence $((x_i^j)_{j\geq 1})_{j\geq 1}$ is Cauchy in $\prod_{i=1}^{\infty} X_i$. By assumption $((x_i^j))_{j\geq 1}$ is convergent. Then each $(x_i^j)_{j\geq 1}$ is convergent by problem 4.(b). Hence each X_i is complete.

6. Let $((x_i^j))_{j\geq 1}$ be a sequence in $\prod_{i=1}^{\infty} X_i$. We will contstruct, inductively, strictly increasing functions $\sigma_n : \mathbb{N} \to \mathbb{N}$ such that, for all $n \geq 1$, $((x_i^{\sigma_{n+1}(k)}))_{k\geq 1}$ is a subsequence of $((x_i^{\sigma_n(k)}))_{k\geq 1}$ and for each $i \geq 1$ the sequence $(x_i^{\sigma_i(k)})_{k\geq 1}$ converges in X_i .

Since X_1 is sequentially compact the sequence $(x_1^j)_{j\geq 1}$ has a convergent subsequence. Let $\sigma_1 : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function such that $(x_1^{\sigma_1(k)})_{k\geq 1}$ is a convergent subsequence. Assume we have constructed $\sigma_1, \ldots, \sigma_n$ as above. Since X_{n+1} is sequentially compact $(x_{n+1}^{\sigma_n(k)})_{k\geq 1}$ has a convergent subsequence. Let $\sigma_{n+1} : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function such that $(x_{n+1}^{\sigma_{n+1}(k)})_{k\geq 1}$ is a convergent subsequence of $(x_{n+1}^{\sigma_n(k)})_{k\geq 1}$.

For σ_n , $n \ge 1$, as above define the strictly increasing function $\sigma : \mathbb{N} \to \mathbb{N}$ by $\sigma(k) = \sigma_k(k)$ and consider the subsequence $((x_i^{\sigma(k)}))_{k\ge 1}$ of $((x_i^j))_{j\ge 1}$. For any $i\ge 1$ and $n\ge i$ we have that $(x_i^{\sigma_n(k)})_{k\ge 1}$ is a subsequence of $(x_i^{\sigma_i(k)})_{k\ge 1}$. Hence the sequence $(x_i^{\sigma(k)})_{k\ge i}$ is a subsequence of $(x_i^{\sigma_i(k)})_{k\ge i}$. Since a subsequence of a convergent sequence converges to the same limit and convergence does not depend on any finite number of beginning terms, it follows that $(x_i^{\sigma(k)})_{k\ge 1}$ is convergent. By problem 4.(b), $((x_i^{\sigma(k)}))_{k\ge 1}$ is convergent. Hence $\prod_{i=1}^{\infty} X_i$ is sequentially compact.