As another application of the Contraction Mapping Theorem, we prove an ex-
istence theorem for a first-order system of nonlinear ordinary differential equations.
Let U be an open subset of R” and let [a,b] be an interval on R. Let F be a continuous
function from U X [a,b] to R"” and let £ € R" be a fixed initial value. We consider
the initial-value problem of finding a differentiable function u(z) from [a,b] to R” that
satisfies

du(t
—? = F(u(t),r), a<t=<b,
(8.6) d
u(a) = &.
If the components of u are u;,. . .,u, and those of F are F,,. . .,F,, then the initial-

value problem becomes

dut
—‘g—)- = F(0),. . o)1), a=t=b 1=j=n,
uj(a) = gj’ 1 ﬁ] =n.

Consider, for instance, the special case in which F is independent of 7, that is,
F is a function from U to R". Such an F is called a vector field on U. It is visualized
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Integral curve of a vector field

by attaching to each x € U an arrow based at x with direction and length given by
F(x). A solution u(t) of (8.6) can be regarded as a curve in U beginning at &, with
the property that the tangent vector du/dr of the curve at the point u(f) coincides with
the value F(u(z)) of the vector field F at u(r). The curve u(t) is said to be an integral
curve of the vector field F.

In order to obtain an existence theorem, we make some hypotheses on F'. Choose
r > 0 so that the closed ball {|x — & = r} centered at & with radius r is contained in
U. We assume that F is continuous, so that in particular

(8.7) M =sup{{fFx,t) :lx — g =r,a=t=1b}
is finite. We alsc assume that there is a constant ¢ > 0 such that
(8.8) |F(x,t) — F(y.0)| = clx — ), x,yeBEr),a=t=bh.

Such a condition is called a Lipschitz condition; we say that F satisfies a Lipschitz
condition in the first variable. With these hypotheses, the theorem we obtain is the
following.

8.4 Theorem (Cauchy-Picard Existence Theorem): Suppose that F and £ are
as above, so that (8.7) and (8.8) hold. Then there exists B, a < < b, such that the
initial-value problem (8.6) has a unique solution u(¢) defined on the interval a =
t = B. Furthermore, 3 depends only on the parameters », M, and c.

Proof: The function u(z) satisfies the initial-value problem (8.6) on an interval [a,B]
if and only if it satisfies the integral equation

1
8.9) u(t) = £ + f F(u(s),s)ds, a=t=28.
In turn, u is a solution of (8.9) if and only if it is a fixed point of the integral operator
®, defined by

t

(Du)(r) = & + j F(u(s),s)ds, a=t=28.

a

We must specify carefully the domain of the operator ®@.
Fix B, a < B = b, and let F be the set of continuous functions u(t) from the
interval [a,B] to R” that satisfy

@) — g =r, as1=8



44 ONE / METRIC SPACES

Endowed with the metric of uniform convergence
du,v) = supllu(t) — v(t) a=r=B}, wveE,

E becomes a complete metric space. We aim to show that if B is chosen sufficiently
near ¢, then @ is a contraction mapping of E into E.
First we must arrange that ®(E) C E. Let u € E. Using (8.7), we obtain

|(Pu)t) — & = f F(u(s),s)ds
=M — a)
=M@PB - a).

To place ®u in E, it suffices then to choose B so that
(8.10) B—a=r/M.
Now let u,v € E. Using (8.8), we obtain

d(@u, vy = sup [(Puw)) — (Pv)(@)l
ast=f3
= sup f[F(u(s),s) - F(v(s),s)]ds
a<i=p |/¢

= ¢ sup L lu(sy — v(s)lds

a=r=p
= o — a)du,v).
In order that ® be a contraction, it suffices then to choose 3 so that
(8.11) B —a<l/c

Choosing B to satisfy (8.10) and (8.11) and applying the Contraction Mapping
Theorem (Theorem 8.1), we obtain the existence assertion for the Cauchy-Picard
Theorem. To prove the uniqueness, observe that any solution of the initial-value
problem (8.6) must lie in the space E defined above, provided B is chosen sufficiently
near a. By the uniqueness assertion of the Contraction Principle, the solution must
coincide with the solution produced above, at least in some small interval [a,a + €].
Applying this local uniqueness assertion to each point of [a,8], we deduce easily that
the solution is unique. O

Actually the above proof contains information that goes substantially beyond
the statement of the theorem. It provides us with a concrete iteration procedure for
approximating the solution of (8.6), and the estimate (8.3) yields a specific bound on
the error of the approximation. By keeping track of the error terms, one can prove,
for instance, that if F and £ depend continuously on some other parameters, then the
solutions of (8.6) also depend continuously on those parameters. For instance, the
solutions of (8.6) depend continuously on the initial condition &. We return briefly to
the abstract situation, in order to give an indication of how one might approach the
problem of dependence of solutions on parameters.



