COMPLEX DIFFERENTIAL GEOMETRY

Robert E. Greene

1. Complex manifolds

Let C = the complex numbers and C® = C » --- XC (n factors). C" will be
referred to as n-dimensional complex euclidean space. Of course, C" is topologically
2n ~dimensional; more specifically, C" can and will be identified homeomorphically
with R?® as follows: If (zy,...,z,) € C, and if =x;+ byxy €ER, j=1,..n
then (zy,...,z,) is to be identified with (x;,¥1,...,%5¥,) € R?. Thatis, (z,...,z,) is
identified with (Re z;,Im z;,...,Re z,,Im z,), where Re and Im denote real and
imaginary parts, respectively.

DEFINITION. A function f:D - C defined on an open subset D of C" is
holomorphic if f considered as a function from D C R* to R? is C™ and satisfies
the Cauchy-Riemann equations:

dRef) _ 3mp) _, dRef) _ _ 3(mp)
a.x_, a}‘j ﬂj’j 511

forall j = 1,...,s. A mapping f:D - C™ is holomorphic if each component of f is
holomorphic; that is, if fi,...,f,, are holomorphic, where f;:D -C,j = 1,...,m are
defined by f(z) = (fi(z),-..fn(z)) € C™ for z € D.

Note that if D = U, ¢4 D, with each D, open, then f:D - C™ is holomorphic
if and only if f | D, is holomorphic for every A.

Multiplication by {1, (z{,...,2,) = (iz1,...,iz,), defines a mapping from C" to C",
whose square is multiplication by —1. The induced mapping from R2" to R?", which
will be denoted by J, is a real linear endomorphism, whose composition with itself is
again multiplication by —1. The following lemma shows that the endomorphism J can
be used to characterize holomorphic mappings:
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LEMMA 1. A mapping f:D - C™, D™ C C", whichis C* when considered as
a function from D C R¥ to R™ is holemorphic if and only if fa Jpi = Jgamfa. Here
fu is the real Jacobian of f.

Proof. Write f(z) = (fi(z),....fm(2)), fi(z) € C for j = 1,...,m. In matrix form
relative to the standard bases of R2" and R2",

/ d(Ref ;) atnﬂfz} e a(Ref ) (Ref ) \

axy a}'] 31,.. Yn
o(Imfy) o(lmf,)  (imf,) a(imf,)
dxq dyy Xy ¥
d(Ref,) 3(Ref,)  a(Ref,) I(Ref,)
dxy dyq dx, Yy,
i(mf,) I(mf,  o(lmf,) a(Imf,)
dxy ayy dx, Yy
0 -1
1 0
0
0 -1
1 0
Jp=m =
0 0 =1
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Jp= =

Straightforward matrix multiplication shows that f.J = Jf. if and only if
d(Re fr) _ a(Im fi) - d(Im fi) _ _ (Refi)

ax; day; ax; ay;

forall k=1,...m and j = 1,...,n.
Lemma 1 implies immediately the following corollaries:

COROLLARY. If f:D -C™ and g : Dy - C* are holomorphic mappings and if
f(D) C D™ C C™, then gof:D - C* is holomorphic.

COROLLARY. If f:D - C", D= C C", is holomorphic and is a diffeomor-
phism onto its image when considered as a mapping from D C R™ 1o R?" then
fl:f(D) = C" is holomorphic. (Note that in this case f(D) is necessarily openin C".)

DEFINITION. A complex structure on a C* manifold M of even dimension 2n
is a maximal collection of C™* charts indexed by a set A:
{(.U)) : X € A, : U, -~ R™}
having U, ¢4 U, = M and satisfying the following condition (holomorphic transition)
forall A,p € A,
W' (UL N U - (U NU,) CR™

is a holomorphic function considered as a function from an open subset of C" to C".
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A complex manifold is a paracompact C* manifold M together with a complex
structure. The number n is the complex dimension of M. The coordinate charts of the
complex structure of a complex manifold are called holomorphic coordinate charts or holo-
morphic coordinate systems.

Mote that an open subset of a complex manifold is itself a complex manifold in a
standard fashion.

LEMMA 2. Any collection of C™ charts on a paracompact C= manifold M which
cover M and which satisfy the holomorphic transition condition determine one and only one
complex structure on M, i.e. any such collection is contained in a unique maximal such col-
lection.

The proof of this lemma follows exactly the pattern (using the corollaries of Lemma
1) of the standard proof of the corresponding result for real manifolds.

Let M be a complex manifold and p be a point of M. Denote the (real) tangent
spaccof M at p by M,. An endomorphism J, : M, - M, of the real vector space

M, with J’g = multiplication by —1 can be defined as follows: Choose a holo-
morphic coordinate system ¢ : U - R?" defined in a neighborhood U of p. Then
ey : M, - R?" is an isomorphism (the tangent space to R? at y(p) being identified
with R, J, is then defined to be §<,' Jpabs,. Lemma 2 implies immediately that
J,, thus defined does not depend on the choice of ¢ : if ¢ is a second holomorphic
coordinate system around p then at p

b Ugnds = &7 (W) U ga(bd ™ uds

because (Yyb~!). commutes with Jp= by Lemma 2 and the holomorpiicity of ™.
Hence

ba Ugnds = bbb Ugabeds e = b lUga. .

Thus J, is independent of holomorphic coordinate choice; that JPZ = multiplication by
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—1 is apparent from the fact that J3x = multiplication by —1.

Since holomorphic coordinate systems are always C™, p - J, considered as a (1,1)
tensor on M is C®. Note that this C* tensor completely determines the complex
structure on M since a C* coordinate system W : U - R? is a holomorphic coordi-
nate system if and only if ., J, = Jpue, forall p € U.

DEFINITION. A C™ mapping f: M -~ M' from one complex manifold M to
another M’ is holomorphic if fuJyy = Jygfe.

Lemma 2 shows that this definition is equivalent to the requirement that f be holo-
morphic when expressed (locally) in holomorphic coordinate systems on M and M'.
The definition as given has the advantage of avoiding local coordinate expressions.

Note that if M’ is a complex manifold and M a C* real submanifold then M
has at most one complex structure such that the injection i : M - M’ is holomorphic
since at most one Jy can satisfy isfyy = Jypis, i« being injective. Of course such a
complex structure on M may fail to exist. If one (and necessarily only one) such does
exist, then M is said to be a complex submanifold of M'.

Since the (1,1) tensor J with J? = multiplication by —1 on a complex manifold
determines the complex structure, it is reasonable to consider such tensors independent

of any complex structure:

DEFINITION. Let M bea C* manifold. An almost complex structure on M s
a C* (1,1) tensor J on M such that, for every p € M, ..TFE:MF ~ M, is multiplication
by =1

LEMMA 3. A real finite dimensional vector space which admits an endomorphism
J:V =V satisfying J* = multiplication by —1 is necessarily even dimensional.

Proof. Let X,¥ - g(X,¥) be any positive definite inner product on V. Then
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(X,¥) - H(X,Y) defined by H(X,Y) = g(X,¥) + g(JX,J¥) is a positive definite inner
product on V relative to which J acts as an isometry. In particular it follows that any
J-invariant subspace has a J-invariant complementary subspace.

Now note that if X; € V and X, # 0 then X, and JX, are real linearly
independent since if JX; = aX;, @ € R, then X; = — JX, = — aJX; = — a?X; or
a? = — 1, which is impossible for « € R. Hence X; and JX; spana 2-dimensional
subspace, which is obviously J-invariant. This subspace has then a J-invariant comple-
ment, say V,, of dimension equal to two less than the dimension of V. The lemma
now follows by an obvious induction on dimension argument.

REMARK. The existence of a J-invariant complement for every J-invariant sub-
space is of course a special case of the complete reducibility of representations of finite
groups.

Lemma 3 shows that any manifold admitting an almost complex structure must be

LEMMA 4. Let M be a paracompact (even dimensional) C* manifold with an
almaost complex structure Jy. In order that J be the almost complex structure on M asso-
ciated to complex structure on M, it is necessary and sufficient that for each point p of M
there exists a C* coordinate chart U - R, p € U, such that WaJyy = Jgathe

everywhere on U.

Proof. The necessity of the condition is immediate. To prove the sufficiency, note
thatif @ :U; - R? and & : U; ~ R?" satisfy bady = Jpabe everywhere on U,
and dufy = Jgnb. everywhere on U, then Yob™': (U N U,) = W(UNU,) satis-
fies

(W™ )oTgam = adbi g = Yy = Jpmbp! = Jpu(bp™)s

everywhere on &(U; N U,). By Lemma 1, ™! is holomorphic on the open set
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&(Uy N U,), and Lemma 2 now implies the desired conclusion.

It is possible to find conditions expressed directly in terms of the almost complex
structure tensor J which are necessary and sufficient for J to arise from a complex
structure. These conditions are discussed in the Appendix Z.

2. Basic Examples

Two complex manifolds M and N are biholomorphic if there is a (real) diffeomor-
phism F : M - N that is holomorphic. It follows from the results in §1 that F~! is
then also holomorphic. From this, it then follows that the relation of being biholo-
morphic is an equivalence relation. Two complex manifolds that are biholomorphic are
the same object as far as the purposes of complex manifold theory go.

The most fundamental examples for the theory are the following:

(i) C". Thisis R? with the complex structure J determined by

R = {(x‘lﬂ"l.'—“*rxnryn]}

3 3 3 Bl
i | = — — = e — = 1 2,..., .
J[Ex;] ay; J[ 3)’1] IR g

The holomorphic coordinate system (x; + ¥ —1yy,...,x, + ¥ —1y,) determines a
complex manifold structure.

(ii) B = {(21,.,.,3,.1 ec' 3 k< 1},

=1

the unit ball in C". Since this is an open subset of C", it inherits a complex manifold
structure automatically. It is important to note that C" and B"™ are not biholomorphic
even though they are real diffeomorphic. To see this, note that a holomorphic mapping
F:C"~B" F=(Fy,..,F,),F;:CF~C is necessarily constant because Liouville’s
Theorem immediately implies that each F; is constant. (In detail: z - Fj(a + bz),

a,b € C, z € C isconstant so F; is itself constant.)
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(ii; Variations of B". If § is a C* submanifold thatis C' close to
{(x1,¥15++-sXns¥n) | ExF + Zy? = 1}, then the interior U, of § is an open subset of C"
that is real diffeomorphic to B". If n = 1, then U, is biholomorphic to B!, by the
Riemann Mapping Theorem. Butif n = 2, U, is generically nor biholomorphic to B,
The U, so obtained in fact form a collection of complex manifolds that in a suitable
sense give an infinite dimensional family of biholomorphic equivalence classes.

(iv) P,C, complex projective space of (complex) dimension n. The notation CP"
is also used. To define P,C, define an equivalence relation on C"*! — {(0,...,0)} as
follows:

(215---sZn+1) ~ (W1, sWat1)

if and only if 3 A € C such that z; = hw; foreach j=12,...,n + 1. (Exercise:
Check that this is an equivalence relation.) As a set, P,C is the set of all equivalence
classes of C"*1 — {(0,...,0)}/~. Define a topology on P,C by declaring a set
Iy C P,C to be open if and only if

{215 13041) € C**1 = {(0,...,00} | [(31s..-s%41)] € U}
isopenin C"*!, where [  g] denotes the equivalence class of (zq,...,2,41). (This
is the topology usually called the quotient topology relative to the equivalence relation.)
P,C is compact because the map

{(z1--es2n41) |2l = 1} - P,C
obtained by taking equivalence classes is surjective (and continuous by definition).
To define a complex structure on P,C, we exhibit coordinate systems as follows:
For each j, set U; = {[(z,...,24+1)] | z; # O}. Clearly U U; = P,C. Define
Fi:U;-C" by
[(z1,---s20+1)] = (21/2js---s20/2p. 20 02)), £ # ).

The transition map from F;(U;) to F(U) defined on Fi(U; N Uy) is easily seen to
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be holomorphic: it is essentially multiplication by z;/z;. (Exercise: Check details of
this.) Thus the F;:U; - C" maps define a complex manifold structure on P,C.

(v) Submanifolds (of P,C): The definition of (complex) submanifold of a complex
manifold runs parallel with the real theory: A subset N of a complex manifold M is
an (embedded) submanifold if (1) N isa C™ real embedded submanifold of M and
(2) TN, all p €N, isa J invariant subspace of T,M (T,N = real tangent space)
of N at p.

This definition condition (2) can be checked to be equivalent to the idea that in a
neighborhood in M of each point ¢ € N, N N neighborhood is a slice in some holo-

morphic coordinate system, i.e.,
N N nbhd = {(z1,...,2,) |zj = Zjyy = - =z, = 0}

in some (holomorphic) coordinates (zy,...,z,).

A compact submanifold of P,C is called a (compact) algebraic variety. The fact
that a compact complex submanifold of P,C is an algebraic variety in the usual sense
(of being the common zeroes of a set of homogeneous polynomials) is true, but hard to
prove. A converse statement is, however, relatively easy.

If P(zy,...,25+1) is a homogeneous polynomial, then, for A # 0,
P(hzq,...,h2,41) = 0 if and only if P(zy,...,2,4+1) = 0 since

P{hl,...,hﬂ+]] = hd P[Z'],.-",Z,l}

where d = degree (of homogeneity) of P. Thus it makes sense to refer to P vanish-
ing (or not) at a point of P,C. If P,,...,P; is a (finite) set of polynomials that are
homogeneous, set V(Py,...,P;) = the points of P,C at which all the P,,...,P, van-
ish. The set V(Py,...,P;) need not be a real submanifold: it could have singularities.
Bat if it is a real submanifold, then it is in fact necessarily a complex submanifold.

Rather than considering this fact in full generality, we illustrate with a concrete exam-

ple.
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Set
V=V(Ei+z25+20) CPsC.
Consider V N U;, j € {1,2,3} where U; = {[(z1,22,21)]]z; # O} as before, with j = 3,
say. The coordinates on U; are (zy,z;) with (zq,25) « [(z1,23,1)] € P,C. The poly-
nomial vanishes at [(z1,z5,1)] if and only if z# + 23 + 1= 0. So V N U,

corresponds in (zq,z;) coordinates to
{(z1,20) | 2§ + 28 + 1 = 0} .

This is a complex submanifold in C> because, near (w;,w3), w; # 0, with
wf + wi + 1 =0, the functions
(21,27 + 28 + 1)

form a holomorphic coordinate system and {(z1,21) | zf + 2 + 1 = 0} is obviously a
coordinate slice in this coordinate system (what if w, = 0? Exercise). So, checking
similarlyon V N U; and V N U,;, we see that V is a complex submanifold of P-C.

It is important to realize that the analogue of Whitney’s Embedding Theorem does
not hold in the complex case. First of all, a connected, compact complex submanifold of
C" must be a point. (Proof outline: z; | N is holomorphic if N is a complex submani-
foldof C". If N is compact and connected, the Maximum Modulus Principle implies
z; is constant. Think for yourself about why the Maximum Modulus Principle applies in
several variables!) So P,C is not realizable as a submanifold of C".

You might be inclined to hope that P,C would play some sort of universal embed-
ding theorem role. But this does not work, either. There are compact complex mani-
folds that are not submanifolds (in the complex sense) of any P,C. It is not trivial to

see why, however. See §3.

3. Hermitian ana Kahler Metrics

DEFINITION. A C* Riemannian metric ¢ on a complex manifold M is an
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Hermitian metric if for each p € M and cach pair of tangent vectors X,Y € M, the
tangent space of M at p,

g(X,Y) = g(JX.JY) .

Every complex manifold admits an Hermitian metric. To verify this fact, note that,
since a complex manifold M is paracompact by definition, it necessarily admits a C®
Riemannian metric g;. If g is defined by g(X,¥) = g,(X,¥) + g,(JX,JY), then g is
clearly an Hermitian metric.

The following lemma describes the pointwise structure of Hermitian metrics:

LEMMA 1. Ler V be a real vector space and J an endomorphism of V satisfying
J? = multiplication by —1. Suppose that g is a positive definite inner product on V
satisfying g(X.,Y) = g(JX JY) forall X,Y € V. Then

(a) g(XJY) = — g(JX,Y).

(b) there exists an orthonormal basis for V of the form X,JX X, JX,,....X,,JX,.

Proof. To prove (a), note that g(X JY) = g(JX J(JY)) while
gUX,J('T)) = g(UX, — ¥) = — g(UX.,Y).

To prove (b), one follows the method used to prove Lemma 3 of §1: Let X; bea
unit vector in V. Then JX, is a unit vector since g(JX,,JX;) = 2(X,.X,). Also
g(X,JX) = — g(JX,,X;) by part (a) so g(X;,JX;) = 0. The subspace generated by
X, and JX, is J-invariant, and hence its orthogonal complement is also J-invariant.
The desired conclusion now follows by induction on the dimension of V.

If g is an Hermitian metric, then the 2-tensor w defined by w(X,¥) = g(JX.Y)
is antisymmetric by part (a) of Lemma 1.

DEFINITION. If g is an Hermitian metric, the 2-form w defined by
w(X.¥) = g(JX,Y) is the Kdhler form of g.
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LEMMA 2. If g is an Hermitian metric, then w A - Aw (n factors, n = the
complex dimension of M) is nowherz zero.

Proof. Given p € M, let X,,JX,,....X,,,JX, be an orthonormal basis relative to g
for M,. Such a basis exists by Lemma 1b). Then

o(X;,JX;) = g(UX;,JX;) = 1

while

w(X;JX;) = g(JX;, JX) =0 if i#j.
Also

o(X;,X;) = o(JX;JX;) = 0 for all i,j.
Then

(WA - Aw) (Xl:-"xh“-?xmjxﬂ'] = nl W(XIJX‘I} v o(XyJX,) = nl

In particular, (wA -+ Aw) # 0 at p.

PROPOSITION 1. A complex manifold is orientable.

Proof. Since any complex manifold admits an Hermitian metric, Lemma 2 shows
that there exists a nowhere vanishing 2n form on any complex manifold of real dimen-
sion 2n.

Actually, it can be shown that a complex manifold is orientable without introducing
any metric concepts. In fact, a holomorphic mapping from a domain in C" to C”"
which is a real diffeomorphism onto its image is necessarily orientation preserving on the
underlying R?" since its (real) Jacobian determinant is positive (by a calculation with
determinants using the Cauchy-Riemann equations). Thus a covering by coordinate sys-
tems all of whose transition mappings have positive Jacobian determinant is given
directly by the complex structure.

DEFINITION. An Hermitian mefric g on a complex manifold is a Kdhler metric if
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the Kahler form o associated to g is closed, i.e. dw = 0.

The condition dw = 0 implies a surprisingly close relationship between the metric
g and the complex structure of M. One aspect of this relationship is expressed in the
following proposition.

PROPOSITION 2. Let M be a complex manifold and g an Hermitian metric on M.
Then the following conditions on g are equivalen::

(a) g is a Kahler metric

(b) If D is the Riemannian covariant differentiation associated to g, then DJ = 0.

Proof that (b) implies (a): Since Dg = 0 by definition of g and
w(X,¥) = g(JX,¥) forall X, Y, the vanishing of DJ implies that of Dw:

Dzu(X,Y) = Z w(X,Y) - w(DzX,Y) - w(X,DzY)
= Zg(JX.Y) = g(J(DzX),Y) — g(JX,Dz¥)
= (Dzg) (X.Y) + g(Dz(JX).Y) + g(JX.Dz¥) — g(J(DzX).Y) — g(JX,DzY)
= 0 + g((Dz/)X.Y) + g(J(DzX),Y) + g(UX.DzY) — g(J(DzX),Y) — g(JX,DzY)
= g(DaNX,Y) =0 if DI =0.
Now for any form , the formula
dw = ;du" A Dy @

holds, where (u') is a reai C* local coordinate system. In particular, if Dw = 0
then dw = 0.

Proof that (a) implies (b): It suffices to establish the following formula for an
arbitrary Hermitian metric g and its Kahler form w:

§(DX.Y) = 3 do(X,¥.2) ~ 3 do(XJY.Z) .
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For then the vanishing of dw implies that g{D;/)X.¥) = 0 forall X and ¥ and
hence that DzJ = 0. To establish the formula, note first that, all terms being tensors,
the formula need be verified only in the case that X, ¥, and Z are linear combina-
tions with constant coefficients of the standard vector fields associated to a C™ local
coordinate system. In fact, this coordinate system may be taken to be the real and ima-

ginary parts of a holomorphic one, say (x1,¥1.%2.¥2....%,¥,). Note thatif X, ¥, and Z
are (locally) such constant coefficient linear combinations of d/dx; and &/dy; then so
are JX,JY, and JZ so that the Lie brackets of any two of the six vector fields X, ¥,

Z,JX,JY,JZ all vanish.
Then

8((DzNX.Y) = g(Dz(JX) — J(DzX),Y)

= g(Dz(UX),Y) — g(J(DzX),Y) = g(Dz(JX),Y) + g(DzX,JY)

= 3 [UX)g(¥.2) + ZgUX.Y) - Yg(/X,2)]

" % [Zg(X JY) + Xg(JY,Z) — (INg(X,Z)] ;

and on the other hand

dw(X,Y.Z) = Xo(Y.Z) + Zu(X.Y) - Yo(X,Z)

= Xg(UY,Z) + Zg(JX,T) — Yg(JX,Z)
and

(X)w(IY.Z) + Zo(JX JY) — (JV)a(X.Z)

dw(JX,JY.Z)

- (X)3(Y,2) - Zg(X JY) + (JV)g(X.2) .
The desired formula thus follows.

Proposition 2 implies that the tensor J is invariant under parallel translation rela-
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tive to a Kahler metric; in particular, the value J, of J at a single point p € M
together with the Kahler metricon M determines J everywhere on M (assuming that
M is connected) and thus the complex structure of M.

If g is a Kihler metric, the Kdhler form w, being closed, determines a class in
deRham 2-cohomology. Because wh--Aw (n times) is nowhere vanishing, and hence
a nonvanishing volume form multiple, w cannot be exact. (Detail: If w = 48, then
whe-Aw (n times) = d(0 w---Aw),n — 1w's. So

0 = [ d(drwire) = [ wrho #0,
a contradiction.) Thus the cohomology class of w is nonzero. Hence any Kihler mani-
fold has nonvanishing 2-cohomology in the deRham sense. It can be seen that
M = §%*1 x §%4*1 admits a complex structure, all p,g = 1 (cf. [2]). Butthen M
has zero 2-cohomology and hence does not admit Kihler metrics (see §10), so such an M
cannot be realized as a submanifold of P,C.

4. Complexification of the Tangent and Cotangent Spaces
DEFINITION. Let V be a real vector space. The complexification of V, to be
denoted V<, is the complex vector space consisting of all ordered pairs (v,w),v, w € V
with operations defined by
(vi.wy) + (v2,wa) = (vi + wyva + wa) .

(@ + iB) (v,w) = (av — Bw,aw + Bv), aBER.

LEMMA 1. If V is a real vector space of dimension n and vq,...,v, is a basis for
V. then

(a) V€ has complex dimension n and (v1,0) - (v,,0) is a (complex) basis for V<

(b) VC considered as a real vector space has dimension 2n and (v,,0),...,(v,,0),
(0,v)),...,(0,v,) is a (real) basis for V<.
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Proof. As an example, the complex linear independence of (v4,0),...,(v,,0) will be
verified, the other verifications being left to the reader: If for ay B € R, £ = 1,...,m,

2 (o + iRy (v4,0) = (0,0)

£=1

(0,0) = i (cgve,Beve) = [i agvy, 2": ; ﬂﬂ'e]
i=1 ¢ é=1

or 37 ,aw; =0 and 3., Bve=0. Hence a; =0 forall € and B, = 0 for all
¢ by the real linear independence of the vi,...,v,.

Since in V€ i(w,0) = (0,w) for any w € V, it is reasonable to introduce the
notation v + iw for the element (v,w) of VC.

DEFINITION. Let M be a complex manifold of complex dimension n, p be a
point of M, and (zq,...,2,) = (%1,¥1;.--+%s:¥s) be a holomorphic coordinate system
defined in a neighborhood of p. Then d/dz|, and 8/3z,, i = 1,...,n, are the ele-

ments of ME’ given by
L] Lo
2 |ox ay;

i L fall | oo
az_l-L— 2[3.1‘;L+Iﬂyjl,'].

When the point p is clear from the context the abbreviated notations d/az;, a/dz;

E|nu
L - R
|

will be used.

Since

0

_..g_ = .i -, =
ay; ¥y az

and
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s lyacs 4| v At ok
dy; dz;  az;

it follows from Lemma 1 that 4/dz;,...,8/dz,, 4/8z,,...,0/92y, being thus a spanning set

of 2n elements, are a complex basis for MS.

Lemma 2. The complex subspace of M spanned by 8/dz,,...,3/dz, is independent

of the choice of holomorphic coordinate system (2q,...,2,). The same is true of the subspace

spanned by 8/3zy,...,8/3z,.

Proof. Let (z'y,...,2'5) = (X'1,¥"1s:+-sX"4s¥"s) be another holomorphic coordinate

system in a neighborhood of p. Thenat p forany £ = 1,...,n

(B2 L e AN Il g Re T SN0 &
az 2 |ax, dx’; 2 =) axy 9% i axvy Ay

—i[/"axji+'ay’ 5]
2 S aye 9% D) dye 9y

- 5*1‘ Bl [,i . G ﬂy:]

a7l 5’:
2 5 Laxy 5}"14 ax; 2 iS) Lay ax’y

Eb ) Bl s

dx'g 3y'e ax;
since
ax; ax; a ay;
) SR s L/ S i ¥
ax's ay's ay’; ax'y

by the Cauchy-Riemann equations. Thus

n ax; ax; !
e /) . ]

TPE(_@_--'_-IE
'y jmy | OX'g ay'e i

so d/éz'; belongs to the complex subspace spanned by #/8z4,...,8/dz,.
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The proof for the subspace spanned by 4/3z;,...,8/9/z, is similar and will be omit-
ted.

If f isareal C* function defined in a neighborhood of p, then each element of
ME actson f by complex linear extension of the action of the elements of M, on f
by differention:

(v + iw)f = (f) + i(wf) v,weM,.
A second complex linear extension definition gives an action of each element of Mf on
complex valued functions defined in a neighborhood of p which are C* considered as
functions into R?:

(v +iw) (f) = (v + iw)Ref + i(v + iw)Imf

= [v(Ref) — w(Imf )] + i[w(Ref) + v(Imf )]
for v,w € M,, Ref, Imf asusual. Note that in this sense the last equation in the
proof of Lemma 2 can be rewritten

d =jﬁ

g g
dz'; =1 | 9z'p 4 az_,

[_ -I_] (xj + Iy‘j}

ax's

since

(5]
]
b | =

dz';

dax d dx d dx dx
S L s BN ) (RO o D e W
ax'y  ay'y ay'e ax’y ax'y ay‘e

b3 =

the last equality following from again applying the Cauchy-Riemann equations. Similar

[azf

where the z; in the parenthetical expression denotes the function x; — iy;.

computations can be used to show that
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LEMMA 3. Let f be a complex valued function defined in a neighborhood of p in

M which is C* as a function into R® 'and (z,,...,2,) be a holomorphic coordinate system
in a neighborhood of p. Then

(a) jorall £=1,...,n

S S o
[a:, ﬂ azg :
(where  denotes complex conjugation).

(b) f is holomorphic on the domain of definition of the coordinate system (zi,...,2,) if
and only if everywhere on the domain

2 =0 foral £=1,..n.

azy

Proof. The assertion (a) follows immediately from the definitions. To prove (b),
recall that f is holomorphic if and only if f.Jy = Jgifs everywhere on the domain.

Since
a d d d
JI—l=—ad Jj—]=~- .
[Bxf] ay¢ [3}':] ax¢

f is holomorphic if and only if

and

Now



S
[E}Fe] [5'.‘-’1 it dy ¢ {Imf}]

JR#’-[:TE] - [ 32 (f) ——mcﬂ]

ot (i) - [ o qa. 2 ).
Thus the necessary and sufficient condition for f to be holomorphic is that

—(Imf]——*—(Ref)

axE(Rcf)‘“—ﬂmf}
Since
d 1 i d d
EI 7 aIEchf)-—( ]] E["ax—tﬂmf]"‘amﬂf]]
the conclusion now follows.

The process of complexifying the tangent space and relating this complexification to
holomorphic coordinate systems has an analogue in the case of the cotangent space:

DEFINITION. Let (zy,...,z,) be a holomorphic coordinate system defined in a
neighborhood of a point p € M. Then the elements dz;, d7; € [M-F}C are given by

dx; + idy
dx; — idy .

||EHE

dz;
dz;
Here My is the real cotangent space of M at p.

Since dx; = (dz; + dz;)/2 and dy; = (dz; — dz;)/2, it follows from Lemma 1 that
-.:Ic_

dz;,...,dz,, dzy,...,dz, form a complex basis for (M7

The previous definition is a special case of the following definition:
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DEFINITION. Let f be a complex-valued function defined in a neighborhood of
p € M whichis C* considered as a function into R®. Then df € (M*,)C is given by
Def
df = d(Ref) + id(Imf) .

ILEMMA 4. For any [ as in the previous definition, at the point p € M:

o[ g (2]

i=1 i=1

for any holomorphic coordinate system (z,...,z,) defined in a neighborhood of p.

b3 =
—
g
|m
i,
)
S——
P
i
<
—_—
+
MI""
——
\hl:nh-ur"
2
e
e,
&
| ———

Similarly

[éflﬁf%[{%.flw[ﬁflml

Thus

[ﬂza f] [ﬂz, ] i = [—‘] [3‘1-1*] dy

from which the formula of the lemma follows.
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LEMMA 5. The subspace of (M*,)C spanned by dzi,...,dz, is independent of the
holomorphic coordinate system defined in a neighborhood of p. The same is true of the sub-
space of (M+,)C spanned by dz,,...,dz,.

Proof. Let (z'y,...,2'y)s (21,-..,2Z,) be two holomorphic coordinate systems each
defined in a neighborhood of p € M. Then by Lemma 4

b 2 e o
kj‘z[_zlldzj"‘z a—__.z,—]d‘z_j.

j=1 L9 j=1 L9z;

Lemma 3 implies that (8/8z;) z=; = (3/8z;)z; = 0, so that dz; is a linear combination
of the dz's. Similarly, dz; is a linear combination of dz;'s.

An element @, + iw; € (H‘,,]c, wy,wg € M*,, gives rise to a complex linear func-
tional on (M*,)C by taking
(wq + iwg) (v + iw) = wi(v) — wa(w) + iwa(v) + iwy(w)
for v,w € M,. (M*,)C can be thus identified with a subspace of the complex dual of
Mf, and by dimensionality considerations this subspace is in fact the whole of the com-
plex dual of M. Note that using this identification procedure, dzy,...,dz,, dZi,...,dZ,
is the complex basis of (M*)C which is dual to the basis 8/dz,,...,d/8z,, 8/311,...,8/32,
of (M,)C since
g e Cie
dzi[a%_] = 5 (dy + idy) [axj + i ay}]
=L, -s)+i0=0
W i
while

@+ i) (& -1 2]

&
S
¥
om—

1l
B3|

= 2 (3 + 8y) + i(0) = B
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and similarly

while

a
dz; (—_.] = By .
azJ

(Here 3y=0H i#j=1i#i=}j)

The definition of df € (M"F}C, where f is complex valued, combined with the
definition of the action of the elements of (M=,)* on MY yields immediately that for
all V€M

df(V) = Vf
where Vf is defined as previously. The duality of 4z;,...,dz,, dzi,...,d2, and
a/8z1,...,0/021,...,0/82,, 8/9%1,...,0/3z, can be interpreted from this viewpoint also, since
(ﬂf&z;]?_, =0, (afazi)z_r = E'{;‘i etc.

5. Complex-Valued Differential Forms

DEFINITION. A complex-valued r-form (or complex r-form) on a real vector space
V is an element of (A"V*)S, where A'V* = the real vector space of real r-forms on
V. The (complex) wedge product A : (A"V*)C x (A*V*)C - (A7**V*)C is the complex
linear extension of the real wedge product A : (ATV*) X (A*V*) = A™7F V=,

The complex wedge product has the associativity and skewcommutativity properties
of the real wedge product.

LEMMA 1. If V is a real vector space of dimension N, then (A"V*)C has com-

plex dimension (the binomial coefficient) [_r ; and if {wy,...,ey} is any (complex) basis

for (V*)C then the set of forms
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{fw A Aay |[1=i << <i =N}

is a basis for (A"V*)C,

Proof. let &,...,8y be a (real) basic for V*. Then the set
{6;, A---A8;, | 1= iy < <i =N} is abasis for A"V*, which thus has dimension

[t{] Hence (A"V*)C has complex dimension [r by Lemma 1 of §4. Since the ele-

ments w; A Ay, lsi<--<i =N, are [J:] in number, they necessarily form
a complex basis of (A, V*)C if they generate (A,V*)C. Now, for each i,

9 = Zf_[ ayw; for some (uniquely determined) complex numbers a;, because each
8; € (V*)C and the w/’s are a basis for (V*)C. Hence

N N
By A gy = [’E “Fu‘“}] A LEI “u“f] )
= 2

from which equation it follows that 8; A --- A 8; is a linear combination with complex
coefficients of wedge products of w;’s. Since any such wedge product is + a wedge
product of the form wj A - Awj, 1=j <--<j =N, cach 6 A--- A8, belongs
to the complex subspace of (A"V*)C generated by

{mjlﬁ e Aay Il=sjH<php<--—-<j=N. Hence this subspace is in fact all of
(A"V*)C,

If M is a complex manifold of complex dimension a and (z,,...,z,) a holo-

merphic coordinate system in a neighborhood of a point p € M, then

{dzy,...,dz,, d2,,..., dz,} is a basis for (M+,)C. Thus it follows from Lemma 1 that

ldzy Ao Ndgy Adgg A Mdfy |1s iy <ig-<i,=n,

l1=ji<jpp<-<j=mp+qg=r}

is a basis for (A"M=,)C.
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Note: We have to rely on context to distinguish the integer p from the point p € M
in what follows. Twenty-six letters just are not enough! Apologies.

LEMMA 2. If (z1,...,2,) and (wy,...,w,) are two holomorphic coordinate systems
both defined in a neighborhood of p € M, then dz A~~~ Adzy Ndzy A Mdz; in
(A?*2 M=,)C is a linear combination with complex coefficients of forms of the type
dwy A< A dwy Adwg A - a"xa‘ﬁ,g‘ fp and g are here fixed throughout).

Proof. Each dz; at p is a linear combination of dw;’s and each dz; a linear
combination of dw;’s (Lemma 5, §4); t'ie result follows directly.

DEFINITION. An element o of (A"M+,)C is said to be of type (p,q),
p + g = r, if for some (and hence by L-mma 2 any) holomorphic coordinate system
(z1,-..,2,) defined in a neighborhood of p, {1 belongs to the subspace of {A’M-F]C
spanned by the set

{dzy A Adg Ay < - Adiy |1S i <ip<- <ip=n,

1S <h<~<d=n}.

It follows from Lemmas 1 and 2 that any element Q of (A"M+,)C can be
expressed as a sum of elements QP4 p+g=r, p=0, g=0, of type (p,q);
moreover, the elements 279) are uniquely determined. Thus well-defined complex
linear maps (, ) : (A"M*,)€ = (A"M+,)C can be obtained by setting ¢, ,y = Q@)
Then for any 1, 0 = zp'i'q-r.paﬂ.qzﬂ T(p,q) -

The elements of (A"M=,)¢ acton r-tuples vy,...,v, of elements of M, as
complex-valued real multilinear alternating mappings. By complex multilinear exten-
sion, the elements of {ﬁ’H*F}C can be taken to act on r-tuples of elements of Mf
now as complex-valued complex multilinear alternating mappings.

A real linear conjugation operation on (A'M-p}c can be defined as a special case

of a general conjugation on VC, V any rcal vector space v ¥ w = v — iw, v,w € V.
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This operation is conjugate linear relative to the complex vector space structure on VC.
An element of VC is an element of ¥V C VC if and only if it is invariant under the
conjugation operation " . Note that if an element of (A'M*P]C is of type (p,q) then
its conjugate is of type (g,p) since dz; = dz; and QA f), = Q, A Q, for any ele-
ments Q, @, of (A"M=,)C.

DEFINITION. A (C*) complex-value r-form @ on M is a mapping
w: M= Upey (A"M*)C such that

(a) w(p) € (ﬁ’M-p}c forall p € M

(b) @ is C® in the sense that when o is expressed in terms of a

{dzy A Ndz, Az A AdEy |1S 0y < <ip S,
== <L=wmp+qg=r]
basis, the coefficients are C* (complex-valued) functions of xy,yy,...,%,,¥, on the
domain of holomorphic coordinate system (zy,...,z,). The complex vector space of all
complex-valued r forms on M will be denoted 1'(M). An r-form w € 0(M) is of
type (p.g) if w(p) if of type (p.g) in {A’M-ﬂ}c for every p € M. The vector sub-
space of {}(M) consisting of all r-forms of type (p,q) will be denoted (V9(M).

It is easy to verify that a complex-valued form © which has the property that
w(p) € A’M=, forevery p € M isa (real) C* form in the usual sense and that, on
the other hand, any real C* form @ on M can be considered to be a complex-valued
form. Moreover, since dz,,...,dz,, d21,...,dz, is dual to 3/3z,,...,4/3z,,

3/3z7y,...,8/87,, the condition b) in tie definition of a complex-valued r-form can be

reformulated as the requirement that

3 #)  a 3
w ey BR T LTS R M T ETY Sy 1 + Ty
i [az"!L ¥ |, '**J'-L 2 u g

be a €* (complex-valued) function of » € M on the domain of (z,,...,z,) for any set
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of indices iy,...,ip, f1;---afg- It follows that if vy,...,v. are any r complex linear com-
binations of #/9z,,...,8/82,,3/821,...,8/8z, with C™ coefficients then
w(p) (vilps---s¥|p) isa C™ function of p. In particular,

ot 2.4 &)

isa C* function. An extended (to arbitrary C™ real coordinate systems) converse of
this last result also holds: w : M ~ Upea (AM*,)C with w(p) € (A"M+,)C is C* if
and only if itis C™in real C* coordinate expressions.

By complex linearity, the operator d can be extended to ("(M): Explicitly, let
(u,...,45,) be a real coordinate system in a neighborhood of p € M and write
(uniquely)

0= s fiy,...i, g A === Aoduy

T

where the s are C* complex-valued. Then

dw = o df;,,...i N dug Ao Adug

1=yl =2

where df; ; is defined as in §4. The usual argument from the real case shows that
dw € '+ (M) thus defined is independent of the choice of the real coordinate system
(41,....,42,). Also from the real case it follows easily that 4 thus extended to complex-
valued forms satisfies

d(w A wy) = day Awy + (= 1)" @y Adw,
for w € O°(M).
LEMMA 3.

d(f day A - Adsy Adj A - A dEy)

i
; [—Ldz;-"kdz va'-.dz&ﬁ.dz'hh---hdz'}q]

52;
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B

+ 2"‘,] [(— 1]3’fz{'dz,-lh---hdzfphdfjhdfﬁ.ﬁ'"ﬁdz_j]
= F

Proof. Since d(dz;) = d(dz;) = 0 for all £ = 1,...,n, the formula given follows
by repeated application of d{w; A w;y) = dw; Aws + (— 1) @) A de;, 0, ©; € {1,
together with Lemma 4 of §4.

Lemma 3 implies immediately that, for w € 09 (M),

do € QPN (M) + QP (M)

DEFINITION. a : QP49 (M) -~ P*14 (M) is by definition
Tpa1 g d t P9 (M) -~ P19 (M), @ : P9 (M) - QP97 (M) s
Ty gt1°d 1 P9 (M) - Q4+l (M). More generally,

a:05 (M) - Q! (M) is the operator Zptg=r Tp+1,qd Tp g
and

T M) - QM) is F e Tpger d Tpg

In case the meaning is clear, the symbols 3 and a will be used without explicit

notation of their domain, as is usually done with the operator 4.

LEMMA 4. d=38+3,32=3=03+030=0. If w € M) then
B € M9P(M) and do = dw.

Proof. All the assertions follow easily from the definitions of 4 and a, the fact
that d* = 0, the direct sum decomposition of Q"(M) = ¥ . ._. "7 (M), and the
behavior of types under conjugation. The details are left to the reader.

Lemma 3 provides a computational description of 4 and a:

o(f dz, A -+ Adry Adzy A= A dy)

& 4d
= '_E_i Ei;dgihdzi,“'"ﬂdxi,hﬁ},h'"h@.
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EUJIE,’*‘ .,,ﬂdz‘;,\d?ﬁﬁ...ﬂ@q)
L d
= El.[d 17 E;%dzrthmhdzj’h@n‘fhﬁw Adg, .

These formulae can be used to provide computational proof of Lemma 4.

6. Hermitian and Kahler Metrics in Complex Notation

The subspace of ME spanned by 8/9zy|p,...,3/3z,|, (Where (zy,...,2,) is a holo-
morphic coordinate system in a neighborhood of p € M) is called the holomorphic
tangent space at p. [t is a complex vector space of dimension n. By Lemma 2, §4, it is
well defined independently of the choice of (zy,...,2,) coordinates. Notation: M}.

If g is a Hermitian metric on M (i.e., a J-invariant Riemannian metric), then g
determines a Hermitian metric on each holomorphic tangent space M} in the conven-
tional sense of complex linear algebra as follows: First note that g extends by complex
linearity to be a complex bilinear form § on M. (This form cannot be positive defin-
ite!) Define for V, W € M}

g(V.W) = §(V.W) .
Then g om H; so defined is a positive definite Hermitian metric on M;'. (Note: The
use— for both M, and Mj— of the same symbol g can lead to no confusion, espe-
cially since, for real vectors, the conjugation in the definition of g on M} would be of

no effect.)

Define, given (zi,...,z,) holomorphic coordinates,

W TR e E
&= 8 az; ! ﬂzj & dz; dz; ;
Then

1=k -a = i w o N
= —fl—=V=] — — + ¥V-1—
&7 43[5-‘: : dy;  dx; ﬂyj]



= [*[%ﬂi}u] Je ”

a bl 8 Pl bedbo: ol .
2 #|ox " ox 2 %lax 9y
because
i 2, & ol g i o, L Lma
g[ayj’ayj] ‘*’[‘ir oz " ax,] g[ax ax;
and
L S 1 PR TSN RO A —*-E
& dy; ” ox; s ax; * ax; ax;’ ' ﬂ.t; a:.ri

These formulac express g on M) interms of g on M,. They also show (when run
the other way) the following: Every Hermitian metric on M} arises from exactly one
J-invariant (Riemannian) metric on M.

Of course, since all these considerations happen at one point p at a time, they are
really facts about complex linear algebra!

As a tensor, the metric on M is given by

G = 3 ggdz 0 dz
iJ

in the sense thar®
(V. W) = G(V,W) V.W €M,
Assaciated to the tensor G (= £) is a (real) 2-form

s "—lzgﬁ-dqhdz_j,
1J

*No complex tensor could operate on V,W to give g(V,W): there must be a complex
conjugation applied to W first sinee g(V, + YV —-1W) = — V=1 g(v,w)!
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Exercise. Check that this association is well defined independently of coordinate
choice. This form is just the Kahler form as defined on page 3.2 (page 2 of §3).

Philosophical remark. This is one of many places where it is possible to get +
signs wrong, or to gain or lose factors of 122 or /4. Usually it does not matter. But
in cases where it does (later: positive vs. negative curvature), it is safest to check all

computations by simple examples. There are many papers that are supposed to be about
positive bundle (definition later) that are actually about negative ones, etc.

The metric is Kihler if and only if

dg ag
l}=dzx.}-d=rnﬁ] = D=E[-5;£d:g+—_{£¢ dz; A\ dZj .
iJ it £ dzg

Since the terms from the dz; have type (2,1) while those from the 4z; have type (1,2)

each sum
gy dgg
EEﬂthﬁjﬁdﬁ and 3, o7 dzg A dzy A dE;
[ 4

must vanish separately if (and only if) g is a Kihler metric. It follows that: g isa
Kihler metric if and only if

az¢ dz; a9z az;

for all i,j,£. We shall use this soon, in relation to holomorphic normal coordinates.

7. Holomorphic Normal Coordinates

In this section, we want to prove the following computationally useful proposition:

PROPOSITION. Let M be a complex manifold with Hermitian metric g, and let w
be the Kdhler form of g. Let p € M. Then dw|, = 0 ifand only if 3 a holomorphic
roordinate system (21,...,2,) defined in a neighborhood af p with



: g AN = ok
{1} g[ﬂr;' azJ]L 0 I#J
and

d d o ;
(2) d[g(E,E]L—ﬂ all i.f.

Proof. Conditions [(1) and (2)] imply that dw|, = 0 by the formulac of §6. The
converse is more complicated. We do it as follows:

Choose coordinates (holomorphic) wy,...,w, with p = (0,...,0). Changing the w
coordinates by a constant coefficient linear transformation, we can assume condition (1)
to hold. To arrange for condition (2) to hold, we introduce zy,...,z, defined by

5+ 3 a2z = Wi,
ik

where aj; are complex constants to be chosen later and which are to satisfy af = al;.
Note that for each choice of a’s, the equations define a holomorphic coordinate system
(24,..-,%,) in some (smaller) neighborhood of p: this follows from the holomorphic
implicit function theorem (actually, inverse function theorem). By the (holomorphic)
chain rule:

d _ dwg 3 £ d
— =3 — Eé: [Ei! + Ej {u'} + af{)zj .a_...:
and

A _slsy + G+ ahzm| =
oz; ] i dwy

Hence, g7 in z coordinates, hyfor w coordinates,
a

2 d il
¢ q £k m dwg



+ terms quadratic in 2's .
At p, gz = hy so condition (1) remains satisfied. For condition (2), we need

9z, az,

EEEL=u and 'L"EL=0,
Again at p (where z's = w's = 0)

. | A T

) dz, B az, +2“{"

because g(a/dw;,a/aw;) = 8; at p. Alsoat p

**) L i Y
az, dz, dz,

So from (*) and (**) condition (2) holds if

, 1 ks
i O Gt
(*) Qe 2 az,
and
() o 2 oz,

So we need only arrange for (1) to hold for all i, j, r ar once. This will be possible if
and only if the righthand side of () is symmetricin i and r. (Remember: We
assumed af was symmetricin i and r, without loss of generality.) In other words,
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we must have

ahﬂ- _ dh -
dz, dz;

(t11)

and, if we do have this, then we can solve (1). But (+11) is true if g is Kahler (end of
§6). So the proof is complete. L]

While this proof is clear computationally, it is worthwhile to look at the situation
philosophically, too. In general, Riemann normal coordinates (i.e., exp~!) will not be
real and imaginary part of a holomorphic coordinate system, i.e., J on M, will not be
taken, in general, to J on M by exp,. Of course, since d(exp,)|, = identity, J at
p is taken to itself. Also, if the metric is Kahler so that DIL,=U, then [because
Riemann normal coordinates are parallel-at-p (i.e. D(coord field)|, = 0] the exponen-
tial map is J-preserving at p to one higher order than just the 0O-order,
dexp,|, = identity. So it makes sense that there is some holomorphic coordinate system
with real and imaginary parts x{,¥1,...,%y.¥, matching Riemann normal coordinates to
an extra order, i.e., having covariant derivative 0 at p. This is just what condition (2)
of the Proposition gives.

Exercise. Show that with (zy,...,z,) as in the Proposition and z; = x; + \";?fyj,
it holds that

§ a_ _
Dara;,g;*“ Dafax,g;;—ﬁ

a d
Dy, ol 0 Da"&’fa_xg =0

all at p, all j,£.

8. Basic Examples of Kahler Manifolds
(1) C" with its standard metric (as R®). This is easily seen to be Kihler because

in standard coordinates its metric coefficients are constant.
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(2) P,C: Denote by P :S%*! . CP" the projection (to equivalence dasa;.s] of

521 = {(21,..s70+1) € C"*1 | Zlgj = 1} onto CP". ¥
(Z15---3Zn+1) = (F1a¥15e- s Tt 1Vn+1) »

then (x1,...,¥a+1) a0d (=¥1,%1,...,=¥n+1-52+1) together span a J-invariant subspace
§ of (C"™*")(y,.) = the real tangent space of C™*1 = R¥*2 at (xy,...,y541). The
orthogonal complement of this subspace § projects J-equivariantly under dP one-to-
one onto the tangent space of CP" at P(zy,...,2,4;)- To see this note that the two
have the same real dimension 2n. Also the vector (—j,%y,...,~Yn+1s%s+1) ECDCrates
the (one dimensional) tangent space to the fibre of P through (xy,...,y,+;) because it
is the tangent to the curve

t = (cost + ising) * (z1,-..,2541)

which is the fibre. So dP| orthogonal complement § is injective.

We now define a metric on CP" by declaring 4P| orthogonal complement of §
to be isometric. It is algebra to check that the resulting metric is C* Hermitian. To
see that it is Kihler is more tedious if one attempts direct calculation. But the situation
can be simplified as follows:

First note that the unitary group acting on C"*! induces an action CP"; and, as
is easy to see, this action is isometric relative to the metric we have defined. It is also
biholomorphic (i.e., each induced mapping is a biholomorphic map of CP" to itself).
Thus we need only check the vanishing of DJ (or dw) at one point of CP"— because
the group action is transitive and DJ (or dw) is an invariant under biholomorphic
isometries. So let us check what happens at [(1,0,...,0)]. Writing for convenience
(2gs...»z,) as coordinates on C™*! we have the coordinates on CP"

{zh'“‘zu] = [{1,21,,",2,)]
as a holomorphic coordinate system near [(1,0,...,0)]. If this coordinate system has

rrrrr
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Now computing the length of 8/dz;,i = 1, (or the inner product §{a/az;, a/9z;)) will
involve computing the 4P preimage in the orthogonal complement of
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1 Zn
[Vm;+—1 \/1_1'3;3]

and J of that vector (considered as a real vector). More precisely

(&2 =H[ﬂtai,£]’ o))

where H = the Eudlidean metricon C"*! and @ = projection on the orthogonal
complement of {(/V,...,z/V) and J of that vector}. A straightforwaid calcula-
tion involving order of magnitude argument only®* shows that

8 2
' ﬂzj’ ﬂz;

is constant to second order (i.e., has 0 first derivatives), and similarly for
oL
8 ﬂ:‘-’ a.:j ’

(Mote: This argument also incidentally shows in detail that the metricon CP" is J-
invariant).

(3) B" and its Poincare metric B" = {(z,...,2,) | Zlz;[? < 1}).

There is a large group of biholomorphic mappings acting on B”. First of all, the
unitary group acts fixing the origin. It is well known (and fairly easy to see) that these

are the only biholomorphic mappings that fix the origin. In addition, the maps (for each
a,a €C, |a| <1)

Fee=y

z1—a 2l - |a)? z,(1 — |aP)¥?
(214eeesZn) = .

1-az 1-azg 1 - ax

*(0(a/dz;) = 8/dz; - term vanishing to 1st order that is perpendicular to
(UV,..2/V) and J of thae
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are easily checked to be biholomorphic. Combining these two types of maps, we see
that biholomorphic maps act transitively on B". We define a metric on B" by setting
the metric at p € B" = a*, gg, where go = Euclidean metric at origin and
@, : B" - B" is a biholomorphic map taking p to the origin. (Any two such differ by a
unitary group element, so the metric is well defined.)

The metric we have defined is obviously J-invariant. (Exercise: Show itis C™).
To see that it is Kdhler, it is enough to see that dw = 0 (or DJ = 0) at (0,...,0)
since all points are biholomorphically isometrically equivalent to (D,...,0). Also, since
the unitary group acts transitively on directions at (0,...,0), it is enough to check that

then DyJ = 0 since J(d/ax;)) = a/dy;.
But straightforward calculation shows that g(a/dz;, 4/dz;) is 2nd order constant at

(0,...,0) so D a/ax, = D a/ay; = 0 at (0,...,0). =

9. Curvature Properties of Kdhler Manifolds
Recall the Riemann curvature 3-tensor

def
R(X,Y)Z = (DxDy — DyDy — Dix y)Z
and 4-tensor

def
R(X.Y.Z,W) = - g(R(X,Y)Z,W) .

On a Kihler manifold, these tensors have special properties relative to J: Since J is
parallel, it follows that

R(X,Y) (JZ) = JR(X.,Y)Z .
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From this follows
- R(X,Y JZ,JW) = g(R(X,Y)JZ,JW) = g(JR(X,Y)Z JW)

= g(R(X,Y)Z,W) = - R(X,Y.Z,W) .
Also since R(X.¥,Z,W) = R(Z,W.X.Y) = R(Z,W ,X,Y) on any Riemannian manifold,
we have
RUXJY.Z,W) = REZ,WJXJY) = RZ,WX.Y) = RXY.ZW).
So R(,,,) is J-invariant in the first two slots and in the last two.

Let X be a unit vector. The number R(X JX X.JX) is called the holomorphic sec-
tional curvature of the 2-plane spanned by X, JX. If ¥ is any other unit vector in this
2-plane, then R(X JX X JX) = R(YJY,Y JY) (Exercise: Check this.) Thus holo-
morphic sectional curvature is a well-defined function on the J-invariant 2-planes in
M,.

The holomorphic sectional curvatures at p determine the whole curvature tensor at
p. In fact, a purely algebraic kind of determination holds:

Proposition: Suppose R and T are 4-tensors on a vector space V' with
. endomorphism J:V -V 3J?= —1. Suppose R and T have the symmetries of a
. Riemman curvature tensor (antisymmetric in 1st two, last two; symmetric under
- 1234 - 3412; 1st Bianchi) and that both are J invariant in first two and in last two
shots. Suppose also that for all X € V

R(XJX,X JX) = T(XJX XJX) .
Then

R=T.
Proof: It suffices to consider the case T = 0. Look at the map

&.Y,U,V) K R JY,U,1V) +REJUY IV) + REIV.Y JU) .
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This is symmetricin X, ¥, I/ and V (check this). Alsoit =0 for X =¥ =U=V
since T =R =0 for X, JX, X, JX ctc. By polarization, R = 0. With X = U,
Y=V, one gets
(*) 2R(XJY X,JY) + RXJX,YJY) = 0.
From the Bianchi identity

R(XJX Y JY) + R(X,Y JY JX) + R(XJY,JX,Y) =0

R(XJX,YJY) - R(X,Y X,Y) = R(XJY.X,JY) = 0 .
Adding minus this to (*) gives
3R(X JYXJY) + R(X,¥ . X.,Y) = 0
Replace ¥ by JY:
3R(X,Y.X.Y) + R(XJY.X,JY) = 0.

These last two imply R(X,¥.X,¥) = 0. Since sec. curv =0 = R = 0 (in a purely alge-
braic way), it follows that

The proposition we have just proved shows that there could be at most one tensor R
(with all the symmerries and J invariances) = R(XJX X JX) = + 1 for

X > ||x]| = 1. We can in fact exhibit one such. (Note: We shall do so by just writing
one down. But in principle we could compute one, by noting that CP" has constant
holomorphic sectional curvature, since the biholomorphic isometries act transitively on
the J-invariant 2-planes. So we could just compute the curvature tensor of CP", and
even at one point, in fact. Then we would have at most to multiply it by a constant).
With g as the real J-invariant inner product set

RoX.Y.UY) = T(X.U)s(Y.V) — 5(X,V)e(¥,V)

+ g(X JU)g(Y,JV) — g(X JV)g(Y JU) °
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+ 28(X.JY)g(UIV)} .
A tedious but easy check shows Rg has the required symmetries and satisfies

Ro(X JX X JX) = g(X.X)* .

RoX.Y.X.Y) = X X)g(X.Y) - g(X,¥)? + 3(X V) .

This last formula has a pleasant geometric meaning.
Suppose P is a 2-plane. Then we define the angle «p between P and JP by
@, = minimum angle betweep X € P and Z € JP. Then
cos (a(p)) = [¢(X.JY)|

where X, ¥ is an orthonormal basis for P. (Exercise: Prove this.) Thus the sectional

curvature (for Ry as curvature tensor)
K(P) = %{1 + 3 cos¥(a,) -

We can summarize all this as follows: If at a point p € M, M a Kihler manifold,
all J-invariant 2-planes have the same sectional curvature ¢ then the curvature tensor
at p is cRy and for any 2-plane P in M,

K(P) = (1/4) (1 + 3 cos? (a;))c .

The next result shows that a Kihler manifold of C-dimension = 2 can satisfy the
previous condition at each point only in a special way:

PROPOSITION. If M is a (connecicd) Kdhler manifold with
dimgM = 2 dimc2M = 4 and if, at each point p € M, R = c, Ry for some constant
c, then in fact c¢ is independent of p!
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Proof. Let Ric denote the Ricci tensor of M. Compute for an arbitrary
XX € M, |IX]l=1

Ric(X,X) = R(XJX X, JX) + ji [RX.Y,.X,Y)) + RKJY, X JY))]
=2

where X, JX, ¥, JY3,...,¥,, J¥, is an orthonormal basis of M,. Now
R(X,JX X JX) = ¢, while
R(X,Y;.X,Y;) = REXJY; X JY)) = Vdc, .

Ric(X ,X) = ¢, +2{(n — 1)/4]c, = [n ; l]cp.

In particular, Ric(X,X) is independent of X € M,, [[X|| = 1. So M is Einstein (at
p). By a classical theorem the quotient ¢, = {I/(n + 1/2)} [Ric/g] is independent of p.
]

Of course, none of this discussion about independence of point has any relevance in
case n = 1 (a 2-dimensional manifold in the sense of real dimension).

Qur three basic Kdhler manitolds — C", CP", B" — all have constant holo-
morphic sectional curvature. C" is of course flat: R = 0. CP" has constant holo-
morphic sectional curvature (because the biholomorphic isometries act transitively on the
J-invariant 2-planes). CP" is simply connected and compact so it cannot admit a
(necessarily complete) Riemannian metric with sectional curvature = 0. Hence its holo-
morphic sectional curvature (which is constant) is > 0. Similarly, the complete metric
on B" cannot have positive curvature, since it would be positive bounded away from
zero, contradicting the noncompactness of B”. 50 Rg. = cRy, ¢ = 0. It cannot be the
case that ¢ = 0 because then 5" would be biholomorphically isometric to C”":
namely, the exponential map would be such a biholomorphic isometry. So ¢ < 0 in
this case.
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These three examples in fact are all the possibilities for constant holomorphic sec-
tional curvature, up to coverings and constant factors. Specifically, the following result
holds:

PROPOSITION. Any two complete n-dimensional C simply connected Kdhler mani-
folds with the same constant positive holomorphic sectional curvature are biholomorphically

isometric to each other.

Proof. Let M; and M, be two such manifolds. Choose p; € M; and p;, € M,
and let T : M, - M, be an isometric linear transformation that commutes with J.
(Such a transformation can be obtained by choosing orthonormal bases
X;, JXy,....X,, JX, and Y, JYy,...,¥,, JY, and defining T(X;) = Y, TUX)) = JY;
for all j = 1,...,n.) The transformation T also takes R, to R,, by our previous
results. Moreover, since Jy;, and Jy, are both parallel and since the curvature of M,
(and M,) is determined by the metric, J and the equal constant holomorphic sectional
curvatures, it follows that both M, and M, have parallel curvature tensors. By simple
connectivity of M, and standard considerations*, T must be the differential of a
locally isometric surjective covering map T : M; -~ M>. T must be holomorphic (Exer-
cise: Prove this by using parallelism of J to show dT o Jy, = Jy, * dT at each point of
M, since the equation holds at p). Since M, is simply connected, T must be injec-

tive. |

10. Kahler Submanifolds

Let N be a complex submanifold of a complex manifold M. Since by definition
Jyl, = the restriction to N, of Jy|, (N, being J-invariant), it follows that the res-
triction to N of a Hermitian metric on M is a Hermitian metric on N. Also, the
Kihler form of the metricon N is the restriction to N of the Kihler form of the
*of Riemannian geometry.
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Hermitian metric on M. Since dy = dy|N, it follows that if the metric on M is Kihler
then so is the metric on N. The relationship between the curvature of the metric on M
and that of N is much closer than in the Riemannian case, where, in the case of large
codimension, at least, there is no relationship. The relationship in the Kahler situation
comes from special properties of the second fundamental form.
Let S(X,¥) = D¥ Y — DY ¥ be the second fundamental of N in M. Then
S(x.JY) = D¥(Y) — DY(JY) = Iy D¥ Y — Iy DY Y
= 0¥ ¥ — DY Y) = IS(X,Y) .

By symmetry,
S(UJX.Y) = S(¥,JX) = JS(Y,X) = JS(X,Y) .
For any submanifold, the sectional curvatures satisfy (X,¥ orthonormal, P = span
of X,¥):
Ey(P) = RM(X,Y X,Y) + gy(S(X.X).5(Y.Y)) — gu(S(X,Y),S5(X,¥))

= Ky(P) + gu(S(X.X),5(Y,Y)) — gn(S(X,Y),5(X.Y)) .
In our case, if ¥ = JX then
Ky(P) = Ky(P) + gp(S(X.X),S(JX.JX)) = gp(S(X,JX).5(X X))
= Kj(P) — 2g(S(X.X),5(X,X))
because
S(IX JX) = — S(X,X)

and
em(S(X JX),S(X JX)) = gue(JS(X .X),J5(X X)) = gpeS(X.X),5(X,X)) .

In particular, the holomorphic sectional curvature of N is always = the corresponding
sectional curvature of M. Let us compute the trace of §: we can of course compute

relative to any basis so we use a basis of the form X, JX;,...X,.JX,, m = dimcN.
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Trace § = §(X1,X;) + SUX1,JX;) + - + S(X,,X,) + S(UX,JX,) = 0
because S(/X,.JX;) = — §{(X,,X;). So N is a minimal submanifold of M. (Incase ¥
is compact and so is M, it can be shown that N is absolutely area minimizing in the
homology ciass it represents in M, this homology class being necessarily nontrivial if &
is not zero dimensional.)

11. Holomorphic Vector Bundles and Hermitian Metrics and Connections

A holomorphic vector bundle is defined just as is a topological vector bundle with
fibres C-vector spaces with an additional restriction, that the transition functions be
holomorphic functions of the point in the manifold. More explicitly, with B - M, M a
complex manifold bundle, we suppose given a trivilizing cover L/, and maps:

éy 1w i(Uy) - Uy, x CE

with @y o &y = W/ -y, when w; = first factor projection and the lincar maps,
defined for p € Uy, N Uy, of C*¥~C* by myody 2 (¢5 |p X C¥) to depend holo-
morphically on p. (Notes: w; = projection on the second factor; since linear maps
C* .. C* are uniquely associated to k X k C-valued matrices, it makes sense to speak
of such maps being holomorphic: it just means that each matrix element is a holo-

Notation: 7, = &y = (b} | p X C¥) = fy,, € C¥.

A Hermitian metric on a holomorphic vector bundle B - M isa C* family of Her-
mitian metric (in the standard linear algebra sense) on each fibre w~'(p), p € M.

A R-vector bundle with Riemannian metric in general admits a wide variety of

metric-preserving connections, i.e., connections for which parallel translation preserves
inner product. (Recall: The unigue Riemannian connection on TM, M a Riemannian
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manifold is made unique only by imposing the additional condition of torsion 0.) Simi-
larly, a complex Hermitian vector bundle admits many Hermitian-metric preserving con-
nections. In the case of a holomorphic Hermitian vector bundle, however, there is a
natural way to select a unique metric-preserving connection from among the many possi-
ble metric-preserving connections.

DEFINITION. A connection on a holomarphic vector bundle B - M is type (1,0)
if its connection forms relative to a local holomorphic frame in B are type (1,0).

It is easy to check that the definition does not depend on which holomarphic local
frame is used.

The basic uniqueness and existence result is the following:

THEOREM. HB:H is @ holomorphic vector bundle and if h is a Hermitian
{fibre) metric on B, then 3 a unique type (1,0) connection on B that is metric preserv-

ing.
Proof. Choose a local holomorphic frame, i.e., a trivialization
é:7 Y U)-U x C* and set a; = ¢~ '((D --- 1 --- 0) so that o,...,0; are holo-
morphic and span =~ (p) ateach p € U. Set
hyg =hoyop) 1=a=skl=psk.
Define the connection forms of a covariant differentiation (connection) D' to be those
determined by
i .
Da,= 3 whog, a=1,.k.
B=1

(i.e.

k
Dyo, = 3 wf (X) op) .
B=1
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Then D is metric-preserving if and only if

dhog = h(Do,,0p) + h(o,,Dog)

k k
wl o,op| + h|og, > ms oy
1

d"’uﬂ - h[
=1

= f“ wl ho,,og) + zk', EE h(oq,03) .
e d=1

(Note that the @ is conjugate in the sécond sum because k is conjugate linear in the
second variable.)
I w's are type (1,0) sothat w's are type (0,1) then we must have

) dhag = i w] hyp

=1
and

- ko
ahﬂ.ﬂ' = EEI Iil]ﬂ_ hﬂﬁ -
If the first set of these equations hold, then so do the second because

- — k
ah,a = ﬂh;'ﬁ' = ﬂﬁau = EI ma hgﬂ]

E 5 o ]
=‘21 Ehh=ﬂzlmﬁhﬁ, as required .

On the other hand, the fact that the matrix (h.g) is invertible (being positive definite)
means that we can choose the @] in one and only one way so as to make the first
equations (1) work. So we have local existence, and uniqueness for the desired connec-
tion. Global existence (and uniqueness) follows as usual. u

In a holomorphic frame, we have from the previous

Ng = E ﬁﬂﬁ .ﬂhuﬂ '
B
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where AP is the inverse of h (so 3, ko K = 8Y).

An interesting special case is that of holomorphic line bundles. (Note: Line bundles
in the C sense are more interesting than those in the R-sense. The latter have discrete
(+ 1) structure group, i.c., are reducible to that group. But in general C bundles are

reducible only as far as ! C C*, not to locally constant transition functions.)
In the line bundle case, h isa 1 X 1 matrix. Also
wl = Vhy; ahyy = a(log hyy)
(for log as in the real sense: hy; > 0). In a different frame, k,; changes to ffhy, f
a (nonvanishing) holomorphic function. It follows that
3a(log hyy ff) = da(log hyy + log f + log f) = 33 log hyy ,
where log f and log f can be any fixed local branch of (holomorphic) "log”. So
aa(log k1)
is in fact a globally defined type (1,1) form.

Associated algebraically to the well-defined form aslog hy, is the Hermitian form

n '52
(t1) -2 la — log -‘lu] dz @z .
ij=1 | 9z;92;

We shall call this form the Hermitian curvature form. The association is essentially that
of metric to Kihler form. But to avoid algebraic detail, it is more convenient simply to
compute directly that the Hermitian form is independent of local trivialization. This is
easy following the line of reasoning used mlshuw that dalog hy; is well defined, and it
is left to the reader. (This approach also avoids the possibility of sign errors, which
have plagued the transition from type (1,1) to Hermitian forms in the literature.)
Special interest is attached to Hermitian holomorphic line bundles for which the
Hermitian curvature form indicated is definite, either positive everywhere or negative

everywhere. We make a formal definition:
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DEFINITION: A holomorphic line bundle B is positive (respectively, nonnegative)
if for some Hermitian metric on B the Hermitian form (1) is positive definite (respec-
tively, nonnegative definite). The bundle B is negarive (respectively, nonpositive) if for
some Hermitian metricon B the Hermitian curvature form is everywhere negative
definite (respectively, nonpositive definite).

The logic of the negative sign in the definition of the Hermitian curvature form is as
follows. Conventionally, it has been the practice to regard bundles with global holo-
morphic sections positively, having sections being a good property. Now if a Hermitian
line bundle over a compact complex manifold has a nontrivial holomorphic section s
then for a local frame field o; we can write s=fo,,f holomorphic, and then, where
s#0:

i [ log ﬁu] dzRdz;= E [ lcg(hm] dz;Ddz;
ij=1 az.ia ' ij=1] 2% zj
-3 [32- valett| o

(Here ||s|]? is the Hermitian norm squared of the section s.) The last-written form
must be nonpositive definite at the point(s) where the global function ||s|[* attains its
maximum. (Exercise in calculus: Prove this.) In particular, there must be points of M
where the Hermitian form

i

2

I‘I'—

! h dz.ndTs
32,0T; Of n] iz

must be nonpositive definite or equivalently points at which

i ]
= ka1 de ::E
u..1[ﬂz~ﬂ log 111 i)

is nonnegative definite.

Note that no such reasoning occurs at the minimum of |js|]* in general because the
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minimum may well be zero, in which case log|ls|f® is not defined at the minimum.
What we do obtain by following the above pattern is that if s is a holomorphic section
which nowhere vanishes (so that minimum ||s|?>0 and log|s|® is defined and C~
globally) then the Hermitian curvature form must be nonpositive definite somewhere.
Of course, such a section exists if and only if B is the trivial line bundle. Thus we see
that a line bundle on a compact complex manifold that is positive or negative cannot be
trivial.

Every complex manifold M has a naturally arising holomorphic line bundle on it.
This is the bundle of forms of type (n,0); this bundle is called the canonical bundle of
M and denoted by K or, when the manifold needs specification, Ky.

K M has a Hermitian metric g then K, can be given an associated Hermitian
metric as follows: Let (z;,...,z,) be a local coordinate system on M and set
g;7=8(9/8z;,3/3z;) as usual. Then put

lldziA---Adz,|P = Vdet(gy) ,

where det(g;)= the determinant of the matrix (g;),1=ij=n. A slightly tedious but
routine calculation shows that this definition yields a well defined C* Hermitian metric
on Ky We shall call this the canonical metric on K, (associated to the metric g on
M).

The Hermitian curvature form of the canonical metric on Ky is closely related to
the Riemannian curvature tensor for a Kihler manifold M. To make this relationship
explicit, let R be the Riemannian curvature (4-) tensor of the Kihler manifold M.
Define, as usual, the Ricd tensor Ric of M by (at each point of M)

Ric(X,Y) = 3 R(X,e,¥,e0)
i=1
where {e;Ji=1,...2n} is an orthonormal (real) basis for the real tangent space M, of
M at p and X,Y€M,. Itis easy to check that Ric(X.¥) is independent of the choice
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of orthonormal basis. It is also easy to see, using the J-symmetries of the curvature ten-
sor, that Ric is an Hermitian form, i.e.,

Ric(JX ,JT)=Ric(X.Y) .

The Hermitian real form Ric extends by complex linearity to M,&C. On the holo-
morphic tangent space of M at p we define a C-Hermitian form by a now familiar
process;

(2,W)-Ric(Z,W) .

The promised relationship between the Hermitian curvature of K, and the curvature of
M is given now by the formula (with G=det(gg), 1=i,j=n):

3

ij=1 92,92

(log G) dz,2dz; | (Z,W)=—Ric(Z,W)

for all Z,W in the holomorphic tangent space of M. Here the left hand side is exactly
the Hermitian curvature form of Kj; evaluated on Z,W because the metric of K is
(locally) /G and log(1/G)=—logG. Thus, for example, if M has positive sectional
curvature and hence positive definite (real) Ricci form, it follows that K, is a negative
bundle. Specific examples of this: P,C, all a. The formula just displayed caa be pro-
ven by a dedious but straightforward calculation, using the standard rules for differen-
tiation of determinants.

MNote: In case M has real dimension 2, then the formula reduces to the familiar
expression for the Gauss curvature for a metric of the form G(dx*+dy?), namely
k=-12A(logG).

We can see that the signs check out correctly in our relationship between Hermitian
curvature of the canonical bundle and the Ricci curvature of the manifold by considering
complex projective space. It has positive sectional curvature and hence positive Ricci
curvature, in its usual Fubini-Study K&hler metric. Thus, according to our calculation,
its canonical bundle K is negative {in its canonical metric). Negative bundles cannot
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have nontrivial holomorphic sections, and sure enough there are no nontrivial holo-
morphic (n,0) forms on complex projective n-space P,C.

Looking at this same example th: other way around, let us consider K3, the dual
bundle of Ky. We can put on Kj the dual of the canonical metric, namely, if o, isa
local nonvanishing section of Ky and o, is a local nonvanishing section of K, we set

llors =l (@2 [lera]? -

It is easy to see that the Hermitian curvature of Kj; in this metric is just —1x the
Hermitian curvature of Kjs. (This hold thing works for any line bundle and its dual:
exercise.) Thus Kj, is a positive bundle. This is as it should be since Kj, has non-
trivial global holomorphic sections (obtained by wedging together holomorphic vector
fields). Exercise: Figure out one such section on P{C= the Riemann sphere.

We have already noted that line bundles with a nontrivial holomorphic section must
have positive Hermitian curvature form somewhere (in any Hermitian metric). There is
a profound and important converse of this, first established by K. Kodaira.

By definition, the tensor product B, () B, of two line bundles is the line bundle
whose transition functions are the products of the transistion functions of B, and B..
(Exercise: ) on bundles corresponds to addition of Hermitian curvature forms. For-
mulate this precisely and prove it.) Along these same lines, it can be shown that suffi-
ciently high ( -powers actually give an embedding into projective space in the following
sense: Let B-M be a line bundle over a compact complex manifold M. Let H*(B)=
the C-vector space of holomorphic sections of B. This is actually a finite-dimensional
vector space. (It is easy to see, for instance, that its unit ball is compact in the norm
=, lsl?“2 where js|} is the pointwise norm in an arbitrary Hermitian metri
on B and the integral over M is relative to the volume form of an arbitrary Hermitian

metric on M).
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Choose a basis sy,...,5; for #°(B) and suppose (additionally! - this doesn’t have
to happen) that there is no point x€M with all 3i{x)=0, j=1,...,k. Then we can

define a map £3:M-P;_,C as follows. For x€M, choosea j€{l,...,n} with 5;(x)#0.

Then set the image £p(x) of x= the point with homogeneous coordinates
31(x)/5i(x),..-,1,...,5¢(x)V/s(x), where the 1 isin the jthslor. That is, the image of x
is the image of (s51(x)/s;(x),...,1,....5e(x)/5;(x)) €C*—{(0,...0}, under the usual quo-
tient map C*—{(0,...,0)}-P;_;C. The map £y is holomorphic. A different choice of
the basis s; changes £ only by a linear isomorphism P,C.

Then the following important theorem holds, the famous Kodaira Embedding
Theorem:

If M is a compact complex manifold and if B-M is a positive line bundle, then
there is a positive integer £ such that £ is defined and is a holomorphic embedding
of M into a complex projective space.

As noted, P,C has a positive holomorphic line bundle oz it, namely K*. If M is
a compact complex submanifold of P,C then it is easy to see that K" |M is positive.
(In fact, the restriction of a positive bundle is positive: prove this as an exercise.) Thus
we see from the Kodaira Embedding Theorem that a compact complex manifold is biho-
lomorphic to a submanifold of some complex manifold if and only if M has on it a posi-
tive holomorphic line bundle.

The proof of the Kodaira Theorem is highly nontrivial and will not be given here.

In case that the canonical bundle is positive or negative or a trivial bundle, it is
natural to ask whether it is possible to make the Hermitian cnrvature form of the canon-
ical bundle equal to a scalar multiple of the metric itself. In particular, one could ask
whether there is a Kihler metric g on M such that, for some ¢ € R,

Ric(Z, W)= cg {Z,ﬁf'-]

for all (complex) vectors W € M, 2) C, all p € M. In this set up, ¢ < 0 corresponds
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to Ky positive, ¢ = 0 to Ky trivial, and ¢ > 0 to Kj, negative. This is known
not to be possible in general if K, is negative. But if K, is trivial opapositive then in
fact such Kihler metrics always exist. This important and deep result was shown by S.
T Yau after an earlier conjecture by E. Calabi. (The case ¢ < 0 was established
independently of Yau's work by T. Aubin.) These results are discussed in detail in refer-
ence [1].

Another particulary interesting holomorphic vector bundle is the holomorphic tangent
bundle of a complex manifold M, i.e., the bundle with fibre at p = by definition to
the holomorphic tangent space at p = by definition the C-linear span of
/821y.nny 8824y (215...524) @ holomorphic coordinate system near p. Suppose M is
given a Hermitian metric g, i.e., a J-invariant Riemannian metric. Then T" M, The
holomorphic tangent bundle of M, becomes a Hermitian holomorphic vector bundle,
with the Hermitian metric determined by g (as in an earlier section). The Kihler case
of this sitnation is especially nice, as we shall see after we prove the following lemma.

LEMMA. Suppose B - M is a Hermitian holomorphic vector bundle and =,,...,Z
is a basis for the fibre B, atapoint p € M. Then 3 a local holomorphic frame

1 PO

l:l:l ﬂjlﬂ' - Ej, all j'—" 1,....k
and
(2) Daojl, =0, all j=1,.k.

Proaf. Choose a local holomorphic frame +y,...,v; with
Vjlp = 24, all j = 1,...,k. Now compute

D[Efﬂ?a]=§dfﬁﬂ'¥ﬂ+;§fawgﬁ-
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df*f = — the Yp component of S P ey,
B.5

i e
P

Since this last form is type (1,0) we can choose a set of holomorphic f*f with
7P, = and df*® to satisfy the equations just given. Then D(F5 f*F vg)|, = 0 all
a = 1,....k. Since f is then invertible near p,

o= 2 [ Yp
g

fits the requirements. el

If M is a Hermitian a manifold (i.e. A has a J-invariant Riemannian metric
attached) then the Riemannian connection on M induces by complex linear extension a
connection on TM @ C, the complexified tangent bundle of M. If M is Kahler, then
ThM is a parallel subbundle of TM @ C. (Here a subbundle is parailel by definition if
parallel translation of a vector in the subbundle remains in the subbundle.) This follows
because J is parallel so its eigenspaces are preserved by parallel translation.

Moreover, again if M is Kdhler, the Riemannian connection on T"M determined
by considering T*M as a Hermitian vector bundle and finding its unique type (1,0)
connection. The proof of this fact is easy: Choose a holomorphic normal coordinate
system at a point p, say (zy,....Z,). Then for the Riemannian connection D

d
oD—| =0 =1,..,
aZJ L j "

by definition. Let V = the Hermitian conuection for T"M. Then alsc

vl

%, =0 j=1,..n.
3
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SoD=V.

The converse of this is also true. For this, let M be a Hermitian manifold — with
Riemannian metric (J-invariant) = g and Riemannian metric (J-invariant) = g and
Riemannian connection D. Then D induces a connection D on T"M by setting

D,W = the projection of D,W on T'M ,
where projection is relative to the canonical splitting TM,, @ C = T*M, & T"M,,. (This
also happens to be orthogonal projection relative to g extended to TM & C as a Her-
" def
mitian metric.) In this setting, we can see thatif D =V (V = the Hermitian con-
nection) then M is Kihler. [Note: On the previous pages, we showed that if M is
Kihler, then D =D = V.]

To prove this, choose a local holomorphic frame o; in T"M which is orthonormal
at p andhas V =0 at p (by the Lemma). Then, since V = D by hypothesis, we
have

ﬁa_,-L,-U.

But D is a length compatible connection [i.e. g(DyZ,W) + g(Z.DxW) = Xg(Z,W)]
because D is and the projection involved in D is orthogonal. So

dg(:r_;,Et]|,,=0 _il',j'-= T e
Moreaver, D has torsion 0 because D does and Lie brackets of vector fields
preserves types, i.e., [Z,W] € T"M if Z,W € T"M. Since Dayl, = 0, it follows that
[0j,0¢] = 0 at p, all j, k. Now given a holomorphic local frame o; with
[oj,0]l, = 0, there is a holomorplic coordinate system (z1,...,z,) such that
a;l, = @/8z|, and moreover o; — 3/3z; vanishes to order two at p. Then (z;) will
be (in our case) a holomorphic normal coordinate system at p. So M is Kihler. =

Appendix: Integrable and Nonintegrable Almost Complex Structures
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For convenience, we based our decomposition of differential forms into types (p,q)
on the use of complex (holomorphic) coordinates (zy,...,z,): i.e. {(p,q) forms} = span
of dzhﬁ"'hdz,’h.f_ﬁﬁ“+ndf_,', However, it is important to realize that this was
only for convenience. The whole question of types of forms is after all a strictly point-
wise item, and one should expect to be able to consider it algebraically. Specifically, we
can consider it as follows:

Let V be areal 2n-dimensional vector space with an endomorphism
J:V-V3J%=~1 Then V* @ C = direct sum of two subspaces determined as
follows: Let X1Jxl,mxm.i’xn‘beabasistur V and @y, " we,—q,wa, be the dual
basis. [Soif X; = a/dxy,...,w; = dx;, @, = dy; etc.]. Then

V@ C = spanfwy— + V-luy, k=1,..}

G span{wy_; ~ Y ~loy, k = 1,...,n} .

This decomposition is easily checked to be invariant under changes of the
Xy, JXy... Xy, JX, basis (to another of the same form). This invariance can be in fact
checked without computation as follows: The span of X; + V=1 JX;,...X, + V-1X,
which corresponds to a/37s is the — V=1 ecigenspace of J extended by complex
linearity to V* @ C: e.g.,

JX, + V=10x) = V12X, + X, = - V=1 x, + JX,

= = 1"-"a—_ln.‘;!tj +"‘-”-_1J:!r1].
Similarly
JXy - V=1Jx) = - V1 2%, + 0x, = V=1x; + JX4
=VIig - vVaim.

V& C = (-V=1) eigenspace of J = V=1 eigenspace of J .
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The decomposition of V* © C is then determined by

det o
V11a = spﬂn{mn_l + -1 Wy k= 11‘“:3}

={w eV RC|wX)=0, all Xe
— V —1eigenspace of J on V& C}
[e.g- dzy((alaxy) + V=1 (a/ayy)) = 0].

yol d: spanfwa_g + ¥V =1 wy, k= 1,...,n}
={weV*@C|uix) =0, al Xe

+ V33 eigenspace of J om V & C}.
[e.8. dE((@razy) = V=T (a/ayy) = 0].

Thus V* @ = V10 4 V0! and this is basis-choice independent.

This decomposition of V* (3 C gives rise to a decomposition of the whole complex
exterior algebra (over C) Ac(V* (2 C) and hence to a type (p,g) decomposition as
before.

Now suppose M is a C manifold on which there is a C* family of endomor-
phisms J, : M, = M,, p € M, 3. J} = —1 forall p € M. Such a family is called an
almost complex structure on M. (Note: Not every manifold admits an almost complex
structure.) We specifically now do not assume that the almost complex structure J comes
from a complex structure on M, i.e., a covering of M by coordinate charts with holo-
morphic overlaps. The question then naturally arises, when does such a general almost
complex structure in fact come from a complex structure? Necessary conditions are not
hard to find:

Let 774 = the setof C* C-valued differential forms w on M 5 w|, is type
(p,q) at p forall p € M. Then 7% = C-valued functions on M, etc. Note that
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700, 7.0 and 791 generate (under A) locally 7= U, , 77. Also

df90c A9 @ 7 = all 1-forms
dfilc 7l 0@ 792 = all 2—forms

ditlc g Mg 72
It follows (from the local generation of 7) that

dra F+l,q $ F"q+l $ }p+214-1 @ ?p—-‘l,q+2 )

For a complex structure
dfPa C e g patl,

So a necessary condition for an almost complex structure J to come from a complex
structure is that

*) 4P C A gy ratt

when 7 is decomposed according to J types.

(Note: If dimp M = 2, then 779 =0 if p =2 or g = 2. Hence the necessary
condition (*) is automatically satisfied.)

It is a fact — not easily proved, however — that the necessary condition (*) is in
fact sufficient. An almost complex structure satisfying (*) is said to be integrable. Then
we have Theorem (Newlander-Nirenberg): If J isa C™ integrable almost complex
structure on a C* manifold M, then there is a complex structure on M such that the
J-mapping associated to this complex structure = the given almost complex structure
J.

It is of interest to look at what this theorem says in the dimgM = 2 case: J
determines an orientation on M. Moreover, we can construct a J-invariant metric
(Riemannian) on M by setting

g(X.¥) = G(X.Y) + G(JX JY)
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where G is an arbitrary Riemannian metricon M. Nowif z: = x + iy isa J-
holomorphic coordinate system on M i.e. if J{a/dx) = /3y then the metric g is
given by
M(dx® + &)

where )\ isa C* function. The converse also holds: If (x,y) is an oriented real coor-
dinate system and if g(a/ax,d/ax) = g(a/ay,a/3y) and g(d/8x,5/dy) = 0, then x + iy
is a holomorphic coordinate on M, i.e., J(3/dx) = 4/3y. Thus the problem of finding
a complex structure on M compatible with the given almost complex structure J is
equivalent to finding real local coordinates (x,y) such that
2(3/ax,8/3x) = g(a/dy,a/dy) and g(d/ax,aldy) = 0, i.e., so called "isothermal coordi-
nates”. This problem can always be solved, for any C* Riemannian metric g (partial
differential equation methods). In our setting, this solvability corresponds to the fact
that an almost complex structure on a manifold M with dimgM = 2 is always integr-
able.

There are other conditions that are equivalent to integrability of an almost complex
structure. One of the more useful of these is as follows:

Define a tensor field ¥ by
N@,Y) = /X JY] = [X,Y] = J[XJY] - JUX, YT},
X, Y real vector fields. A calculation shows that N is function-linear in X and ¥
and hence that N is a (pointwise) tensor. If there is a complex J-holomorphic coordi-
nate system defined in a neighborhood of p € M (i.e., a coordinate system
i+ V=T yez, + V=1y, 5 J(alox)) = 3/dy;), then
N, =10
because by inspection N has 0 componeats in the given coordinates. Thus the J of a
complex structure has N = 0.
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Another condition that we could impose on J has to do with “vector fields of type
(1,0) or type (0,1)". We define a C-vector field. (i.e., a vector field X with
X, € M, ® C for each p € M) to be of type

(1,00 if Jx= V-ix

1) if x=-VIix.

The condition for the integrability of J becomes that type (1,0) vector fields are a Lie
subalgebra, i.e. [Z,W] is type (1,0)if z and W are of type (1,0). Since

[2,W] = [Z,W], this condition is equivalent to type (0,1) vector fields being a Lie
subalgebra. It can be shown that either of these (trivially) equivalent conditions, as well
as N =0, is equivalent to integrability in our previous sense and hence equivalent to

the existence of an associated complex structure.
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