Problem Set I

1. Suppose $\left\{x_{n}\right\}$ is a bounded sequence (i,,,$\exists M>0 \ni$ $\left|x_{n}\right| \leq M$ for all n). Snow that $\left\{x_{n}\right\}$ has a convergent subsequence by showing that there is a subsequence that converges to
greatest lower bound of $\left\{\lambda \in \mathbb{R}: x_{n}<\lambda\right.$ for all but a finite number of n-values\}.
2. Recall (Tao,p 117) that a real number is by definition ar equivalence class of Cauchy sequences of rational numbers. Suppose A is a nonempty set of real numbers which has an upper bound, i.e., $\exists \alpha$ such that $x \leq \alpha \quad \forall x \in A$. Define $b_{k}=$ the smallest rating. of the form $p \bar{V}_{h}, p \in \mathbb{Z}$, such that $x \leq b_{k}, \forall x \in A$. $(k=1,2,3 \ldots)$. Show that
$b_{1} \geq b_{2} \geq b_{3} \ldots$ and that $\left\{b_{k}: h=1,2,3 \ldots\right\}$
is a Cauchy sequence. Then show that the real wo. β that is the equaratence class of this C. Sequence is the least upper bound of A.
3. Let a and b be positive real numbers,n. Set $a_{0}=a, b_{0}=b$, and for $j=1,2, \ldots$

$$
\begin{aligned}
& a, b_{0}=b, \text { and } \quad b_{j}=\sqrt{a_{j-1} b_{j-1}} . \\
& a_{j}=1 / 2\left(a_{j-1}+b_{j-1}\right) \\
& \text { that }
\end{aligned}
$$

Show that
(1) $a_{j+1} \leq a_{j}, b_{j+1} \geq b_{j} \quad \forall j=0,1,2,3 \ldots$
(2) $a_{j} \geq b_{j}, \forall j=0,1,2,3 \ldots$
(3) Every $a_{j} \geq \quad b_{k}, j, k \in\{0,1,3$,
(4) (Use problem 4 to deduce that) $\lim _{j \rightarrow+\infty} a_{j}$ and $\lim _{j \rightarrow+\infty} b_{j}$ both exist and $\lim _{j}=\lim _{j} b_{j} . j \rightarrow+\infty$
t. Suppos $a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \ldots, a_{j} \in \mathbb{R}$. Prove that if $\exists M \rightarrow a_{j} \leq M, \forall j$, then $\lim a_{j}$ exists and equals lube $\left\{a_{j}: j=1,2,3 \ldots\right\}$.
5(a) Prove that for each positwe real number a, there arc nome integers $N_{0}, N_{1}, N_{2}, N_{3} \ldots$ with $0 \leqq N_{j} \leq 9, j=1,2,3 \ldots$ such that $a=\quad \operatorname{lub}\left\{N_{0}+\sum_{j=1}^{k} N_{j} \cdot 10^{j}: k=1,2,3 \ldots\right\}$
(b) Snow that the N 's are unique subject to the conditions gen except for the cases. "Ike" $.099999 \ldots=.1$
6. Show that a real number a is rational if and only if its "decimal expansion" (from problem 5) is eventually periodic in the sense that from some j onward the sequence $N_{0} N N_{2} \ldots$ consists of a single functe bloch repeated infinitely.
$T(a)$ Let $\left\{a_{j}^{-}\right\}$be a sequence that is bounded above in the sense that $\exists M \ni a_{j} \leq M, \forall j$. Use problem 4 to show that, if A_{n} def. least upper bound of $\left\{a_{j}: j \geq n\right\}$, then $\lim _{n} A_{n}$ exists.
(b) Prove that $\lim A_{n}$ is the largest number
which is the lint of some convergent subsequence of $\left\{a_{j}\right\}$.
Notation $\lim A_{n}$ is denoted $\limsup \left\{a_{j}\right\}$.
8. Prove that if $\left\{a_{j}\right\}$ is a sequence in \mathbb{R}, then the set L consisting of all limits of subsequences of $\left\{a_{j}\right\}$ is closed. Use this fact to give an alternative definition of $\lim \sup \left\{a_{j}\right\} \quad(c f$., the second statement in problem 7).
9. Define a sequence $\left\{a_{j}\right\}$ of real numbers as follows

$$
\begin{aligned}
& a_{1}=\pi-3 \\
& a_{2}=10(\pi-3.1) \\
& a_{3}=100(\pi-3.14)
\end{aligned}
$$

$$
\pi=3.141592 \ldots
$$

so that $a_{1}=.141592 \ldots, a_{2}=.41592 \ldots$, $a_{3}=.1592 \ldots, a_{4}=.592 \ldots$. , tc.
Show that $\left\{a_{j}\right\}$ has a convergent subsequence.
10. Sect $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln (n+1), n=1,2,3 \ldots$
(a) Show that $a_{n} \leq a_{n+1}$ for all $n=1,2,3 \ldots$
[Suggetion: One gets from a_{n} to a_{n+1} by adding $\frac{1}{n+1}+\ln (n+1)$
(sse that $\ln (n+2)-\ln (n+1)=\int_{n+1}^{n+2} \frac{1}{t} d t$ to $-\ln (n+2)$ show the is positive!].

(c) Deduce that $\left\{a_{n}\right\}$ is bounded above so $\lim a_{n}$ exists.

