The Bunkbed Conjecture is False Based on joint work with Aleksandr Zimin and Igor Pak

Nikita Gladkov, UCLA

LA probability forum, October 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

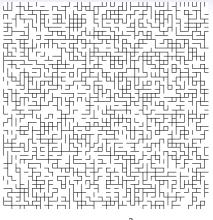


Figure: Percolation on \mathbb{Z}^2 with p = 0.51

・ロト ・日 ・ ・ ヨ ・ ・

Consider a graph G = (V, E). (Bernoulli edge) percolation is a random graph obtained from the graph G, where each edge $e \in E$ is independently open (or survives) with probability $p_e \in (0, 1)$. This gives a spanning subgraph $H \subseteq G$ with probability

$$\prod_{e\in H} p_e \prod_{e\notin H} (1-p_e).$$

A *cluster* is a set of vertices connected via open edges.

Theorem (Harris 1960 and Kesten 1980)

For $p \le 0.5$, with probability 1 there is no infinite cluster in an edge percolation on \mathbb{Z}^2 . For p > 0.5, with probability 1 there is such a cluster.

We call an event *closed upwards* if opening an extra edge never turns an event from true to false.

Theorem (Harris–Kleitman inequality)

Let P be given by a Bernoulli percolation, and ${\cal A}$ and ${\cal B}$ are events closed upwards. Then

 $\mathbf{P}(\mathcal{A} \cap \mathcal{B}) \geq \mathbf{P}(\mathcal{A})\mathbf{P}(\mathcal{B}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We call an event *closed upwards* if opening an extra edge never turns an event from true to false.

Theorem (Harris–Kleitman inequality)

Let P be given by a Bernoulli percolation, and ${\cal A}$ and ${\cal B}$ are events closed upwards. Then

 $\mathbf{P}(\mathcal{A} \cap \mathcal{B}) \geq \mathbf{P}(\mathcal{A})\mathbf{P}(\mathcal{B}).$

Corollary

 $\mathbf{P}(abc) \geq \mathbf{P}(ab)\mathbf{P}(ac).$

We call an event *closed upwards* if opening an extra edge never turns an event from true to false.

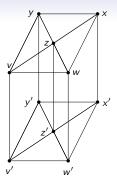
Theorem (Harris–Kleitman inequality)

Let P be given by a Bernoulli percolation, and ${\cal A}$ and ${\cal B}$ are events closed upwards. Then

 $\mathbf{P}(\mathcal{A} \cap \mathcal{B}) \geq \mathbf{P}(\mathcal{A})\mathbf{P}(\mathcal{B}).$

Corollary

 $\mathbf{P}(abc) \geq \mathbf{P}(ab)\mathbf{P}(ac).$



Conjecture (Bunkbed conjecture)

Probabilities of two copies of the same edge are equal. Probabilities of posts are arbitrary. Then

$$\mathbf{P}(xy) \geq \mathbf{P}(xy').$$

(日) (四) (日) (日) (日)

Conjecture (Bunkbed conjecture)

Probabilities of two copies of the same edge are equal. Probabilities of posts are arbitrary. Then

$$\mathbf{P}(xy) \geq \mathbf{P}(xy').$$

(日) (四) (日) (日) (日)

Remark

The conjecture follows from its partial case where all posts have probability 0 or 1.

Proof.

Indeed, $\mathbf{P}_{G_b}(xy)$ and $\mathbf{P}_{G_b}(xy')$ are polynomials in p_e . If e is a post, $\mathbf{P}_{G_b}(xy) - \mathbf{P}_{G_b}(xy')$ is linear in p_e , so we can move it to 0 or 1, depending on the sign of the coefficient in it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We call vertices with posts transversal.

We call vertices with posts transversal.

Proposition

If there is only one transversal vertex v, the bunkbed conjecture is true.

Proof.

We can rewrite probabilities on G_b in terms of probabilities on G. So,

$$\mathsf{P}_{G_b}(xy) = \mathsf{P}_G(xy)$$

and

$$\mathsf{P}_{G_b}(xy') = \mathsf{P}_G(xv) \mathsf{P}_G(yv) \leq \mathsf{P}_G(xyv) \leq \mathsf{P}_G(xy).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Linusson, 2008)

If x or y is transversal, then the bunkbed conjecture turns into equality. If any path from x to y in G passes through a transversal vertex, the bunkbed conjecture turns into equality.

Proof.

Look for the open component of y in $G \setminus T$ and switch the edges between the levels.

In the *alternative bunkbed percolation*, each edge e in G is either deleted while the corresponding hyperedge e' in G' is retained with probability $\frac{1}{2}$, or vice versa: edge e is retained and e' is deleted.

Theorem (Linusson, 2008)

If BBC fails on some graph G for some probabilities p_e , then alternative BBC fails on some minor H of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the alternative bunkbed percolation, each edge e in G is either deleted while the corresponding hyperedge e' in G' is retained with probability $\frac{1}{2}$, or vice versa: edge e is retained and e' is deleted.

Theorem (Linusson, 2008)

If BBC fails on some graph G for some probabilities p_e , then alternative BBC fails on some minor H of G.

Despite intuitiveness, proving this conjecture is not straightforward and is an active area of research in percolation theory.^[6] It was proved for specific types of graphs, such as wheels,^[7] complete graphs,^[8] complete bipartite graphs and graphs with a local symmetry.^[9] It was also proved in the limit $p \rightarrow 1$ for any graph^{[10][11]}.

Figure: Known cases

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We will use the notation like P(ad|b|c) to denote the probability, in this case, that vertices *a* and *d* belong to the same cluster, which is different from the clusters of *b* and *c*.

There are 5 elementary configurations on 3 vertices: P(abc), P(ab|c), P(a|bc), P(a|bc), P(ac|b).

We will use the notation like P(ad|b|c) to denote the probability, in this case, that vertices *a* and *d* belong to the same cluster, which is different from the clusters of *b* and *c*.

There are 5 elementary configurations on 3 vertices: P(abc), P(ab|c), P(a|b|c), P(a|bc), P(ac|b).

Theorem (van den Berg-Haggström-Kahn)

 $\mathsf{P}(ab|cd)\mathsf{P}(a|d) \leq \mathsf{P}(ab|d)\mathsf{P}(a|cd)$

Proof sketch.

We run a Markov chain process with a stable distribution being the uniform measure on a|d. Then we apply the Harris–Kleitman inequality to the events ab and cd which turn out to be closed upwards and downwards in the new coordinates.

Proposition (Andrew Lohr)

If there are only two transversal vertices v, w, the bunkbed conjecture is true.

Proof (G., Zimin).

Add together some Harris-Kleitman and van den Berg-Haggström-Kahn inequalities.

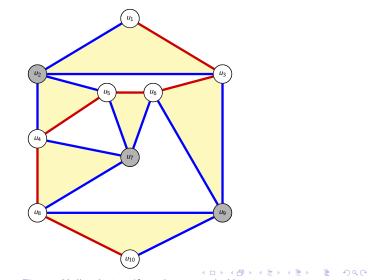
$$\begin{aligned} \mathbf{P}_{G_b}(xy) - \mathbf{P}_{G_b}(xy') &= \\ & \mathbf{P}(xy|v|w) + \mathbf{P}(xy|vw) \\ &+ \mathbf{P}((xv \cup xw) \cap (yv \cup yw)) - \mathbf{P}(xv \cup xw)\mathbf{P}(yv \cup yw) \\ &+ \mathbf{P}(xv|w)\mathbf{P}(yw|v) - \mathbf{P}(xv|yw)\mathbf{P}(v|w) \\ &+ \mathbf{P}(xw|v)\mathbf{P}(w|yv) - \mathbf{P}(xw|yv)\mathbf{P}(v|w) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question What about 3 transversal vertices?

Theorem (Hollom, 2024)

For the following 3-regular hypergraph with 3 transversal vertices the alternative hypergraph bunkbed conjecture is false.

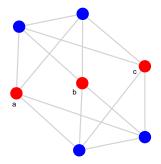


Question

Can it be proved that if $P(ac|b) \approx P(ab|c) \approx P(a|bc) \approx 0$, than P(abc) or P(a|b|c) is also ≈ 0 ?

In particular, is min $(\mathbf{P}(abc), \mathbf{P}(a|b|c)) < \frac{1}{2} - \varepsilon$?

The biggest minimum we can achieve is 0.29 on the graph in the Figure below. Each red-blue edge has probability 0.32537 and both blue-blue edges have probability 0.19231. This way we get $\mathbf{P}(abc) \approx \mathbf{P}(a|b|c) \approx 0.29065$.



Example (Decision tree techniques example)

Suppose I take cards from a shuffled deck one by one, until I get a spade. Then I take one more card. What are the chances that it is also a spade?

Example (Decision tree techniques example)

Suppose I take cards from a shuffled deck one by one, until I get a spade. Then I take one more card. What are the chances that it is also a spade?

Solution: It is $\frac{1}{4}$, since we can invert the deck after the first spade without affecting the probability distribution. Under this transformation, the needed probability turns into a probability that the last card in the deck is a spade.

Definition

For two configurations $C_1, C_2 \in \Omega = 2^{[E]}$ and a set $S \subseteq E$ we denote by $C_1 \rightarrow_S C_2$ the configuration which coincides with C_1 on S and C_2 on its complement \overline{S} .

Lemma

Consider two independent Bernoulli percolations C_1 and C_2 having the same distribution μ on the same graph G. Let a decision tree T select each edge and reveal it in both C_1 and C_2 . Furthermore, allow on each step, before revealing, decide if this edge will go to the set S (thus dependent on C_1 and C_2) or to its complement \overline{S} . Then $C_1 \rightarrow_S C_2$ is independent of $C_2 \rightarrow_S C_1 = C_1 \rightarrow_{\overline{S}} C_2$ and both of them are distributed as μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The key observation will be that when $C_1 \in a|b|c$ and $C_1 \rightarrow_{S_3} C_2 \in ab \cup ac$, one has $C_1 \rightarrow_{S_1} C_2 \in ab$ or $C_1 \rightarrow_{S_2} C_2 \in ac$.

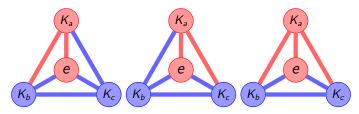


Figure: S_1 , S_2 and S_3 for the case $C_1 \in a|b|c$. Regions surrounding a, b, c depict K_a , K_b and K_c . Respective sets are in blue and their complements are in red.

(日) (四) (日) (日) (日)

Theorem (G., Zimin)

$$\mathbf{P}(a|b \cap a|c)\mathbf{P}(ab \cup ac) \leq \mathbf{P}(ab|c) + \mathbf{P}(ac|b) + \mathbf{P}(a|bc).$$

Corollary

P(abc) and P(a|b|c) can not be simultaneously greater than 0.37586.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (G.)

$$\mathbf{P}(abc)^2 \leq 8\mathbf{P}(ab)\mathbf{P}(ac)\mathbf{P}(bc).$$

Remark

On \mathbb{Z}^2 in a critical mode it is conjectured by Delfino and Viti that

 $\mathbf{P}(abc)^2 \rightarrow 1.044... \cdot \mathbf{P}(ab)\mathbf{P}(ac)\mathbf{P}(bc)$

as a, b and c tend away from each other. Recently the proof was announced by Morris Ang, Gefei Cai, Xin Sun and Baojun Wu.

Theorem (G., Pak, Zimin)

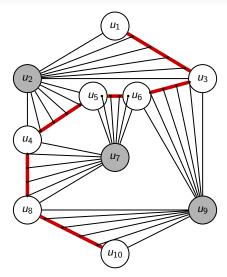
There is a connected planar graph G = (V, E) with |V| = 7222 vertices and |E| = 14442 edges, a subset $T \subset V$ with three transversal vertices, and vertices $u, v \in V$, s.t.

$$\mathbf{P}^{\mathsf{bb}}_{\frac{1}{2}}[u \leftrightarrow v] < \mathbf{P}^{\mathsf{bb}}_{\frac{1}{2}}[u \leftrightarrow v'].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In particular, the bunkbed conjecture is false.

The counterexample



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

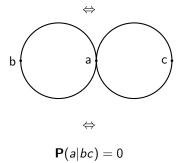
Equality case of the Harris-Kleitman inequality:

```
\mathsf{P}(ab)\mathsf{P}(ac)=\mathsf{P}(abc)
```

 \Leftrightarrow

Equality case of the Harris-Kleitman inequality:

$$\mathbf{P}(ab)\mathbf{P}(ac) = \mathbf{P}(abc)$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (G.)

$$\begin{split} \mathsf{P}(abc)\mathsf{P}(a|b|c) \geq \mathsf{P}(ab|c)\mathsf{P}(ac|b) + \mathsf{P}(ab|c)\mathsf{P}(a|bc) \\ &+ \mathsf{P}(ac|b)\mathsf{P}(a|bc) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary

The top-bottom direction is stable. If $P(ab)P(ac) \approx P(abc)$, then $P(a|bc) \approx 0$.

Conjecture

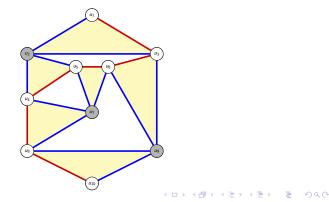
If $\mathbf{P}(a|bc) < \varepsilon$, then $\mathbf{P}(abc) - \mathbf{P}(ab)\mathbf{P}(ac) = O(\varepsilon \log \left(\frac{1}{\varepsilon}\right))$.

Lemma (G., Pak, Zimin)

Let H be Hollom's hypergraph with $T = \{u_2, u_7, u_9\}$. Consider the WZ hypergraph percolation where each hyperedge is replaced by a graph G with vertices a, b and c. Assume the connection probabilities satisfy

 $400\mathsf{P}(a|bc) \le \mathsf{P}(abc)\mathsf{P}(a|b|c) - \mathsf{P}(ab|c)\mathsf{P}(ac|b).$

Then we have $\mathbf{P}_{G_b}(u_1u_{10}) < \mathbf{P}_{G_b}(u_1u_{10}')$.



Lemma (G., Pak, Zimin)

Let $n \ge 3$ and $0 . Consider a weighted graph <math>G_n$ on (n + 1) vertices given in Figure 5. Denote $b := v_1$ and $c := v_n$. Then $\mathbf{P}(ab|c) = \mathbf{P}(ac|b)$ and

 $\mathsf{P}(abc)\,\mathsf{P}(a|b|c)\,-\,\mathsf{P}(ab|c)\,\mathsf{P}(ac|b)\,>\,\left(n\,\frac{1-p}{1+p}\,-\,1\right)\mathsf{P}(a|bc)\,,$

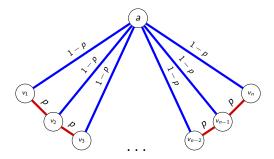
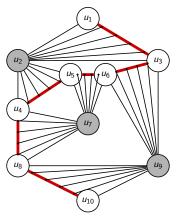


Figure: Graph G_n with n + 1 vertices.

In the notation of Lemma, let $p = \frac{1}{2}$ and let $n := 3 \cdot 401 + 1 = 1204$. The resulting graph G_n is planar, has 1205 vertices and 2407 edges. Take Hollom's hypergraph H and substitute for each 3-hyperedge with a graph G_n from Lemma, placing it so a is a transversal vertex while $b = v_1$ and $c = v_n$ are the other two vertices. The resulting graph is still planar, has $10 + 6 \cdot 1202 = 7222$ vertices and $6 \cdot 2407 = 14442$ edges.



In the notation of Lemma, let $p = \frac{1}{2}$ and let $n := 3 \cdot 401 + 1 = 1204$. The resulting graph G_n is planar, has 1205 vertices and 2407 edges. Take Hollom's hypergraph H and substitute for each 3-hyperedge with a graph G_n from Lemma, placing it so a is a transversal vertex while $b = v_1$ and $c = v_n$ are the other two vertices. The resulting graph is still planar, has $10 + 6 \cdot 1202 = 7222$ vertices and $6 \cdot 2407 = 14442$ edges. Due to the multiple conditionings and the gadget structure, the difference of probabilities given by the counterexample is less than 10^{-4331} , out of reach computationally.

In the notation of Lemma, let $p = \frac{1}{2}$ and let $n := 3 \cdot 401 + 1 = 1204$. The resulting graph G_n is planar, has 1205 vertices and 2407 edges. Take Hollom's hypergraph H and substitute for each 3-hyperedge with a graph G_n from Lemma, placing it so a is a transversal vertex while $b = v_1$ and $c = v_n$ are the other two vertices. The resulting graph is still planar, has $10 + 6 \cdot 1202 = 7222$ vertices and $6 \cdot 2407 = 14442$ edges. Due to the multiple conditionings and the gadget structure, the difference of probabilities given by the counterexample is less than 10^{-4331} , out of reach computationally.

A computer-assisted computation shows that one can use G_n with $p = \frac{1}{2}$ and n = 14, giving a relatively small graph on 82 vertices. However, even in this case, the difference of the probabilities in the BBC is on the order 10^{-47} .

For p = 0.03 one can take n = 5. In this case the alternative BBC is also violated.

In the notation of the Bunkbed Conjecture, one can ask if a version of the BBC holds for uniform $T \subseteq V$. This is equivalent to $\frac{1}{2}$ -percolation on the product graph $G \times K_2$. To distinguish from BBC, we call this *Complete BBC*. Turns out the proof of Theorem extends to the proof of Complete BBC, since all nontransversal vertices helpfully lie on a single red path, but a counterexample is a little larger due to the added gadgets at transversal vertices, similar to [Hollom, 2024].

The difference of probabilities is even smaller in this case, and is on the order of 10^{-6500} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you for your attention!

geminger 1 hour ago | prev [-]
So it's been debunked.
reply.
andrewflnr 51 minutes ago | parent [-]
Now it's just two beds.
reply.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conjecture (Kozma–Nitzan, 2024)

In a percolation on a graph having vertices a, b, c_1, \ldots, c_n one has

$$\mathbf{P}(ab) \geq \mathbf{P}(ac_1 \cup ac_2 \cup \cdots \cup ac_n) \min_i \mathbf{P}(c_i b)$$

Theorem (Kozma–Nitzan)

Conjecture above implies that there is no infinite cluster in percolation on \mathbb{Z}^d at a critical probability. Interesting cases are d = 3, ..., 9.

Proposition

$$\begin{split} \mathsf{P}(ab) \geq \mathsf{P}(ac_1 \cup ac_2) \Big(\frac{\mathsf{P}(ac_1|c_2)}{\mathsf{P}(ac_1|c_2) + \mathsf{P}(ac_2|c_1)} \mathsf{P}(c_1b) \\ &+ \frac{\mathsf{P}(ac_2|c_1)}{\mathsf{P}(ac_1|c_2) + \mathsf{P}(ac_2|c_1)} \mathsf{P}(c_2b) \Big) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question What about 3 c_i's?