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Figure: Percolation on Z2 with p = 0.51



Consider a graph G = (V ,E ). (Bernoulli edge) percolation is a random
graph obtained from the graph G , where each edge e ∈ E is
independently open (or survives) with probability pe ∈ (0, 1). This gives a
spanning subgraph H ⊆ G with probability∏

e∈H

pe
∏
e ̸∈H

(1− pe).

A cluster is a set of vertices connected via open edges.

Theorem (Harris, 1960)
For p ≤ 0.5, with probability 1 there is no infinite cluster in an edge
percolation on Z2.

Theorem (Kesten, 1980)
For p > 0.5, with probability 1 there is such a cluster.
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Figure: If we generate a subgraph randomly, what are the chances that a
belongs to the same cluster as b, but not c?

We will use the notation like P(ad |b|c) meaning the probability, in this
case, that vertices a and d belong to the same cluster, which is different
from the clusters of b and c .
P(abc), P(ab|c),

P(a|b|c), P(a|bc), P(ac |b).
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Question
What are the possible values of these probabilities for all possible graph
percolations?

The restrictions come in forms of inequalities, the most prominent of
which is the Harris–Kleitman inequality (sometimes called the FKG
inequality).



Denote by Hn the n-dimensional discrete hypercube. We say that
measure µ on Hn is a product measure if there exist probability measures
µ1, µ2, . . . , µn on {0, 1}, such that µ coincides with the direct product
µ1 × µ2 × · · · × µn. So, a percolation gives us a measure on Hn, where
n = |E |.
Theorem (Harris–Kleitman inequality)
Let µ be a probability product measure on Hn, and A and B are events
closed upwards. Then

P(A ∩ B) ≥ P(A)P(B).

Corollary
If A is closed upwards and B is closed downwards,

P(A ∩ B) ≤ P(A)P(B).

Corollary

P(abc) ≥ P(ab)P(ac).

Corollary

P(abc) ≥ P(ab)P(ac ∪ bc)
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Corollary

P(abc) ≥ P(ab)P(ac ∪ bc)

or

P(abc)P(a|b|c) ≥ P(ab|c)P(a|bc) + P(ab|c)P(ac |b)

Theorem (G.)

P(abc)P(a|b|c) ≥ P(ab|c)P(a|bc) + P(ab|c)P(ac |b)
+ P(ac |b)P(a|bc)



Conjecture (Bunkbed conjecture)
Probabilities of two copies of the same edge are equal. Probabilities of
posts are arbitrary. Then

P(x0y0) ≥ P(x0y1).



Remark
The conjecture follows from its partial case where all posts have
probability 0 or 1.

Proof.
Indeed, PGb

(x0y0) and PGb
(x0y1) are polynomials in pe . If e is a post,

PGb
(x0y0)− PGb

(x0y1) is linear in pe , so we can move it to 0 or 1,
depending on the sign of the coefficient in it.

We call vertices with posts transversal.



We call vertices with posts transversal.

Proposition
If there is only one transversal vertex v, the bunkbed conjecture is true.

Proof.
We can rewrite probabilities on Gb in terms of probabilities on G . So,

PGb
(x0y0) = PG (xy)

and
PGb

(x0y1) = PG (xv)PG (yv) ≤ PG (xyv) ≤ PG (x0y0).



Theorem (van den Berg–Haggström–Kahn)

P(ab|cd)P(a|d) ≤ P(ab|d)P(a|cd)

Proof sketch.
We run a Markov chain process with a stable distribution being the
uniform measure on a|d . Then we apply the Harris–Kleitman inequality
to the events ab and cd which turn out to be closed upwards and
downwards in the new coordinates.



Proposition (Andrew Lohr)
If there are only two transversal vertices v , w, the bunkbed conjecture is
true.

Proof (G., Zimin).
Add together some Harris–Kleitman and van den Berg–Haggström–Kahn
inequalities.

PGb
(xy)− PGb

(xy ′) =

P(xy |v |w) + P(xy |vw)

+ P((xv ∪ xw) ∩ (yv ∪ yw))− P(xv ∪ xw)P(yv ∪ yw)

+ P(xv |w)P(yw |v)− P(xv |yw)P(v |w)

+ P(xw |v)P(w |yv)− P(xw |yv)P(v |w)

Question
What about 3 transversal vertices?



Theorem (Hollom, 2024)
For the following 3-regular hypergraph with 3 transversal vertices the
alternative hypergraph bunkbed conjecture is false.
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Figure: Hollom’s 3-uniform hypergraph H.



Theorem (G., Pak, Zimin)
There is a connected planar graph G = (V ,E ) with |V | = 7222 vertices
and |E | = 14442 edges, a subset T ⊂ V with three transversal vertices,
and vertices u, v ∈ V , s.t.

Pbb
1
2
[u ↔ v ] < Pbb

1
2
[u ↔ v ′].

In particular, the bunkbed conjecture is false.



The counterexample
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Equality case of the Harris–Kleitman inequality:

P(ab)P(ac) = P(abc)

⇔

ab c

⇔

P(a|bc) = 0



Equality case of the Harris–Kleitman inequality:

P(ab)P(ac) = P(abc)

⇔

ab c

⇔

P(a|bc) = 0



Theorem (G.)

P(abc)P(a|b|c) ≥ P(ab|c)P(ac |b) + P(ab|c)P(a|bc)
+ P(ac |b)P(a|bc)

Corollary
The top-bottom direction is stable. If P(ab)P(ac) ≈ P(abc), then
P(a|bc) ≈ 0.

Conjecture
If P(a|bc) < ε, then P(abc)− P(ab)P(ac) = O(ε log

(
1
ε )
)
.



Lemma (G., Pak, Zimin)
Let H be Hollom’s hypergraph with T = {u2, u7, u9}. Consider the WZ
hypergraph percolation where each hyperedge is replaced by a graph G
with vertices a, b and c. Assume the connection probabilities satisfy

400P(a|bc) ≤ P(abc)P(a|b|c)− P(ab|c)P(ac |b).

Then we have PGb
(u1u10) < PGb

(u1u
′
10).
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Lemma (G., Pak, Zimin)
Let n ≥ 3 and 0 < p < 1. Consider a weighted graph Gn on (n + 1)
vertices given in Figure 4. Denote b := v1 and c := vn. Then
P(ab|c) = P(ac |b) and

P(abc)P(a|b|c) − P(ab|c)P(ac |b) >
(
n 1−p

1+p − 1
)
P(a|bc) ,

a
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Figure: Graph Gn with n + 1 vertices.



In the notation of Lemma, let p = 1
2 and let n := 3 · 401 + 1 = 1204.

The resulting graph Gn is planar, has 1205 vertices and 2407 edges.
Take Hollom’s hypergraph H and substitute for each 3-hyperedge with a
graph Gn from Lemma, placing it so a is a transversal vertex while b = v1
and c = vn are the other two vertices. The resulting graph is still planar,
has 10 + 6 · 1202 = 7222 vertices and 6 · 2407 = 14442 edges.
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Due to the multiple conditionings and the gadget structure, the
difference of probabilities given by the counterexample is less than
10−4331, out of reach computationally.
A computer-assisted computation shows that one can use Gn with p = 1

2
and n = 14, giving a relatively small graph on 82 vertices. However, even
in this case, the difference of the probabilities in the BBC is on the order
10−47.
For p = 0.03 one can take n = 5. In this case the alternative BBC is also
violated.
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Conjecture (Kozma–Nitzan, 2024)
In a percolation on a graph having vertices a, b, c1, . . . , cn one has

P(ab) ≥ P(ac1 ∪ ac2 ∪ · · · ∪ acn)min
i

P(cib)

Theorem (Kozma–Nitzan)
Conjecture above implies that there is no infinite cluster in percolation on
Zd at a critical probability. Interesting cases are d = 3, . . . , 9.



Proposition

P(ab) ≥ P(ac1 ∪ ac2)
( P(ac1|c2)
P(ac1|c2) + P(ac2|c1)

P(c1b)

+
P(ac2|c1)

P(ac1|c2) + P(ac2|c1)
P(c2b)

)

Question
What about 3 ci ’s?



Question
Can it be proved that if P(ac|b) ≈ P(ab|c) ≈ P(a|bc) ≈ 0, than P(abc)
or P(a|b|c) is also ≈ 0?

In particular, is min
(
P(abc),P(a|b|c)

)
< 1

2 − ε?
The biggest minimum we can achieve is 0.29 on the graph in the Figure
below. Each red-blue edge has probability 0.32537 and both blue-blue
edges have probability 0.19231. This way we get
P(abc) ≈ P(a|b|c) ≈ 0.29065.
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Definition
For two events A,B ⊆ Ω, their disjoint occurrence A□ B is defined as
the event consisting of configurations x whose memberships in A and in
B can be verified on disjoint subsets of indices.

Theorem (van den Berg–Kesten (vdBK))

P(A□ B) ≤ P(A)P(B)

for every pair of closed upwards events A and B.



Lemma (Hutchcroft)

P(abcd) ≤ P(ab ∪ ac ∪ ad ∪ bc ∪ bd ∪ cd)2.

Proof.
Imagine that a, b, c , d are in one cluster. Then we can take a spanning
tree of this cluster and find two nonintersecting path between a, b, c , d in
it. Finally, we apply the vdBK inequality.

a b

cd

Corollary
min

(
P(abcd),P(a|b|c |d)

)
is less than the root of x = (1− x)2 equal to

3−
√
5

2 ≈ 0.38.



Sources of inequalities we have are:

1. Induction: van den Berg–Kesten inequality, union vdBK inequality
(only for increasing events), Harris–Kleitman inequality and its
colored percolation generalization (G., Pak);

2. Linear algebraic method: van den Berg–Kesten–Reimer inequality
(for arbitrary events);

3. Ahlswede–Daykin inequality: used in the first proof of van den
Berg–Haggström–Kahn inequality;

4. Markov chains passing to the uniform measure on S |T : van den
Berg–Haggström–Kahn type inequalities;

5. Decision tree techniques: OSSS inequality, decision tree
Harris–Kleitman and vdBK inequality.



Example (Decision tree techniques example)
Suppose I take cards from a shuffled deck one by one, until I get a spade.
Then I take one more card. What are the chances that it is also a spade?

Solution: It is 1
4 , since we can invert the deck after the first spade

without affecting the probability distribution. Under this transformation,
the needed probability turns into a probability that the last card in the
deck is a spade.
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Definition
For two configurations C1,C2 ∈ Ω = 2[E ] and a set S ⊆ E we denote by
C1 →S C2 the configuration which coincides with C1 on S and C2 on its
complement S .

Lemma
Consider two independent bond Bernoulli percolations C1 and C2 having
the same distribution µ on the same graph G. Let a decision tree T
select each edge and reveal it in both C1 and C2. Furthermore, allow on
each step, before revealing, decide if this edge will go to the set S (thus
dependent on C1 and C2) or to its complement S. Then C1 →S C2 is
independent of C2 →S C1 = C1 →S̄ C2 and both of them are distributed
as µ.



Theorem (G., Zimin)

P(a|b ∩ a|c)P(ab ∪ ac) ≤ P(ab|c) + P(ac |b) + P(a|bc).

Corollary
P(abc) and P(a|b|c) can not be simultaneously greater than 0.37586.



Theorem (G.)

P(abc)2 ≤ 8P(ab)P(ac)P(bc).

Remark
On Z2 in a critical mode it is conjectured by Delfino and Viti that

P(abc)2 → 1.044... · P(ab)P(ac)P(bc)

as a, b and c tend away from each other. Recently the proof was
completed by Morris Ang, Gefei Cai, Xin Sun and Baojun Wu.



Thank you for your attention!



Figure: The critical probability for a site percolation on Z2 is around 0.592, so
big QR-codes are unlikely to have a left to right path via black squares



In 1942, Rosalind Franklin, who then recently graduated in chemistry
from the university of Cambridge, joined the BCURA. She started
research on the density and porosity of coal. During the Second World
War, coal was an important strategic resource. It was used as a source of
energy, but also was the main constituent of gas masks.
Coal is a porous medium. To measure its ’real’ density, one was to sink it
in a liquid or a gas whose molecules are small enough to fill its
microscopic pores. While trying to measure the density of coal using
several gases (helium, methanol, hexane, benzene), and as she found
different values depending on the gas used, Rosalind Franklin showed
that the pores of coal are made of microstructures of various lengths that
act as a microscopic sieve to discriminate the gases.

Figure: Rosalind Franklin


