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Primal and Dual (n, k)-problem

Suppose X1,X2, . . . ,Xn are topological spaces with σ-algebras B1, B2, . . . , Bn
respectively.
Let PrXi1×···×Xik

,PrI be the projection operator from X = X1 × · · · × Xn to the
coordinate k-dimensional subspace Xi1 × · · · × Xik .

Ik = {(i1, i2, . . . , ik) | 1 ≤ i1 < i2 < · · · < ik ≤ n}.

For any multi-index I = (i1, . . . , ik) ∈ Ik , there is a given measure µI on the space
Xi1 × · · · × Xik .

Pµ = {µ | PrIµ = µI for any I ∈ Ik}

Also, assume c : X → R ∪ {+∞} is a cost function.
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Primal and Dual (n, k)-problem

Definition
The Primal (n, k)-problem is the problem of minimizing the functional

P(π) =

∫
X

c(x1, . . . , xn) dπ

over π ∈ Pµ.

Definition
The Dual (n, k)-problem is the problem of maximizing the functional

D({fI}) =
∑
I∈Ik

∫
fI (xi1 , . . . , xik ) dµI

over (integrable) functions {fI} such that
∑

I fI (xi1 , . . . , xik ) ≤ c(x1, . . . , xn).

By the Riesz-Markov-Kakutani theorem and Fenchel-Rockafellar duality, the mini-
mum in the primal problem is equal to the supremum in the dual problem. By the
Komlós theorem and Fatou’s lemma, the supremum in the dual problem can be
achieved.
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Motivation for (3, 2)−problem.

Unlike the (n, 1)-problem, studied already in 1984 by Kellerer and later by Abbas
Moameni, Brendan Pass, Simone di Marino, Augusto Gerolin, Luca Nenna and
others, there is little research on the (3, 2)-problem.

Consider the following problem: We have types of furniture
F = {chair , table, . . . },

months
M = {January ,February , . . . },

and institutions
I = {university , hospital , . . . }.

We need to furnish all the institutions within the year, spending as little money as
possible. The cost function may vary on F ×M × I due to inflation and the geo-
graphical positions of the institutions. Natural constraints on this cost minimization
problem are fixed marginal distributions π(f ,m), π(f , i), and π(m, i) corresponding
to production limitations, institutional needs, and institutional constraints, respec-
tively. This provides economic motivation for considering the (3, 2)-problem.
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Motivation for (3, 2)−problem.

Any Latin square n×n corresponds to a measure on {1, . . . , n}3 with 2-dimensional
marginals uniform on {1, . . . , n}2, in the same way a rearrangement matrix corre-
sponds to a rearrangement. However, for the (3, 2) case, there is no analogue for
the Birkhoff-von Neumann theorem [Linial, Luria, 2012], as illustrated by the cost
function

c =

0 1 1
0 1 0
1 1 1

∣∣∣∣∣∣
0 1 1
1 1 1
1 1 0

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1


where the optimal solution is given by the measure0.5 0 0.5

0 1 0
0.5 0 0.5

∣∣∣∣∣∣
0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

∣∣∣∣∣∣
0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

 .
Any Graeco-Latin square n× n corresponds to a measure on {1, . . . , n}4 with fixed
2-dimensional marginals.
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Motivation for (3, 2)−problem.

The Monge-Kantorovich problem with limited density was studied in (Korman, Mc-
Cann) 2012. One needs to find a measure π ∈ Π(µx , µy ) not greater than µxy

minimizing the integral of c(x , y). It can be shown to be a particular case of the
(3, 2)-problem.
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Motivation for (3, 2)−problem.

For the base space I = [0, 1] with the Lebesgue measure and cost function c(x , y) =
(x − y)2, with density not greater than 3, the solution is given by the following
picture:

Minimization of
∫

(x − y)2 dπ on the set of measures Π(µ, ν) with fixed marginals
µ, ν is equivalent to the maximization of

∫
xy dπ on the same set. Therefore, the

cost functions −xyz and xyz are natural analogues for (x − y)2.
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Primal (3, 2)−problem with the cost function xyz .

Primal problem
Consider the (3, 2)-problem on I 3 with Lebesgue measures on the coordinate planes.
Our goal is to find a measure π minimizing P(π) =

∫
xyz dπ.

Let Tx : R3 → R3 be an involution such that

Tx(x , y , z) = (1− x , y , z).

Ty and Tz are defined in the same way. Then for any measure µ with Lebesgue
marginals,

P(µ◦Tx) =

∫
xyz d(µ◦Tx) =

∫
(1−x)yz dµ =

∫
yz dµyz−

∫
xyz dµ =

1
4
−P(µ).

Thus, involutions Tx ◦ Ty , Tx ◦ Tz , and Ty ◦ Tz do not change P, and the primal
solution π can be assumed to be invariant under these involutions.

Nikita Gladkov (HSE) Monge-Kantorovich for xyz June 2018 8 / 19



Primal (3, 2)−problem with the cost function xyz .

S1 =
[
0,

1
2

]3⋃[1
2
, 1
]2
×
[
0,

1
2

]⋃[
0,

1
2

]
×
[1
2
, 1
]2⋃[1

2
, 1
]
×
[
0,

1
2

]
×
[1
2
, 1
]
.

From the symmetries of π under T ’s, one can obtain
∫
I3−S1

xyz dπ ≥
∫
I3−S1

(1 −
x)(1−y)(1−z) dπ, so the optimal π is concentrated on S1. By the same argument,
µ(Sk) = 1.

Sk =
⋃

a⊕b⊕c=0
0≤a,b,c<2k

[
a

2k
,
a + 1
2k

]
×
[
b

2k
,
b + 1
2k

]
×
[
c

2k
,
c + 1
2k

]

Set S1

Set S2 Set S3
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Support of the optimal measure

The optimal measure π is concentrated on S =
⋂
Sk = {(x , y , z) ∈ X × Y × Z |

x ⊕ y ⊕ z = 0}, which forms the Sierpiński tetrahedron. Although S is highly
non-smooth, it is a graph of the function z = x ⊕ y .

Sierpiński tetrahedron
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Dual (3, 2)−problem with the cost function xyz .

Dual problem
Find f (x , y), g(x , z), h(y , z) ∈ L1(µI2) such that:

f (x , y) + g(x , z) + h(y , z) ≤ xyz for all (x , y , z) ∈ X × Y × Z ,
D(f , g , h) =

∫
X×Y f dµxy +

∫
X×Z g dµxz +

∫
Y×Z h dµyz is maximal.

Remark: Due to the symmetry of c(x , y , z), one can assume f = g = h.

Assume I (a, b) =
∫ a

0

∫ b

0 x ⊕ y dx dy .

f (x , y) = I (x , y)− 1
4
I (x , x)− 1

4
I (y , y).

How can one guess the answer?
Answer 1: Recurrent relations;
Answer 2: Assume the existence of ∂2f

∂x∂y . By considering points (x + δ1x , y + δ1y)

such that (x + δ1x) ⊕ (y + δ1y) = x ⊕ y and (x − δ2x , y + δ2y) such that (x −
δ2x)⊕ (y + δ2y) = x ⊕ y , one can conclude that ∂2f

∂x∂y = x ⊕ y .
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Dual (3, 2)−problem with the cost function xyz .

The duality gives us some identities:

I (x , y) + I (x , z) + I (y , z)− 1
2

(I (x , x) + I (y , y) + I (z , z)) ≤ xyz ,

where equality holds for x ⊕ y ⊕ z = 0.

By differentiating that with respect to z , we obtain∫ x

0
x ⊕ y ⊕ t dt +

∫ y

0
x ⊕ y ⊕ t dt −

∫ x⊕y

0
x ⊕ y ⊕ t dt = xy .
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Dual (4, 3)−problem with the cost function xyzt.

For the (4, 3)-problem and the function

I (x , y , z) =

∫
[0,x]×[0,y ]×[0,z]

u ⊕ v ⊕ w dudvdw ,

there exists an identity:
xyzt = I (x , y , z) + I (x , y , t) + I (x , z , t) + I (y , z , t)

− 1
2
I (x , x , y)− 1

2
I (x , y , y)− 1

2
I (x , x , z)− 1

2
I (x , z , z)

− 1
2
I (x , x , t)− 1

2
I (x , t, t)− 1

2
I (y , y , z)− 1

2
I (y , z , z)

− 1
2
I (y , y , t)− 1

2
I (y , t, t)− 1

2
I (z , z , t)− 1

2
I (z , t, t)

+
1
2
I (x , x , x) +

1
2
I (y , y , y) +

1
2
I (z , z , z) +

1
2
I (t, t, t)

− 1
8

(x4 + y4 + z4 + t4) +
1
4

(x2y2 + x2z2 + x2t2 + y2z2 + y2t2 + z2t2)

for x ⊕ y ⊕ z ⊕ t = 0.

We don’t know if there exist analogous identities in higher dimensions.
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(3, 1)−problem with the cost function −xyz .

Primal problem
Our goal is to find a measure π with Lebesgue projections to the axes that minimizes
P(π) =

∫
−xyz dπ.

Dual problem
Find f (x), g(y), h(z) ∈ L1(µI ) such that:

f (x) + g(y) + h(z) ≤ xyz for all (x , y , z) ∈ X × Y × Z ,
D(f , g , h) =

∫
X
f dµx +

∫
Y
g dµy +

∫
Z
h dµz is maximal.

Remark: Due to the symmetry of c(x , y , z), one can assume f = g = h.

This case is trivial. Let π be the uniform probability measure on {(t, t, t)}. Let
f (t) = g(t) = h(t) = − t3

3 .
It is easy to see that the projections of π onto the axes are Lebesgue. Also,
f (x) + g(y) + h(z) ≤ xyz . Moreover, equality is achieved on the support of π.
Then, by the complementary slackness condition, π is the solution to the primal
problem, and (f , g , h) is the solution to the dual problem.
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(3, 1)−problem with the cost function xyz .

Primal problem
Our goal is to find a measure π with Lebesgue projections to the axes that minimizes
P(π) =

∫
xyz dπ.

Dual problem
Find f (x) ∈ L1(µI ) such that:

f (x) + f (y) + f (z) ≤ −xyz for all (x , y , z) ∈ X × Y × Z ,
D(f ) = 3

∫
X
f dµx is maximal.

The key idea is the same as in the previous problem: One needs to guess the primal
and dual solutions and then check the complementary slackness.
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Guess for dual problem

Let l be the unique root of
9l + ln(1− 2l)− ln l − 3 = 0,

lying inside
(
0, 1

6

)
. Denote r = 1− 2l , c = lr2. Define f as follows:

f (x) =


c ln l − 1

3 (c ln c − c) + 1
6 ((2x − 1)3 − (2l − 1)3), for 0 ≤ x ≤ l ,

c ln x − 1
3 (c ln c − c), for l ≤ x ≤ r ,

c ln r − 1
3 (c ln c − c) + 1

4 (x2 − r2)− 1
6 (x3 − r3), for r ≤ x ≤ 1.

There holds f (x) + f (y) + f (z) ≤ xyz , with equality in xyz = c and l ≤ x , y , z ≤ r ,
or in y = z = 1 − 2x and 0 ≤ x ≤ l , or in x = z = 1 − 2y and 0 ≤ y ≤ l , or in
x = y = 1− 2z and 0 ≤ z ≤ l .
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Support of the optimal primal solution

Let M be the set of points where equality holds in the dual guess. For µ with
Lebesgue projections to be the primal solution, it is sufficient to check that µ(M) =
1. Here, we get the transport problem with fixed support [Zaev, 2014].

Points of equality / measure support
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Primal guess

M is decomposed into 3 segments and a part of the surface xyz = c . The measure
on the segments is uniform. After changing the coordinates, finding a measure
on xyz = c with uniform projections is reduced to the following problem: find a
measure on x + y + z = 2, 0 ≤ x , y , z ≤ 1, with projection onto each axis equal to
αx dx , where α = r

l .

The only α admitting such a measure is 1−2l
l , where 9l + ln(1− 2l)− ln l − 3 = 0.

For α = r
l , there exist infinitely many such measures, but finding one is a difficult

problem.
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Primal guess

One example of a measure on x + y + z = 2, 0 ≤ x , y , z ≤ 1 with exponential
projections has density at the point (x , y , z) equal to

α1−t − 4α2t

1− 3t
− 6

2α2t + α1−t

(1− 3t)2 lnα
− 18

α2t − α1−t

(1− 3t)3 ln2 α
,

where t = min(1− x , 1− y , x + y − 1) and linear density in the points (1− 2t, 1−
2t, 4t), (1− 2t, 4t, 1− 2t), and (4t, 1− 2t, 1− 2t) is equal to

α2t + 2
2α2t + α1−t

(1− 3t) lnα
+ 6

α2t − α1−t

(1− 3t)2 ln2 α
.
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