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June handout on tilings



Diego problem



Let’s play a bit

Figure: Too many ways to complete the grid.
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Solution

Figure: Just one way to complete the grid.
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Email that started the chain

The original problem asked “What is the smallest positive integer k for
which one can place down k dominoes on the board in such a way such
that the remainder of the 6× 6 board can be covered in a unique way?”
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Pachter–Kim proof

Theorem
The forcing number of a 2n by 2n square is n.
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Pachter–Kim proof

If for the 2n × 2n board less than n dominoes are fixed, there is another
tiling obtained by a color switch in a cycle without a fixed domino.

Remark
This argument can be used to show that the number of tilings of a
2n × 2n board is divisible by 2n and moreover after dividing it becomes a
perfect square.
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Tilings of a hexagon by lozenges

> I don’t even have to squint my eyes here: it’s harder for me not to see
it as a cube stack.
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Conway–Thurston height function
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Our theorem



Example

x x

Figure: Minimal and maximal tilings of a hexagon with sides 3, 4, 6 with
lozenges.

x

Figure: Forcing set for a hexagon with sides 3, 4, 6.
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Thank you for attention!

Figure: A postcard from an Aztec diamond world by Ben Young


