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Abstract. We construct an explicit solution for the multimarginal transportation problem on
the unit cube [0, 1]® with the cost function zyz and one-dimensional uniform projections. We show
that the primal problem is concentrated on a set with a nonconstant local dimension and admits
many solutions, whereas the solution to the corresponding dual problem is unique (up to addition of
constants).
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1. Introduction.

1.1. Notation. Assume we are given n Polish spaces X1, Xo, ..., X,,, equipped
with probability measures p; on X; and a cost function ¢: X3 x --+ x X,, = R.

In the multimarginal Monge-Kantorovich problem (called the primal problem
throughout this paper) we seek to minimize

/ (X1, @, ..., y) du(z1, oy ..., Tp)
X1 XXXy,

over the set II(u1, o, . . ., ptn) of positive joint measures p on the product space X; x
- x X, whose marginals are the p;. See [19, 2] for an account of the optimal
transportation problem with two marginals and [18].
The dual formulation of the multimarginal optimal transport problem is defined
by the supremum of

> /X )

where the supremum is taken over all sets of functions {f;} such that >, fi(z;) <
c(x1,...,x,) for any z; € X.

It is easy to show that the minimum in the primal problem is greater than or
equal to the supremum in the dual problem. Under some conditions it is true that
these numbers are equal [19, 18, 11].

We do not need a full power of duality here. This paper relies on the following
easy fact.
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LEMMA 1.1 (complementary slackness condition). Let p € TI(p1, ..., us) be a
joint measure, and let fi, fo,..., fn be a tuple of functions such that Y . | fi(z;) <
c(x1,...,xn). If there is a set M C X1 x Xo X -+ x X, such that on M one has
Yo filz) = e(zr, . .., xn) with the additional property pu(M) =1, then p is a primal
solution, and f; is a dual solution.

The aim of this paper is to describe an example of an explicit solution to the
mass transportation problem on [0,1]3 (X; = X3 = X3 = [0, 1]) with one-dimensional
Lebesgue measure projections and the cost function ¢(x, y, z) = xyz. In this paper we
call the measures on [0, 1] with Lebesgue projections onto the axes (3, 1)-stochastic
measures.

In fact, we will construct the primal and dual solutions for any cost function
c(z,y, z) = C(xyz) for some continuously differentiable function C : [0,1] — R such
that the function tC’(t) strictly increases on the segment [0, 1].

1.2. Motivation. Our problem appears to be the simplest generalization of the
classical Monge—Kantorovich problem with one-dimensional marginals and quadratic
cost function. It seems to never have been considered in the literature, though other
generalizations mentioned in subsection 1.4 received some attention. Note that the
particular cost function (z — y)? (equivalently, —zy) is mostly used in the classical
Monge-Kantorovich theory. A natural replacement of —xy for the case of three vari-
ables is —xyz. For the cost function —zyz the solution to the primal problem with the
same marginals admits a simple structure: it is concentrated on the main diagonal
of [0,1]® (this can be viewed as a “continuous rearrangement inequality” or “Hardy—
Littlewood inequality”). Unlike this, solutions for zyz are nontrivial and that is why
we are interested in the cost function xyz.

1.3. Main results. In this paper we construct the set M which is c-monotone
for the cost function ¢(x,y, z) = zyz. The set M is the union of three segments and
one two-dimensional part as follows:

M, ={(t,1—2t,1—2t) |0 <t <},
My:{(172t7t31*2t)|O§t§l}7
M, ={(1-2t,1-2t,t)|0<t<I},

My = {(z,y,2) |l <2y, 2 <r=1-2,2yz = Ir?},

where [ ~ 0.0945, r ~ 0.8119 are some transcendent constants (see Figure 1).

Initially, we got an explicit construction of this set from heuristic considerations
(see section 2). In section 3 we see that the integral [zyz du is the same for any
(3,1)-stochastic measure p such that supp(u) C M (see Proposition 3.1). After that
we explicitly construct a (3,1)-stochastic measure 7 concentrated on the set M (see
the proof of Theorem 3.14). The proof contains nontrivial construction and technical
computations. The constructed measure is the primal solution of the related transport
problem.

To prove that the measure 7 is the primal solution, in section 4 we solve a related
dual problem for a cost function ¢(z,y, z) = C(zyz). Our proof works for C': [0,1] —
R such that the function ¢C’(t) strictly increases on the segment [0, 1]. Naturally, that
means C(zyz) = C(Inz+Iny+1n z), where C is a bounded continuously differentiable
convex function on (—oo, 0].
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Fig. 1. Set M.

The following theorem gives an explicit construction for the dual solution (also
see Theorem 4.6). Thus, together with Theorem 3.14, it gives a characterization of
both primal and dual solutions.

THEOREM 1.2 (main result). Suppose that c(z,y,z) = C(zyz) for some con-
tinuously differentiable function C : [0,1] — R and that the function tC'(t) strictly
increases on the segment [0,1]. Set

fo= [ CAOCEAW) dr,

where the function A is as in Definition 4.1. Then for any constants Cy, Cy, C, such
that

1
C,+C, +C. = C(0) - 2/ MNOC (A®D)) dt,
0
the inequality

(f(@) + Co) + (f(y) + Cy) + (F(2) + C2) < c(a,y,2)

holds with equality on M.

Using the complementary slackness conditions (see Lemma 1.1), we conclude that
for any cost function C(xyz), for which the conditions above are satisfied, any (3,1)-
stochastic measure m with supp(w) C M is a primal solution for the multimarginal
mass transportation problem, and the functions f defined in Theorem 1.2 are a dual
solution.

In subsection 4.3 the explicit form of the dual solution for the cost function
c(x,y,z) = xyz is specified. It has the following form (see Proposition 4.7):

A cnl—4(clnc—c)+ ((2z —1)* = (21 —1)%) f0<az <,
f(@)=<{clnz— L(clnec—c) ifi<z<r,

3
L 2 (@3 —r3) ifr <z <1,

clnr — 3(clnc—c) + (2? —r?) -

o=

f(t) =g(t) = h(t) = f(t)

for constants [, r, c.
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In section 5 we prove that for any cost function c(x,y,z) = C(xyz) the dual
solution is unique up to adding constants and measure zero.

Structural results (see [17, 18]) allow us to estimate the local dimension d of
M. We apply this result in section 6 to see that d is bounded above by 2. The
dimension of the support is important for computations and was studied in detail
in [8]. It is interesting that the local dimension of M is not constant, as M admits
one-dimensional parts along with a two-dimensional part.

This two-dimensional part is a source of nonuniqueness for the primal problem.
After the logarithmic change of coordinates the cost function C'(zyz) becomes convex
in the sum of coordinates, the Lebesgue measure on the axis becomes an exponential
distribution, and the two-dimensional part of M becomes a triangle on a plane z+y+
z = const. This resembles the situation in [7, Lemma 4.3], where the authors consider
the multimarginal problem with the same cost function and Lebesgue marginals. They
prove that the plan is optimal if and only if it is concentrated on a plane x +y+ 2z =
const.

The cost function xyz violates the standard uniqueness assumption, the so-called
twist condition (see [12, 16, 18]). The primal problem admits many solutions. In
particular, we show that there exist solutions which are singular with respect to the
Hausdorff measure on M. We also propose the following.

CONJECTURE 1.3. There exists a solution that is concentrated on a set which has
Hausdorff dimension less than 2.

This conjecture is motivated by [7, Theorem 4.6], where the authors construct a
primal solution with a fractal support.

1.4. Related problems. Our example contributes to the list of several known
explicit examples and to the list of cost functions for which the structure of solutions
is investigated in detail. In the following we list some additional examples:

1. Cost function
- Z ZTilj.

i#£]
This cost function is related to the geodesic barycenter problem (see [3, 1]).
2. Determinantal cost [4].
3. Coulomb cost [6] (see [5] for generalizations). The motivation for this problem
comes from mathematical physics.
4. min(zy,...,z,) (more generally, minimum of affine functions) [13].
5. Convex function of x1 + - -+ + x,, (see [7]).
Other examples can be found in [18].

Also, our problem is closely related to the (3,2)-problem, studied in [9]. In par-
ticular, our example can be considered as a solution to the primal (3, 2)-problem with
the same cost function zyz and the corresponding two-dimensional projections. In the
(3,2)-problem, we consider a modification of the transportation problem. Namely, we
deal with the space of measures with fixed projections onto

X1 X )(27 X2 X Xg, X1 X Xg.

The main result of [9] describes a solution to the (3,2)-problem on [0, 1]® with the
cost function zyz (—zyz) and two-dimensional Lebesgue measure projections. It turns
out that in strong contrast with the classical transportation problem, the solution is
supported by the fractal set (Sierpiriski tetrahedron)

=Dy,
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where @ is bitwise addition. Let us also mention another related important mod-
ification, the Monge-Kantorovich problem with linear constraints, which has been
introduced and studied in [20].

2. A heuristic description of M. In this subsection we collect some informal
observations related to our main construction. In particular, we briefly analyze the
cyclical monotonicity property of the support set of our primal solution and describe
how to approach the problem numerically.

Let M be a full measure set for the primal solution. Since all of the marginals
and the cost function are symmetric with respect to the coordinate axes interchange,
we may assume without loss of generality that M is also symmetric in this sense.

The set M can be chosen to be c-cyclically monotone. This is well known for two
marginals; for many marginals, we refer the reader to the work [10]. In particular,
that means that for any (z1,y1, 21), (22, Y2, 22) € M, one has

c(z1,y1,21) + (22, Y2, 22) < e(x2,91, 21) + (21, Y2, 22),
(2.1) c(1,y1,21) + (22, Y2, 22) < c(x1,Y2, 21) + c(2, Y1, 22),
c(xr,y1, 21) + (@2, y2, 22) < (1,91, 22) + c(x2, Y2, 21).

Algorithm 2.1 constructs an approximation to a primal solution and is based on
the inequality above.

Algorithm 2.1. Primal solution approximation (general version).

1: Generate three samples: 21,z9,...,2, from pi, y1,¥Y2,...,Yyn from po,
21,22, ..., 2p from ug; n is a parameter, u; are the marginals in the primal prob-
lem.

: Define S := {(zg, yx, zx) for 1 <k <n}.

while S does not satisfy (2.1) do
Take two points (a1, b1,c1) and (ag, ba, co) from S.
if c(ay,b1,c1) + c(az, ba, ca) > c(aa, by, c1) + c(ay, ba, c2) then

replace (a1,b1,¢1) and (ag, b2, c2) with (ag, b1, ¢1) and (a1, ba,c) in S
else if c(ay,b1,c1) + c(az, by, c2) > ¢(ay, ba, c1) + c(az, by, c2) then

replace (a1,b1,c¢1) and (ag, ba, c2) with (a1,be, 1) and (ag,b1,c2) in S
else if c(a1,b1,c1) + c(az, ba, c2) > c(ay, by, ca) + c(asz, be, c1) then

replace (a1,b1,c1) and (ag, be, c2) with (aq,b1, o) and (az,ba,¢1) in S
end if

: end while

: S is an approximation of the primal solution.

© % N> g kN

[

In our case, ¢(z,y,z) = xyz, SO

T1Y121 + Tay222 < T1Y122 + TalY221,
(z1y1 — 22y2)(21 — 22) < 0.
It follows that if (x1,y1,21), (22, ys, 22) € M, then

21 < 23 = x1Y1 > T2y and by the symmetry
(2.2) y1 < Y2 = T121 > T2za,
T < Top = Y121 = Y222.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 2.2. Primal solution approximation (faster version).

1:

Generate three samples: x1,z9,...,2, from py, y1,Y2,...,Yy, from po,
21,29, ..., 2, from ug; m is a parameter, u; are the marginals in the primal prob-
lem

Define S := [(@g, Yk, zx) for 1 < k <n].

3: while S does not satisfy (2.2) do

Sort S by the first coordinate in ascending order. Denote by (ag, b, cx) the kth
item of S after sorting, 1 < k < n.
Update S := [(ar, by(r), Co(r)) for 1 < k < n] where o € S,, and the sequence
ba(k)Ca(k) is descending.
Repeat Line 4 and Line 5 for the second and third coordinates.

end while

: S is an approximation of the primal solution.

1.0 1.0

Fic. 2. The final set S for n = 200,000.

This allows us to improve the performance of Algorithm 2.1 using sortings. That

leads us to a much faster version, namely Algorithm 2.2. We were able to run Algo-
rithm 2.2 for n = 2 x 10°.

Despite the fact that this algorithm does not necessarily converge to the solution

for all admissible data, our numerical experiments demonstrate that the algorithm
works well in many cases. A proof of convergence for a suitable set of admissible data
must be investigated.

Figure 2 shows a scatter plot of S after the completion of the algorithm. As

one can see on this graph, the set M consists of four parts. There exist real values
0 <!l <r<1suchthat if ] < z,y,z < r and (z,y,2) € M, then (z,y, z) lies on
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the two-dimensional part Ms. If 0 < x <[ and (z,y,2) € M, then (x,y, z) lies on a
one-dimensional curve M, = (p(t), py(t), p-(t)), 0 <t < 1. By virtue of the symmetry,
py(t) = p:(t) = q(t). Also, ¢(0) =1, ¢(1) = r, and ¢(t) strictly decrease; p(0) = 0,
p(1) =1, and p(t) strictly increase.

By virtue of the symmetry, if (z,y,2) € M and 0 < y < [, then this point lies
on a curve M, = (q(t),p(t),q(t)), and if 0 < z < [, then (z,y,2) lies on a curve
M. = (q(t), a(t), p(t)).

Let v be a primal solution, and let v, vy, v, be the restrictions of v to M, M,,
and M, accordingly. Suppose Fy(a) = vz({(p(t),q(t),q(t)) | 0 <t < a}). Define F,
and F, in a similar way. By virtue of the symmetry, we can assume that F,(a) =
F,(a) = F,(a) = F(a) for any 0 < a < 1.

For any 0 < a <1, one has

|
(

<t

A
st
I
=
—
&

v({0 <z <pla)}) = va({(p(1), q(t), q(t)

0
Fy(a) + Fa(@) = go({a() <z < 1))

Y

Since all of the marginals are Lebesgue measures on the segments [0, 1], one has
2p(a) =1—q(a) for any 0 < a < 1.
Thus,
M, = (t,1—2t,1—2t),

M, = (1—2t,t,1—2t),

and
M, =(1-2t,1—2t,t),

for 0 <t <I[; r=1-—2l. That means that one-dimensional parts of the set M are
segments.

The set M, is c-cyclically monotone. In particular, if 1 — 2¢; < 1 — 25, then
t1(1 — 2¢1) > ta(1 — 2t9) or, equivalently, the function ¢(1 — 2¢t) increases on the set
[0,]. The derivative of this function is 1 — 4¢ > 0 for any 0 < ¢t < [. That means that
0<i<i

Let us describe the set Ms. As we know from the general duality theory, there
exist functions

frg,h:[l,r] = R

satisfying f(z) + g(y) + h(z) < zyz, and the equality holds provided (z,y,z) € M,.
Again by symmetry we can assume that f(z) = g(z) = h(x) for any [ < z < r.

Suppose that f is continuously differentiable. Let (z,y,2) € My and [ < z,y, 2z <
r. Then that point is an inner maximum point of the function

F(z,y,2) = f(x) + f(y) + f(2) — 2yz.

This means that
VF = (f'(x) —yz ['(y) — 22, f'(z) —2y)" = 0.

So if (z,y,2) € Ma, then zf'(z) = yf'(y) = zf'(2) = zyz. From Figure 2 we
see that if we fix z = [, then for any | < y < r there exists [ < z < r such that
(z,y,2) € My. Then the function tf'(t) is equal to a constant C' = [f'(l) for any
I <t <r. In this case if (z,y,2) € Ms, then zyz = xf'(z) = C. Since (I,r,r) € Ma,
the constant C' is equal to Ir2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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3. Solving the primal problem. Summarizing the facts about the set M,
which supports the primal solutions, we realize that one can try to find M in the
following form:

M, ={(t1-2t1-2t)|0<t <},
M, ={(1-2t,t,1—-2t) |0<t<I},
M, ={(1-2t1-2tt)|0<t<I},
My ={(z,y,2) |1 <x,y,2 <r=1-2,zyz = Ir?},

where [ is an unknown parameter; 0 <1 < %.

PROPOSITION 3.1. An integral [zyz dv(z,y,z) is the same for any probability
measure v such that Pry(v) = Pr,(v) = Pr,(v) = X\, where X is the Lebesgue measure
on the segment [0,1], and supp(v) C M.

Proof. Let vy, vy, v, and v be restrictions of v to M,, M,, M., and Moy,
respectively. Since the projection of v, on the first marginal is a restriction of A to
the segment [0, ], one has

/Mz ryz dvg(x,y, 2) = /:c(l —22)(1 = 2z) dvg(z,y,2) = /Ol z(1 - 2z)? dz.

Similarly,

1
/ zyz dvy(z,y,2) = / xyz dv,(x,y,2) = / z(1—2x)? dx.
M, M. 0

Yy

Finally, the projection of 5 on the first marginal is a restriction of A to the
segment [, r]. So,

/ zyz dvg =r* - p({l <@ <r}) =1r(r —1).
Mo

Consequently, [ zyz dv(z,y,z) = Sfo 2(1—2x)% dz+1r?(r — 1), and this integral
does not depend on v. ]

We only have to find any measure with desired projections such that its support
is contained in M. In Theorem 4.6 we find an appropriate triple of functions, and by
Lemma 1.1 we rigorously prove that any (3, 1)-stochastic measure on M is indeed a
primal solution.

First, we define a measure on the three one-dimensional segments. Let L =

12 4+ 2(1 — r)? be the lengths of these segments. On every segment, we set a uniform

measure with density }J Clearly7 projections of two segments coincide with [r, 1], and

l
17"L

projection of the third interval is a measure on [0, ], and its density equals £ T f =1.
After this, it remains to determine the measure on the remaining two-dimensional
set such that its projection on each of the axes is uniform.
Let us make the following change of coordinates:

the densities are equal to . Their sum is the Lebesgue measure on [r 1] The

_Inz—Inl __Iny—Ini __Inz-—Inl
" Inr—Inl’ v Inr —Inil’ W= Inr —Inl’

The two-dimensional set
zyz=cl <z, y,z<r

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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admits the following parametrization:
ut+v+w=2,0<uv,w<1.

One has the following relations:

_ u(lnr—Inil)+Inl _ i C “ _ u
dx = de lln(l)(l) du = lln(a)a"du,
dy = lIn(a)a’dv,
dz = lln(a)a”dw,
where a = 7.

Clearly, the problem is reduced to the following problem: find a measure on the
triangle u + v + w = 2,0 < u,v,w < 1 with exponential projections onto the axes.

3.1. Necessary conditions for existence of a measure on the triangle
with given projections. One can put the problem into a more general setting.
When does there exist a measure y on the triangle

with given projections pig, fty, pt27
In what follows we are only interested in the case ji; = py = 1, = 7. A necessary
condition is given in the following lemma.

LEMMA 3.2. Let function f :[0,1] — R satisfy f(x)+ f(y)+ f(z) <0 forz+y+
z = 2. Suppose there exists a measure 1 on A, whose projections onto the axes are
equal to w. Then fol f(z)dr <0.

Proof. We compute [, (f(2)+ f(y)+f(z)) du. On the one hand, it is nonpositive,
since at each point, f(z)+ f(y) + f(2) <0. On the other hand,

/ (F(2) + F(y) + F(2))dp =3 / f(@)dn(z) < 0.
A 0

In particular, for the function f(z) = z — 2 one has f(z) + f(y) + f(z) = 0 for
x+y+2z=2. So we get

(3.1) /01 (x - g) dr(z) = 0.

Check this for dm = a®dx:

1 1 _
/ <x—2>d7rz/ <x_2>azd:€:a(lna 3)42r3+21na.
0 3 0 3 3n"

Thus, « must satisfy

(3.2) a(lnae—3)+3+2Ina =0.

. _ 1-21,
Apply the relation o = 5=

In(1-2l)—Inl —3+09]
l

a(lna—3)+3+2lna=

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/13/24 to 131.179.220.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A SOLUTION FOR A MULTIMARGINAL TRANSPORT PROBLEM 3675

f

0.25

0.2

0.15

0.1

0.05

y=9r+In(1—-2z) —Inz—3

-0.05 0 0.05 0.5

-0.05

-0.1

=0.15

Fic. 3. A graph of a function y(z) = 9z + In(1 — 22) —Inx — 3.

It is seen from Figure 3 that the function In(1 —21) —Inl — 3 + 9! has exactly one
root lying in the interval (0, i), namely [ = 0.0945. So r ~ 0.8109 and « ~ 8.577.
Let us prove that there is a unique root of h lying inside (0, %) To this end, we
find the derivative of h(l) = 91+ In(1 — 2I) — Inl — 3 and show it is negative for [ < %
and positive for % << % Indeed,
3l—-1)(6l—1)
B = (90 +In(1 — 20) —Inl — 3) = — = DO 1)
(1) = (91 + In(1 — 20) ~ Inl = 3 s
and it is easy to check the signs.
For | — 40 one has
h(l) — oo.

1 3
hl=]=2In2- -
<6> n 2<0,

since In2 ~ 0.69 < 2. For [ = £ there holds

() oen(i2) n(l) o

It follows that on the interval (O7 %), function h(l) has exactly one root, and this

root is less than §.

The assumption of Lemma 3.2 is satisfied for the following broad class of functions.

For | = % there holds

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 3.3. Let f(z) : [0,1] = R be convez on [0, 2], and let f(2z)+2f(1—z) =0
for0<x <L Then f(z)+ f(y)+ f(z) <0 forz +y+ 2z =2.

Proof. Assume that f(x)+f(y)+f(z) > 0 for some z, y, and z satisfying z+y+z =
2. Among z, y, z let there be at least two numbers (say, 2z < y) less than % Replace
these numbers by 2,/ in such a way that 2 +y =2’ +y/, [2/,y/] C [0, 2], and either
2/ =0 ory = 2. By convexity, f(z') + f(y') + f(z) > (:z:)+f()+f(z)>0. If
2/ =0, then ¢ < % and z < 1; thus 2’ + 3’ + 2z < 2. Hence ¢y =

Thus from the very beginning one can assume that z < and Y,z > ,2. If
r=y=z=2 then f(x)+ f(y)+ f(z) =f(2-3)+2f(1—3) =0. Repeatlng the
same trick and using concavity of f on [2 1] one can reduce the problem to the case
y = z. But for any triple 2,y = z =1 — £ there holds f(z)+ f(y) + f(2) = 0, which
contradicts the assumption f(x) + f(y) + f(z) > O

ww\w

3.2. Description of projections of measure classes on the triangle. We
will consider special classes of measures on A and describe their projections onto the
axes.

First, consider the Lebesgue measure on A. It can be normalized in such a way
that the measure of the whole triangle is equal to % We denote the normalized
measure by Aa. Projecting it to any hyperplane {x = 0}, {y = 0}, {z = 0}, we get a
triangle with the usual Lebesgue measure. In what follows, we consider the densities
with respect to this normalized measure.

DEFINITION 3.4. Let p be a measure on A absolutely continuous with respect to
Aa. For any point (z,y,z) € A define M (z,y,z) = min(1 —z,1 —y,1 — 2). We call
a measure p layered if for any t the density of u is constant on a set M(x,y,z) =t,
that is, density depends only on M(z,y, z).

It is easy to see that M is proportional to the distance from the point to the
nearest side of A. Therefore, points with constant M form a triangle homothetic to
the original one, with the same center. It is also easy to see that due to the symmetry
of the layered measure, its projections on all three axes will be the same. Also note
that M takes values only in [0, %]

DEFINITION 3.5. We say that a function p : [O, l] — R generates a layered mea-

3
. d
sure [ Zf ﬁ(.’l), Y, Z) =D (M(.CL', Y, Z))
Let us find the projections of a layered measure p generated by p to the coordinate
axes.

PROPOSITION 3.6. Let u be a layered measure generated by a function p. Let
P« 1 [0,1] = Ry be the density of the projection of this measure onto an axis. Then

pu(a) = {2f0 o

x <
3z —2)p (1—90 +2f t)ydt  if x >

w\w o:\w

Proof. Denote the projection of 1 onto the hyperplane zy by pisy. It is concen-
trated on the triangle T with vertices (0,1), (1,0), and (1,1). Its density with respect
to the Lebesgue measure on the plane at the point (z,y) lying inside T is

p(M(z,y,2 — 2z —y)) =p(min(l —z,1 —y,z+y—1)).

Define p, as the projection of p onto x or, what is the same, the projection of
the measure fi;y onto z. Then the measure of [0, zo] on the one hand is [;" p.(z)dz,
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and on the other hand is equal to the measure of the part of the triangle 7" where the
x coordinate belongs to [0, zg]. Thus, we have established the equality fozo pi(x)de =

o fll_xp(M(x,y, 2 — z — y))dzdy. Differentiating both sides of this equality with
respect to o, we obtain p,(x) = fll,m p(min(l —z,1 —y,x +y — 1))dy.
Assume z < % Then

r+y—1 foryce€ [lfx,lfg},

min(l—x,l—y,x+y—1):{l_y forye[l—ﬁl]
27+

From here we get

1
:/ p(min(l — 2,1 —y,x +y—1))dy

1—x

1 1_% %
/ p(1 —y)dy +/ plzx+y—1)dy = 2/ p(t) dt.
1 1

3 - 0
Analogously for z > %,

z+y—1 foryell—=x,2—2z],
min(l—z,1—y,z4+y—1)=<¢1—=x for y € [2 — 2z, 2],
1—-y for y € [z, 1].

After this we calculate p,(z):
1
pe) = [ plmin(t — a1~ ya oy - D)y
11—z

2—2x x 1
- / p(z+y — Ddy + / p(1— z)dy + / p(1— y)dy
1 2—2x x

- 2/0  p)dt + (32 — 2)p(1 — x). 0

Next we define median measure.

DEFINITION 3.7. The median subset of A is the set
{(@y,2) eAle=y =2t U{(z,y.2) €Aly=222}U{(z,y,2) €Az =22y}

From a geometric point of view, this is a union of three segments in A from the
vertices to the center of the triangle A.

Projections of any segment from the median set are [O, %] and [%, 1]. On these
segments one can define a measure proportional to the Lebesgue measure such that
the measure of each segment is % In what follows, we consider all of the densities on

the median set with respect to this measure.

DEFINITION 3.8. Median measure u, generated by a density function q : [0, %] —
R, is a measure concentrated on the median set such that its density on each of the
segments is equal to q(t) at the points (t,t,2—2t), (t,2—2t,t), (2—2t,t,t) with respect
to the reference measure described above.

It is easy to verify the following assertion.
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PROPOSITION 3.9. Let v be a median measure generated by q. Let q.(x) be the
density of the projection of this measure onto an arbitrary axis. Then

~ Ja(x) forx < 2,
¢(2) = {4q(2 —2x) forx> g

This implies, in particular, the identity
1
(3.3) 4¢.2z) = ¢.(1 — ), < 3

The converse is also true: if nonnegative g, satisfies (3.3), then there is a median
measure whose projection onto the arbitrary axis coincides with g,.

3.3. Combining measures. Let 7 be a measure on the segment [0,1] with
density f. We are concerned with f(z) = o®, but we will only use the fact that f(x) is
continuously differentiable, increasing, and convex and satisfies fol (t — %) ft)dt = 0.
The last means that the measure with density f satisfies (3.1).

We want to find a measure p that is the sum of the layered measure p,, generated
by a function p and the median measure ji, generated by a function ¢, whose projection
on each of the axes coincides with .

We subtract p, from p and look at the projection of y — i, onto the axes with
the density ¢.(x). By Proposition 3.6, the projection is equal to

g (2) = f(z) - 2f0% p(t)dt for x < %
) f(z) — Bz —2)p(1 —z) — 2 folizp(t)dt for z > %

In order for g.(z) to be a density of the projection of a median measure, it suffices
that ¢.(z) > 0 and 4¢.(2z) = ¢.(1 — z) for 2 < 1. Using the identities on ¢, (z) given
above, we obtain the equivalent equation,

(34) 4 ( F(22) — 2 / p(t)dt) — F(1—2) — (1 - 32)p(a) — 2 / p(t)dt.
0 0
Assuming P(z) = [ p(t)dt, we get the equation
4(f(2z) —2P(z)) = f(1 —x) — (1 — 32)P'(x) — 2P(z).
This is a differential equation of the first degree, and its solutions have the form

e+ [y (L=3t)(f(1—t)—4f(2t))dt
(1 — 3z)2 ’
Using P(0) = 0 we get ¢; = 0, and therefore

P(z) =

Pla) = — E /Ow(l—?)t)(f(l—t)—4f(2t))dt.

(1-3x
Now suppose that f is continuously differentiable. We find p(x) using integration
by parts:

p(z) = P'(z)
C(f(1— ) — 4f(22))(1 — 32)% + 6 [; (1 — 3t)(f(1 — t) — 4f(2t))dt
a (1—3x)3
= ﬁ (f(l) —4f(0) - /O (1—3t)2(f'(1—1t)+ 8f’(2t))dt> .
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To prove that p(z) and correspondmg q(x) generate a nonnegative density, we

need to check that p(z) >0 for z € [0, %], p(3) is well-defined, and f(2z) — 2P(z) =

g+ (2x) = q(22) > 0 for z € [0, } where ¢(z) generates the median measure.

LEMMA 3.10. Suppose that f : [0,1] — R is a continuously differentiable mono-
tonically increasing function and that fol (t — %) f(t)dt = 0. Then the function

Ie) = £(1) - 450) - | (- B02(F (1) + 8F(20))dt

s nonnegative on [O, 3] and I( ) =0.

Proof. Since f is increasing, f’ > 0, and the integrand (1—3t)%(f'(1—t)+8f/(2t))
is nonnegative. So the integral increases, and I(z) monotonically decreases to T (%
Integrating by parts we get

1

1

i (3) — F(1) — 4£(0) - / (1= 302(F(1 — 1) + 8'(20)dt

=

- / C(@f(2t) — F(1—1)d(1 - 31)?

wl—

. 6/ (1= 36)(f(1 — 1) — 4f(20))dt
0

= 18/01 (t— §> f(t)dt

=0. O

Using this lemma one can check that p(z) is nonnegative and well-defined.

PROPOSITION 3.11. Suppose that f(x) satisfies the conditions of Lemma 3.10.
Then the function

1 ‘ 200001 _ !
) = g (F0 =700 = [ 0302070 =)+ 87 (ot

is nonnegative, and lim,,_, 1 p(x) = f"(3).

Proof. Using the function I(x) from Lemma 3.10 we can rewrite the function p(x)

as follows:
I(z)

p(z) = m

I(z) is nonnegative, as is p(x). Let us check that p (%) is well-defined.
Since I (%) = 0, one can apply the ’'Hopital rule to p(z):

zhfip( z) = Jim (11—(2)3 = Gm _9(11—(?33)2
(=3P w) + 8P (20)
= o 9(1 - 32)?
= 1 li (1 81 (2 =f 2 a
-3 lm (- +87) - 7 (3).
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Now we will check that the function ¢ is nonnegative as well, so it generates the
measure with nonnegative density.

PROPOSITION 3.12. Suppose that f(x) satisfies the conditions of Lemma 3.10 and
that f(x) is convexr on [0,1]. Then the function

ﬁ /Oz(l = 3t)(f(1 —t) —4f(2t))dt

q(2z) = f(2z) — 2P(x) = f(22) —
1§ nonnegative.
Proof. Write the function ¢ in the following form:

T [ (30U - 0~ are)a

1 @ ,
m/o (f(1—t)—4f(2t))d(1 - 3t)

(1=30°(f(L =) — 4f(20))[§ — [y (1 = 36)*(f'(1 — t) + 8f'(2t))dt
3(1 — 3x)?

a(22) = f(20)
— f(2a) +

= f(2x) +
(1 —32)*(f(1 — x) — f(22)) — I(x)

3(1 — 32)2 ‘
To check that ¢ > 0, it suffices to check that the numerator n(x) = (1—3z)?(f(1—

z) — f(2x)) — I(z) is nonnegative. From Lemma 3.10, n (1) = 0. So we check that n
is decreasing:

n'(z) = 6(1 — 3z)(f'(22)(1 — 3z) — (f(1 — =) — f(22))),
f(1—2) — f(22)
1—3x '

The last equality holds since f is convex. ]

n'(z) <0 & f(2z) <

Summarizing the last two propositions, we obtain the following theorem.

THEOREM 3.13. For any continuously differentiable, increasing, and convez func-
tion f : [0,1] satisfying fol (t— %) ft)dt = 0, there exists a measure on A with pro-
jections onto the axes having densities f(x).

All of the assumptions can be applied to f(x) = o®, where « is a solution of (3.2).
Also, we find p(z) and ¢(x) explicitly:

1 T
=———— [ (1=3t)*(f'(1—t)+8f"(2t))dt
) =~ gy [, (1= 30270 =)+ 87 (20)
B al=% — 4a2* i 20%% 4 o~ B 30** +3a—alna—3—2lna — 3al™*
1—-3z (1-3z)2Ina (1—-3z)3In”
B alfa: _ 40&2‘70 B 2a2z + alfx s 0421 _ alfz
1 -3z (1-3z)2Ina (1-3z)3In*a’
q(2z) = f(2z) = 2P(x) = f(22) — (1355)2/ (1=30)(f(1 —1t) —4f(2t))dt
- 0
o 202" + ol 7* 3% + 3a—alna —3 —2Ilna — 3al™®
=a™ +2 + 3
(1-3z)lna (1-3z)?°In"«
2z 11—z 2z _ 1—=x
_ oy 22@ +a o o

6 .
(1-3z)lna M (1—-3z)21In*a
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The last identities follow from (3.2).
Now we are ready to present the main theorem of this section.

THEOREM 3.14. There exists a (3,1)-stochastic measure concentrated on the set
M.

Proof. Let us collect all details of the proof and describe our measure explicitly.
Set M contains segments connecting points (0,1,1) and (I,r,r), (1,0,1) and (r,1,7),
and (1,1,0) and (r,r,1). These segments have length L = /12 4+ 2(1 —r)2. Define
measure L, as a sum of Lebesgue measures on these segments divided by%.

The projections of two segments coincide with [r, 1], and the densities are equal
to 1fT : % = 4. Their sum is the Lebesgue measure on [r,1]. The projection of the
third interval is a measure on [0, ], and its density equals % . % =1.

The mapping

_Inz—1Inl _Iny—Inl _Inz—Inl
CThr—ml YT i YT nr—In

transforms the two-dimensional part of M into triangle A. We equip A with the
layered measure p, generated by

al—z _ 4a2m 2a2m + al—.’t an _ al—z

= — — 18
p() 1— 3z (1-3z)2Ina (1—3z)3mm*a’

and the median measure p, generated by

2a2z + al—w L a2a: _ al—;v
(1-3z)Ina (1-3z)2In’a’

q(2z) = a** +2

Then by Proposition 3.6, the projection of p,, coincides with

2 fO% p(t)dt for =
3z — 2)p(1 — ) +2 foliz p(t)dt for x

Since p is a solution of (3.4) for f(z) = a*, we can conclude that for

0u(z) = {f(x) - 2f0% p(t)dt for z <
: flx)— Bz —2)p(l—2)—2 fol_w p(t)dt for x >

4¢.(2z) = ¢.(1 — z) holds. Thus by Proposition 3.9, ¢.(x) is the projection of y,
generated by q(2x) = f(2z) — 2 [ (t)dt = a** + 22(‘1"::)‘“;; + 6(0‘2w_

1-3z)2In’ "

By Propositions 3.11 and 3.12 this construction is well-defined. ) Projections of
lp + [t onto the axes coincide with a” in coordinates u,v,w and with the uniform
measure on [/, r] in initial coordinates.

Thus the projections of yu = i, + g + puin coincide with the Lebesgue measure

on [0, 1]. O

4. The dual solution construction. To prove that the measure p from The-
orem 3.14 is the primal solution, it is enough to find a triple of functions f, g, h :
[0,1] = R such that f(z) 4+ g(y) + h(z) < ¢(x,y, 2), and equality holds on the set M
by Lemma 1.1. In this case the triple (f,g,h) will be a dual solution of the related
problem. In this section we will construct the dual solution for a wide class of cost
functions.

al—®
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We will construct the dual solution for ¢(z,y,2) = C(Inz + Iny + Inz), where
C is a bounded continuously differentiable strictly convex function on (—00,0]. Our
function ¢(x,y, z) = xyz is a partial case for C(t) = exp(t). At the same time we will
use the more convenient equivalent description. Namely, ¢(x,y, z) = C(ayz) for some
continuously differentiable function C' : [0,1] — R, and the function ¢tC”(t) strictly
increases on the segment [0, 1].

4.1. Another description of the support of primal solutions.
DEFINITION 4.1. Set ¢ = Ir?. Define a function X : [0,1] — R as follows:
1-22)2 ifael0,),

ifzellr),
z(l—2z) ifxerl].

—~

AMz) =

NI= 8o

LEMMA 4.2. The function \ defined above is continuous and strictly decreases.

Proof. Tt suffices to check the continuity at points [ and r. For this it suffices to
check that (1 —20)2 = ¢ and <€ = r(1 — 7). All of these equalities are trivial.

Let us check that the derivative of A is negative everywhere except for the points
[ and 7: in these points, A has no derivatives.

If z € (0,1), then N(z) = 2(2z — 1) < 0, since z < I < 1. If € (I,r), then
N(z) = -5 < 0since ¢ > 0. If z € (r,1), then N (z) =1 — 2 < 0 since z > r > 1.

It follows from this that A strictly decreases. O

PROPOSITION 4.3. Suppose that M is the (hypothetical) primal solution support
as in the previous sections. Then a point (x,y, z) is contained in M if and only if the
following equalities hold: A(x) = yz, Ay) = xz, A\(2) = zy.

Proof. <= Suppose that «(x) = z\(x). If A(z) = yz, AM(y) = 2z, and \(z) = xy,
then k(z) = k(y) = k(2) = zy=.

The function x(z) is continuous and has a continuous derivative on intervals (0, 1),
(I,7), and (r,1). If x € (0,1), then &/'(z) = (1—2x)?—22(1—2z) = (1-2x)(1—4z) > 0
since # < [ < 1. On the segment [I,r], x is constant: r(z) = Ir* =c. If x € (r,1),
then v'(z) = #(1 —x) — 322 = o (1 — 32) < 0 since > r > 2. So k(z) strictly
increases on the segment [0,], is constant on [I,r], and strictly decreases on [r, 1].

Note, in addition, that x(0) = x(1) = 0. Thus, the equation x(x) = ¢y for
0<zxr<l1

1. has no root if ¢y < 0 or ¢y > ¢;

2. has exactly two roots if 0 < ¢y < ¢: one of them lies on the interval [0,1), and
the other lies on the interval (r,1];

3. holds on the whole segment [I,7] if ¢o = c.

If Mz) = yz, My) = zz, and A(2) = zy, then k(z) = k(y) = k(z) = xyz, and one

of the following cases occurs:
1. x,y,z € [l,r]. In this case, ¢ = k(x) = k(y) = k(2) = xyz so (z,y,2) € M.
2. 2=y ==z¢€[0,1). Then \(z) = 22. On the other hand, if z € [0,1), then
A(z) = (1 — 22)%. The equation (1 — 2x)? = z? has two solutions z = 1 and
T = % But these values are not feasible because x € [0,1) and [ < %. So, this
case is not possible.
3. # =y = z € (r,1]. Similarly, in this case A(z) = 22. On the other hand, if
€ (r,1], then A(z) = $z(1 — ). Equation $z(1 —z) = 2? has two solutions
z=0and z = %, but they do not belong to (r, 1] for any r > 2. So, this case
is not possible.
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4. x =y € [0,1), z € (r,1], and similar cases obtained by permutations of
coordinates. One has z(1 — 2z)? = k(z) = k(z) = 32%(1 — 2). The function
k(z) strictly decreases on the interval (r,1], and hence for a fixed = there
exists at most one z satisfying this equality. But z = 1 — 2z € (r,1] and
K(z) = 322(1—2) = é(l 22)? - 22 = k(z). This means that z = 1 — 2z. In
this case, z(1 — 2z) = $2(1 — 2) = A\(z) = ay = z°. Hencea:—()orx—%.
But for © = 0, one has 1 = \(z) = yz = xz = 0. The value z = § is not
suitable because x € [0,) and [ < 6. So, this case is not possible.
5.2z € [0,]), y = z € (r,1], and similar cases obtained by permutations of
coordinates. Arguing as above, we get x(x) = k(z), € [0,1), z € (r, 1], and
soy =z =1—2x. The points (x,1 — 2x,1 — 2z) are contained in M for any
z €10,1).
So, only cases 1 and 5 are possible. In these cases, (z,y,2) € M.
= The set M consists of four parts: M = M, UM, UM, UM,. If (z,y,2) € M,,
then y = 2 = 1 — 22. Hence \(z) = (1 — 22)? and yz = (1 — 22)2. In addition,
My) =M1 —2x) = (1 —22) - 22 = x(1 — 2z) = 2z since r < 1 — 2z < 1. Similarly,
Az) = zy.
Hence if (z,y,2) € M,, then A(z) = yz, \(y) = xz, and A(z) = zy. By symmetry,
these conditions hold for any (z,y, 2) € M, and for any (z,y,2) € M..
If (x,y,2) € Ma, then | < 2,9,z < r and xyz = c. This means that A\(z) = £ =
yz, AMy) = ¢ =uaz Mz) =< =uay. 0
4.2. The construction of the dual solution. If M is indeed a support of
the primal solution and if f, g, h is a dual solution, then by complementary slackness,

f(@) + g(y) + h(z) is equal to c(x,y, z) on almost all points of M. This will help us
to guess the form of f,g,h

LEMMA 4.4. Assume that c(x,y, z) = C(xyz) for some continuously differentiable
function C : [0,1] — R and that the triple of functions

frg,h:[0,1] = R

satisfies inequality f(z) + g(y) +h(2) < c(z,9,2), and f(z) + g(y) + h(2) = (z,3, 2)
for all (z,y,z) € M. Then the functions f,g,h are continuously differentiable, and
we have f/(z) = Mx)C' (M), ¢'(y) = AH)C'(WAW)), K (2) = A(=)C' (2A(2)).
Proof. For any x( there exist yo and zg such that (xg,yo,20) € M. This means
that f(xo) + g(yo) + h(z0) = (0, Yo, 20) = C(zoA(20)). In addition, for any = one
has
f(@) + 9(yo) + h(z0) < c(z, 90, 20) = C(xA(20)).
Hence, for any g,z € [0,1] one has f(x) — f(zg) < C(zA(xg)) — C(aoA(zg)).
Passing to the limit * — z¢ one gets

C(x(zg)) — ClxoA(m0)) = ( — 20) - M20)C' (20N (T0)) + 0(|]T — Z0])-

Interchanging zg and = one gets f(xg) — f(z) < C(xoA(z)) — C(zA(x)). By the
mean value theorem, C(zoA(z)) — C(azA(x)) = (o — )M (2)C'(&(x)), where £(x) €
[oA(z), zA(2)]. If £ — mg, then £(z) — zoA(zp) and

ClzoA(@)) — ClaA(z) = (w0 — 2)A@)C" (z0A(x0)) + o[ (w0 — 2)A()])
= (20 — 2)A(@)C" (20 A(20)) + o(|2 — o)
= (w0 — 2)Mw0)C" (woA(20)) + o(l2 — o).
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This means that

A(z0)C" (oA (20)) - (z — 20) + 0|2 — 20)
< f(z) — f(zo)
< Mao)C'(zoM20)) - (2 — 20) + 0(|z — 20]).

Hence, f(x) has a derivative at the point z = z, and it is equal to A(xo)C’ (xoA(z0)).
This function is continuous since A and C’ are continuous.

One can check in the same way the statements of the theorem for the functions
g and h. ]

THEOREM 4.5. Suppose that c(x,y, z) = C(xyz) for some continuously differen-
tiable function C : [0,1] — R and the function U(t) = tC'(t) strictly increases on
the segment [0,1]. Suppose that f(s) = Jo A@)C’(tA(t)) dt. Then the arg max of the
function f(z) + f(y) + f(z) — c(z,y, z) contains the set M.

Proof. Assume that T(z,y,2) = f(z) + f(y) + f(z) — c(z,y,2) = f(z) + f(y) +
F(2) = Clxyz). If (z,y, z) € M, then

A@)C'(zA(x)) —yzC'(zyz)\
VT(z,y,2) = [ My)C'(yA(y)) — 22C"(zyz) | = 0.
A2)C'(2\(2)) — zyC' (zy=2)

Hence, all values of T' on the set M are the same since M is path-connected.

The function 7T is continuous on the compact set [0, 1]3, so the function T reaches
its maximum at some point (zo, 5o, 20). Then either zq lies on the boundary of the
segment [0, 1] or g—g(azo,yo,zo) =0.

For any x > 0 the following equality holds:

oTr U(zA(z)) — U(zyozo)

%(ﬂ?,yo,zo) = Mz)C'(zA()) — yozoC" (zyoz0) = - :

Assume that zop = 0. By the mean value theorem, for any z > 0 there exists
0 < &(z) < x such that

oT
T(z,y0,20) — T(x0, Y0, 20) = xa(f(x),yo, 20)
X

=— (U A -U .

) (ULE(@)A(¢(2))] = Ulg(x)yoz0))
One has T'(z,yo, 20) < T(x0, Yo, 20) since (xq, Yo, z0) is a maximum point of T'. Hence,
Ulg(x)A(&(x))] < UlE(x)yozo0) and E(x)A(E(x)) < &(z)yozo since U strictly increases.
This means that A(£(x)) < yozo for all z > 0. If z — 0, then A\({(x)) — A(0) = 1.

Thus yozo > 1 = Mao) =1 = yo20.

Suppose that xg = 1. In this case %(Io,yo,ZO) must be nonnegative. But
9L (39, Yo, 20) = Ulwor(z))=Ulwoyozo) — [7(0) — U(ygzy). The function U(¢) strictly

increases; hence ygzg = O.w%his implies 0 = A\(xo) = yo20.
Otherwise, one has g%(xo,yo, 20) = I—{)(U(sco/\(xo)) — U(20Y020)) = 0. The func-
tion U(t) strictly increases. Hence, xgA(z9) = zoyozo and A(zo) = yozo-
Consequently, if the function T has a maximum at the point (zg,yo,20), one
gets A(zg) = yozo. Similarly, one can prove that A(yp) = xoz0 and A(z9) = xoyo.
Hence by Proposition 4.3, (xg,y0,20) € M. Since T is constant on M, one has

M C argmaxT. 0
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Summarizing the results from the last two sections, we get the following.

THEOREM 4.6. Suppose that c(x,y,z) = C(xyz) for some continuously differen-
tiable function C : [0,1] — R and that the function tC'(t) strictly increases on the
segment [0,1]. Set

f(s) = /0 AE)C (EA(t)) dt.

Then for any constants Cy, Cy, C, such that
1
Ch+Cy+Co = C(0) -2 / AOC (EA(D)) dt
0

the inequality

(f(@) +Ca) + (f(y) + Cy) + (f(2) + Cz) < ey, 2)

holds with equality on M.

This means that by Lemma 1.1 the triple (f +Cy, f+ Cy, f+ C,) is the
dual solution for the cost function c(x,y, z), and any probability measure p such that
Prx(u) = Pry(u) = Prz(p) = X and supp(p) C M is the primal solution to the
related problem.

Moreover, such a measure p exists by Theorem 3.14.

We note that any primal solution is universal in the sense that it is the same for
the cost functions of type C(xyz), where tC’(t) is strictly increasing on [0,1]. It is
important for the proof that M is path-connected. Numerical experiments for other
marginals show that sometimes the support of a primal solution is not necessarily
path-connected. For example, for a measure SF on [0, 5] given by a density

f&iftef0,1U(2,3]U4,5]
psr(t) = {gsift e (1,2) U (3,4),

the primal solution (more precisely, the result of Algorithm 2.2) for the cost function
c(x,y,z) = xyz is pictured in Figure 4.

Fic. 4. Primal solution for marginals SF'.
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4.3. Construction for the cost function c(z,y, z) = zyz. Suppose that
c(z,y,2) = wyz = C(wyz),

where C(t) = t, 0 < t < 1. The function C(t) is continuously differentiable, and

tC’(t) = t strictly increases. Theorem 4.6 implies that any probability measure p with

projections Prx(u) = Pry (1) = Prz(u) = A and supp(u) C M is the primal solution

to the related problem; in particular, the probability measure from Theorem 3.14 is

the primal solution. Also, we can construct explicitly the dual solution in this case.
Consider the following functions:

1 1
fi(z) =clnl — g(clnc —co)+ 6((21’ —1)% — (21 - 1)),
fao(x) =clnz — %(Clnc— c),

1 1 1
f3(x) =clnr — —(clnc—c) + —(2* —1?) — = (2® —1?).
3 4 6
These functions satisfy the following identities:
fi()) = f2(0),
fa(r) = f3(r),
AQ) = £,
f3(r) = f5(r).
The first and second equalities are easy to check directly. For the third and the
fourth, compute f1(x) = (22— 1)%, f4(x) = £, f4(z) = L@ —a2). fi(1) = (2—1)% =

x

2= 5= ). f5r) =1lr = gr(1—r) = f5(r).
Define

fi(z)if 0 <z <,
f@)=g(x) =h(z) =} folx) if I <2 <,
fa(x)ifr <z <1
It follows immediately from the properties checked above of the functions f1, fs, f3
that f is continuous and continuously differentiable on [0,1] and that f'(z) = A(«).

PROPOSITION 4.7. The triple of functions (f, g, h) defined above is a dual solution
of the related problem for the cost function c(x,y, z) = zyz.

Proof. Since f'(z) = A(x), it follows that

f(z) =g(x) = h(x) = /OI Mx) de +Cf = /OI Az)C'(zA(x)) dx + Cf

for some constant C'y. By Theorem 4.6 it is enough to check that f(0)+ f(1)+ f(1) =
¢(0,1,1) = 0:

f(0) = f1(0) = cInl — %(clnc—c) — é(2l — 1)3 _ %7

1 1 1 1
1 = 1 = 1 - 1 _ _72 73
f(1) = f3(1) =clnr 3(cnc c) 47~ +6r _~_127
FO) 4+ 2£(1) = en(ir?) — (clne—c)4+2- —— L Loy La Loy 4y
B 2 6 2 "3 76
1 1—7r
a2 T3 . 2 _ 12
sCTm g g =c 5 =c Ir

So, the triple (f, g, h) is the dual solution for the cost function ¢(x,y, z) = xyz. d
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5. Uniqueness of the dual solution.

THEOREM b5.1. Suppose that c(x,y,z) = C(ayz) for some continuously differen-
tiable function C : [0,1] — R, and the function tC’(t) strictly increases on the segment
[0,1]. Then the triple (f,g,h) is a dual solution if and only if there exist constants
Cy, Cy, Cp, such that

Cp+Cy+Ch = C(0) — 2 /1 MOC (A1) dt
0

and

flz) < /OJL A@)C'(tA(E)) dt + Cy,
oly) < / "AOC(EA(®) dt + O,

h(z) < /Oz At)C'(tA(t)) dt + Cp,

where equality is achieved almost everywhere.

Proof < Suppose that f(z )= [ AR C (tA(E)) dt+Cy, gly) = [ A(#)C' (EA(t)) di+
Cy and h(z = [ tA(t)C'(tA(t)) dt + Cp. Then the triple (f,§,h) is the dual solution
by Theorem 4.6. Also, f(z)+g(y)+h(z) < f+3+h< c(x,y, z) and fo z)+g(z)+
h(z) de = [} f+§+h dz, so the triple (f,g,h) is the dual solutlon.

= For any dual solution (f,g,h) there exists a triple (fN’, g, ﬁ) such that f < f,
g <G h<hand J(@) = infy.(c(a.y, ) — 5) — B(=), §(9) = inby.s(clw.y,2) -
f(x) = h(2)), h(z) = inf, ,(c(z,y,2) — f(z) —g(y)). One can prove this by applying
the Legendre transformation subsequently to f, g, h _

For any z, y, z inequality f(z) + g(y) + h(z) < ¢(x,y, 2) holds since f(z) =

inf, .(c(z,y,2) — g(y) — h(z)). Also,

/Olf(x) dx+/01§(y) dy+/olﬁ(z) dzz/olf(a:) dx+/olg(y) dy+/01h(z) dz

since f < f, g<g,and h < h. This means that the triple (f g, ) is a dual solution
and that f 9=y, h = h almost everywhere. B

A function Fly, z] : [0,1] = R, Fly, z](x) = c¢(z,y,2) — g(y) — h(2) is a Lipschitz
continuous function since 3@ (:E y,z) is a well-defined continuous function on the
cube [0,1]3. This means that f(z) is a Lipschitz continuous function since f is an
infimum of the family of Lipschitz continuous functions F'[y, z] with common constant
maxXgy y. - 61 ¢(x,y,z). In particular, this means that f is continuous on the segment
[0,1]. Similarly, the functions g and h are continuous.

For any primal solution p equality f(x) +g(y) + E(z) = ¢(z,y, z) holds p-almost
everywhere. The set of equality points is closed, because f, g, and h are continuous.
This means that f(z) + §(y) + h(z) = c(z,y,2) on the support of p. For the primal

solution y from section 3 supp(u) = M. So the equality f(z)+g(y)+h(z) = c(z,y, 2)
holds on the set M. B B

By Lemma 4.4 the functions f, g, and h are continuously differentiable, and
F(@) = M@)C(@A@), () = AW (WAW)), H(2) = A(z)C'(2M(z)). This means
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that f(z) = f(z) + Cr, 3y) = f(y) + C,, and h(z) = f(2) + C) for some constants
Cf, Cy, and Ch Smce (0 1 1) € M, the equality Cy + Cy + Cp = ¢(0,1,1) — f(0) —
fyy—7a) = - 2f0 t)C'(tA(t)) dt holds. O

6. A priori estimates for the dimension. Following [18] we introduce the
following sets of matrices:

0 z vy

9{z} = g{y,z} =12 0 0 3
0 0
0 z O

9{y} = Y{z,2} = z 0 =z 5
0 =z O
0 0 y
9zy = 9faay = |0 0 2
y x 0

Further, G is a linear combination of g, with nonnegative coefficients:

0 (a+B)z (a+7)y
G=1q[(a+p)z 0 B+y)z||aB,v>0
(a+7)y B+ 0

By Theorem 2.1.2 from [18] the supports of solutions to the primal problem are
locally contained inside a manifold of dimension

d = 3 — positive index of inertia of g

for any g € G. This index is computed below.

PRrOPOSITION 6.1. The quadratic form given by

b

o O Q

0
g=|a
b

o0

with nonnegative a, b, and ¢ has positive index of inertia at most 1.

Proof. Consider two cases.
Case 1. Let a,b,c > 0. Then the principal upper left minors are Ag = 1, A; =0,
Ay = —a? < 0, and Az = 2abc > 0. So the number of sign changes in the sequence
of principal upper left minors is 2, and the negative index of inertia is 2. This means
that the positive index of inertia is at most 1.
Case 2. Without loss of generality, ¢ = 0. Then g has the form 2azxy + 2bzz =
1

L(z + (ay + b2))® — L(x — (ay + bz))%. Thus, the positive index of inertia is at

most 1. O

We see that the local dimension of our solution is indeed not bigger than 2, but
unfortunately this bound does not help us to determine the local dimension of our
solution without solving the problem explicitly.
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7. Extreme points. We show in this section that the extreme points of the
primal solutions are singular to the surface (Hausdorff) measure on M. Applying
logarithmic transformation from the proof of Theorem 3.14 and noticing that this is
a (locally) bi-Lipschitz transformation, one can easily verify that it is sufficient to
prove the claim for the triangle A. Further, projecting A onto the xy-hyperplane, we
reduce the proof of the statement to the proof of the following fact.

THEOREM 7.1. Let pig, by, and piz1y be one-dimensional probability measures on
the azes x,y and on the line l,4, = {(z,y) € R*: z = y}, respectively. We assume
that piy, by and fiy4, are compactly supported. Let I be the set of probability measures
with projections

pa = Pro(m),  py =Pry(m),  paty = Pragy(m),

where Pr,, Pr, are projections onto x,y, and Pr,,, is the projection onto lyiy:
Proty(z,y) =2 +y.

Assume that 11 is nonempty and that m € 1l is an extreme point. Then there
exists a set S of zero Lebesgue measure such that w(S) = 1.

Proof. Without loss of generality, let us assume that  is supported by X = [0, 1]2.
Let us consider the set of tuples of 6 points,

N = { (@, 32), (@1,05), (@2, 90), (@2, 30), (3, 12), (23,01) )+ 1 < w2 < s,
Y1 < Y2 <y3,x1—|—yg:xg—i—yl,xl—i—yg=x3+y1,x2+y3=x3+y2} c X°.
For arbitrary I' € N let us set

F+ = {(mlayQ)a (x23y3)7 (m3>y1)}7 r-= {(‘rlvyl%)a (mQayl)v (x37y2)}'

Note that I' = I'_ U T, and that uniform distributions on the sets 'y and I'_ have
the same projections onto both axes and l;4,.

Let us show that there exists a set S C X with the following properties: 7(S5) = 1,
and S does not contain any subset of 6 points in N. According to Kellerer’s result
(see [11]) exactly one of the following holds:

e There exists a measure v on X° with the property v(N) > 0, such that
Priy <7, 1<i<6.
e For 1 <i < 6 there exists aset N; C [0,1]? = X with the properties 7(N;) = 0
and
NcCcU_ X x - xN;x-xX.

In the second case by Kellerer,
S =X \UL,N;

will be a desired set. We will prove it later.
First, we prove that the first case by Kellerer is impossible. We can assume that
7(X®\N) = 0 and = is still nonzero.

Suppose that I' = ((xlayQ)v(xlay3)a(x2791)7(IQayZS)a(IBayQ)?(x?nyl)) is an ar-
bitrary point of N and that Br C X9 is a ball with a center at I' and a radius of
€< %min(xg — 1,23 — T2, Y2 —Y1,Y3 — Y2). Also suppose that ¥ = 7|p,. is a (possibly
zero) measure on X% and that +; = Pr;7 are measures on X. If 4(Br) > 0, then full
measure sets for v; are pairwise disjoint. In this case measures 6_ = %(’yl + 4 + ¥6)
and 64 = %(72 + 73 + v5) are distinct and have the same projections onto the axes
and diagonal I;,.
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LEMMA 7.2. 6_ = (i + v + ) and 61 = %(v2 + 3 + 75) have the same
projections onto the azes x, y and the line l,,.

Proof. The functions Pr, o Pry and Pr,, o Pro, Pr, o Prg and Pr, o Pry, and Pr, o Pry
and Pr, o Prg coincide on N. So the images of 7w under this projections coincide. That
means that Pr,(v1) = Pry(72), Pre(v3) = Pra(y4), Pra(v5) = Pra(y6)-

Analogously Pry(y1) = Pry(vs), Pry(v2) = Pry(va), Pry(vs) = Pry(ys) and
Proty(11) = Proyy(73), Praty(v2) = Praty(v6), Praty(va) = Praty(rs)- a

Also, 6_ < 7 and §4 < 7 since v; = Pr;7¥ < Pryy <.

Hence, m;y = 7+ 64 — d_ and mo = m — §4 + J_ are nonnegative measures and
have the same projections as 7. So, T = %(7‘(’1 + m) is not an extreme point.

That means that for any I' € N the measure of Br with respect to v is 0. Hence
~v(N) = 0, which contradicts the assumption.

Thus, we get that there exists a set S with 7(S) = 1 such that S does not contain
sets of the type

{(xl,yz), (1,93), (x2,91), (2,93), (x3,92), (w3,91), 71 <2 <3, Y1 < Y2 < Y3,
r1+ Y2 = T2 + Y1, T1 +Ys = T3+ Y1, $2+y3=$3+92}-

Let us show that S has Lebesgue measure zero. Assuming the contrary, let
us apply the Lebesgue density theorem. According to this theorem for almost all
(z,y) € S and every € > 0 there exists an r-neighborhood U of (z,y) such that
AUNS) > (1 —e)AU).

On the other hand, for all & and § the tuple of points

{@+ay+s), (x+a,y+1%+5),(:c-l—l%—&—a,y-i-ﬁ),(a:-i—%—&-a,y-i—%—&-ﬁ),
2r

10+a,y+1%+ﬂ),(m+2l+a,y+2%+ﬁ>}

(“" + 10 1

belongs to M. Hence, at least one of these points does not belong to S. If 0 < o, 8 <
" all of these points belong to the r-neighborhood of (z,y); hence the measure of

10°
the set U \ S) is at least %“0. Choosing € < ﬁ one gets a contradiction with the
Lebesgue density theorem. ]

Remark 7.3. Conjecture 1.3 says that there exist extreme measures with Haus-
dorff dimension less than 2. Numerical experiments reveal certain empirical evidence
of this. Nevertheless, we were not able to verify this conjecture. In general, it is
not true that sets which do not contain given configurations of points have dimension
strictly less than the ambient space (see [14, 15]). An example of a low-dimensional
solution is given in [7, Theorem 4.6].

Appendix A. Discrete case. Consider the following problem.

Problem A.1. We are given three copies A, B, C of the set {1,...,n}. Divide these
3n numbers into n groups of triples (a, b, c), where a € A,b € B,c € C. We want to

minimize the sum
S(n) = Z abe.
(ab,c)
Here the sum is taken over all the triples.

The main result of this appendix is as follows.
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THEOREM A.2. The minimum Fp(n) of S(n) over all partitions satisfies
FD (’I’L) ~ Cpn4,

where Cp is the value of the integral in the primal problem.

A.1. Connection with rearrangement inequality. The rearrangement in-
equality can be formulated as follows.

THEOREM A.3 (rearrangement inequality). Assume that

1 S22 < - Ly,

N<y2<--<Yn
are two ordered sets of real numbers, and o is a permutation (rearrangement) of
{1,2,...,n}. Then the following inequality holds:

T1y1+T2Ye+- F+TnYn = T1Yo(1) TL2Ys(2) T TnYo(n) = T1Yn+TT2Yn—1+" - +TnY1.

In other words, for the expression T1Ys(1) + T2Yo(2) + *** + TnYo(n) the mazi-
mum s attained at the identity permutation o, and the minimum is attained at the

permutation
1 2 eeon
n n—1 ... 1)°

There exists a generalization of the rearrangement inequality for the case of several
sets of variables.

THEOREM A.4. Assume we are given s ordered sequences chi) < af(;) < .. <

xﬁf),i =1,...,s. Consider the following functions of permutations:
_ .1 (2 (n) 1 .2 (n)
V(on,-,05) = 25 /)%,y -+ Toy() T Ty () Tosn) -+ Loy (m)-

Let og be the identity permutation. Then for any permutation set o1,...,0, the
inequality V (oo, ...,00) > V(o1,09,...,05) holds.

Unfortunately, we do not know for which set of permutations o1, ..., o the value
of V(o1,09,...,0s) is minimal.

The permutations in the generalized rearrangement inequality correspond to a
Monge solution for the multimarginal Monge-Kantorovich problem with cost function

T1T2 . ..xs and the marginals equal to counting measures on xgl) We remark that the

generalized rearrangement inequality for 3 variables corresponds to the maximization
problem [ zyzdm — max.

A.2. Approximation of a partition by measures. Let us introduce some
notation. For every partition

Sp={(i,yi,2) | 1 <i<n}

of
A=B=C={1,2,...,n}

into triples define

So(Sp) = Z TilYiZi-

(zi,Yi,2i)ESP
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Denote by |Sp| = n the size of partition Sp.

Let us try to reduce our problem to the transportation problem with the cost func-
tion 2yz. For this purpose we construct the corresponding measure p;(Sp) on [0,1]3
which is concentrated at points with denominator n; namely, every point (%, % )
carries the mass 1. Set S (Sp) = f[O,l]B xyz dpq (Sp). Tt is easy to check that

n*S1(Sp) = So(Sp).

Projections of p1(Sp) on axes are discrete, namely measures of points %, 1<i<
n, are equal to % Thus, measure p;(Sp) is not (3, 1)-stochastic in our sense, since
its projections are not Lebesgue measures. This can be easily fixed. To this end, let
us introduce another measure po(Sp) on [0,1]3: for all 1 < k < n there exists the

uniform measure on

- P ]
n n n n n n

with density n? (it is chosen in such a way that the measure of the whole given small
cube equals 1). This measure is (3, 1)-stochastic.
Set

52(Sp) = / vyz dua(Sp).
[0,1]3

Let us estimate S3(Sp). For this, we set
. 1
g(n) = sup | |T1y121 — T2y222| subject to max(|x1 — xa|, |y1 — Y2, |21 — 22|) < -~

Function xyz is continuous on [0, 1]3, and then it is uniformly continuous on the given
cube. It immediately follows that e(n) — 0 for n — oo. Then we can estimate

|S1(Sp) — S2(Sp)|:

151(Sp) — S2(5p)| = > /1 (zyz — xryr2k) dpz(Sp)

(%1, Yk ,2k)ESP

< /Ik lzyz — xryrzx| dpe(Sp)

(Tk Yk ,2k)ESD

< > e(n) dpz(Sp)
(@h,yn,z)ESp ” TF
=e(n) —— 0.
n—oo

Thus, lim,, s #FD (n) exists if and only if there exists lim,, ;oo min| gy, S2(Sp),
and in the case of existence both limits coincide.

A.3. Convergence. In the previous subsection, we realized that it is sufficient
to consider the problem of finding a partition Sp that minimizes S2(Sp). In this
subsection we prove that lim, . min|gy—p S2(Sp) exists. Later we will see that
lim,, s oo Min|gp|—p, S2(Sp) = Cp, where Cp is the optimal value of the functionals in
the primal and dual problems.

From the definition of Cp the following statement immediately follows.
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PROPOSITION A.5. For every partition Sp an inequality So(Sp) > Cp holds.

Indeed, S2(Sp) is the integral of xyz by some (3, 1)-stochastic measure, and Cp
is the minimum for all (3, 1)-stochastic measures.

PROPOSITION A.6. The sequence s = min|gy|—i S2(Sp) admits a limit.

Proof. The sequence si is bounded below by C' = Cp. First, we check that
Snak < (ﬁ)élsn + niﬂc Indeed, let Sp, be a partition with S2(Sp,) = s,. We
construct a partition Spp4x = Sp,U{(¢,i,7) | n+1 < i < n+k} and verify inequality

4
So(Spuss) < (#k) S+ ﬁk;

n+k
Sa(Spntr) = /z i / / (n + k)*zyz dedydz

(77797721)651)71 "Jrk

n+k

k 71,+k
/ (n + k)*wyz dedydz

i—1 i—
i=n+1" n¥k n+k
i

gZ/z

6
k
/ / (n + k)? "\ wow dudvdw 4+ —
viml Jwi n+k n+k
('Llay'wzl)espn

:<nik)4 2 /71/71/7 kk

(T'L .7]7727)6817
4
n n k
= ——— S R
n+k) " n+k
where u i= 2ty g = 1ty g = 0tk

We also verify that s,x < s, + 5( ) As in the proof of the previous statement,
assume that Sp,, is a partition with So(Sp,) = s,. We construct another partition

Spnk = {(Ur(i—1) 45> Vk(i-1)+5> Wr(i—1)+4) } = {(k(zi=1)+7, k(yi— 1)+, k(z:—=1)+j) },
where 1 <i<mn,1<j<k. Itiseasy to check that Sp,x is a partition.
We estimate S2(Spnk). For indices ¢ and j,

/ n?k2xyz dedydz </ / /n n— (zyz + &(n)) dedydz
o1+ -1 [y;—1 Jz;—1 L

S o dedydz + —e(n)
Sl N Lﬂzyz vdydz + —-e(n).
From this we get

So(Spnk) = Z / kK zyz dedydz
I

i=1 j=1""IkG-1)+j
N 1

< ZZ ( / -1 _/ / xyz drdydz + 7]{;5( )>

i=1j=1

n T Zi ,
n) +Z;/zi—1 /%7—1 /L—l n-xryz dxdydz
= " n n

= $p +2(n).
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From these inequalities we find that for 1 < i < n,

(k! et e eyt
Skn+i > ; Skn — S Skn — < S, +t&n e
kot knti) " T knti =M T E11 k+1

As k%_l — 0, we get s, < s, + 2e(n) for all sufficiently large m.

Set C7 = liminf s,,. We prove that lim,, ,, s, = C1. Indeed, for any € > 0 there
exists such N such that sy < C1+§ and 2¢(N) < §. Then for all sufficiently large m
the inequality s, < sy+2¢(NN) < Cy+-¢ holds. In addition, for all sufficiently large m
inequality s,, > C7 — ¢ holds; otherwise, there exists a convergent subsequence, with
a limit not greater than C; — e. Thus, lim,,_, s, = C1; in particular, this sequence

is convergent. ]

From this statement it follows that it suffices to find partitions Sp; of an arbitrary
size for which lim;_,, S2(Sp;) = Cp.

A.4. Discrete measure approximation. Let i be a measure solving the pri-
mal problem. For a given n we define another measure pi,,. We require that i, is

uniform on every
i—1 4 ji—1 4 k-1 k
Iijk:|:z aZ:|>< |:] a]:|>< |:a:|a
n 'n n 'n n 'n
for 1 < 4,4,k < n, and satisfies fI"k 1dp = fIk 1 djfi,,. The latter quantity will be
denoted by p;jk. The resulting measure will be (3, 1)-stochastic.

Set ¢;jx = min(zyz | (x,y,2) € Iijk). Then for all (z,y,2) € I;j; there holds
lcijk — zyz| < e(n). Hence, it is possible to estimate | f[o’l]g ryz dj — f[o’l]g xyz djin|:

/ xyz dp — / xyz dii,| < Z / xyz di — / xyz diy,
[0,1]3 [0,1]3 1<igh<n | Tis ik
< >

/ Cijk dﬁ—/ Cijk dfin | +€(n) (/ 1 dﬁ—f—/ 1 dﬂn>
1<d 5.k, <n |7 ik Lijk Iiji Lij
=e(n) / 1 dﬁ+/ 1 dp, | = 2e(n).
[0,1]3 [0,1]3

For the following discussion we need the following theorem.

THEOREM A.7 (Dirichlet’s theorem on the Diophantine approximation). Assume
we are given a set of real numbers (a1, as,...,aq). Then for every e > 0 there exist a
natural number m and integers by, ba, ..., by such that |a;m—b;| < e for all1 <14 <d.

Applying this theorem for the set np;;;, we find that for any e; there exists a

tijeteij .
natural m, such that p;;; = %, where |e;;,| < 1 and all ¢;;; are integers. We
construct the measure vy, ,, as follows: on each cube I;;, we define a uniform measure

in such a way that the measure of the whole cube I;;; is equal to %n"
We verify that this measure is (3, 1)-stochastic provided &1 < n—lz For this, it

2> with one argument fixed is equal to %

suffices to verify that the sum of all

: : . 1 B tijk
Without loss of generality, we fix <. Then - = } 1<j k<n Pijk = ) 1<jk<n mm +
Eijk — . | |
> 1<) k<n Tom OF M = N 1<j,k<n tijk + 1<j.k<n Eijk- All ¢;;;, are natural numbers,

2 ) _ :
and ‘Zléj,kén eijk] < ne1 < 1; thus Zléj,kﬁn tijx = m, as required.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/13/24 to 131.179.220.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A SOLUTION FOR A MULTIMARGINAL TRANSPORT PROBLEM 3695

Estimate the difference | f[o s TYZ dity, — f[o s TYZ dvp m:

J

<y

1<4,4,k,<n

2y Aty — / Yz dvp,m
I

ijk

‘ / Yz Ay, — / 2yz dvnm
[0,1]3 [0,1]®

ijk

< Z / Cijk dﬁn—/ Cijk AWnom| +€(n) / 1dﬁn+/ 1 dvym

1<i ok, <n |7 isk Tig Lij Tij

tijk ~

= Z Cijk |Pijk — +e(n) 1 dpy, + 1 dvpm

1<i,j,k<n nm [0,1]? [0,1]3

3

<y 2¢(n) < n’ey + 2e(n).

nm

Assume we have found a partition Spy,, and the corresponding ps(Sppm) such
that every I;;, contains exactly ¢;;; small cubes with sides % Then one can control
the difference |fI Yz dvpm — f[ xyz dpo(Sprm)| in the same way as above. One
can easily check that the upper bound is 2e(n); hence | [; xyz dp2(Sppm) — Cp| <
6e(n) + n2e1. This number can be less than any preassigned e: first, we choose n,
such that 62(n) < /2, then choose £1, such that n%e; < /2.

Thus, to complete the main proof of this appendix, it is sufficient to show that for
given numbers t;;,1 < 7,5,k < n, it is always possible to construct a partition with
the required property. Namely, using the fact that for a fixed 7 the sum ZlSj,kSn Lijk
is equal to m, we build a partition Sppm = {(zi, ¥, 2:) | 1 <i < nm} with

{xlw"?znm} = {y17"'7ynm} = {Zlv"'7znm} = {1a2a"'anm}
such that for fixed 4, j,k € {1,...,n} the number of indices t satisfying
mE—1) <z <mi, m(—1) <y <mj, mk—1) <z <mk

equals ;.

In order to do this, we construct a correspondence between the numbers 1, ...,
nm and the triples (¢,7,k), 1 < 4,7,k < n, in such a way that to every index we
assign exactly one triple, and every triple (4, j, k) corresponds to exactly t;; indices
lying in the half-open interval (m(i — 1), mi]. The construction is accomplished step
by step. The interval (m(i — 1), mi] containing the first ¢;1; numbers corresponds to
the triple (4,1,1), the following ¢;;2 numbers correspond to the triple (¢, 1,2), and so
on. The last t;,, numbers are associated with (i,n,n). This procedure is possible
because Z1§j,kgn tijk = m.

Similarly, we construct the correspondences in the second and third coordinates.

As aresult, every triple (4, j, k) corresponds to a set of numbers a; j i),1,- - - Qi k) b
from (m(i — 1), mi], numbers b j k)1, - -, b(ijk),t,,, from (m(j —1),mj], and num-
bers ¢(; jk)1s- -5 Cli,jk) iy from (m(k — 1), mk]. Then we set

SPrm = (i j.k) 65 0Gigk) 0 Cligkye | 1 < 4,0,k <ny 1<t <t}
Clearly, this will be a partition of size nm, since the values of the numbers a(; ; 1) s,

b(i,jk),t> and ¢ j k)¢ are exactly the set {1,...,nm}.
This completes the proof of Theorem A.2. 0
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