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The multistochastic Monge–Kantorovich problem on the product X =
∏n

i=1 Xi of n
spaces is a generalization of the multimarginal Monge–Kantorovich problem. For a 
given integer number 1 ≤ k < n we consider the minimization problem 

∫
cdπ → inf

on the space of measures with fixed projections onto every Xi1 × · · · × Xik for 
arbitrary set of k indices {i1, . . . , ik} ⊂ {1, . . . , n}. In this paper we study basic 
properties of the multistochastic problem, including well-posedness, existence of a 
dual solution, boundedness and continuity of a dual solution.
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1. Introduction

This paper is a continuation of our previous work [19], where we studied a natural generalization of the 
transportation or Monge–Kantorovich problem.

Let μ and ν be probability measures on measurable spaces X and Y , and let c : X × Y → R be a 
measurable function. The classical Kantorovich problem is the minimization problem∫

X×Y

c(x, y) dπ → inf

on the space Π(μ, ν) of probability measures on X × Y with fixed marginals μ and ν.
It is well-known that this problem is closely related to another linear programming problem, which is 

called “dual transportation problem” ∫
f dμ +

∫
g dν → sup .

The dual transportation problem is considered on the couples of integrable functions (f, g), satisfying f(x) +
g(y) ≤ c(x, y) for all x ∈ X, y ∈ Y .

Nowadays, the Monge–Kantorovich theory attracts growing attention. The reader can find huge amount 
of information in the following books and surveys papers: [1,6,13,16,22,23,32,33,36,37].

A particular case of the multistochastic problem is the multimarginal transportation problem. In the 
multimarginal problem one considers the product of n > 2 spaces and n independent marginals μ1, . . . , μn. 
Some classical results on the multimarginal problem is contained in book [32], in particular, functional-
analytical duality theorems, applications to probability etc. Nevertheless, till recent, only the case of two 
marginals was in focus of research. A revival of interest in the case of many marginals is partially motivated 
by applications in economics and quantum physics [10,11,14,31]. Our motivation to study the cost function 
xyz in R3 is partially related to the multimarginal problem considered in [18].

In [19] we introduce a more general problem, which we call “multistochastic problem”. Compare to the 
classical (multimarginal) case this new problem is genuinely more difficult. Even its well-posedness depends 
on the structure of the marginals in a complicated way. The aim of this work is to fill many gaps related to 
basic properties of the problem.

The paper is organized as follows: the reader can consider Section 2 as an extended introduction, where 
we present the results of the paper, our previous results, open questions, examples, and discuss relations 
to other problems. In Section 3 we study sufficient conditions for existence of a feasible measure for the 
multistochastic problem. In Section 4 we give a proof of a duality theorem which is based on the duality 
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theory for linearly constrained transportation problem. In Section 5 we study sufficient conditions for the 
existence of a dual solution and construct an example of non-existence. In Section 6 we give explicit uniform 
bounds for the dual solution under assumption that the cost function is bounded. Then we prove uniqueness 
of the primal and dual solutions in our main example studied in [19]. Finally, we give an example showing 
that a dual solution can be discontinuous even for a nice cost function c.

2. The multistochastic Monge–Kantorovich problem. Preliminaries, examples, and open questions

We start with the formulation of the multistochastic problem in the most general setting. Let 
X1, X2, . . . , Xn be measurable spaces equipped with σ-algebras B1, . . . , Bn. It will be assumed through-
out that Xi are Polish spaces and Bi are Borel σ-algebras. For arbitrary space X let us denote by P(X)
the space of all probability measures on X.

Definition 2.1. Let p, q be nonnegative integers, q ≤ p. Let us denote by Ip,q or Ipq the family of subsets 
{1, 2, . . . , p} of cardinality q. In addition, the family of all subsets of {1, 2, . . . , p} will be denoted by Ip =
∪p
q=0Ipq.

Definition 2.2. For all α ∈ In let us set Xα =
∏

i∈α Xi. The product of all spaces X =
∏n

i=1 Xi will be 
denoted by X. For a fixed α ∈ In the projection of X onto Xα will be denoted by Prα. In addition, for 
arbitrary x ∈ X the image of x under projection Prα will be denoted by xα: xα = Prα(x). We also denote 
by Prα(μ) ∈ P(Xα) the pushforward of measure μ ∈ P(X) by Prα.

Definition 2.3. Assume that for every α ∈ Ink we are given a probability measure μα on Xα. We say that 
a measure μ ∈ P(X) is uniting if Prα(μ) = μα for all α ∈ Ink. The set of all uniting measures will be 
denoted by Π(X, {μα}α∈Ink

). We will omit the explicit mention of the space X in the notation if this space 
is uniquely determined from the context.

Given the family of probability measures {μα}α∈Ink
, we will consider the cost function c defined on 

the space X with the following property: there exists a collection of integrable functions {cα}α∈Ink
, 

cα ∈ L1(Xα, μα), such that |c(x)| ≤
∑

α∈Ink
cα(xα). Every such a function c is integrable with re-

spect to all uniting measures π ∈ Π({μα}α∈Ink
). Indeed, one has 

∫
X
|c| dπ ≤

∑
α∈Ink

∫
X
cα(xα) dμα, if 

|c(x)| ≤
∑

α∈Ink
cα(xα). So, for these cost functions c the following problem is correctly defined:

Problem 2.4 (Primal (n, k)-Monge–Kantorovich problem). Given Polish spaces X1, . . . , Xn, fix family of 
measures μα ∈ P(Xα), α ∈ Ink and a measurable cost function c. Assume that there exist integrable 
functions cα ∈ L1(Xα, μα), α ∈ Ink, such that |c(x)| ≤

∑
α∈Ink

cα(xα). Then we are looking for

inf
π∈Π({μα}α∈Ink

)

∫
X

c dπ,

where infimum is taken among the all uniting measures π.

In what follows, we will additionally require c and {cα}α∈Ink
to be continuous, and this motivates us to 

introduce the following functional spaces

CL(Xα, μα) = C(Xα) ∩ L1(μα),

CL(X, {μα}α∈Ink
) =

{
c ∈ C(X) : |c(x)| ≤

∑
α∈Ink

cα(xα) for some {cα}α∈Ink
, cα ∈ CL(Xα, μα)

}
.
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The notation CL means “the function c is continuous and belongs to the space L1(μ)”. In addition, we 
denote by Cb(X) the space of all bounded continuous functions on X, Cb(X) ⊂ CL(X, {μα}α∈Ink

) for every 
family {μα}α∈Ink

.

Example 2.5. ((3, 2)-problem) Consider a product of three spaces X = X1 ×X2 ×X3, probability measures 
μ12, μ23, μ13 on X1 ×X2, X2 ×X3, X1 ×X3 respectively. Then μ ∈ Π({μij}{i,j}∈I3,2) if and only if μ is a 
measure on X such that

Pr12(μ) = μ12,Pr13(μ) = μ13,Pr23(μ) = μ23.

Throughout this work we use notation like μij (meaning the measure on Xi×Xj) or Ink with two indices 
without commas in most places. Also note that μij is the same as μji since indices α are unordered sets.

In this introductory section we briefly describe several aspects of this problem. In particular, we discuss 
previously known results, examples, open problems, and relation to other research.

2.1. Feasibility of the problem, Latin squares and descriptive geometry

The multistochastic problem is overdetermined and a uniting measure does not always exist. It is clear 
that a necessary condition for existence of a uniting measure is the following consistency condition:

Prα∩β(μα) = Prα∩β(μβ) = Prα∩β(μ).

This condition is not sufficient (see [19] and other examples below), but we show that this condition is 
sufficient for existence of a signed uniting measure (see Theorem 3.6).

Nevertheless, in certain situations the set of feasible measures is very rich. This happens, for instance, 
if Xi are finite sets of the same cardinality and all the measures μα are uniform. The natural continuous 
generalization is: Xi = [0, 1] and μα are the Lebesgue measures on [0, 1]k of the corresponding dimension k. 
A natural related discrete combinatorial object is a Latin square. We recall that a Latin square is an n × n

array filled with symbols from {1, . . . , n}, each occurring exactly once in each row and exactly once in each 
column. To see the relation let us consider an n × n Latin square S containing first n integers. Then the 
discrete measure

1
n2

∑
i,j

δi,j,S(i,j)

on {1, . . . , n}3 has uniform projections to discrete xy, xz, yz planes.
More generally, the (n, k)-multistochastic problem is always feasible for the system of measures

μα =
∏
i∈α

μi, α ∈ Ink,

where μ1, . . . , μn are fixed measures on X1, . . . , Xn.
We believe that this example provides a natural source of applications, this is why a big part of our 

results is related to this particular case.
An interesting example of the optimal transportation problem was studied in connection with applications 

to the density functional theory, namely, the Hohenberg–Kohn theory. The Hohenberg–Kohn theory consid-
ers a model of N electrons whose arrangement in the space R3N is determined by the density ρN (x1, . . . , xN ). 
The energy of pairwise interaction of electrons is specified as the density integral over the Coulomb potential:
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Vee =
∫ ∑

1≤i<j≤N

ρN (x1, . . . , xN )
|xi − xj |

dx1 . . . dxN .

Due to the symmetry,

Vee =
∫ ∑

1≤i<j≤N

ρ2(x, y)
|x− y| dxdy,

where ρ2(x, y) =
∫
ρN (x, y, z3, · · · , zN ) dz3 . . . dzN .

In the Hohenberg-Kohn theory, the ground state is described by a functional that depends only on the 
density of one electron

ρ(x) =
∫

ρN (x, z2, · · · , zN ) dz2 · · · dzN .

For this purpose Vee(ρ2) is approximated by the functional Vee(ρ), depending only on ρ. The correct ap-
proximation is the key problem in this theory.

It turns out that the natural approximation is the approximation by the functional

F (ρ) = inf
π∈Π(ρ,ρ)

∫ 1
|x− y| π(dx, dy).

For example, this functional occurs when the so-called “semi-classical limit” is taken. Trivially, the functional 
F is the Kantorovich functional (for the pair of equal marginals) with the cost function 1

|x−y| . This cost 
function is called Coulomb cost function.

In [12] the passage to the limit is made rigorously, and some sufficient conditions for the existence and 
uniqueness of a solution for the Kantorovich functional are found. For a generalization to a wider class of 
“repulsive cost functions” see [10]. For further progress in physical applications, see [4]. In [9] transport 
inequalities and concentration inequalities for the Coulomb cost function are obtained.

In this setting, the multistochastic Monge-Kantorovich problem can be applied if we have additional 
restrictions on joint distributions of electrons. For example, if we know that every set of k electrons is 
mutually independent, we can consider the (n, k)-problem with the fixed family of projections μα =

∏
i∈α μi.

Other source of inspiration might arise from the engineering, in particular, the descriptive geometry. In 
engineering it is common to depict a three-dimensional body using its two (as originally suggested by father 
of descriptive geometry, Gaspard Monge, who also gave his family name to Monge–Kantorovich problem) or 
three orthogonal projections onto orthogonal two-dimensional planes. So an engineer might find themselves 
reconstructing a three-dimensional body by its top view, front view and side view. When instead of a body 
one has a measure, that turns into finding a set of uniting measures in (3, 2)-problem.

A necessary and sufficient condition for existence of a measure with a given system of marginal distribu-
tions in the spirit of linear programming duality was established by H. Kellerer [24]. Assume we are given 
a system of marginal distributions μα, where α belongs to some system A of subsets of {1, . . . , n}. This 
system admits a uniting measure if and only if

∑
α∈A

∫
fα(xα) dμα ≥ 0

for all bounded continuous family of functions {fα(xα)}α∈Ink
satisfying 

∑
α∈A fα(xα) ≥ 0. We give an 

independent proof of this fact for A = Ink in Section 3. Note, however, that this criterion does not seem to 
be very practical. We establish some easy-to-check sufficient conditions for existence of uniting measure in 
terms of uniform bounds for densities. In particular, we prove the following (see Theorem 3.11):
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Theorem 2.6. For given natural numbers 1 ≤ k < n there exists a constant λnk > 1 which admits the 
following property.

Assume we are given a consistent (see Definition 3.2) family of probability measures μα ∈ P(Xα), α ∈
Ink, and another family of probability measures νi ∈ P(Xi), 1 ≤ i ≤ n. Assume that every measure μα, 
α ∈ Ink, is absolutely continuous with respect to να =

∏
i∈α νi:

μα = ρα · να.

Finally, assume that there exist constants 0 < m ≤ M such that every density ρα satisfies m ≤ ρα ≤ M

να-almost everywhere for all α ∈ Ink.
Then Π({μα}α∈Ink

) is not empty provided Mm ≤ λnk.

We will give precise bounds for the constant λ32.

Remark 2.7. Solvability of the primal problem. As soon as the set of uniting measures is not empty, the 
proof of existence of a solution to the primal problem for a lower semicontinuous cost is a standard exercise.

Theorem 2.8 ([19]). Assume that the cost function c ≥ 0 is lower semicontinuous. If Π({μα}α∈Ink
) is not 

empty, then there exists a solution to the multistochastic problem.

2.2. Examples. Fractal structure versus smooth structure

The main example of an explicit solution to a multistochastic problem was found in [19]. The unexpected 
beauty of this example was the main motivation for us for subsequent study of the multistochastic problem.

In the following example we consider a (3, 2)-problem. Denote by Π(μxy, μyz, μxz) the set of measures 
with projections Prxyπ = μxy, Prxzπ = μxz, Pryzπ = μyz.

Theorem 2.9 ([19]). Let μxy = λxy, μxz = λxz, μyz = λxz be the two–dimensional Lebesgue measures [0, 1]2

and let c = xyz. Then there exists a unique solution to the corresponding (3, 2)-problem∫
xyz dπ → min, π ∈ Π(μxy, μyz, μxz).

It is concentrated on the set

S = {(x, y, z) : x⊕ y ⊕ z = 0},

where ⊕ is the bitwise addition (see Definition 6.13). See Fig. 1.

The set S is called Sierpińsky tetrahedron.
We stress that some fractal solutions to a multimarginal transportation problem were known before our 

work. See, for instance, [14], where multimarginal problem with the cost function of the type h(
∑n

i=1 xi)
and the Lebesgue measure projections was considered. Though we don’t see any direct relation between 
these examples, they have something in common: in both cases the entire construction relies on the dyadic 
decomposition.

Remark 2.10. The (3, 2)-problem can admit not only fractal but also smooth solutions. For instance, consider 
measurable functions f(x), g(y) and h(z) on [0, 1]. Assume that h is injective, the set Γ = {f(x) + g(y) +
h(z) = 0} is not empty, and μ is a probability measure concentrated on Γ: μ(Γ) = 1. Set μxy = Prxyμ, μxz =
Prxzμ, μyz = Pryzμ. Then μ is the unique element of Π(μxy, μyz, μxz). Indeed, let ν ∈ Π(μxy, μyz, μxz). 
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Fig. 1. The solution is supported on Sierpińsky tetrahedron.

Clearly, 
∫

(f(x) + g(y) + h(z))2 dν depends solely on the integrals of pairwise products of functions f, g, h
with respect to measures μxy, μyz, μxz. Hence∫

(f(x) + g(y) + h(z))2 dν =
∫

(f(x) + g(y) + h(z))2 dμ = 0,

this implies that ν is concentrated on Γ. Since h is injective, Γ is the graph of the mapping (x, y) →
h−1(−f(x) − g(y)), hence ν is uniquely determined by its projection μxy, thus coincides with μ.

In particular, this observation can be applied to construct an example of a solution concentrated on a 
smooth set.

Example 2.11. The Lebesgue measure on [0, 1]3 ∩ {x1 + x2 + x3 = 1} is a solution to the (3, 2)-problem, 
where marginals are the two-dimensional Lebesgue measures concentrated on the set {xi +xj ≤ 1} ⊂ [0, 1]2

and arbitrary cost function.

It is clear, that the smoothness of the solution in this example is just a matter of fact that Π(μxy, μyz, μxz)
contains a unique (smooth) element. However, it is natural to expect that the solution may have a frac-
tal/non-regular structure provided uniting measures constitute a sufficiently large set.

The following problem, yet vaguely formulated, seems to be crucial for understanding of the structure of 
solutions to (n, k)-problem.

Open problem 1. Is it true that solutions to (n, k)-problem have “fractal structure” provided 
Π({μα}α∈Ink

) contains sufficiently “rich” set of measures?

2.3. Duality and the Kantorovich problem with linear constraints

As in the classical case the multistochastic problem admits the corresponding dual problem:

Problem 2.12 (Dual (n, k)-Monge–Kantorovich problem). Assume we are given Polish spaces X1, . . . , Xn, a 
fixed family of measures {μα}α∈Ink

, and a cost function c ∈ CL(X, {μα}α∈Ink
). Find
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sup
f≤c

∑
α∈Ink

∫
Xα

fα dμα,

where the supremum is taken among the functions f having the form f(x) =
∑

α∈Ink
fα(xα), where fα ∈

L1(Xα, μα).

Definition 2.13. We say that there is no duality gap for the (n, k)-problem if

min
π∈Π({μα}α∈Ink

)

∫
c dπ = sup

f≤c

∑
α∈Ink

∫
Xα

fα dμα,

where fα ∈ L1(Xα, μα), f(x) =
∑

α∈Ink
fα(xα).

The absence of duality gap was shown in [19] under assumption of compactness of the spaces Xi. In this 
work we prove the following result:

Theorem 2.14. There is no duality gap for (n, k)-problem provided Xi are Polish spaces and c ∈
CL(X, {μα}α∈Ink

).

Our approach is based on the result of D. Zaev [38] on duality for the classical Kantorovich problem with
linear constraints. The transportation problem with linear constraints is the standard Kantorovich problem 
with additional constraints of the type l(P ) = 0, where l is a linear functional on the space of measures. 
The proof of Zaev is based on the general minimax principle.

2.4. Structure of dual solutions. Monge problem

Our main example of a dual solution is given in the following theorem.

Theorem 2.15 ([19]). Let μxy = λxy, μxz = λxz, μyz = λxz be the two dimensional Lebesgue measures on 
[0, 1]2 and c = xyz. Then the triple of functions (f(x, y), f(x, z), f(y, z)), where

f(x, y) =
x∫

0

y∫
0

t⊕ s dtds− 1
4

x∫
0

x∫
0

t⊕ s dtds− 1
4

y∫
0

y∫
0

t⊕ s dtds

solves the corresponding dual multistochastic problem.

Remark 2.16. The uniqueness result for this problem under assumption of continuity of the dual solution is 
proved in the present paper in Theorem 2.30.

The solution to the dual problem given in Theorem 2.15, has the following relation to the solution π to 
the primal problem (see Theorem 2.9): π is concentrated on the graph of the mapping (x, y) 
→ fxy(x, y), 
i.e.

z = fxy(x, y) (1)

π-almost everywhere.
Let us note that f admits a non-negative mixed derivative fxy, but derivatives fxx, fyy do not exist (at 

least in the classical sense).
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The relation (1) can be derived from the fact that the support S of the solution π is a fractal set. Indeed, 
function f(x, y) + f(x, z) + f(y, z) − xyz is non positive and equals zero π-a.e. Thus for π-almost all points 
the first order condition

fx(x, y) + fx(x, z) = yz (2)

is satisfied.
Next, it is easy to show that for π-almost every point M = (x0, y0, z0) ∈ S the set S contains points of 

the type M + tnv, where tn is a sequence tending to zero and vector v belongs to a set V containing three 
independent vectors. One can prove this using the fractal structure of S. Consequently, one can differentiate 
(2) along V and deduce (1) from these relations.

Thus in this particular case the solution admits the following properties.

(a) The solution is concentrated on the graph of a mapping z = T (x, y).
(b) This mapping T has the form T (x, y) = fxy(x, y), where (f, g, h) is a solution to the dual problem. The 

same holds for g, h.
(c) Function f(x, y) is a cumulative distribution function (up to a term depending on x and a term 

depending on y) of a positive measure on a plane. Equivalently, fxy(x, y) ≥ 0 almost everywhere.

These properties together resemble the result by Brenier [7] that in usual Monge–Kantorovich problem 
for cost function −x · y (or equivalently 1

2 ||x − y||2) one has the optimal transport plan concentrated on the 
graph of the gradient of some convex function ϕ such that (ϕ,ϕ∗) is a solution to the dual problem. Here 
we have function c = xyz and optimal transport plan concentrated on the graph of the mixed derivative of 
some function f with positive mixed derivative which is also a solution to the dual problem.

Definition 2.17. (Optimal mapping.) Let T satisfy (a). Then we say that T is an optimal mapping.

One can ask whether any solution to (3, 2)-problem (under natural assumptions on the marginals) with 
the cost function xyz does satisfy properties (a), (b), (c). We show that in fact no one of these properties 
are satisfies in general.

Example 2.18. The solutions to (3, 2)-problems are not always concentrated on graphs; (a) fails. Consider 
the sphere S = {x2 + y2 + z2 = 1}, and consider the quarter sphere S1 = S ∩ {x ≥ 0, y ≥ 0}, S2 = S ∩ {x <
0, y ≥ 0}, S3 = S ∩ {x < 0, y < 0} and S4 = S ∩ {x ≥ 0, y < 0}. Let π be the surface measure on the 
3/4-part of the sphere S1 �S2 �S4, and let μxy, μxz, μyz be the corresponding two-dimensional projections.

Slightly modifying the arguments of Remark 2.10 we prove that if π̂ is a measure with projections μxy, 
μxz and μyz, then π̂ is concentrated on the set S1 � S2 � S4. For each point of S2 there is no other point of 
S1 � S2 � S4 with the same projection onto the coordinate plane Oxz, and therefore the restriction of the 
measure π̂ to S2 is fully determined by its projection μxz and coincides with π|S2 .

Similarly, the restriction of π̂ to S4 is fully determined by its projection μyz and coincides with π|S4 . 
Hence, π̂|S1 = π̂−π|S2 −π|S4 . Thus, the projections of π̂|S1 and π|S1 to the coordinate planes are the same, 
and then π̂|S1 = π|S1 . So we conclude that π is the only measure with projections μxy, μxz, μyz, and there 
is no optimal mappings Txy, Txz and Tyz.

See also Example 5.10 for a discrete counterexample.

Example 2.19. Example without dual solutions satisfying (1); (b) fails. This example is considered in The-
orem 6.33. In this example fxy is either zero or not defined.
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Example 2.20. Non-uniqueness for the dual problem; (c) fails. In the problem considered in Example 2.11
there exist many dual solutions. To see this let us note that the following inequality holds for all (x, y, z) ∈
[0, 1]3 and a fixed constant A > 0, equality holds if and only if x + y + z = 1:

(x + y + z − 1)2(x + y + z + A) ≥ 0.

Developing the left-hand side we see that this inequality is equivalent to

xyz ≥ fA(x, y) + fA(x, z) + fA(y, z),

where

fA(x, y) = − 1
12(x3 + y3) − 1

2xy(x + y) − (A− 2)
(
x2

12 + xy

3 + y2

12

)
− 1 − 2A

12 (x + y) − A

18 .

Clearly, the triple (fA(x, y), fA(x, z), fA(y, z)) solves the dual problem for every A > 0. Note that (1) and 
(c) fails for all A > 0.

Thus we see that the particular form (1) of the optimal mapping related to (3, 2)-problem with cost 
function xyz is related to the fractal structure of the solution. Motivated by these observations we state the 
following problem.

Open problem 2. Assume that π is a solution to a (3, 2)-problem with the cost function xyz. Find general 
sufficient conditions for presentation of π in the form

z = fxy(x, y),

where f(x, y), g(x, z), h(y, z) solve the corresponding dual multistochastic problem.
It seems quite difficult to describe the general structure of solutions to (3, 2)-problem with c = xyz, since 

it is very sensitive to non-local properties of the marginals. Something can be established under very strong 
“smoothness” assumptions, as presented in the proposition below. But we stress that this situation can not 
pretend to describe a reasonable model case.

Proposition 2.21. Consider a triple of twice continuously differentiable functions f(x, y), g(x, z), h(y, z)
satisfying f(x, y) + g(x, z) + h(y, z) ≥ xyz. Assume, in addition, that

Γ = {f(x, y) + g(x, z) + h(y, z) = xyz}

is a two-dimensional smooth surface.
Let Γx, Γy, Γz be sets defined by equations:

Γx = {x = hyz}, Γy = {y = gxz}, Γz = {z = fxy}.

Then for every point (x0, y0, z0) ∈ Γ the following alternative holds:

(A) (x0, y0, z0) belongs to at least two of sets Γx, Γy, Γz: (x0, y0, z0) ∈ (Γx ∩ Γy) 
⋃

(Γx ∩ Γz) 
⋃

(Γy ∩ Γz)
(B) (x0, y0, z0) /∈ Γx ∪ Γy ∪ Γz and the vector field

N =
(

1
x− hyz

,
1

y − gxz
,

1
z − fxy

)
is orthogonal to Γ at (x0, y0, z0).
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Proof. Since every (x, y, z) ∈ Γ is a minimum point of f(x, y) + g(x, z) + h(y, z) − xyz, then the functions

u = yz − fx(x, y) − gx(x, z), v = xz − fy(x, y) − hy(y, z), w = xy − gz(x, z) − hz(y, z)

vanish on Γ. Hence their gradients

∇u = (−fxx − gxx, z − fxy, y − gxz)

∇v = (z − fxy,−fyy − hyy, x− hyz)

∇w = (y − gxz, x− hyz,−gzz − hzz)

are orthogonal to Γ. Then they are collinear, because Γ is two-dimensional.
Assume that (x, y, z) belongs to at least one of the sets Γx, Γy, Γz, say to Γz. Then z = fxy at this point. 

This implies that either ∇u is zero or −fyy−hyy = 0, x −hyz = 0 (because ∇v = λ∇u, ∇w = μ∇u for some 
λ, μ). In the first case y = gxz and (x, y, z) ∈ Γz∩Γy, while in the second case x = hxy and (x, y, z) ∈ Γz∩Γx.

Repeating these arguments with the other derivatives, we see that either (x, y, z) ∈ (Γx ∩ Γy) 
⋃

(Γx ∩
Γz) 

⋃
(Γy ∩ Γz) or (x, y, z) /∈ Γx ∩ Γy ∩ Γz. In the second case all the 2 × 2 minors equal zero, hence

fyy + hyy = − (x− hyz)(z − fxy)
y − gxz

(similarly for other coordinates). This gives that N is orthogonal to Γ. �
Remark 2.22. Having in mind our main example from Theorem 2.9 with the solution on the tetrahedron, 
one can expect that (B) never holds. However, (B) can happen, an example is given in Example 2.20. 
Our belief is that one should expect (A) for fractal solutions and (B) for smooth solutions. In fact, we 
show in Section 6.2 that (under some additional assumptions) any dual solution in our main example must 
satisfy alternative (A) and we derive uniqueness from this. However, we are unable so far to make a precise 
statement saying that (A) / (B) corresponds to fractal/smooth structure.

Remark 2.23. (Vector fields orthogonal to smooth solutions). Assume that π is a solution to a (3, 2)-problem 
concentrated on the surface Γ and alternative (B) holds. Assume, in addition, that π has a density with 
respect to the two-dimensional Hausdorff measure

π = p(x, y, z) · H2|Γ.

Denote by ρxy, ρxz, ρyz the density of the corresponding projections μxy, μxz, μyz. Then

ρxy(x, y)| cos(N, (0, 0, 1))| = p(x, y, z)

for every (x, y, z) ∈ Γ and

ρxy(x, y) = p(x, y, z)|z − fxy|
√

1
(x− hyz)2

+ 1
(y − gxz)2

+ 1
(z − fxy)2

.

Similarly for the other densities. This easily leads to the following relations: for every (x, y, z) ∈ Γ the vector 
field (

sign(x− hyz)
,
sign(y − gxz)

,
sign(z − fxy)

)

ρyz ρxz ρxy
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Fig. 2. The visualization of the primal solution to the problem considered in Example 2.24. Each picture shows the restriction of 
the primal solution to the set z = 0, 1, 2. In the white points the density function is equal to 0, and in the black points it is equal 
to 3. Almost every horizontal and vertical section of the black body has a length 1/3. Compare to Fig. 3.

is orthogonal to Γ and

1
p2(x, y, z) = 1

ρ2
xy(x, y)

+ 1
ρ2
xz(x, z)

+ 1
ρ2
yz(y, z)

.

In particular, we obtain that one of the vector fields(
±1
ρyz

,
±1
ρxz

,
±1
ρxy

)
is (locally) orthogonal to Γ.

Example 2.24. (c) fails; relation to the transportation problem with uniform bound on density. Consider 
the following (3, 2)-problem with X = Y = [0, 1] and Z = {0, 1, 2}. Let μx = μy be the Lebesgue measure 
on [0, 1], and let μz be the uniform discrete measure on {0, 1, 2}. c = xyz and μxy = μx⊗μy, μxz = μx⊗μz, 
μyz = μy ⊗ μz. Then the solution is concentrated on the graph of a function z = T (x, y), where T takes 
values in {0, 1, 2}.

We suspect that there exists a solution (f, g, h) to the dual problem such that f admits a mixed derivative 
fxy everywhere except for the boundaries of the black regions from Fig. 2, and, wherever it exists, fxy(x, y) =
z = T (x, y). That is close to the property (c) of our main example, but whatever happens on boundaries 
prevents f from being a cumulative distribution function of a positive measure.

Based on Fig. 2, we show that the inequality

f(x1, y1) + f(x2, y2) − f(x1, y2) − f(x2, y1) ≥ 0

can not hold for all x1 < x2, y1 < y2. Alternatively, f can not be a cumulative distribution function of some 
non-negative measure ζ, so (c) fails and in particular z = fxy can not hold everywhere.

By the complementary slackness condition, at almost every black point (x, y, z) we have f(x, y) +g(x, z) +
h(y, z) = xyz. In particular, if we choose the points (x1, y1), (x1, y2), (x2, y1), and (x2, y2) forming a rectangle 
R1 as on Fig. 2 (slice z = 0), we obtain the following equation:

ζ(R1) = f(x1, y1) + f(x2, y2) − f(x1, y2) − f(x2, y1)

= f(x1, y1) + g(x1, 0) + h(y1, 0) + f(x2, y2) + g(x2, 0) + h(y2, 0)

− f(x1, y2) − g(x1, 0) − h(y2, 0) − f(x2, y1) − g(x2, 0) − h(y1, 0)

= 0.
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Similarly, if we choose the points (x3, y3), (x3, y4), (x4, y3), and (x4, y4) forming a rectangle R2 as on 
Fig. 2 (slice z = 1), then ζ of R2 is strictly positive by the complementary slackness condition:

ζ(R2) = f(x3, y3) + f(x4, y4) − f(x3, y4) − f(x4, y3)

= f(x3, y3) + g(x3, 1) + h(y3, 1) + f(x4, y4) + g(x4, 1) + h(y4, 1)

− f(x3, y4) − g(x3, 1) − h(y4, 1) − f(x4, y3) − g(x4, 1) − h(y3, 1)

= x3y3 + x4y4 − x3y4 − x4y3 > 0.

This contradicts the fact that the rectangle R2 is a subset of R1.

Remark 2.25. It is worth noting that patterns in sets {z = 0}, {z = 1} (see Fig. 2) appeared in literature 
before. One can show that these patterns are exactly solutions to an optimal transportation problem with 
capacity constraints considered in [29,28] which we will mention below. More explanations are given in [39].

Remark 2.26. It worth noting that the condition f(x1, y1) + f(x2, y2) − f(x1, y2) − f(x2, y1) ≥ 0 for all 
x1 < x2, y1 < y2 corresponds to a bit different primal problem, where assumptions on the marginals are 
replaced by assumptions that the marginals are first-ordered stochastically dominated by given measures. 
That means that the distribution functions of marginals are pointwise not greater than the distribution 
functions of given measures. We choose this term since it is generalizes the concept of first-order stochastic 
dominance from decision theory from R to R2. But we don’t pursue this viewpoint here.

2.5. Solvability of the dual problem

Section 5 is devoted to existence of a solution to the dual problem. We establish a sufficient existence 
condition for the dual problem in the spirit of a classical result of Kellerer [25] for the multistochastic 
problem, but with a self-contained independent proof.

The main assumption on the cost function for solvability of the dual problem is the following bound:

|c(x)| ≤
∑

α∈Ink

Cα(xα), (3)

for some integrable functions, Cα : Xα → R ∪ {+∞} This is a generalization of the Kellerer’s assumption.
However, as shown in Section 5.3, unlike in multimarginal case, this bound is not enough even for (3, 2)-

problem. So another assumption, which is specific for (n, k)-problem, should be done on marginals. Namely, 
we have to assume that the system of measures {μα}α∈Ink

is reducible. The latter means that there exists a 
measure μ ∈ Π({μα}α∈Ink

) and the system of probability measures {νi}ni=1, νi ∈ P (Xi) such that for some 
0 < c < C

cν ≤ μ ≤ Cν, (4)

where ν =
∏

i νi. Our main existence/nonexistence result is the following Theorem (see details in Theo-
rem 5.19 and Proposition 5.24):

Theorem 2.27. If the system {μα}α∈Ink
is reducible, then under assumption (3) there exists a relaxed in a 

sense of Definition 5.16 solution to the dual multistochastic problem.
Without assumption of reducibility the dual solution may not exist. More precisely, there exists an example 

of a probability measure μ on the space X = N3 and the cost function c : X → {0, 1} such that there is no 
solution to the dual multistochastic problem for the system
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μij = Prijμ.

Now the question is how to understand if the collection {μα}α∈Ink
is reducible. Luckily, we have Theo-

rem 3.13 extending Theorem 2.6 which gives us a sufficient condition for the collection of measures to be 
reducible.

2.6. Other properties of dual solutions: boundedness and (dis)continuity

In Section 6 we study basic properties of solutions to the dual (3, 2) problem: boundedness and con-
tinuity. It is known that for the classical (multimarginal) problem the dual solution is bounded provided 
|c| is bounded. But this is crucial that in the classical case the dual solution is a sum of functions in 
non-overlapping variables. This is the reason why it is hard to extend the arguments to the general (n, k)-
case. We establish the following result on the boundedness of solutions.

Theorem 2.28. Let X1, X2, X3 be Polish spaces, μi ∈ P(Xi) for 1 ≤ i ≤ 3, and let μij = μi ⊗ μj for all 
{i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. If {fij}{i,j}∈I3,2 is a solution to the 
related dual problem, then

f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞

for μ1 ⊗ μ2 ⊗ μ3-almost all points x ∈ X.
Moreover, there exists a solution {f̂ij}{i,j}∈I3,2 to the dual problem such that for every couple {i, j} ∈ I3,2

and for all x ∈ X the following inequality holds:

−262
3 ‖c‖∞ ≤ f̂ij(xi, xj) ≤ 131

3 ‖c‖∞ .

Another important feature of the classical Monge–Kantorovich problem: for a cost function c with nice 
geometric/regularity properties the corresponding dual solutions are regular. This happens because the dual 
functions are related by Legendre transform, which is highly regularizing. We can not expect this for the 
(n, k)-problem, the following example demonstrates that a solution can be unique and discontinuous even 
for very simple and nice cost: maximum of two linear functions (see Theorem 6.33).

Example 2.29. Let X = Y = Z = [0, 1]. Consider the (3, 2)-problem with the cost function

c = max(0, x + y + 3z − 3),

where μzy, μxz, μyz are the Lebesgue measures restricted to [0, 1]2. Then the dual problem admits a unique 
discontinuous solution, given by the following formulas:

f12(x1, x2) = 0 for all points (x1, x2) ∈ [0, 1]2;

f13(x1, x3) =
{

0, if x3 < 2
3 ,

x1 + 3
2x3 − 3

2 , if x3 ≥ 2
3 ;

f23(x2, x3) =
{

0, if x3 < 2
3 ,

x + 3x − 3 , if x ≥ 2 .
2 2 3 2 3 3
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2.7. Uniqueness result for the main example

In Section 6 we establish the following results for our main example: (3, 2)-problem with the two-
dimensional Lebesgue marginals.

Theorem 2.30. If a triple of functions {fij}{i,j}∈I3,2 is a solution to the problem from Theorem 2.15 and 
every fij is continuous for all {i, j} ∈ I3,2, then there exist continuous functions fi : [0, 1] → R, 1 ≤ i ≤ 3, 
such that

f12(x1, x2) = f(x1, x2) + f1(x1) − f2(x2),

f23(x2, x3) = f(x2, x3) + f2(x2) − f3(x3),

and

f13(x1, x3) = f(x1, x3) + f3(x3) − f1(x1),

where

f(x, y) =
x∫

0

y∫
0

s⊕ t dsdt− 1
4

x∫
0

x∫
0

s⊕ t dsdt− 1
4

y∫
0

y∫
0

s⊕ t dsdt.

Remark 2.31. We believe that this problem admits no other (discontinuous) solutions, but have no proof of 
this.

2.8. Relation to other problems

We mentioned already that the multistochastic problem is closely related to the Kantorovich problem with 
linear constraints studied by Zaev in [38]. More precisely, our problem can be reduced to the Kantorovich 
problem with linear constraints, see explanations in Section 4.

Another related problem is, of course, problem with uniform constraint on the density, sometimes called 
“the capacity constrained problem” (see [29,28,15]). The solution to the problem from Example 2.24 admits 
the following structure: there is a partition of the unit square into several parts, each of them is either 
a homothetic image of the body shown on Fig. 3 or its complement. This set is a solution to a capacity 
constrained problem and appeared for the first time in [28]: find a function 0 ≤ h ≤ 3 on [0, 1]2 maximizing 
integral ∫

A

xyh(x, y) dxdy

such that h(x, y)dxdy has the Lebesgue projections onto both axes. Then the solution h takes values in 
{0, 3} and {h = 3} is the body on Fig. 3. The precise construction relating these two problems is fairly 
tedious and we will not give its description here. It can be found in [39].

It seems to be a highly nontrivial task to give the precise description of Fig. 3. This is especially difficult, 
because numerical experiments demonstrate that it coincides up to a very small set with a figure, which 
boundary is piecewise smooth and can be parametrized by piecewise elementary functions (polynomials).

Among the other problems which can be “embedded” into the linearly constrained transportation problem 
let us mention the martingale transportation problem [23,2], problems with symmetries [17,26,27].
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Fig. 3. The support of a solution to a capacity constrained problem (see [29,28]). Compare to Fig. 2.

Finally, there is a connection between the multistochastic problem and the transportation problem with 
convex constraints, in particular, problems on the space of measures with given ordering. In particular, in 
the (3, 2)-problem with the cost function xyz the natural ordering on the space of measure is ordering by 
first-order stochastic dominance, i.e. for two measures μ, ν on the plane we say that μ is not less than ν if 
the distribution function Fμ is not less than Fν (see Remark 2.26). We plan to study the related modified 
(3, 2)-problem in the subsequent work. Here we just mention that there are many recent paper with very 
interesting results dealing with convex ordering and optimal transportation, see [21,20].

3. Existence of a uniting measure for (n, k)-problem

3.1. Setting of the problem, basic facts

Unlike the classical Monge–Kantorovich problem, existence of a uniting measure for a (n, k)-problem is 
a nontrivial task. In the multimarginal Monge–Kantorovich problem, which is a particular case of (n, k)-
problem with k = 1, the uniting measure always exists: this is 

∏n
i=1 μi. In the case of (n, k)-problem one 

has the following necessary condition:

Proposition 3.1. Assume that the set Π({μα}α∈Ink
) is not empty. Let μ ∈ Π({μα}α∈Ink

) be arbitrary uniting 
measure. Then for all α, β ∈ Ink the following relation holds:

Prα∩β(μα) = Prα∩β(μβ) = Prα∩β(μ).

Definition 3.2. We say that the collection of measures {μα}α∈Ink
is consistent, if it satisfies Prα∩β(μα) =

Prα∩β(μβ) for all α, β ∈ Ink.

The consistency assumption for n = 3, k = 2 was considered in [19]. In what follows, we consider 
only consistent collections of measures. For a consistent collection, the measures μβ are well-defined for all 
β ∈ Int, where t ≤ k. Indeed, denote μβ = Prα(μα) for arbitrary α ∈ Ink containing β. The consistency 
assumption implies that the result is independent of the choice of α.

Proposition 3.3. Unlike the multimarginal problem, the consistency assumption is not sufficient for 1 < k <

n.

Proof. Let Xi = {0, 1, . . . , k − 1} for all 1 ≤ i ≤ n. For every α ∈ Ink let us construct the corresponding 
measure μα on the set Xα. If α = {i1, i2, . . . , ik}, then every point of Xα is given by coordinates x =
(xi1 , xi2 , . . . , xik), where xit ∈ {0, 1, . . . , k− 1} for all 1 ≤ t ≤ k. Set μα(x) = k1−k, if 

∑k
t=1 xit ≡ 1 (mod k)

and μα(x) = 0 in the opposite case.
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It is easy to check that the consistency assumption of Definition 3.2 holds: the projection of any measure 
μα onto Xβ is uniform if |β| < |α|. Assume that a uniting measure μ exists. Since the projections are non-zero, 
μ is not zero itself. Take a point x = (x1, x2, . . . , xn) such that μ(x) > 0. Then for all α = {i1, . . . , ik} ∈ Ink
the relation 

∑k
t=1 xit ≡ 1 (mod k) holds, in the opposite case the μ-mass of the projection of (xi1 , xi2 , . . . , xik)

onto Xα is zero, hence projection of μ does not coincide with μα.
We extract from condition 

∑k
t=1 xit ≡ 1 (mod k), which holds for all {i1, . . . , ik} ∈ Ink, k < n that 

xi ≡ xj (mod k) for all 1 ≤ i, j ≤ n. Then 
∑k

t=1 xit ≡ k ·x1 ≡ 0 �≡ 1 (mod k). We obtain a contradiction. �
A different continuous example for n = 3, k = 2 the reader can find in [19] (Remark 2.3).

3.2. Existence of a signed measure

It follows from the previous proposition that the consistency assumption is not sufficient for existence of 
a uniting measure. Nevertheless, it is sufficient for existence of a signed measure.

Let νi ∈ P(Xi) be an arbitrary family of probability measures.

Definition 3.4. For all α ∈ Int, 0 ≤ t ≤ k let us extend μα to X in the following way: μ̃α = μα ⊗
∏

i/∈α νi. 
In addition, set μ̃t =

∑
α∈Int

μ̃α, where 0 ≤ t ≤ k.

Proposition 3.5. Let the variables {λt}kt=0 be a solution to the following upper-triangular system of linear 
equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min(k,n−k+i)∑
t=i

(
n− k

t− i

)
λt = 0 for 0 ≤ i < k,

min(k,n−k+k)∑
t=k

(
n− k

t− k

)
λt = 1 ⇔ λk = 1.

(5)

Then for any consistent collection of probability measures {μα}α∈Ink
and for any sequence of probability 

measures {νi}ni=1, the projection of the signed measure μ =
∑k

t=0 λtμ̃t on Xα is μα for every α ∈ Ink.

Proof. Introduce the following notation: for α ∈ In, 0 ≤ t ≤ k, and for β ∈ Int we define

μ̃α
β = μβ ⊗

∏
i/∈β
i∈α

νi, β ⊂ α,

μ̃α
t =

∑
β∈Int
β⊂α

μ̃α
β .

Note that this notation generalizes measures μ̃β and μ̃t introduced in Definition 3.4 in the following sense: 
if α = {1, . . . , n} then μ̃α

β = μ̃β and μ̃α
t = μ̃t.

Let us fix α ∈ Ink. For arbitrary β ∈ Int, where t ≤ k, the pushforward of μ̃β by the projection of X
onto Xα is equal to the product of Prα∩β(μβ) by Prα\β

(∏
i/∈β νi

)
. The first term is μβ∩α, the second term 

is 
∏

i∈α\β νi. It is easy to realize that their product is μ̃α
β∩α.

Let us project μ̃t onto Xα. By the definition of μ̃t, one can get

Prα(μ̃t) =
∑

β∈Int

μ̃α
β∩α =

t∑
i=0

∑
γ∈Ini

(
n− k

t− i

)
μ̃α
γ =

t∑
i=0

(
n− k

t− i

)
μ̃α
i .
γ⊂α
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Then the projection of μ =
∑k

t=0 λtμ̃t onto the space Xα can be written as a linear combination of μ̃α
t :

Prα(μ) =
k∑

i=0
ciμ̃

α
i ,

where

ci =
k∑

t=i

(
n− k

t− i

)
λt =

min(k,n−k+i)∑
t=i

(
n− k

t− i

)
λt.

Since the coefficients λi solve the linear system (5), we conclude that ci = 0 for all 0 ≤ i < k and ck = 1. 
Thus,

Prα(μ) = μ̃α
k .

By the definition,

μ̃α
k =

∑
β∈Ink
β⊂α

μ̃α
β ,

and the only β ∈ Ink satisfying the property β ⊂ α is β = α. So,

μ̃α
k = μ̃α

α = μα ⇒ Prα(μ) = μα

for all α ∈ Ink. �
The system of linear equations (5) introduced in Proposition 3.5 is upper triangular, and the coefficients 

placed on the main diagonal are equal to 1. Then this system has a unique solution {λt}kt=0. Thus, the 
following theorem holds.

Theorem 3.6. There exists a unique family of real coefficients {λt}kt=0 such that in the (n, k)-problem with a 
consistent family {μα}α∈Ink

of probability measures, a linear combination μ =
∑k

t=0 λtμ̃t satisfies Prα(μ) =
μα for all α ∈ Ink.

Example 3.7. Let us give an example in the (3, 2)-case. One has

μ̃0 = ν1 ⊗ ν2 ⊗ ν3,

μ̃1 = μ1 ⊗ ν2 ⊗ ν3 + ν1 ⊗ μ2 ⊗ ν3 + ν1 ⊗ ν2 ⊗ μ3,

μ̃2 = μ12 ⊗ ν3 + μ13 ⊗ ν2 + μ23 ⊗ ν1.

The projections of these measures onto X1 ×X2 are given by

Pr12(μ̃0) = ν1 ⊗ ν2,

Pr12(μ̃1) = Pr12(μ1 ⊗ ν2 ⊗ ν3) + Pr12(ν1 ⊗ μ2 ⊗ ν3) + Pr12(ν1 ⊗ ν2 ⊗ μ3)

= μ1 ⊗ ν2 + ν1 ⊗ μ2 + ν1 ⊗ ν2,

Pr12(μ̃2) = Pr12(μ12 ⊗ ν3) + Pr12(μ13 ⊗ ν2) + Pr12(μ23 ⊗ ν1)

= μ12 + μ1 ⊗ ν2 + ν1 ⊗ μ2.
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Thus for arbitrary coefficients λ0, λ1, λ2 one can find projection of λ0μ̃0 + λ1μ̃1 + λ2μ̃2 onto X1 ×X2:

Pr12(λ0μ̃0 + λ1μ̃1 + λ2μ̃2) = (λ0 + λ1)ν1 ⊗ ν2 + (λ1 + λ2)(μ1 ⊗ ν2 + ν1 ⊗ μ2) + λ2μ12.

In order to have equality Pr12(λ0μ̃0+λ1μ̃1+λ2μ̃2) = μ12 it is sufficient to require λ0+λ1 = 0, λ1+λ2 = 0, 
λ2 = 1. This system has a unique solution λ0 = 1, λ1 = −1, λ2 = 1. Thus Pr12(μ̃0 − μ̃1 + μ̃2) = μ12. By the 
reason of symmetry Pr13(μ̃0 − μ̃1 + μ̃2) = μ13 and Pr23(μ̃0 − μ̃1 + μ̃2) = μ23.

3.3. Dual condition for existence of a uniting measure

The following existence criterion for uniting measure is a particular case of a result obtained by Kellerer 
in [24]. We give an independent proof based on the use of the minimax theorem.

Theorem 3.8. Let X1, X2, . . . , Xn be compact metric spaces and let μα ∈ P(Xα), α ∈ Ink be a fixed 
family of measures (consistent or not). Then Π({μα}α∈Ink

) is not empty if and only if for every collection 
of functions {fα}α∈Ink

, fα ∈ L1(Xα, μα) satisfying assumption 
∑

α∈Ink
fα(xα) ≥ 0 for all x ∈ X the 

following inequality holds:

∑
α∈Ink

∫
Xα

fα dμα ≥ 0.

Proof. The existence of a uniting measure trivially implies the inequality. If μ ∈ Π({μα}α∈Ink
) and the set 

of functions fα satisfies the assumption of the theorem, the function F (x) =
∑

α∈Ink
fα(xα) is integrable 

with respect to μ and the following inequality holds:

∑
α∈Ink

∫
Xα

fα dμα =
∫
X

F dμ ≥
∫
X

0 dμ = 0.

Let us prove the theorem in the other direction. Assume that the collection of measures {μα}α∈Ink
does 

not satisfy assumptions of Definition 3.2. Then there exists α, β ∈ Ink, such that the measures ν1 = Prα∩βμα

and ν2 = Prα∩βμβ are different. Let A be a subset of Xα∩β satisfying ν1(A) < ν2(A). Set: fα(xα) = 1 if 
xα∩β ∈ A and 0 in the opposite case. In addition, set fβ(xβ) = −1 if xα∩β ∈ A, and 0 in the opposite case; 
fγ(xγ) = 0, if γ /∈ {α, β}. Then 

∑
γ∈Ink

fγ(xγ) = 0 for all x ∈ X. On the other hand

∑
γ∈Ink

∫
Xγ

fγ dμγ =
∫
Xα

fα dμα +
∫
Xβ

fβ dμβ = ν1(A) − ν2(A) < 0.

Thus, one can assume without loss of generality that the collection of measures {μα}α∈Ink
satisfies 

Definition 3.2. We apply the following version of the minimax theorem (see [8,36]):

Theorem 3.9 (Fenchel-Rockafellar Duality). Let E be a normed vector space and E∗ be the corresponding 
dual space. Consider convex functions Φ and Ψ on E, taking values in R ∪ {+∞}. Let Φ∗ and Ψ∗ be the 
corresponding Legendre transforms. In addition, assume that there exists z ∈ E satisfying Φ(z) < +∞, 
Ψ(z) < +∞. Then

inf[Ψ + Φ] = max[−Φ∗(−z) − Ψ∗(z)].

E z∈E∗
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Let E be the space of continuous bounded functions on X equipped with the uniform convergence norm 
|| ||∞. According to Radon theorem E∗ is the space of finite signed measures on X equipped with the full 
variation norm. Set:

Φ : u ∈ Cb(X) →
{

0, if u ≥ 0,
+∞ otherwise.

Ψ : u ∈ Cb(X) →
{∑

α∈Ink

∫
Xα

uα dμα, if u(x) =
∑

α∈Ink
uα(xα) for uα ∈ Cb(Xα),

+∞ otherwise.

Function Ψ does not depend on representation of u as sum of uα. Indeed, if μ is a signed measure 
satisfying Prαμ = μα for all α ∈ Ink, then 

∫
X
u dμ =

∑
α∈Ink

∫
Xα

uα dμα. The signed measure μ exists by 
Theorem 3.6. It is easy to check that functions Ψ and Φ are convex; in addition, function u ≡ 1 satisfies 
Φ(u) < +∞ and Ψ(u) < +∞, so by the minimax theorem the following equality holds:

inf
E

[Ψ + Φ] = max
z∈E∗

[−Φ∗(−z) − Ψ∗(z)].

It is easy to check that

inf
E

[Φ + Ψ] = inf∑
uα≥0

∑∫
Xα

uα dμα.

Let us find Φ∗(−π).

Φ∗(−π) = sup
u≥0

⎡⎣− ∫
X

u dπ

⎤⎦ = − inf
u≥0

∫
X

u dπ

If π is nonnegative, then 
∫
X
u dπ ≥ 0 for all u ≥ 0. Otherwise 

∫
X
u dπ can take arbitrary small values. 

Hence

Φ∗(−π) =
{

0, if π ≥ 0,
+∞, otherwise.

In the same way we check that

Ψ∗(π) =
{

0, if Prαπ = μα,

+∞, otherwise.

Thus the maximum maxπ∈E∗ [−Φ∗(−π) − Ψ∗(π)] equals 0, if there exists a nonnegative uniting measure, 
otherwise it equals −∞. In particular, if a uniting measure does not exist, then inf∑ fα≥0

∑∫
Xα

fα dμα =
−∞. Hence there exist continuous functions fα satisfying 

∑∫
Xα

fα dμα < 0. �
3.4. Sufficient condition for existence of a uniting measure

Let us mention the following trivial sufficient condition for existence of uniting measure.

Proposition 3.10. Assume that there exists a family of measures νi ∈ P(Xi), 1 ≤ i ≤ n, such that μα =∏
νi for all α ∈ Ink. Then the set Π({μα}α∈Ink

) is non-empty and 
∏n

νi is a uniting measure.
i∈α i=1
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We generalize this sufficient condition using Theorem 3.6.

Theorem 3.11 (Density condition). For given natural numbers 1 ≤ k < n there exists a constant λnk > 1
which admits the following property.

Assume we are given a consistent family of probability measures μα ∈ P(Xα), α ∈ Ink, and another 
family of probability measures νi ∈ P(Xi), 1 ≤ i ≤ n. Assume that every measure μα, α ∈ Ink, is absolutely 
continuous with respect to να =

∏
i∈α νi:

μα = ρα · να.

Finally, assume that there exist constants 0 < m ≤ M such that every density ρα satisfies m ≤ ρα ≤ M

να-almost everywhere for all α ∈ Ink.
Then Π({μα}α∈Ink

) is not empty provided Mm ≤ λnk.

Proof. The definition of m implies that μα −m · να is a nonnegative measure for all α ∈ Ink, hence m ≤ 1, 
because both μα and να are probability measures. In addition, if m = 1, the μα − να = 0 for all α ∈ Ink. 
In this case the measure ν =

∏n
i=1 νi is uniting.

Consider the case m < 1. Note that μ′
α = (μα − m · να)/(1 − m) is a probability measure for all 

α ∈ Ink, which is absolutely continuous with respect to να and its density is bounded from above by 
m

1−m (λnk − 1) > 0. In addition, the family of measures μ′
α satisfies consistency condition. Theorem 3.6

implies that given measures νi and μ′
α one can construct a family of measures μ̃′

t and find numbers λt such 
that the signed measure 

∑k
t=0 λtμ̃

′
t is uniting. Note that μ′

α is absolutely continuous with respect to να for all 
α ∈ Int, 1 ≤ t ≤ k, moreover, its density is bounded from above by m

1−m (λnk−1). This means that the same 
condition holds for μ̃′

α, where we consider the corresponding density with respect to ν =
∏n

i=1 νi. Hence μ̃′
t is 

absolutely continuous with respect to ν and its density is bounded almost everywhere by 
(
n
t

)
· m
1−m (λnk−1).

We infer from this that the density of the signed uniting measure μ′ =
∑k

t=0 λkμ̃
′
t is bounded from below 

by − 
∑k

t=0 |λt|
(
n
t

)
m

1−m (λnk − 1) = −C · m
1−m (λnk − 1), where C depends on (n, k) only.

Let us prove that the assertion of the theorem holds for λnk = 1 + 1
C . For the set of measures μ′

α we 
constructed a uniting signed measure μ′ which density with respect to ν is almost everywhere bounded from 
below by number −C · m

1−m (λnk−1) = − m
1−m . Then μ = (1 −m)μ′ +mν is a uniting measure for the family 

{μα}α∈Ink
, and its density is nonnegative ν-almost everywhere, hence μ is nonnegative. �

Thus we obtained a sufficient condition for existence of uniting measure for a wide class of functions. 
Moreover, the uniting measure obtained in Theorem 3.11 admits a bounded density. However, it is often 
helpful to require density to be bounded away from zero.

Definition 3.12. We say that measures μ and ν on the same measurable space (X, F) are uniformly equivalent, 
if there exists a Radon–Nikodym density ρ of μ with respect to ν, which is bounded from above and from 
below by positive constants: 0 < m ≤ ρ(x) ≤ M for all x ∈ X.

In particular, uniformly equivalent measures are absolutely continuous with respect to each other.
The existence of uniting measure uniformly equivalent to 

∏n
i=1 νi is stronger than the existence of any 

uniting measure (see Example 5.10). We will call such measures reducible later (see Definition 5.8) and we 
will need the existence of a reducible uniting measure to prove the existence of dual solution. Luckily we 
have a similar theorem.

Theorem 3.13 (Uniformly equivalent density condition). Under assumption of Theorem 3.11 there exists 
constant λ̂nk > 1 with the following property. If all α ∈ Ink satisfy m ≤ ρα ≤ M να-almost everywhere 
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and M
m ≤ λ̂nk, then the set Π({μα}α∈Ink

) contains at least one measure which is uniformly equivalent to ∏n
i=1 νi.

Proof. The proof follows the lines of the proof of Theorem 3.11. There we introduced constant C. One can 
check that if λ̂nk < 1 + 1

C then the density of the constructed measure μ is separated from zero. It is also 
obvious that this measure is bounded. �
Remark 3.14. We are interested in maximal possible values for λnk and λ̂nk in Theorem 3.11 and Theo-
rem 3.13. Though their values constructed in the provided proofs are arbitrarily close to each other, that 
may not be the case for their maximal values.

3.5. Estimates for (3, 2)-case

In the (3, 2)-case one can obtain explicit estimates on the optimal value of λ32 from Theorem 3.11.

Proposition 3.15. For λ32 > 2 the conclusion of Theorem 3.11 does not hold.

Proof. Let X1 = X2 = X3 = {0, 1} and let every νi be the uniform probability measure on Xi. Let us 
construct measures μ12, μ13, μ23 on spaces X1 × X2, X1 × X3 and X2 × X3 respectively. Consider the 
positive numbers m and M such that M/m = λ32 and 2(m + M) = 1. Set μij(xi, xj) = M , if xi + xj = 1; 
and μij(xi, xj) = m otherwise. The constructed measures are probability measures: μij(Xi×Xj) = 1, which 
follows from the equation 2(m + M) = 1.

Assume that a uniting measure μ exists. Consider the following sums:

A = 6m = μ12(0, 0) + μ12(1, 1) + μ13(0, 0) + μ13(1, 1) + μ23(0, 0) + μ23(1, 1)

= 3μ(0, 0, 0) + μ(1, 0, 0) + μ(0, 1, 0) + μ(0, 0, 1)

+ μ(1, 1, 0) + μ(1, 0, 1) + μ(0, 1, 1) + 3μ(1, 1, 1),

B = 6M = μ12(0, 1) + μ12(1, 0) + μ13(0, 1) + μ13(1, 0) + μ23(0, 1) + μ23(1, 0)

= 2μ(1, 0, 0) + 2μ(0, 1, 0) + 2μ(0, 0, 1) + 2μ(1, 1, 0) + 2μ(1, 0, 1) + 2μ(0, 1, 1).

On one hand 2A < B, because 2m < M . On the other hand, analyzing expressions on the right-hand 
sides we see that 2A ≥ B. We get a contradiction. �
Proposition 3.16. The conclusion of Theorem 3.13 holds for λ̂32 = 3

2 . In particular, there exists a uniting 
measure μ, which is uniformly equivalent to ν = ν1 ⊗ ν2 ⊗ ν3.

Proof. Let 0 < m ≤ M be constants from Theorem 3.11: m ≤ ρij ≤ M for all 1 ≤ i < j < M νij-almost 
everywhere. Clearly, m ≤ 1 ≤ M . If m = 1 or M = 1, then μij = νij , this means that ν is a uniting measure 
itself.

For m < 1 < M , we claim that the following expression for μ gives us a nonnegative uniting measure.

μ = 4μ1 ⊗ μ2 ⊗ μ3 − 2 (ν1 ⊗ μ2 ⊗ μ3 + μ1 ⊗ ν2 ⊗ μ3 + μ1 ⊗ μ2 ⊗ ν3)

+ 2 (μ12 ⊗ ν3 + μ13 ⊗ ν2 + μ23 ⊗ ν1) − (μ12 ⊗ μ3 + μ13 ⊗ μ2 + μ23 ⊗ μ1) .

Note that contrary to the proof of Theorem 3.11 this measure is not a linear combination of μ̃α defined in 
Definition 3.4.

Let us first check that μ is nonnegative. To this end we prove that its density with respect to ν = ν1⊗ν2⊗ν3
is nonnegative almost everywhere. The density of μ with respect to ν has the form
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dμ

dν
(x1, x2, x3) = 4ρ1(x1)ρ2(x2)ρ3(x3) − 2 (ρ1(x1)ρ2(x2) + ρ1(x1)ρ3(x3) + ρ2(x2)ρ3(x3))

+ 2 (ρ12(x1, x2) + ρ13(x1, x3) + ρ23(x2, x3))

− (ρ12(x1, x2)ρ3(x3) + ρ13(x1, x3)ρ2(x2) + ρ23(x2, x3)ρ1(x1)) .

Assumption m ≤ ρij(xi, xj) ≤ M implies that, for νi-almost all xi the inequality m ≤ ρi(xi) ≤ M holds, 
where ρi = dμi

dνi
. The assumption of the theorem implies 1 < M ≤ λ̂32m = 3

2m. Thus, it is sufficient to check 
inequality

4p1p2p3 − 2(p1p2 + p1p3 + p2p3) + 2(p12 + p13 + p23) − (p1p23 + p2p13 + p3p12) ≥ 0

for all m ≤ pi, pij ≤ 3
2m, 2

3 < m < 1, and for the proof of uniform boundedness it is sufficient to prove that 
there exists constant ε(m) > 0 such that

d(pi, pij) = 4p1p2p3 − 2(p1p2 + p1p3 + p2p3) + 2(p12 + p13 + p23) − (p1p23 + p2p13 + p3p12) ≥ ε(m).

For each fixed m, the 6-tuple of variables pi and pij lies in a compact Km given by conditions m ≤
pi, pij ≤ 3

2m. Function d is continuous, so it achieves a minimum at some point p ∈ Km. Note that d is 
linear in every variable pi, pij , thus p can be taken such that every variable equals m or 3

2m at p. The 
coefficient of pij equals 2 − pk > 0 provided pk ≤ 3

2m < 3
2 , hence this function is strictly increasing in pij. 

Then at p one has pij = m for all 1 ≤ i, j ≤ 3. Finally, we reduce the proof to the following inequality we 
have to check:

4p1p2p3 − 2(p1p2 + p1p3 + p2p3) −m(p1 + p2 + p3) + 6m ≥ ε(m)

where all pi ∈
{
m, 3

2m
}
, 2

3 < m < 1.
Since the function is symmetric we have to check the following inequalities:

1. p1 = p2 = p3 = m: 4m3 − 9m2 + 6m > 0 if 2
3 < m < 1;

2. p1 = 3
2m, p2 = p3 = m: 6m3 − 23

2 m2 + 6m > 0 if 2
3 < m < 1;

3. p1 = p2 = 3
2m, p3 = m: 9m3 − 29

2 m2 + 6m > 0 if 2
3 < m < 1;

4. p1 = p2 = p3 = 3
2m: 27

2 m3 − 18m2 + 6m > 0 if 2
3 < m < 1.

Every inequality can be easily checked and we complete the proof of nonnegativity of μ and its uniform 
equivalence to ν.

It remains to check that μ is uniting for μij :

Pr12(μ) = 4μ1 ⊗ μ2 − 2ν1 ⊗ μ2 − 2μ1 ⊗ ν2 − 2μ1 ⊗ μ2

+ 2μ12 + 2μ1 ⊗ ν2 + 2ν1 ⊗ μ2 − μ12 − μ1 ⊗ μ2 − μ1 ⊗ μ2 = μ12.

In the same way we check that the desired identities hold for other projections. �
One can prove another estimate for λ32 = 2. Unfortunately, the arguments in our proof can not be used 

to prove uniform equivalence of μ and ν.

Proposition 3.17. For the value λ32 = 2 the conclusion of Theorem 3.11 holds. Together with Proposi-
tion 3.15, we get that 2 is the greatest possible value for λ32.
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Proof. The proof we have is fairly long. It lasts till page 27 and contains a series of rather technical lemmas.
Let 0 < m ≤ M be constants from Theorem 3.11. Consider the following set:

Δ =
{
ξ – nonnegative measure on X1 ×X2 ×X3 : d(μij − Prij(ξ))

dνij
≥a.e. m for all {i, j} ∈ I3,2

}
.

This set is not empty because it contains the trivial (zero) measure. In addition, Δ is weakly closed. From 
assumption m ≤ d(μij−Prij(ξ))

dνij
we infer that μi ≥ Pri(ξ), hence Δ is uniformly tight and the variations of 

measures from Δ are uniformly bounded. Then the Prokhorov theorem for non-probability measures (see 
[5, Volume II, Theorem 8.6.2]) implies that Δ is weakly compact. Hence there exists an extreme measure 
ξmax, where functional ξmax(X) attains its maximum.

Remark 3.18. Later ξmax will be one of the components of our measure, so note that we can say nothing 
about its Radon–Nikodym density with respect to ν. That means that this argument can not be generalized 
to prove the existence of uniting measure uniformly equivalent to ν and so says nothing about λ̂32. In fact 
we do not know if λ̂32 can be taken arbitrarily close to 2.

For all {i, j} ∈ I3,2 Radon–Nikodym derivative d(μij−Prij(ξmax))
dνij

is defined up to measure 0. So let us fix 
some realization and use it later.

Lemma 3.19. For ν-almost all x ∈ X there exists a couple {i, j} ∈ I3,2 such that

d(μij − Prij(ξmax))
dνij

(xi, xj) = m.

Proof. Assume the converse. Then for the set

E =
{
x ∈ X : d(μij − Prij(ξm))

dνij
(xi, xj) > m for all {i, j} ∈ I3,2

}
we have ν(E) > 0. Then there exists ε > 0 such that

Eε =
{
x ∈ X : d(μij − Prij(ξm))

dνij
(xi, xj) ≥ m + ε for all {i, j} ∈ I3,2

}
satisfies ν(Eε) > 0. Let ξΔ be the measure which density (with respect to ν) equals ε on Eε and 0 otherwise. 
It is easy to check that ξmax + ξΔ ∈ Δ, (ξmax + ξΔ)(X) > ξmax(X) and this contradicts to definition of 
ξmax. �

Consider the family of probability measures

μ′
ij = μij − Prij(ξmax)

1 − ξmax(X) , 1 ≤ i, j ≤ 3.

Since {μij} is consistent, the family of measures {μ′
ij} is consistent too. Since ξmax ∈ Δ, we have m/α ≤

dμ′
ij/dνij ≤ M/α almost everywhere, where α = 1 − ξmax(X). Hence, the family {μ′

ij} satisfies assumptions 
of Proposition 3.17. Moreover, if a measure μ′ is uniting for μ′

ij , then the measure μ = αμ′ + ξmax is uniting 
for μij . Thus, it is sufficient to solve the problem only for μ′

ij .
Now, we replace μij with μ′

ij , m and M with m/α and M/α respectively. We may assume that densities 
ρi = dμi , ρij = dμij satisfying the following assumptions:
dνi dνij
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1. m ≤ ρij(xi, xj) ≤ M , 1 ≤ i, j ≤ 3 for all x ∈ X.
2.
∫
Xj

ρij(xi, xj) νj(dxj) = ρi(xi) for all xi ∈ Xi.
3. For ν-almost all x ∈ X at least one of the numbers ρij(xi, xj), 1 ≤ i, j ≤ 3, equals m.

Assumptions 1 and 2 are always fulfilled after changing ρi and ρij on a set of zero measure, and the last 
one follows from Lemma 3.19. Under these assumptions one can prove the following lemma:

Lemma 3.20. Assume that ρi, ρij satisfy Assumptions 1-3. Then for νij-almost all (xi, xj) ∈ Xij one of the 
following conditions holds: ρij(xi, xj) = m or ρi(xi) + ρj(xj) ≤ m + M .

Proof. Let k ∈ {1, 2, 3} \{i, j}. Let us denote by Xr
ij the set of couples (xi, xj) ∈ Xij such that for νk-almost 

all xk ∈ Xk one of the numbers ρij(xi, xj), ρik(xi, xk) and ρjk(xj , xk) equals m. Assumption 3 implies that 
Xr

ij has full measure with respect to νij .
Let (xi, xj) ∈ Xr

ij . Assume that ρij(xi, xj) > m. The for νk-almost all xk ∈ Xk at least one of the 
numbers ρik(xi, xk) and ρjk(xj , xk) equals m. In particular, ρik(xi, xk) +ρjk(xj , xk) ≤ m +M for νk-almost 
all xk ∈ Xk. Then we infer from 1, 2

ρi(xi) + ρj(xj) =
∫
Xk

ρik(xi, xk) dνk +
∫
Xk

ρjk(xj , xk) dνk ≤ m + M. �

Changing, if necessary, density functions ρi, ρij on a set of zero measure, we can assume, in addition, 
that the following holds:

4. For all (xi, xj) ∈ Xij one has ρij(xi, xj) = m or ρi(xi) + ρj(xj) ≤ m + M , 1 ≤ i, j ≤ 3.

Lemma 3.21. Let the density functions ρi, ρij satisfy Assumptions 1-4. Then for all i �= j and all xi ∈ Xi

the following inequality holds:

νj (xj ∈ Xj : ρj(xj) ≤ m + M − ρi(xi)) ≥
ρi(xi) −m

M −m
.

Proof. Fix a point xi ∈ Xi, and denote by A be the set of points xj ∈ Xj satisfying ρij(xi, xj) = m. Then 
ρi(xi) =

∫
Xj

ρij(xi, xj) dxj ≤ mνj(A) + M(1 − νj(A)), which implies νj(A) ≤ M−ρi(xi)
M−m .

On the other hand Assumption 4 implies that for all xj ∈ Xj\A the inequality ρi(xi) + ρj(xj) ≤ m +M

holds. Hence

νj (xj ∈ Xj : ρj(Xj) ≤ m + M − ρi(xi)) ≥ νj(Xj\A) = 1 − νj(A) ≥ ρi(xi) −m

M −m
. �

Choosing a sequence x(n)
i such that ρi(x(n)

i ) → Mi = supxi∈Xi
ρi(xi) and passing to the limit one gets 

the following corollary:

Corollary 3.22. Let Mi = supxi∈Xi
ρi(xi). Then for all j �= i the following inequality holds:

νj(xj ∈ Xj : ρj(Xj) ≤ m + M −Mi) ≥
Mi −m

M −m
.

Lemma 3.23. Let ρi, ρij satisfy Assumptions 1-4 and Mm ≤ 2. Then inequalities

2
3 ≤ m ≤ 1, pi(xi) ≤

m

2

(
3 +

√
3 − 2

m

)
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hold for all xi ∈ Xi, 1 ≤ i ≤ 3.

Proof. Let Mi = supxi∈Xi
ρi(xi). Assume that M1 ≥ M2 and M1 ≥ M3. It is sufficient to check that 32m ≥ 1

and M1 ≤ m
2

(
3 +

√
3 − 2

m

)
.

Assume that 3
2m ≥ M1. Then, since M1 = supx1∈X1

ρ1(x1), one has M1 ≥ 1. This implies 3
2m ≥ M1 ≥ 1. 

Moreover, M1 ≤ 3
2m ≤ m

2

(
3 +

√
3 − 2

m

)
.

Consider the case M1 ≥ 3
2m. Set A = {x2 ∈ X2 : ρ2(x2) ≤ m + M −M1}. Then the following holds:

1 =
∫
X2

ρ2(X2) dν2 ≤ (m + M −M1)ν2(A) + M2 (1 − ν2(A))

≤ (m + M −M1)ν2(A) + M1 (1 − ν2(A)) = (m + M − 2M1)ν2(A) + M1.

Corollary 3.22 implies ν2(A) ≥ M1−m
M−m ≥ M1

m − 1 (here we use M ≤ 2m). Applying this inequality and the 
inequality M1 ≥ 3

2m one gets

1 ≤ (m + M − 2M1)ν2(A) + M1 ≤ (3m− 2M1)ν2(A) + M1

≤ (3m− 2M1)
(
M1

m
− 1
)

+ M1 = m

(
−2
(
M1

m

)2

+ 6M1

m
− 3
)
.

The function −2x2 + 6x − 3 is decreasing on x ≥ 3
2 , hence

1 ≤ m

(
−2
(
M1

m

)2

+ 6M1

m
− 3
)

≤ m

(
−2
(

3
2

)2

+ 6 · 3
2 − 3

)
= 3

2m.

Moreover, −2 
(
M1
m

)2 + 6M1
m − 3 ≥ 1

m , thus M1
m ≤ 1

2

(
3 +

√
3 − 2

m

)
. �

Let us describe explicit constructions of uniting measures for m = 2
3 and 2

3 < m ≤ 1. If m = 2
3 , then 

ρi(xi) ≤ m
2

(
3 +

√
3 − 2

m

)
= 1 for all xi ∈ Xi. Measures μi and νi are probability measures, dμi

dνi
≤ 1. Hence 

μi = νi. The desired measure is given by

μ = μ1 ⊗ μ23 + μ2 ⊗ μ13 + μ3 ⊗ μ12 − 2μ1 ⊗ μ2 ⊗ μ3.

This measure is nonnegative: dμdν (x1, x2, x3) = ρ12(x1, x2) +ρ13(x1, x3) +ρ23(x2, x3) −2 ≥ 0 since ρij(xi, xj) ≥
m = 2

3 . In addition, it is uniting:

Pr12(μ) = μ1 ⊗ μ2 + μ2 ⊗ μ1 + μ12 − 2μ1 ⊗ μ2 = μ12,

and the same for other projections.
Let us consider the case 2

3 < m ≤ 1. Set: u =
√

3 − 2
m . Then 1

m = 1
2(3 − u2); u satisfies 0 < u ≤ 1 under 

assumption 2
3 < m ≤ 1. The desired measure is given by

μ = − 8
m2u(u + 1)3μ1 ⊗ μ2 ⊗ μ3 + 2 5u + 9

u(u + 1)3 ν1 ⊗ ν2 ⊗ ν3

+ 4 u + 3
3 (ν1 ⊗ μ2 ⊗ μ3 + μ1 ⊗ ν2 ⊗ μ3 + μ1 ⊗ μ2 ⊗ ν3)
mu(u + 1)
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− 2 5u + 9
u(u + 1)3 (μ1 ⊗ ν2 ⊗ ν3 + ν1 ⊗ μ2 ⊗ ν3 + ν1 ⊗ ν2 ⊗ μ3)

+ 2 u + 2
(u + 1)2 (μ23 ⊗ ν1 + μ13 ⊗ ν2 + μ12 ⊗ ν3)

− 2
m(u + 1)2 (μ23 ⊗ μ1 + μ13 ⊗ μ2 + μ12 ⊗ μ3) .

This measure is uniting for μij :

Pr12(μ) =
(

4 u + 3
mu(u + 1)3 − 2 5u + 9

u(u + 1)3 + 2 u + 2
(u + 1)2

)
(ν1 ⊗ μ2 + μ1 ⊗ ν2)

+
(
− 8
m2u(u + 1)3 + 4 u + 3

mu(u + 1)3 − 4
m(u + 1)2

)
μ1 ⊗ μ2

+
(

2 5u + 9
u(u + 1)3 − 2 5u + 9

u(u + 1)3

)
ν1 ⊗ ν2 +

(
2 u + 2
(u + 1)2 − 2

m(u + 1)2

)
μ12

= μ12.

To prove the desired equality we substitute 1
m = 1

2 (3 − u2) and check that all the terms are zero except the 
last one. In addition, the coefficient of μ12 equals 1. We do the same for the other projections.

To check nonnegativity of μ it is sufficient to check that the following expression is nonnegative:

− 8p1p2p3 + 4m(u + 3)(p1p2 + p1p3 + p2p3) − 2m2(5u + 9)(p1 + p2 + p3)

+ 2m2u(u + 1)(u + 2)(p12 + p13 + p23) − 2mu(u + 1)(p1p23 + p2p13 + p3p12)

+ 2m2(5u + 9),

where pi = ρi(xi), pij = ρij(xi, xj). One has m ≤ pij ≤ 2m by our assumption, m ≤ pi ≤
m
2

(
3 +

√
3 − 2

m

)
= m

2 (u + 3) and 2
3 < m ≤ 1 by Lemma 3.23.

This function is linear in pij with the coefficient

2m2u(u + 1)(u + 2) − 2mu(u + 1)pk ≥ 2m2u(u + 1)(u + 2) −m2u(u + 1)(u + 3) ≥ 0

(here we use that u ≤ 1), hence one can set pij = m for all 1 ≤ i, j ≤ 3. In this case the expression is equal 
to

− 8p1p2p3 + 4m(u + 3)(p1p2 + p1p3 + p2p3) − 2m2(5u + 9)(p1 + p2 + p3)

+ 6m3u(u + 1)(u + 2) − 2m2u(u + 1)(p1 + p2 + p3) + 2m2(5u + 9)

= − 8p1p2p3 + 4m(u + 3)(p1p2 + p1p3 + p2p3) − 2m2(u + 3)2(p1 + p2 + p3)

+ 6m3u(u + 1)(u + 2) −m3(u2 − 3)(5u + 9)

= (m(u + 3) − 2p1)(m(u + 3) − 2p2)(m(u + 3) − 2p3) ≥ 0.

This completes the proof of the well-posedness.
So, indeed, for the value λ32 = 2 the conclusion of Theorem 3.11 holds. This completes the proof of 

Proposition 3.17. �
One can prove many other sufficient conditions of existence of uniting measures. One of the examples is 

given in the next theorem.
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Theorem 3.24. Assume that a consistent family of measures {μij}{i,j}∈I3,2 satisfies μij ≥ 2
3μi ⊗ μj, 1 ≤

i, j ≤ 3. Then there exists a uniting measure.

Proof. The desired measure is given by

μ =
(
μ12 −

2
3μ1 ⊗ μ2

)
⊗ μ3 +

(
μ13 −

2
3μ1 ⊗ μ3

)
⊗ μ2 +

(
μ23 −

2
3μ2 ⊗ μ3

)
⊗ μ1.

Indeed, one has

Pr12(μ) = μ12 −
2
3μ1 ⊗ μ2 + μ1 ⊗ μ2 −

2
3μ1 ⊗ μ2 + μ2 ⊗ μ1 −

2
3μ1 ⊗ μ2 = μ12,

analogously for other projections. Thus μ is uniting. �
4. Connection to the Monge–Kantorovich problem with linear constraints

4.1. Monge–Kantorovich problem with linear constraints: definitions and basic facts

D. Zaev considered in [38] the multimarginal transportation problem with additional linear constraints. 
In this subsection we formulate basic definitions and theorems of his paper.

Let X1, X2, . . . , Xn be Polish spaces equipped with Borel σ-algebras, X := X1 × · · ·×Xn, μ1, . . . , μn are 
probability measures on X1, . . . , Xn respectively.

Let W be an arbitrary linear subspace in CL(X, {μk}nk=1). Let us consider the following subspace in the 
set of measures:

ΠW ({μk}nk=1) =
{
π ∈ Π({μk}nk=1) :

∫
ω dπ = 0 for all ω ∈ W

}
.

Finally, we are ready to formulate our constrained problem:

Problem 4.1 (Monge–Kantorovich problem with linear constraints). Given Polish spaces X = X1 × . . . Xn, 
Borel probability measures μk ∈ P(Xk), a cost function c ∈ CL(X, {μk}nk=1), and a linear subspace W ⊂
CL(X, {μk}nk=1) find

inf
π∈ΠW ({μk}n

k=1)

⎧⎨⎩
∫
X

c(x) dπ

⎫⎬⎭ .

The following theorems are the main results of [38]:

Theorem 4.2. Problem with additional linear constraints has a solution if the set ΠW ({μk}nk=1) is not empty.

Theorem 4.3 (Kantorovich duality with additional linear constraints). Let X1, . . . , Xn, and X = X1×· · ·×Xn

be Polish spaces, let μk ∈ P(Xk), k = 1, . . . , n, and let W be a linear subspace of CL(X, {μk}nk=1), c ∈
CL(X, {μk}nk=1). Then

inf
π∈ΠW ({μk}n

k=1)

∫
X

c dπ = sup
f+ω≤c

n∑
k=1

∫
Xk

fk(xk) dμk,

where f(x1, . . . , xn) =
∑n

k=1 fk(xk) and fk ∈ CL(Xk, μk), ω ∈ W . Moreover, if c ∈ Cb(X) and W ⊂ Cb(X), 
then the supremum can be taken on the set of bounded continuous functions fk ∈ Cb(Xk).
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4.2. A problem with linear constraints which is equivalent to the multistochastic problem

Let us consider again the multistochastic Monge–Kantorovich problem on Polish spaces X1, . . . , Xn. We 
are given 

(
n
k

)
probability measures μα on Xα, where α ∈ Ink, and a cost function c : X → R, X =

X1 × · · · ×Xn. Our aim is to construct an equivalent Monge–Kantorovich problem with linear constraints. 
Then we can apply Kantorovich duality from Theorem 4.3 for the 

(
n
k

)
spaces Xα with marginals μα (note 

that these spaces are themselves “composite”) and restrictions correspond to the dependencies of {Xα} in 
X.

In what follows we denote

X̃ =
∏

α∈Ink

Xα.

For every α ∈ Ink we define the corresponding natural projection Prα : X̃ → Xα.

Definition 4.4. For all α ∈ Ink and i ∈ α let us consider projection x̃i
α := PrXi

◦ PrXα
. In what follows x̃i

α

denotes the projection operator and, at the same time, the image of x̃ ∈ X̃ under action of this operator. 
The set {x̃}iα can be viewed as a set of coordinates of x̃ in X̃.

Definition 4.5. The subspace P ⊂ X̃ will be defined as follows:

P =
{
x̃ ∈ X̃ : x̃i

α = x̃i
β for all α, β ∈ Ink, i ∈ α ∩ β

}
.

The subspace P can be characterized in terms of a diagonal operator. The space X̃ is isomorphic to 

(X1 × · · · × Xn)(
n−1
k−1) = X(n−1

k−1): to verify this it is sufficient to interchange factors in the product of 
spaces Xα =

∏
i∈α Xi. Let Δ be the diagonal mapping from X onto X̃ = X(n−1

k−1). It is easy to see that 
this mapping is well–defined, because it does not depend on permutation of spaces in the isomorphism 

X̃ ∼= (X1 × · · · × Xn)(
n−1
k−1). Hence P is the image of X under action Δ and restriction of Δ on P acts 

bijectively.
The following properties of Δ are direct consequences of its definition:

Proposition 4.6. Operator Δ generates an operator Δ∗ : P(X) → P(X̃) acting on measures, which has the 
following properties:

1. For every measure μ ∈ P(X) the support of Δ∗(μ) is a subset of P .
2. Operator Δ∗ is a bijection between P(X) and the set of measures μ ∈ P(X̃) with the property supp(μ) ⊂

P .
3. Every μ ∈ P(X) and every α ∈ Ink satisfy Prα(μ) = PrXα

(Δ∗(μ)).
4. Let μ be an arbitrary probability measure on X and let c ∈ L1(X, μ). Let c̃ be a measurable function on 

X̃ such that c̃(x̃) = c(Δ−1(x̃)) for all x̃ ∈ P . Then c̃ ∈ L1(X̃, Δ∗(μ)) and 
∫
X
c dμ =

∫
X̃
c̃ dΔ∗(μ) =∫

P
c̃ dΔ∗(μ).

The following theorem is an immediate corollary of these properties

Theorem 4.7. Let c ∈ CL(X, {μα}α∈Ink
) be a function on X and c̃ ∈ CL(X̃, {μα}α∈Ink

) be any extension 
of c ◦ Δ−1 : P ⊂ X̃ → R to the whole space X̃. Then

inf
π∈Π(X,{μα}α∈Ink

)

∫
X

c dπ = inf
ξ∈Π(X̃,{μα}α∈Ink

)

∫
c̃ dξ.
supp(ξ)⊂P
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The minimum on the left-hand side is attained if and only if the minimum on the right-hand side is attained.

Remark 4.8. It is worth to remind the reader that c̃ ∈ CL(X̃, {μα}α∈Ink
) means that c̃ is a continuous 

function on X̃ and there exists such a collection of functions fα such that |c̃(x̃)| ≤
∑

α∈Ink
fα(x̃α). The 

existence of such c̃ extending c ◦ Δ−1 is not obvious. We prove it in Lemma 4.10.

Consider the distance function di on Xi and the family of functions ωi
αβ : X̃ → R,

ωi
αβ(x̃) := min(di(x̃i

α, x̃
i
β), 1)

for all α, β ∈ Ink, i ∈ α∩β. Note that every ωi
αβ is a nonnegative, continuous, bounded from above function, 

hence ωi
αβ ∈ Cb(X̃) ⊂ CL(X̃, {μα}α∈Ink

). In addition, if some measure μ ∈ P(X̃) satisfies 
∫
ωi
αβ dμ = 0, 

then supp(μ) ⊂ (ωi
αβ)−1(0) = {x̃ ∈ X̃ : x̃i

α = x̃i
β}.

Let us define the space of linear restrictions:

W := span{ωi
αβ} ⊂ Cb(X̃) ⊂ CL(X̃, {μα}α∈Ink

).

It follows from the observations collected above that for every π ∈ P(X̃) the equality 
∫
ω dπ = 0 holds for 

all ω ∈ W if and only if supp(π) ⊂ P . Hence

ΠW (X̃, {μα}α∈Ink
) = {π ∈ Π(X̃, {μα}α∈Ink

) : supp(π) ⊂ P}.

Having this in mind, we can give another formulation of Theorem 4.7:

Theorem 4.9. Let c ∈ CL(X, {μα}α∈Ink
) be a function on X and c̃ ∈ CL(X̃, {μα}α∈Ink

) be any extension 
of c ◦ Δ−1 : P ⊂ X̃ → R to the entire space X̃. Then

inf
π∈Π(X,{μα}α∈Ink

)

∫
X

c dπ = inf
ξ∈ΠW (X̃,{μα}α∈Ink

)

∫
c̃ dξ,

and the minimum on the left-hand side is attained if and only if it is attained on the right-hand side.

This theorem gives another formulation of the transportation problem with linear constraints which is 
equivalent to our multistochastic problem. It remains to prove that there exists a function c̃ which satisfies 
our requirement.

Lemma 4.10.

a) Let c ∈ Cb(X). There exists a function c̃ ∈ Cb(X̃) which is an extension of c ◦ Δ−1 onto X̃.
b) Let c ∈ CL(X, {μα}α∈Ink

). There exists a function c̃ ∈ CL(X̃, {μα}α∈Ink
) (note that c and c̃ belong to 

different spaces) which is an extension of c ◦ Δ−1 onto X̃.

Proof. Let pr be the projection of X̃ ∼= X(n−1
k−1) onto a fixed factor. It is easy to see that pr is continuous 

and pr ◦ Δ = id on X.
a) Assume that c ∈ Cb(X) and |c| ≤ M for some number M . Set c̃(x̃) := c(pr(x̃)). Function c̃ is 

continuous, |c̃| ≤ M and c̃(x̃) = c(Δ−1(x̃)) for all x̃ ∈ P . Thus, c̃ is an extension of c ◦ Δ−1 onto X̃ and 
c̃ ∈ Cb(X̃).
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b) Assume that c ∈ CL(X, {μα}α∈Ink
). Then |c(x)| ≤

∑
α∈Ink

fα(xα). Set

c̃(x̃) :=

⎧⎪⎪⎨⎪⎪⎩
−
∑

α∈Ink
fα(x̃α), if c(pr(x̃)) < −

∑
α∈Ink

fα(x̃α),∑
α∈Ink

fα(x̃α), if c(pr(x̃)) >
∑

α∈Ink
fα(x̃α),

c(pr(x̃)), otherwise.

The function c̃ constructed in this way is continuous, |c̃(x̃)| ≤
∑

α∈Ink
fα(x̃α) and c̃(x̃) = c(Δ−1(x̃)) for all 

x̃ ∈ P . Thus, c̃ is an extension of c ◦ Δ−1 onto X̃ and c̃ ∈ CL(X̃, {μα}α∈Ink
). �

Theorem 4.3 implies the following duality relation:

Proposition 4.11. Under assumptions of the previous theorem

inf
π∈Π(X,{μα}α∈Ink

)

∫
X

c dπ = sup
f+ω≤c̃

∑
α∈Ink

∫
Xα

fα(xα) dμα,

where f(x̃) =
∑

α∈Ink
fα(x̃α), fα ∈ CL(Xα, μα) (or Cb(Xα), if c ∈ Cb(X)), ω ∈ W .

Assume that for the family of functions fα there exists ω ∈ W such that 
∑

α∈Ink
fα(x̃α) + ω(x̃) ≤ c̃(x̃)

for all x̃ ∈ X̃. In particular, this equality holds for all x̃ ∈ P . Then for all x ∈ X

∑
α∈Ink

fα(Δ(x)α) + ω(Δ(x)) ≤ c̃(Δ(x)).

Moreover, c̃(Δ(x)) = c(x), ω(Δ(x)) = 0, Δ(x)α = xα, hence 
∑

α∈Ink
fα(xα) ≤ c(x) for all x ∈ X. One gets

sup
f+ω≤c̃

∑
α∈Ink

∫
Xα

fα(xα) dμα ≤ sup
f≤c

∑
α∈Ink

∫
Xα

fα(xα) dμα.

In addition, the following inequality holds:

inf
π∈Π(X,{μα}α∈Ink

)

∫
X

c dπ ≥ sup
f≤c

∑
α∈Ink

∫
Xα

fα(xα) dμα.

Summarizing these results we get the following final version of our duality theorem that generalizes the 
duality theorem for compact spaces proven in the paper [19, Theorem 3.2]:

Theorem 4.12 (Kantorovich duality). Assume we are given Polish spaces X1, . . . , Xn and a family of mea-
sures μα ∈ P(Xα), where α ∈ Ink. Let c ∈ CL(X, {μα}α∈Ink

) be a cost function on X. Then

inf
π∈Π({μα}α∈Ink

)

∫
X

c dπ = sup
f≤c

∑
α∈Ink

∫
Xα

fα dμα,

where f(x) =
∑

α∈Ink
fα(xα) and fα ∈ CL(Xα, μα) for all α ∈ Ink. Moreover, if c ∈ Cb(X), then the 

supremum can be taken on the set of bounded continuous functions fα ∈ Cb(Xα). If the set Π({μα}α∈Ink
)

is non-empty, the infimum on the left-hand side is attained.
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Remark 4.13. Note that the statement of this theorem holds even when the set Π({μα}α∈Ink
) is empty. In 

this case, we define the infimum in the left-hand side to be +∞. The supremum in the right-hand side is also 
equal to +∞. For the case of compact spaces, it follows from Theorem 3.8, and for the case of non-compact 
Xi, this is a part of the Kantorovich duality Theorem 4.3 proven by Zaev.

5. Sufficient conditions for existence of a dual solution

5.1. Definition and properties of (n, k)-functions

Definition 5.1. Assume we are given Polish spaces X1, . . . , Xn and a positive integer 1 ≤ k < n. A function 
F : X → [−∞, +∞) is called an (n, k)-function if there exists a collection of functions {fα}α∈Ink

, fα : Xα →
[−∞, +∞) satisfying

F (x) =
∑

α∈Ink

fα(xα)

for all x ∈ X. If F (x) > −∞ for each x (and therefore fα(xα) > −∞ for all xα ∈ Xα), F is called a finite 
(n, k)-function.

This definition is given without any additional assumptions on the functions fα and the function F . We 
prove that for every (n, k)-function F there exists a “regular” collection of functions {fα}α∈Ink

such that 
F (x) =

∑
α∈Ink

fα(xα) for all x ∈ X.
Let us introduce more notations. For xα ∈ Xα, xβ ∈ Xβ , such that α ∩ β = ∅, we denote by xαxβ a 

point from the space Xα
β, whose coordinates will be the union of the coordinates xα and xβ. In addition, 
we write n = {1, 2, . . . , n}.

Proposition 5.2. Let F be a finite (n, k)-function defined on the space X. Fix y ∈ X. For each α ∈ In we 
define a function Fα : xα 
→ F (xαyn\α) on the space Xα.

Then there exists a sequence of real numbers {λi}ki=0 depending only on n and k such that F (x) =∑
α∈Ink

f̂α(xα) for each x ∈ X, where

f̂α(xα) =
∑
β⊆α

λ|β|Fβ(xβ), α ∈ Ink.

This representation of F is regular in the following sense: if F is a measurable / continuous / bounded 
function, then for all α ∈ Ink the function f̂α is measurable / continuous / bounded too.

Example 5.3. Let F be a finite (n, 1)-function. Fix y = (y1, y2, . . . , yn) ∈ X. Let λ0 = 1
n − 1 and λ1 = 1. 

Then

f̂i(xi) = Fi(xi) −
n− 1
n

F∅ = Fi(y1, . . . , yi−1, xi, yi+1, . . . , yn) − n− 1
n

F (y1, . . . , yn).

Since F is a finite (n, 1)-function, there exists a sequence of functions fi : Xi → R such that F (x1, . . . , xn) =
f1(x1) + · · · + fn(xn) for all x ∈ X. One can easily verify that

f̂i(xi) = fi(xi) − fi(yi) + 1
n

(f1(y1) + · · · + fn(yn)),

and therefore F (x) =
∑n

f̂i(xi) for all x ∈ X.
i=1
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Example 5.4. Let F be a finite (3, 2)-function. Fix (y1, y2, y3) ∈ X. Let λ0 = 1/3, λ1 = −1/2 and λ2 = 1. 
Then by construction

f̂12(x1, x2) = F (x1, x2, y3) −
1
2F (x1, y2, y3) −

1
2F (y1, x2, y3) + 1

3F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3) −
1
2F (x1, y2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3) −
1
2F (y1, x2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3).

Similarly to Example 5.3 we can verify that

F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

for all x ∈ X.

Proof of Proposition 5.2. Consider a function F̂ : X → R defined as follows:

F̂ (x) =
∑

α∈Ink

f̂α(xα).

Since by construction f̂(xα) =
∑

β⊆α λ|β|Fβ(xβ), one has

F̂ (x) =
∑
β∈In

∑
α∈Ink : β⊆α

λ|β|Fβ(xβ).

For every β ∈ In, let us find the amount Aβ of numbers α ∈ Ink satisfying β ⊆ α. If |β| > k, then there 
is no such α. Otherwise, it can be easily verified that Aβ =

(n−|β|
k−|β|

)
. Hence,

F̂ (x) =
∑

β∈In : |β|≤k

(
n− |β|
k − |β|

)
λ|β|Fβ(xβ) =

k∑
t=0

λt

(
n− t

k − t

) ∑
β∈Int

Fβ(xβ).

Since F is a finite (n, k)-function, there exists a collection of functions {fα}α∈Ink
, fα : Xα → R, such 

that for all x ∈ X we have ∑
α∈Ink

fα(xα) = F (x).

For each β ∈ In the function Fβ(xβ) can be represented as follows:

Fβ(xβ) =
∑

γ,δ∈In

fγ
δ(xγyδ),

where the sum is taken for all pairs of disjoint sets of indices γ, δ ∈ In satisfying γ ⊆ β, δ ⊆ n\β and 
|γ| + |δ| = k. Hence, the function F̂ (x) can be represented as follows:

F̂ (x) =
k∑

t=0
λt

(
n− t

k − t

) ∑
β∈Int

Fβ(xβ) =
∑

γ,δ∈In

cγ,δfγ
δ(xγyδ), (6)

where the last sum is taken for all pairs of disjoint sets of indices γ and δ such that |γ| + |δ| = k, and cγ,δ
is a linear combination of {λi}ki=0 with constant coefficients.
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Let us find the coefficient cγ,δ. To this end, let us find for each 0 ≤ t ≤ k the amount of indices 
β ∈ Int satisfying γ ⊆ β and δ ⊆ n\β. If t < |γ|, then this quantity is trivially zero. Similarly, it is zero if 
t > n − |δ| = n − k + |γ|. Otherwise, exactly |γ| indices of β are fixed, and we need to choose t − |γ| indices 
from n − |γ| − |δ| = n − k available items. Hence, the amount of such β is 

(
n−k
t−|γ|

)
. Substituting this into 

equation (6) we get

cγ,δ =
min(k,n−k+|γ|)∑

t=|γ|
λt

(
n− t

k − t

)(
n− k

t− |γ|

)
.

In particular, the coefficient cγ,δ depends only on |γ|.
In order for the equality F (x) = F̂ (x) to hold, it is sufficient to require that the coefficients cγ,δ satisfy 

the following equalities:

cγ,δ =
{

1, if |γ| = k,
0, otherwise.

We obtain the system of linear equations on λ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min(k,n−k+a)∑
t=a

λt

(
n− t

k − t

)(
n− k

t− a

)
= 0 for 0 ≤ a < k,

min(k,n−k+k)∑
t=k

λt

(
n− t

k − t

)(
n− k

t− k

)
= λk = 1.

The matrix of this linear system is upper-triangular and all diagonal elements are not equal to 0. 
Hence, this system admits a unique solution {λ̂i}ki=0. Thus, if f̂α(xα) =

∑
β⊆α λ̂|β|Fβ(xβ), then F (x) =∑

α∈Ink
f̂α(xα) for all x ∈ X. �

For 1 ≤ i ≤ n, we fix a probability measure μi on the space Xi. For each α ∈ In we denote by μα the 
probability measure 

∏
i∈α μi on the space Xα, and we denote by μ the probability measure 

∏
1≤i≤n μi on 

the space X. If a finite (n, k)-function F is integrable (with respect to μ), one might expect that there exists 
a collection of integrable functions {fα}α∈Ink

(with respect to μα) such that F (x) =
∑

α∈Ink
fα(xα). We 

will prove it in Theorem 5.6 using a collection of integrable functions {f̂α} constructed in Proposition 5.2.
To achieve this let us first verify the following lemma:

Lemma 5.5. Let Xi, 1 ≤ i ≤ n, be Polish spaces equipped with the Borel σ-algebras, and for every i let μi

be a probability measure one Xi. Let c : X → R be an integrable function on X. Fix a point y ∈ X, and for 
each α ∈ In let us denote by cα the function xα 
→ c(xαyn\α) defined on Xα. For α = ∅ the function c∅ is 
a constant function on the one-point space X∅ which is equal to c(y), and ‖c∅‖1 is just the absolute value 
of c(y).

Then there exists a point y ∈ X such that ‖cα‖1 ≤ 2n+1 ‖c‖1 for all α ∈ In.

Proof. For each α ∈ In the spaces Xn\α×Xα and X are canonically isomorphic, and therefore the function 
c can be viewed as a function of two arguments c(xn\α, yα), where xn\α ∈ Xn\α and yα ∈ Xα.

By the Fubini-Tonelli theorem, the function |c(·, yα)| is integrable for μα-almost all yα and

‖c‖1 =
∫ ⎛⎜⎝ ∫

|c(xn\α, yα)|μn\α(dxn\α)

⎞⎟⎠ μα(dyα). (7)

Xα Xn\α
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Consider the internal function from this expression:

Cα(yα) =
∫

Xn\α

|c(xn\α, yα)|μn\α(dxn\α).

This function is non-negative. In addition, it follows from (7), Cα ∈ L1(Xα, μα) and ‖Cα‖1 = ‖c‖1. Let

Aα =
{
yα ∈ Xα : Cα(yα) > 2n+1 ‖c‖1

}
.

If ‖c‖1 = 0, then Cα(yα) is equal to 0 for μα-almost all points yα, and therefore μα(Aα) = 0. Otherwise, it 
follows from Markov’s inequality that

μα(Aα) ≤ 1
2n+1 ‖c‖1

∫
Xα

Cα(yα)μα(dα) =
‖Cα‖1

2n+1 ‖c‖1
= 1

2n+1 .

In both cases we conclude that μα(Aα) ≤ 2−n−1.
If y ∈ Pr−1

α (Xα\Aα), then

Cα(yα) ≤ 2n+1 ‖c‖ ,

and therefore the function cn\α : xn\α 
→ c(xn\αyα) is integrable with respect to μn\α and∥∥cn\α
∥∥

1 = Cα(yα) ≤ 2n+1 ‖c‖1 .

Let us define

A =
⋂

α∈In

Pr−1
α (Xα\Aα).

Then if y ∈ A, for all α ∈ In the function cn\α : xn\α 
→ c(xn\αyα) is integrable and 
∥∥cn\α

∥∥
1 ≤ 2n+1 ‖c‖1.

We only need to verify that A is non-empty. We have

μ
(
Pr−1

α (Xα\Aα)
)

= μα (Xα\Aα) = 1 − μα(Aα) ≥ 1 − 1
2n+1 ,

and therefore

μ(A) ≥ 1 − |In|
2n+1 ≥ 1 − 2n

2n+1 = 1
2 .

Thus, A is a set of positive measure, and therefore A �= ∅. �
Theorem 5.6. For every 1 ≤ i ≤ n, let Xi be a Polish space equipped with the Borel σ-algebra, and let μi be 
a probability measure on Xi. There exists a constant C depending only on n and k such that for any finite 
(n, k)-function F ∈ L1(X, μ) there exists a collection of integrable functions {f̂α}α∈Ink

, f̂α ∈ L1(Xα, μα), 
such that

F (x) =
∑

α∈Ink

f̂α(xα)

for all x ∈ X and ‖f̂α‖1 ≤ C · ‖F‖ for all α ∈ Ink.
1
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Proof. Consider a finite (n, k)-function F defined on the space X. By Lemma 5.5 there exists a point y ∈ X

such that the function Fα : xα 
→ F (xαyn\α) is integrable and ‖Fα‖1 ≤ 2n+1 ‖F‖1 for all α ∈ In.
By Proposition 5.2 there exists a sequence of real numbers {λi}ki=0 such that F (x) =

∑
α∈Ink

f̂α(xα) for 
all x ∈ X, where

f̂α(xα) =
∑
β⊆α

λ|β|Fβ(xβ), α ∈ Ink.

Since Fβ ∈ L1(Xβ , μβ) for all β ∈ In, we conclude that f̂α ∈ L1(Xα, μα). In addition,

∥∥∥f̂α∥∥∥
1
≤
∑
β⊆α

∣∣λ|β|
∣∣ · ‖Fβ‖1 ≤ 2n+1 ‖F‖1

∑
β⊆α

∣∣λ|β|
∣∣ = 2n+1 ‖F‖1

k∑
t=0

(
k

t

)
|λt| .

Thus, we conclude that 
∥∥∥f̂α∥∥∥

1
≤ C · ‖F‖1, where

C = 2n+1
k∑

t=0

(
k

t

)
|λt|,

and this constant depends only on n and k. �
Example 5.7. Let us find a constant C explicitly for the case of the (3, 2)-problem. Consider a finite integrable 
(3, 2)-function F . There exists a point y ∈ X = X1 ×X2 ×X3 such that ‖Fα‖1 ≤ 16 ‖F‖1 for all α ∈ I3. 
By Example 5.4 the functions

f̂12(x1, x2) = F (x1, x2, y3) −
1
2F (x1, y2, y3) −

1
2F (y1, x2, y3) + 1

3F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3) −
1
2F (x1, y2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3) −
1
2F (y1, x2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3),

satisfy the equation F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) for all (x1, x2, x3) ∈ X. All 
functions {f̂ij} are integrable with respect to μi ⊗ μj . In addition,∥∥∥f̂12

∥∥∥
1
≤ ‖F (·, ·, y3)‖1 + 1

2 ‖F (·, y2, y3)‖1 + 1
2 ‖F (y1, ·, y3)‖1 + 1

3 |F (y1, y2, y3)|

≤ 16
(

1 + 1
2 + 1

2 + 1
3

)
‖F‖1 < 38 ‖F‖1 .

Similarly, 
∥∥∥f̂13

∥∥∥
1
< 38 ‖F‖1 and 

∥∥∥f̂23

∥∥∥
1
< 38 ‖F‖1, and therefore we can put C = 38. This constant estimate 

is crude, but we do not need to know the optimal value.

We want to generalize this property to a wider class of measures that are uniformly equivalent to the 
product of their projections to one-dimensional spaces.

Definition 5.8. We call the probability measure μ on the space X reducible if for 1 ≤ i ≤ n there exists a 
probability measure νi on spaces Xi such that μ is uniformly equivalent to 

∏
1≤i≤n νi.

We call the consistent set of probability measures {μα}α∈Ink
reducible if there exists a uniting reducible 

measure μ ∈ Π({μα}α∈Ink
).
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If the probability measures μ and ν on the space X are uniformly equivalent, then their projections 
are also uniformly equivalent: Prαμ is uniformly equivalent to Prαν for all α ∈ In. In particular, if the 
set of measures {μα}α∈Ink

is reducible, then μi = Pri(μ) is uniformly equivalent to νi. Then the measure ∏
1≤i≤n μi is uniformly equivalent to the measure 

∏
1≤i≤n νi. Hence, the following is true:

Proposition 5.9. A collection of probability measures {μα}α∈Ink
is reducible if and only if there exists a 

uniting measure μ ∈ Π({μα}α∈Ink
), which is uniformly equivalent to 

∏
1≤i≤n μi.

If the set of measures μα is reducible, then for all β ∈ Int, t ≤ k, the measure μβ is uniformly equivalent 
to 
∏

i∈β μi. It is easy to see that this condition is not sufficient.

Example 5.10. Let X1, X2 and X3 be discrete spaces, each consisting of two elements {0, 1}. Define a 
probability measure μij on the space Xi ×Xj as follows:

μij(xi, xj) =
{

1
3 , if xi �= xj ,
1
6 , otherwise.

The triple of measures {μij}{i,j}∈I3,2 is consistent. In addition, every measure μij , {i, j} ∈ I3,2, is 
uniformly equivalent to μi ⊗ μj . The set Π({μij}{i,j}∈I3,2) is non-empty: consider the following measure μ
on the space X1 ×X2 ×X3: μ(x1, x2, x3) = 0 if x1 = x2 = x3, otherwise μ(x1, x2, x3) = 1/6. It is easy to 
check that μ ∈ Π({μij}{i,j}∈I3,2).

Let ν ∈ Π({μij}{i,j}∈I3,2). Then the following equations hold:

ν(0, 0, 0) + ν(0, 0, 1) = μ12(0, 0) = 1
6 ,

ν(0, 0, 1) + ν(0, 1, 1) = μ13(0, 1) = 1
3 ,

ν(0, 1, 1) + ν(1, 1, 1) = μ23(1, 1) = 1
6 .

From these equations we get ν(0, 0, 0) + ν(1, 1, 1) = 0. From the non-negativity of the measure we get 
ν(0, 0, 0) = ν(1, 1, 1) = 0, and then we easily verify that ν(x1, x2, x3) = 1/6 for the remaining points. Thus 
Π({μij}{i,j}∈I3,2) consists of a single measure that is not uniformly equivalent to μ1 ⊗ μ2 ⊗ μ3.

The following theorem generalizes Theorem 5.6 to reducible collections of measures.

Theorem 5.11. For 1 ≤ i ≤ n, let Xi be a Polish space equipped with the Borel σ-algebra, and let μ be a 
reducible probability measure on X. Denote μα = Prα(μ). Then there exists a constant Cμ depending on 
the measure μ and parameters (n, k) such that for any finite (n, k)-function F ∈ L1(X, μ) there exists a 
collection of integrable functions {f̂α}α∈Ink

, f̂α ∈ L1(Xα, μα), such that

F (x) =
∑

α∈Ink

f̂α(xα)

for all x ∈ X and ∥∥∥f̂α∥∥∥
L1(μα)

≤ Cμ · ‖F‖L1(μ)

for all α ∈ Ink.
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Proof. Since μ is reducible, there exist probability measures νi ∈ P(Xi) and positive reals m and M such 
that m · ν ≤ μ ≤ M · ν, where ν =

∏
1≤i≤n νi.

Consider a finite (n, k)-function F ∈ L1(X, μ). Since μ ≥ m · ν, the function F is integrable with respect 
to ν and

‖F‖L1(ν) ≤
1
m

‖F‖L1(μ) .

Denote να =
∏

i∈α νi. It follows from Theorem 5.6 that there exists a collection of integrable functions 
{f̂α}α∈Ink

, f̂α ∈ L1(Xα, να) such that

F (x) =
∑

α∈Ink

f̂α(xα)

for all x ∈ X and ∥∥∥f̂α∥∥∥
L1(να)

≤ C · ‖F‖L1(ν) ≤
C

m
‖F‖L1(μ)

for all α ∈ Ink, where C is a constant depending only on n and k
Since M · ν ≥ μ, we have M · να ≥ μα for all α ∈ Ink. Hence, the function f̂α is integrable with respect 

to μα and

∥∥∥f̂α∥∥∥
L1(μα)

≤ M
∥∥∥f̂α∥∥∥

L1(να)
≤ M

m
C ‖F‖L1(μ)

for all α ∈ Ink. Thus, we can put Cμ = M
mC. �

5.2. Existence of a dual solution for reducible collections of measures

First, we generalize the notion of the proper thickness of the set introduced in [35].

Definition 5.12. Let X1, . . . , Xn be Polish spaces, and for each α ∈ Ink let μα be a probability measure on 
the space Xα. For a measurable set A ⊂ X define its proper (n, k)-thickness as

sth(A) = inf
{ ∑

α∈Ink

μα(Yα) : Yα ⊆ Xα, A ⊆
⋃

α∈Ink

Pr−1
α (Yα)

}
. (8)

We are going to use this notion in the particular case of sets with zero proper thickness.

Proposition 5.13. If sth(A) = 0, then the infimum in (8) is attained: there exist measurable subsets Yα ⊆ Xα, 
α ∈ Ink, such that μα(Yα) = 0 and A ⊆

⋃
α∈Ink

Pr−1
α (Yα).

Proof. The proof follows the proof of [35, Lemma 2.5.4]. If for a collection of measurable subsets {Yα}α∈Ink

we have A ⊆
⋃

α∈Ink
Pr−1

α (Yα), then fα = 1[Yα] satisfy the inequality

∑
α∈Ink

fα(xα) ≥ 1[A](x)

for all x ∈ X, where 1[A] is the characteristic function of the set A. Moreover, it is clear that
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∑
α∈Ink

∫
Xα

fα(xα)μα(dxα) =
∑

α∈Ink

μα(Yα).

Since sth(A) = 0, we can consider a minimizing sequence of collections of functions {f (t)
α }α, f (t)

α : Xα →
[0, 1], such that ∑

α∈Ink

f (t)
α (xα) ≥ 1[A](x)

for all x ∈ X and

∑
α∈Ink

∫
Xα

f (t)
α (xα)μα(dxα) −−−→

t→∞
0.

Since f (t)
α is non-negative for all α ∈ Ink and for all t, we conclude that∫

Xα

f (t)
α (xα)μα(dxα) −−−→

t→∞
0 for all α ∈ Ink.

Let us recall the formulation of the Komlós theorem.

Theorem 5.14 ([5, Theorem 4.7.24]). Let μ be a finite nonnegative measure on a space X, let {fn} ⊂ L1(μ), 
and let

sup
n

‖fn‖L1(μ) < ∞.

Then, one can find a subsequence {gn} ⊆ {fn} and a function g ∈ L1(μ) such that, for every sequence 
{hn} ⊆ {gn}, the arithmetic means (h1 + · · · + hn)/n converge almost everywhere to g.

Using this theorem and passing, if necessary, to subsequences, we may assume that the sequence

g(t)
α = 1

t

(
f (1)
α + · · · + f (t)

α

)
converges to some integrable function gα μα-almost everywhere in Xα for all α ∈ Ink. Thus, we can suppose 
that

gα(xα) = lim sup
t→∞

g(t)
α (xα) for all xα ∈ Xα.

By construction we obtain 0 ≤ gα(xα) ≤ 1 for all xα ∈ Xα. Also, since 
∑

α∈Ink
g
(t)
α (xα) ≥ 1[A](x) for all 

x ∈ X and for all t, we conclude that∑
α∈Ink

gα(xα) ≥ 1[A](x) for all x ∈ X. (9)

In addition, since |g(t)
α (xα)| ≤ 1 it follows from the Lebesgue’s dominated convergence theorem that∫

gα(xα)μα(dxα) = lim
t→∞

∫
g(t)
α (xα)μα(dxα) = lim

t→∞

∫
f (t)
α (xα)μα(dxα) = 0.
Xα Xα Xα
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Thus, since the function gα is non-negative, we conclude that gα(xα) = 0 for μα-almost all xα ∈ Xα.
Consider the collection of sets {Yα}α∈Ink

:

Yα = {xα ∈ Xα : gα(xα) > 0} .

Since gα is equal to 0 almost everywhere on Xα, we have μα(Yα) = 0. In addition, if x ∈ A, then it follows 
from inequality (9) that 

∑
α∈Ink

gα(xα) ≥ 1, and therefore there exists at least one α ∈ Ink such that 
gα(xα) > 0 or equivalently xα ∈ Yα. Thus, A ⊆

⋃
α∈Ink

Pr−1
α (Yα). �

Definition 5.15. We say that a measurable set A ⊂ X is a zero (n, k)-thickness set if sth(A) = 0, or 
equivalently if there exist a collection of measurable subsets Yα ⊂ Xα, α ∈ Ink such that μα(Yα) = 0 for all 
α and A ⊆ ∪α∈Ink

Pr−1
α (Yα).

In addition to the standard dual multistochastic problem, we consider a more convenient relaxed dual 
problem.

Definition 5.16 (Relaxed dual problem). Let c be a measurable cost function on the space X. Denote by

Ψc({μα}α∈Ink
)

the set of collections of integrable functions {fα}α∈Ink
, fα : Xα → R such that inequality∑

α∈Ink

fα(xα) ≤ c(x)

holds at all points x ∈ X except a zero (n, k)-thickness set. Then, in the relaxed dual problem we are looking 
for

J = sup

⎧⎨⎩ ∑
α∈Ink

∫
Xα

fα(xα)μα(dxα) : {fα} ∈ Ψc({μα}α∈Ink
)

⎫⎬⎭
First, let us verify that Kantorovich duality also holds for the relaxed dual problem.

Theorem 5.17 (Kantorovich duality for the relaxed dual problem). Assume we are given Polish spaces 
X1, . . . , Xn and a family of measures μα ∈ P(Xα), where α ∈ Ink. Let c ∈ CL(X, {μα}α∈Ink

) be a cost 
function on X. Then

inf
π∈Π({μα}α∈Ink

∫
X

c dπ = sup
{fα}∈Ψc({μα}α∈Ink

)

∑
α∈Ink

∫
Xα

fα dμα.

If the set Π({μα}α∈Ink
) is non-empty, the infimum on the left-hand side is attained.

Proof. If {fα} ∈ Ψc({μα}α∈Ink
), then there exists a collection of measurable subsets Yα ⊂ Xα such that 

μα(Yα) = 0 and ∑
α∈Ink

fα(xα) ≤ c(x) for all x /∈
⋃

α∈Ink

Pr−1
α (Yα).

Consider the collection of functions {f̂α} defined as follows: f̂α(xα) = fα(xα) if xα /∈ Yα and f̂α(xα) = −∞
otherwise. For all α ∈ Ink the function f̂α coincides with fα almost everywhere with respect to μα, and 
therefore
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∑
α∈Ink

∫
f̂α(xα)μα(dxα) =

∑
α∈Ink

∫
fα(xα)μα(dxα)

In addition, the inequality 
∑

α∈Ink
f̂α(xα) ≤ c(x) holds for all x ∈ X. Thus, for any uniting measure 

π ∈ Π({μα}α∈Ink
) we have

∑
α∈Ink

∫
fα(xα)μα(dxα) =

∑
α∈Ink

∫
f̂α(xα)μα(dxα) =

∫
X

( ∑
α∈Ink

f̂α(xα)
)

dπ ≤
∫
X

c(x) dπ.

In particular, we conclude that

inf
π∈Π({μα}α∈Ink

∫
X

c dπ ≥ sup
{fα}∈Ψc({μα}α∈Ink

)

∑
α∈Ink

∫
Xα

fα dμα, (10)

which is usually called “the weak duality”. Since every collection of functions {fα}α∈Ink
satisfying the 

conditions fα ∈ CL(Xα, μα) and 
∑

α∈Ink
fα(xα) ≤ c(x) for all x ∈ X belongs to the space Ψc({μα}α∈Ink

), 
we conclude that

sup
{fα}∈Ψc({μα}α∈Ink

)

∑
α∈Ink

∫
Xα

fα dμα ≥ sup
fα∈CL(Xα,μα),∑

fα≤c

∑
α∈Ink

∫
Xα

fα dμα.

By Theorem 4.12,

inf
π∈Π({μα}α∈Ink

∫
X

c dπ = sup
fα∈CL(Xα,μα),∑

fα≤c

∑
α∈Ink

∫
Xα

fα dμα;

thus, the equality is achieved in expression (10). �
In [25] the following theorem was proved, establishing the existence of a dual solution in the multi-

marginal case.

Theorem 5.18 (Kellerer). For every 1 ≤ i ≤ n, let Xi be a Polish space equipped with a Borel probability 
measure μi. Let c : X1 × · · · ×Xn → [−∞, +∞] be a measurable cost function on the space X1 × · · · ×Xn. 
Suppose that there exists a sequence of integrable functions {ci}ni=1, ci : Xi → (−∞, +∞] such that inequality

|c(x1, . . . , xn)| ≤
n∑

i=1
ci(xi)

holds for all (x1, . . . , xn) ∈ X.
Then the supremum in the relaxed dual Monge-Kantorovich problem

sup

⎧⎨⎩
n∑

i=1

∫
Xi

ϕi(xi)μi(dxi) : {ϕi}ni=1 ∈ Ψc({μi}ni=1)

⎫⎬⎭
is finite and attained.

We prove the multistochastic generalization of this theorem for the case of reducible collection of projec-
tions.
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Theorem 5.19 (Supremum reachability in relaxed dual problem). For every 1 ≤ i ≤ n, let Xi be a Polish space, 
let {μα}α∈Ink

, μα ∈ P(Xα) be a reducible collection of probability measures, and let c : X → [−∞, +∞]
be a measurable cost function on the space X. Suppose that there exists a collection of integrable functions 
{cα}α∈Ink

, cα : Xα → (−∞, +∞] such that the inequality

|c(x)| ≤
∑

α∈Ink

cα(xα)

holds for all x ∈ X.
Then the supremum in the relaxed dual multistochastic Monge-Kantorovich problem

J = sup

⎧⎨⎩ ∑
α∈Ink

∫
Xα

fα(xα)μα(dxα) : {fα}α∈Ink
∈ Ψc({μα}α∈Ink

)

⎫⎬⎭ (11)

is finite and attained.

Proof. Replacing cα with |cα| we may assume that the function cα is non-negative for all α ∈ Ink. Let 
c∗α : Xα → [0, +∞) be an arbitrary finite integrable function such that c∗α(xα) = cα(xα) for μα-almost all 
xα ∈ Xα. Consider a function c∗ on the space X:

c∗(x) =
{
c(x), if c∗α(xα) = cα(xα) for all xα ∈ Xα,

0, otherwise.

It trivially follows from the construction that c∗(x) = c(x) for all x ∈ X except a zero (n, k)-thickness 
set. Hence,

Ψc({μα}α∈Ink
) = Ψc∗({μα}α∈Ink

).

In addition, |c∗(x)| ≤
∑

α∈Ink
c∗α(xα) for all x ∈ X. In particular, since c∗α(xα) < +∞ for all xα ∈ Xα and 

for all α ∈ Ink, we conclude that |c∗(x)| < +∞ for all x ∈ X. Thus, replacing c with c∗ and replacing cα
with c∗α for all α ∈ Ink, we may assume that |c(x)| < +∞ for all x ∈ X and 0 ≤ cα(xα) < +∞ for all 
xα ∈ Xα and for all α ∈ Ink.

Denote

Ĵ =
∑

α∈Ink

∫
Xα

cα(xα)μα(dxα).

The function cα : Xα → [0, +∞) is finite and integrable with respect to μα for all α ∈ Ink; in addition,∑
α∈Ink

(−cα(xα)) ≤ c(x) for all x ∈ X.

Thus, {−cα}α∈Ink
∈ Ψc({μα}α∈Ink

), and therefore the set Ψc({μα}α∈Ink
) is non-empty and

J ≥
∑

α∈Ink

∫
Xα

(−cα(xα))μα(dxα) = −Ĵ .

Since the collection of measures {μα}α∈Ink
is reducible, there exists a reducible measure μ ∈

Π({μα}α∈Ink
). Since cα ∈ L1(Xα, μα), the extension of cα to the space X is integrable with respect to 

μ. Thus, since |c(x)| ≤
∑

cα(xα) ∈ L1(X, μ), we conclude that c ∈ L1(X, μ).
α∈Ink
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Let {fα}α∈Ink
∈ Ψc({μα}α∈Ink

). Since fα ∈ L1(Xα, μα), the extension of fα to the space X is integrable 
with respect to μ. Hence,

∑
α∈Ink

∫
Xα

fα(xα)μα(dxα) =
∫
X

∑
α∈Ink

fα(xα)μ(dx)

We have 
∑

α∈Ink
fα(xα) ≤ c(x) at all points except a zero (n, k)-thickness set. Since μ is a uniting measure, 

every set of zero (n, k)-thickness has zero measure with respect to μ. Hence, 
∑

α∈Ink
fα(xα) ≤ c(x) for 

μ-almost all x ∈ X, and therefore∫
X

∑
α∈Ink

fα(xα)μ(dx) ≤
∫
X

c(x)μ(dx) ≤
∑

α∈Ink

∫
Xα

cα(xα)μα(dxα) = Ĵ .

Thus, we conclude that

∑
α∈Ink

∫
Xα

fα(xα)μα(dxα) ≤ Ĵ for all {fα} ∈ Ψc({μα}α∈Ink
),

and therefore J ≤ Ĵ . In particular, the supremum in (11) is finite.
Consider the maximizing sequence of collections of functions {f (t)

α }α∈Ink
∈ Ψc({μα}α∈Ink

) such that

∑
α∈Ink

∫
Xα

f (t)
α (xα)μα(dxα) −−−−→

n→∞
J.

We may assume that

∑
α∈Ink

∫
Xα

f (t)
α (xα)μα(dxα) ≥ −Ĵ for all t. (12)

For each t consider the finite (n, k)-function F (t)(x) =
∑

α∈Ink
f

(t)
α (xα). Let us bound the norm of 

the function F (t) from above. Since F (t)(x) ≤ c(x) for all points except a zero (n, k)-thickness set, and 
c(x) ≤

∑
α∈Ink

cα(xα) for all x ∈ X, we conclude that F (t)(x) ≤
∑

α∈Ink
cα(xα) for μ-almost all x ∈ X. 

Finally, since 
∑

α∈Ink
cα(xα) ≥ 0, we have

F (t)(x) + |F (t)(x)| = max(0, 2F (t)(x)) ≤ 2
∑

α∈Ink

cα(xα)

for μ-almost all x ∈ X. Combining this with inequality (12) we get∥∥∥F (t)
∥∥∥
L1(μ)

=
∫
X

|F (t)(x)|μ(dx) ≤ 2
∑

α∈Ink

∫
Xα

cα(xα)μα(dxα) −
∫
X

F (t)(x)μ(dx) ≤ 3Ĵ .

Since μ is reducible, for each t by Theorem 5.11 there exists a collection of finite integrable functions 
{f̂ (t)

α }α∈Ink
such that the equation

F (t)(x) =
∑

α∈Ink

f̂ (t)
α (xα)

holds for all x ∈ X and
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∥∥∥f̂ (t)
α

∥∥∥
L1(μα)

≤ Cμ

∥∥∥F (t)
∥∥∥
L1(μ)

≤ 3CμĴ = C

for all α ∈ Ink. In particular, {f̂ (t)
α } ∈ Ψc({μα}α∈Ink

) for all t, and this sequence of collections is also 
maximizing. Thus, replacing {f (t)

α } with {f̂ (t)
α }, we may assume that the inequality∥∥∥f (t)

α

∥∥∥
L1(μα)

≤ C

holds for all α ∈ Ink and for all t.
In particular,

sup
t

∥∥∥f (t)
α

∥∥∥
L1(μα)

< +∞

for all α ∈ Ink. Hence, using the Komloś theorem and passing, if necessary, to subsequences, we may assume 
that the sequence of functions

g(t)
α (xα) = 1

t

(
f (1)
α + · · · + f (t)

α

)
, t ∈ N,

converges to some function gα ∈ L1(Xα, μα) μα-almost everywhere in Xα for all α ∈ Ink.
For each t consider the finite (n, k)-function

G(t)(x) =
∑

α∈Ink

g(t)
α (xα) = 1

t

(
F (1)(x) + · · · + F (t)(x)

)
.

We have G(t)(x) ≤ c(x) for all x ∈ X except a zero (n, k)-thickness set, and therefore {g(t)
α }α∈Ink

∈
Ψc({μα}α∈Ink

) for all t. In addition, it follows from the properties of the Ceśaro mean that the sequence of 
collections {g(t)

α }α∈Ink
is maximizing as well as {f (t)

α }α∈Ink
.

Let us verify that {gα}α∈Ink
∈ Ψc({μα}α∈Ink

). For every t there exists a collection of measurable subsets 
{A(t)

α }α∈Ink
, A(t)

α ⊆ Xα such that μα(A(t)
α ) = 1 and G(t)(x) ≤ c(x) for all x ∈ X such that xα ∈ A

(t)
α for all 

α ∈ Ink. In addition, for each α ∈ Ink there exists a measurable subset A′
α ⊆ Xα such that μα(A′

α) = 1
and if xα ∈ A′

α, then g(t)(xα) → gα(xα) as t → ∞.
For α ∈ Ink, let

Aα = A′
α ∩

( ∞⋂
t=1

A(t)
α

)
.

For any x ∈
⋂

α∈Ink
Pr−1

α (Aα) we have 
∑

α∈Ink
g
(t)
α (xα) ≤ c(x) for all t and∑

α∈Ink

g(t)
α (xα) −−−→

t→∞

∑
α∈Ink

gα(xα).

Thus, if x ∈
⋂

α∈Ink
Pr−1

α (Aα), then 
∑

α∈Ink
gα(xα) ≤ c(x), and therefore, since μα(Aα) = 1, we conclude 

that {gα}α∈Ink
∈ Ψc({μα}α∈Ink

).
Consider the finite (n, k)-function G(x) =

∑
α∈Ink

gα(xα). We have

G(t)(x) −−−→
t→∞

G(x)

for all x ∈ X except a zero (n, k)-thickness set, and therefore the sequence of functions {G(t)} converges 
pointwise to G μ-almost everywhere. In addition,
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G(t)(x) ≤
∑

α∈Ink

cα(xα) ∈ L1(X,μ)

for μ-almost all x, and therefore it follows from the reverse Fatou lemma that

J = lim
t→∞

∫
X

G(t)(x)μ(dx) ≤
∫
X

G(x)μ(dx) =
∑

α∈Ink

∫
Xα

gα(xα)μα(xα).

Thus, the supremum in (11) is attained on the collection of functions {gα}α∈Ink
. �

Combining this result with Theorem 4.12, we get the following general duality theorem for the case of 
reducible projections.

Theorem 5.20 (General duality theorem). For every 1 ≤ i ≤ n, let Xi be a Polish space, let {μα}α∈Ink
, 

μα ∈ P(Xα) be a reducible collection of probability measures, and let c ∈ CL(X, {μα}α∈Ink
) be a continuous 

cost function on the space X. Then there exists a uniting measure π ∈ Π({μα}α∈Ink
) and a collection of 

integrable functions {fα}α∈Ink
, fα : Xα → [−∞, +∞), such that∑

α∈Ink

fα(xα) ≤ c(x) for all x ∈ X

and ∫
X

c(x)π(dx) =
∑

α∈Ink

∫
Xα

fα(xα)μα(dxα).

In particular, π is a solution to the related primal (n, k)-problem, and {fα}α∈Ink
is a solution to the related 

dual (n, k)-problem.

5.3. Unreachability of the supremum in the dual problem in the irreducible case

In contrast to the multi-marginal case, in the theorem proved above, the essential requirement is the 
irreducibility of the set of measures μα. In the following paragraph we construct a multistochastic (3, 2)-
problem with a bounded continuous cost function such that the supremum in the corresponding dual problem 
can not be attained.

Let X1 = X2 = X3 = N. For 1 ≤ i ≤ 3, the space Xi is a Polish space equipped with the discrete 
topology. For each n denote

An = {(n + 1, n, n), (n, n + 1, n), (n, n, n + 1)}.

One can easily verify that these sets are pairwise disjoint.
Consider the measure μp on the space X = X1 ×X2 ×X3 defined as follows:

μp(n1, n2, n3) =

⎧⎪⎨⎪⎩
2

(πn)2 , if (n1, n2, n3) ∈ An for some n,

0, otherwise.

We have

μp(X) =
∞∑

|An| ·
2

(πn)2 = 6
π2

∞∑ 1
n2 = 1,
n=1 n=1
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and therefore the measure μp is a probability measure.
Consider another measure με on the space X: let με(n1, n2, n3) = 2−n1−n2−n3 for all (n1, n2, n3) ∈ X. 

We have

με(X) =
∑

(n1,n2,n3)∈X

1
2n1+n2+n3

=
( ∞∑

n1=1

1
2n1

)
·
( ∞∑

n2=1

1
2n2

)
·
( ∞∑

n3=1

1
2n3

)
= 1,

and therefore με is a probability measure too.

Lemma 5.21. Consider the probability measure μ = (1 − α)μp + αμε, where 0 ≤ α ≤ 1. For {i, j} ∈
I3,2, denote μij = Prij(μ). If γ ∈ Π({μij}{i,j}∈I3,2) is a uniting measure for the triple of projections 
{μij}{i,j}∈I3,2 , which means it has the same projections as μ, then

γ(x) ≥ 2(1 − α)
π2

(
1
n2 − 1

(n + 1)2

)
− α

2n

for all x ∈ An for all n.

Proof. First, let us find μij explicitly. We have

Prij(με)(ni, nj) =
∞∑

n=1

1
2ni+nj+n

= 1
2ni+nj

for all (ni, nj) ∈ N2.

In addition, one can easily verify that

Prij(μp)(ni, nj) =

⎧⎨⎩0, if |ni − nj | ≥ 2,

2
(πn)2 , if |ni − nj | ≤ 1 and min(ni, nj) = n.

In particular, since μij = (1 − α)Prij(μp) + αPrij(με), we obtain the following equations:

μij(ni, nj) =

⎧⎪⎨⎪⎩
α

2ni+nj
if |ni − nj | ≥ 2,

2(1−α)
(πn)2 + α

2ni+nj
if |ni − nj | ≤ 1 and min(ni, nj) = n.

(13)

Fix a positive integer m. Consider the following functions fij : N2 → R:

f12(n1, n2) =
{

1, if (n1, n2) = (m + 1,m),
0, otherwise;

f13(n1, n3) =
{
−1, if n1 = m + 1 and n3 ∈ {m− 1,m + 1},
0, otherwise;

f23(n2, n3) =
{
−1, if n2 = m and n3 /∈ {m− 1,m,m + 1},
0, otherwise.

The function fij is bounded, and therefore is integrable with respect to μij. Using equations (13) we get
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∫
f12 dμ12 = μ12(m + 1,m) = 2(1 − α)

π2m2 + α

22m+1 ,∫
f13 dμ13 = −μ13(m + 1,m− 1) − μ13(m + 1,m + 1) = − α

22m − 2(1 − α)
π2(m + 1)2 − α

22m+2 ,∫
f23 dμ23 = −

∑
n/∈{m−1,m,m+1}

μ23(m,n) = −
∞∑

n=1

α

2m+n
+ α

22m−1 + α

22m + α

22m+1 > − α

2m + α

22m .

Summarizing this, we obtain∫
f12 dμ12 +

∫
f13 dμ13 +

∫
f23 dμ23

>
2(1 − α)

π2

(
1
m2 − 1

(m + 1)2

)
+
( α

22m+1 − α

22m+2

)
− α

2m

>
2(1 − α)

π2

(
1
m2 − 1

(m + 1)2

)
− α

2m .

(14)

Consider the (3, 2)-function

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3).

Let us verify that F (n1, n2, n3) ≤ 0 if (n1, n2, n3) �= (m + 1, m, m). Indeed, since f13 ≤ 0 and f23 ≤
0, we conclude that if F (n1, n2, n3) > 0, then f12(n1, n2) > 0, and therefore (n1, n2) = (m + 1, m). If 
n3 /∈ {m − 1, m, m + 1}, then by construction f23(m, n3) = −1, and f13(m + 1, n3) = 0, and therefore 
F (m + 1, m, n3) = 0. Otherwise, if n3 ∈ {m − 1, m + 1}, then f13(m + 1, n3) = −1 and f23(m, n3) = 0, and 
therefore F (m + 1, m, n3) = 0 too.

In addition, F (m + 1, m, m) = 1, and therefore if γ is a probability measure on the space X, then∫
X

F (n1, n2, n3) γ(dn1, dn2, dn3) ≤ γ(m + 1,m,m).

Combining this with inequality (14), we conclude that if γ ∈ Π({μij}{i,j}∈I3,2), then

γ(m + 1,m,m) ≥
∫
X

F (n1, n2, n3) γ(dn1, dn2, dn3)

=
∫

f12 dμ12 +
∫

f13 dμ13 +
∫

f23 dμ23

>
2(1 − α)

π2

(
1
m2 − 1

(m + 1)2

)
− α

2m .

For the remaining points of Am the inequality is proved in the same manner. �
Corollary 5.22. There exists a real α0 ∈ (0, 1) such that if γ ∈ Π({μij}{i,j}∈I3,2), then γ(x) > 0 for all 
x ∈ An for all n, where μij = Prij((1 − α0)μp + α0με).

Proof. By Lemma 5.21 we only need to prove that there exists α0 ∈ (0, 1) such that the inequality

2(1 − α0)
2

(
1
2 − 1

2

)
− α0

n
> 0
π n (n + 1) 2
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holds for all n ∈ N, or equivalently

2(1 − α0)
π2α0

>
2−n

1
n2 − 1

(n+1)2
. (15)

One can easily verify that the function in the right hand-side of the inequality converges to 0, and 
therefore there exists a constant M such that the inequality

M ≥ 2−n

1
n2 − 1

(n+1)2

holds for all positive integer n. Thus, the inequality (15) follows from

2(1 − α0)
π2α0

> M

and therefore every α0 such that 0 < α0 < 2/(Mπ2 + 2) is suitable. �
Theorem 5.23. Let α0 be the constant constructed in Corollary 5.22. Let μ = (1 − α0)μp + α0με, and for 
{i, j} ∈ I3,2 let μij = Prij(μ). Consider the cost function c : X → {0, 1}: c(x) = 1 if x ∈ An for some n, and 
c(x) = 0 otherwise. Then the supremum in the corresponding relaxed dual (3, 2)-problem (see Definition 5.16) 
can not be attained.

Proof. The cost function c is a bounded continuous function on the space X equipped with the discrete 
topology. Since μij(ni, nj) > 0 for all (ni, nj) ∈ Xij , the subset A of X is a zero (3, 2)-thickness set if and 
only if A = ∅. Thus, the triple of functions {fij}{i,j}∈I3,2 belongs to Ψc({μij}{i,j}∈I3,2) if and only if the 
inequality

f12(n1, n2) + f13(n1, n3) + f23(n2, n3) ≤ c(n1, n2, n3)

holds for all (n1, n2, n3) ∈ X.
The set Π({μij}{i,j}∈I3,2) is non-empty, and therefore it follows from Theorem 4.12 that

min
γ∈Π({μij}{i,j}∈I3,2 )

∫
X

c dγ = sup

⎧⎪⎨⎪⎩
∑ ∫

Xij

fij dμij :
∑

fij(xi, xj) ≤ c(x1, x2, x3)

⎫⎪⎬⎪⎭ .

Assume that the supremum in the dual problem is attained. Then there exists a uniting measure γ ∈
Π({μij}{i,j}∈I3,2) and a triple of integrable functions {fij}{i,j}∈I3,2 , fij : Xij → [−∞, +∞) such that

f12(n1, n2) + f13(n1, n3) + f23(n2, n3) ≤ c(n1, n2, n3)

for all (n1, n2, n3) ∈ X and ∫
X12

f12 dμ12 +
∫

X13

f13 dμ13 +
∫

X23

f23 dμ23 =
∫
X

c dγ.

It follows from equation (13) that μij(ni, nj) > 0 for all pairs of positive integers (ni, nj). Hence, since 
fij is integrable with respect to μij , we conclude that fij can not take value −∞.
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Consider the finite (3, 2)-function

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3). (16)

Since fij is integrable with respect to μij and the measure γ is uniting, the function F is integrable with 
respect to γ and ∫

X

F dγ =
∫

X12

f12 dμ12 +
∫

X13

f13 dμ13 +
∫

X23

f23 dμ23 =
∫
X

c dγ.

Since in addition F (n1, n2, n3) ≤ c(n1, n2, n3) for all (n1, n2, n3) ∈ X, we conclude that F (n1, n2, n3) =
c(n1, n2, n3) γ-almost everywhere. It follows from Corollary 5.22 that γ(x) > 0 if x ∈ An for some n, and 
therefore

F (n + 1, n, n) = F (n, n + 1, n) = F (n, n, n + 1) = 1 (17)

for all n ∈ N.
One can easily verify using equation (16) that for all n ∈ N we have

F (n + 1,n + 1, n + 1) − F (n, n, n)

= F (n, n + 1, n + 1) + F (n + 1, n, n + 1) + F (n + 1, n + 1, n)

− F (n + 1, n, n) − F (n, n + 1, n) − F (n, n, n + 1).

Since, F (n1, n2, n3) ≤ c(n1, n2, n3) and c(n1, n2, n3) = 0 if the point (n1, n2, n3) is not contained in the set 
�∞
n=1An, the inequality

F (n, n + 1, n + 1) + F (n + 1, n, n + 1) + F (n + 1, n + 1, n) ≤ 0

holds for every positive integer n. In addition, it follows from equation (17) that

F (n + 1, n, n) + F (n, n + 1, n) + F (n, n, n + 1) = 3.

Summarizing this, we conclude that F (n + 1, n + 1, n + 1) ≤ F (n, n, n) − 3, and therefore

F (n, n, n) ≤ F (1, 1, 1) − 3(n− 1) ≤ c(1, 1, 1) − 3(n− 1) = −3(n− 1),

for all n ∈ N.
In particular, we conclude that for all n ∈ N the following inequality holds:

|f12(n, n)| + |f13(n, n)| + |f23(n, n)| ≥ 3(n− 1).

Using this inequality and equation (13), we can bound from below the 
∑

‖fij‖L1(μij):

‖f12‖L1(μ12) + ‖f13‖L1(μ13) + ‖f23‖L1(μ23)

≥
∞∑

n=1
(|f12(n, n)| · μ12(n, n) + |f13(n, n)| · μ13(n, n) + |f23(n, n)| · μ23(n, n))

>
2(1 − α0)

π2

∞∑ 1
n2 (|f12(n, n)| + |f13(n, n)| + |f23(n, n)|)
n=1
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≥ 2(1 − α0)
π2

∞∑
n=1

3(n− 1)
n2 = +∞.

Thus, at least one the functions fij is not integrable, and this contradiction proves Theorem 5.23. �
The measure μ constructed in Theorem 5.23 is strictly positive at every point of the space X. In particular, 

this means that μ is equivalent to Pr1(μ) ⊗Pr2(μ) ⊗Pr3(μ). Thus, we obtain the following proposition, which 
demonstrates that in Theorem 5.19, we cannot replace “uniform equivalence” with simple equivalence.

Proposition 5.24. Let X1 = X2 = X3 = N. There exists a probability measure μ on the space X = X1 ×
X2 ×X3 and a cost function c : X → {0, 1} such that the following conditions hold:

(i) measure μ is equivalent (but not uniformly equivalent) to μ1 ⊗ μ2 ⊗ μ3, where μi = Priμ;
(ii) there is no optimal solution to the relaxed dual problem for the cost function c and projections μij, 

where μi = Priμ.

In the classical Monge-Kantorovich problem the dual solution may not exist provided c is unbounded. 
In [34,3] authors introduce the concept of strong c-monotonicity, which generalizes the c-monotonicity and 
allows us to find a generalized dual solution.

Definition 5.25. A Borel set Γ ⊆ X × Y is strongly c-monotone if there exist Borel measurable functions 
ϕ : X → [−∞, +∞), ψ : Y → [−∞, +∞) such that ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y and 
ϕ(x) + ψ(y) = c(x, y) holds if (x, y) ∈ Γ. A transport plan π ∈ Π(μ, ν) is strongly c-monotone if π is 
concentrated on a strongly c-monotone Borel set.

One can easily verify that strong c-monotonicity implies c-monotonicity, and if there exists a solution 
to the dual problem, then every optimal transport plan is strongly c-monotone. In [3] authors prove that 
under general assumptions on the cost function the transport plan π is optimal if and only if π is strongly 
c-monotone.

Theorem 5.26 ([3, Theorem 3]). Let X, Y be Polish spaces equipped with Borel probability measures μ, ν, 
and let c : X×Y → [0, ∞] be Borel measurable and μ ⊗ν-a.e. finite. Then a finite transport plan π ∈ Π(μ, ν)
is optimal if and only if it is strongly c-monotone.

In particular, for every finite optimal transport plan π there exist (not necessary integrable) functions ϕ, 
ψ such that ϕ(x) + ψ(x) ≤ c(x, y) and the equality holds π-a.e. We can naturally generalize the concept of 
strong c-monotonicity to the multistochastic Monge-Kantorovich problem as follows.

Definition 5.27. A Borel set Γ ⊂ X is strongly c-monotone if there exist Borel measurable functions 
{fα}α∈Ink

, fα : Xα → [−∞, +∞) such that the inequality∑
α∈Ink

fα(xα) ≤ c(x)

holds for all x ∈ X and the equality is achieved if x ∈ Γ. A transport plan π ∈ Π({μα}α∈Ink
) is strongly 

c-monotone if π is concentrated on a strongly c-monotone Borel set Γ.

We do not know whether there exists a strongly c-monotone transport plan in the problem considered in 
Theorem 5.23. In what follows, we construct another example of the (3, 2)-problem and prove that in this 
example there is no strongly c-monotone optimal transport plan.
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As in the previous example, let X1 = X2 = X3 = N. For each n denote

Bn = {(n, n + 1, n + 1), (n + 1, n, n + 1), (n + 1, n + 1, n)}.

Consider the following measure μ defined on the space X1 ×X2 ×X3 as follows:

μ(n1, n2, n3) =

⎧⎪⎨⎪⎩
1

(πn)2 if (n1, n2, n3) ∈ An �Bn for some n,

0 otherwise.
(18)

One can check that μ is a probability measure. Finally, for {i, j} ∈ I3,2 denote μij = Prij(μ).

Lemma 5.28. The measure μ is the only uniting measure for the triple of projections {μij}{i,j}∈I3,2 .

Proof. Let γ ∈ Π({μij}{i,j}∈I3,2). For {i, j} ∈ I3,2, the projection μij is concentrated on the set {(ni, nj) ∈
N2 : |ni − nj | ≤ 1}, and therefore the transport plan γ is concentrated on the set

S = {(n1, n2, n3) ∈ N3 : max{n1, n2, n3} − min{n1, n2, n3} ≤ 1} =
∞�
k=1

({(k, k, k)} �Ak �Bk) .

Let us prove that γ is uniquely defined by its values on the diagonal, and if we denote ak = γ(k, k, k), 
then we have

γ(n1, n2, n3) =
{
μ(n1, n2, n3) − (a1 + · · · + an) if (n1, n2, n3) ∈ An for some n,
μ(n1, n2, n3) + (a1 + · · · + an) if (n1, n2, n3) ∈ Bn for some n.

(19)

Since γ ∈ Π({μij}{i,j}∈I3,2), for all n ∈ N we have

Pr12(γ)(n, n) = μ12(n, n).

The left-hand side of the equation is equal to 
∑

k≥1 γ(n, n, k) = an + γ(n, n, n − 1) + γ(n, n, n + 1), and 
the right-hand side is equal to 

∑
k≥1 μ(n, n, k) = μ(n, n, n − 1) + μ(n, n, n + 1). Here, we assume that 

μ(n1, n2, n3) = γ(n1, n2, n3) = 0 if at least one of the variables (n1, n2, n3) is less than 1. Thus,

γ(n, n, n + 1) + γ(n, n, n− 1) + an = μ(n, n, n + 1) + μ(n, n, n− 1)

⇔ γ(n, n, n + 1) − μ(n, n, n + 1) = μ(n, n, n− 1) − γ(n, n, n− 1) − an. (20)

In addition,

Pr13(γ)(n, n− 1) = μ13(n, n− 1)

⇔ γ(n, n− 1, n− 1) + γ(n, n, n− 1) = μ(n, n− 1, n− 1) + μ(n, n, n− 1)

⇔ μ(n, n, n− 1) − γ(n, n, n− 1) = γ(n, n− 1, n− 1) − μ(n, n− 1, n− 1).

(21)

Thus, it follows from equations (20) and (21) that

γ(n, n, n + 1) − μ(n, n, n + 1) = γ(n, n− 1, n− 1) − μ(n, n− 1, n− 1) − an. (22)

Due to the symmetry, one can interchange the second and the third variable:

γ(n, n + 1, n) − μ(n, n + 1, n) = γ(n, n− 1, n− 1) − μ(n, n− 1, n− 1) − an. (23)
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After that one can interchange the first and the third variable:

γ(n, n + 1, n) − μ(n, n + 1, n) = γ(n− 1, n− 1, n) − μ(n− 1, n− 1, n) − an. (24)

Equations (22) and (23) have identical right-hand sides, and equations (23) and (24) have identical left-hand 
sides. Thus, the left-hand side of (22) is equal to the right-hand side of (24), i.e. the following equation holds 
for all n ∈ N:

γ(n, n, n + 1) − μ(n, n, n + 1) = γ(n− 1, n− 1, n) − μ(n− 1, n− 1, n) − an.

Applying this formula n times, we conclude that

γ(n, n, n + 1) − μ(n, n, n + 1) = γ(0, 0, 1) − μ(0, 0, 1) − (a1 + · · · + an) = −(a1 + · · · + an).

So, due to the symmetry,

γ(n1, n2, n3) = μ(n1, n2, n3) − (a1 + · · · + an) for all (n1, n2, n3) ∈ An.

Substituting the last equation into equation (20), we conclude that

μ(n, n, n− 1) − γ(n, n, n− 1) = −(a1 + · · · + an−1);

therefore, due to the symmetry,

γ(n1, n2, n3) = μ(n1, n2, n3) + (a1 + · · · + an) for all (n1, n2, n3) ∈ Bn,

and this completes the proof of formula (19).
We have μ(n1, n2, n3) = (πn)−2 for all (n1, n2, n3) ∈ An, and therefore a1 + · · · + an ≤ (πn)−2 for all n. 

Thus, since all an are nonnegative, we conclude that γ(k, k, k) = ak = 0 for all k, and therefore γ = μ by 
equation (19). �

It follows from the previous lemma that μ is the unique optimal solution to the multistochastic problem 
with arbitrary bounded cost function. Next, we construct the cost function c such that μ is not strongly 
c-monotone. The existence of this example demonstrates that we can not generalize the equivalence of 
optimality and strongly c-monotonicity to the multistochastic case.

Theorem 5.29. Let μ be the measure on N3 defined in equation (18), and let μij = Prij(μ). Consider the 
cost function c : N3 → {0, 1}: c(x) = 1 if x ∈ Bn for some n, and c(x) = 0 otherwise. Then there are no 
functions {fij}{i,j}∈I3,2 , fij : N2 → [−∞, +∞) such that

f12(n1, n2) + f13(n1, n3) + f23(n2, n3) ≤ c(n1, n2, n3)

for all (n1, n2, n3) ∈ N3 and the equality holds μ-a.e.

Proof. Assuming the opposite, consider the following (3, 2)-function:

F (n1, n2, n3) = f12(n1, n2) + f13(n1, n3) + f23(n2, n3). (25)

Since {fij}{i,j}∈I3,2 satisfy the assumptions of the theorem, we have F (n1, n2, n3) = c(n1, n2, n3) μ-a.e. 
Hence, since μ(n1, n2, n3) > 0 for all (n1, n2, n3) ∈ An �Bn, we get
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F (n + 1, n, n) = F (n, n + 1, n) = F (n, n, n + 1) = 0,

F (n, n + 1, n + 1) = F (n + 1, n, n + 1) = F (n + 1, n + 1, n) = 1
(26)

for all n ∈ N.
Applying (25) one can easily verify the following equation:

F (n, n, n) + F (n, n + 1, n + 1) + F (n + 1, n, n + 1) + F (n + 1, n + 1, n)

= F (n + 1, n + 1, n + 1) + F (n + 1, n, n) + F (n, n + 1, n) + F (n, n, n + 1).

Combining this with equation (26), we get F (n, n, n) + 3 = F (n + 1, n + 1, n + 1) for all n, and therefore 
the inequality

F (n, n, n) = F (n + k, n + k, n + k) − 3k ≤ c(n + k, n + k, n + k) − 3k ≤ 1 − 3k

holds for all n, k ∈ N. Thus, F (n, n, n) = −∞ for all n. In particular, F (1, 1, 1) = −∞, and therefore 
fij(1, 1) = −∞ for some {i, j} ∈ I3,2. Without loss of generality we may assume that f12(1, 1) = −∞. Then 
F (1, 1, 2) is also equal to −∞, and this contradicts equation (26). �
6. Properties of the dual solution in (3, 2)-problem

6.1. Boundedness of the dual solution

In the classical Monge-Kantorovich problem for the bounded cost function c(x, y) we can transform every 
solution to the dual problem to the bounded one, using Legendre transformation.

Proposition 6.1. Let X and Y be Polish spaces, let μ ∈ P(X) and ν ∈ P(Y ), and let c : X × Y → R+ be a 
cost function. If c is a bounded continuous cost function, then there exists a solution (ϕ, ψ) to the related 
dual problem such that both ϕ(x), ψ(y) lie between − ‖c‖∞ and ‖c‖∞ for all x ∈ X and y ∈ Y .

Proof. The proof is an adaptation of the argument from the proof of [36, Theorem 1.3]. Let (ϕ, ψ) be 
a solution to the dual problem provided by [32, Theorem 2.4.3]. If π is a solution to the related primal 
problem, then ϕ(x) + ψ(y) = c(x, y) π-a.e. In particular, there exists a point (x0, y0) ∈ X × Y such that 
ϕ(x0) + ψ(y0) = c(x0, y0) ≥ 0. For any real number s the pair of functions (ϕ − s, ψ + s) is also a solution 
to the dual problem. By a proper choice of s, we can ensure

ϕ(x0) ≥ 0, ψ(y0) ≥ 0.

Since ϕ(x) + ψ(y) ≤ c(x, y), we have ϕ(x) ≤ c(x, y0) − ϕ(y0) ≤ c(x, y0) for all x, and ψ(y) ≤ c(x0, y) −
ϕ(x0) ≤ c(x0, y) for all y. Consider the Legendre transformation of the function ϕ:

ϕ(x) = inf
y∈Y

(c(x, y) − ψ(y)).

By construction, ϕ(x) + ψ(y) ≤ c(x, y) for all x ∈ X and for all y ∈ Y . From the inequality ϕ(x) ≤
c(x, y) − ψ(y) we see that ϕ(x) ≥ ϕ(x) for all x. Since ϕ(x) ≤ c(x, y) − ψ(y) for all y, we have

ϕ(x) ≤ c(x, y0) − ψ(y0) ≤ ‖c‖∞ ,

and it follows from the inequality ψ(y) ≤ c(x0, y) that
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ϕ(x) ≥ inf
y∈Y

(c(x, y) − c(x0, y)) ≥ −‖c‖∞ .

Hence, ϕ is an integrable function; since ϕ(x) ≥ ϕ(x) for all x, we have∫
X

ϕ(x)μ(dx) +
∫
Y

ψ(y) ν(dy) ≥
∫
X

ϕ(x)μ(dx) +
∫
Y

ψ(y) ν(dy),

and therefore (ϕ, ψ) is a solution to the dual problem.
Finally, define

ψ(y) = inf
x∈X

(c(x, y) − ϕ(x)).

By the same arguments we conclude that (ϕ, ψ) is a solution to the dual problem and − ‖c‖∞ ≤ ψ(y) ≤ ‖c‖∞
for all y ∈ Y . �

We want to generalize this observation to the multistochastic case.

Definition 6.2. Given finite measures μ and ν on the space X, we say that μ �b ν (where “b” means 
“bounded”) if there exists a positive real M such that μ ≤ M · ν.

The following properties trivially follow from the definition.

Proposition 6.3. Let μ and ν be finite measures on the space X. Suppose that μ �b ν. Then

(a) μ is absolutely continuous with respect to ν;
(b) L1(X, μ) ⊇ L1(X, ν);
(c) if X = X1 × · · · ×Xn, then Prαμ �b Prαν for all α ∈ In.

Definition 6.4. Let X1, . . . , Xn be Polish spaces, let π ∈ P(X), and let να be a probability measure on Xα

for some α ∈ In such that να �b πα. Let ρ be a density function of να with respect to πα. Then denote by 
Upα(να, π) the measure ρ∗(x) · π, where ρ∗(x) = ρ(xα) for all x ∈ X.

Proposition 6.5. Let X1, . . . , Xn be Polish spaces, let π ∈ P(X), and let να be a probability measure on Xα

for some α ∈ In such that να �b πα. Then

(a) the measure Upα(να, π) is well-defined;
(b) Upα(να, π) �b π;
(c) if β ⊇ α, then Prβ(Upα(να, π)) = Upα(να, πβ);
(d) if β ⊆ α, then Prβ(Upα(να, π)) = Prβ(να);
(e) if π = μα ⊗ μβ for μα ∈ P(Xα) and μβ ∈ P(Xβ), then Upα(να, π) = να ⊗ μβ.

Proof. Assertion 6.5(a) is trivial: if να = ρ1 · πα = ρ2 · πα, then ρ1(xα) = ρ2(xα) for πα-a.e. xα ∈ Xα, and 
therefore ρ∗1(x) = ρ∗2(x) for π-a.e. x ∈ X. In addition, since να �b πα, there exists a positive real M such 
that ρ(xα) ≤ M for πα-a.e. xα ∈ Xα, and therefore ρ∗(x) ≤ M for π-a.e. x ∈ X. Hence, ρ∗ ∈ L1(X, π)
and the measure ρ∗ · π is well-defined. Furthermore, since ρ∗ ≤ M π-a.e, we have Up(να, π) ≤ M · π; thus, 
Up(να, π) �b π and assertion 6.5(b) holds.

We have Up(να, π) = ρ(xα) · π. The function ρ does not depend on coordinates xi for all i /∈ α. Hence, if 
β ⊇ α and β ∈ In, then Prβ(ρ(xα) · π) = ρ(xα) · πβ . Since Prα(πβ) = πα, we conclude that Upα(να, πβ) =
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ρ(xα) · πβ . Thus, if β ⊇ α, then Prβ(Upα(να, π)) = Upα(να, Pr), and this implies assertion 6.5(c). In 
addition, we have Prα(ρ(xα) · π) = ρ(xα) · πα = να, and therefore Prα(Upα(να, π)) = να. Hence, if β ⊆ α, 
then Prβ(Upα(να, π)) = Prβ ◦ Prα(Upα(να, π)) = Prβ(να), and this implies assertion 6.5(d).

Finally, suppose that π = μα ⊗ μβ . Then πα = μα, and therefore να = ρ · πα = ρ · μα. Thus, να ⊗ μβ =
(ρ(xα) · μα) ⊗ μβ = ρ(xα) · π = Upα(να, π), and this implies assertion 6.5(e). �

Let X1, X2, X3 be Polish spaces, let μi ∈ P(Xi) for 1 ≤ i ≤ i, and let μij = μi ⊗ μj for all {i, j} ∈ I3,2. 
Let c : X → R+ be a nonnegative bounded continuous cost function. The space Π({μij}{i,j}∈I3,2) is non-
empty, since μ1 ⊗ μ2 ⊗ μ3 ∈ Π({μij}{i,j}∈I3,2), and therefore by Theorem 4.12 there is no duality gap. In 
addition, since the family of measures {μij}{i,j}∈I3,2 is reducible, by Theorem 5.19 there exists a solution 
to the related dual problem. Thus, there exists a solution π ∈ Π({μij}{i,j}∈I3,2) to the primal problem and 
a solution {fij}, fij ∈ L1(Xij , μij) to the dual problem, and∫

X

c dπ =
∫

X12

f12 dμ12 +
∫

X13

f13 dμ13 +
∫

X23

f23 dμ23.

Lemma 6.6. Let π̃ be a probability measure on X. Suppose that there exists γ ∈ Π({μij}{i,j}∈I3,2) such that 
π̃ �b γ. Then extensions of all f12, f13 and f23 to the space X are integrable with respect to the measure π̃.

Proof. The extension of fij is integrable with respect to π̃ if and only if fij ∈ L1(Xij , Prij(π̃)). Since π̃ �b γ, 
by assertion 6.3(c) we have Prij(π̃) �b Prij(γ) = μij , and therefore by assertion 6.3(b) we conclude that 
L1(Xij , Prij(π̃)) ⊇ L1(Xij , μij) � fij . �

Denote F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3).

Lemma 6.7. Let π̃ be a probability measure on X. Suppose that there exists γ ∈ Π({μij}{i,j}∈I3,2) such that 
π̃ �b γ. Then

(a) the function F and the extensions of all f12, f13 and f23 to the space X are integrable with respect to 
the measure π̃;

(b)
∫
X

F dπ̃ ≤ ‖c‖∞;

(c) if π̃ �b π, then 
∫
X

F dπ̃ ≥ 0.

Proof. Assertion 6.7(a) trivially follows from Lemma 6.6. Since {fij}{i,j}∈I3,2 is a solution to the dual 
problem, we have F (x1, x2, x3) ≤ c(x1, x2, x3) for all x ∈ X. In particular,∫

X

F dπ̃ ≤
∫
X

c dπ̃ ≤ ‖c‖∞ ,

and this implies assertion 6.7(b).
Since Prij(π) = μij , by assertion 6.7(a) the function F ∈ L1(X, π) and∫

X

F dπ =
∫

X12

f12 dπ +
∫

X13

f13 dπ +
∫

X23

f23 dπ

=
∫

X12

f12 dμ12 +
∫

X13

f13 dμ13 +
∫

X23

f23 dμ23 =
∫
X

c dπ.
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Since in addition F (x1, x2, x3) ≤ c(x1, x2, x3) for all x ∈ X, we conclude that F (x1, x2, x3) = c(x1, x2, x3)
for π-a.e. x ∈ X. Thus, if π̃ �b π, then F (x1, x2, x3) = c(x1, x2, x3) π̃-a.e., and therefore∫

X

F dπ̃ =
∫
X

c dπ̃ ≥ 0

since c ≥ 0. This implies assertion 6.7(c). �
Lemma 6.8. Let (i, j, k) be a permutation of indices (1, 2, 3). Let νi be a probability measure on Xi such that 
νi �b μi. Then F ∈ L1(X, νi ⊗ μj ⊗ μk) and∫

X

F d(νi ⊗ μj ⊗ μk) ≥
∫
X

F dπ − ‖c‖∞ .

Proof. Since νi �b μi, we have νi �b Pri(π), and therefore the measure Upi(νi, π) is well-defined. Consider 
the following measure:

γ = νi ⊗ μj ⊗ μk − Upi(νi, π) + μi ⊗ Prjk(Upi(νi, π)) − π. (27)

We claim that all the projections of γ to the spaces Xij , Xik and Xjk are zero measures. First, by asser-
tion 6.5(c) and assertion 6.5(e) we have

Prij(Upi(νi, π)) = Upi(νi,Prij(π)) = Upi(νi, μi ⊗ μj) = νi ⊗ μj ,

Prik(Upi(νi, π)) = Upi(νi,Prik(π)) = Upi(νi, μi ⊗ μk) = νi ⊗ μk.

Next, we find the projections of Upi(νi, π) to the spaces Xj and Xk:

Prj(Upi(νi, π)) = Prj ◦ Prij(Upi(νi, π)) = Prj(νi ⊗ μj) = μj ,

Prk(Upi(νi, π)) = Prk ◦ Prik(Upi(νi, π)) = Prk(νi ⊗ μk) = μk.

Finally, we find the projections of γ to the spaces Xij , Xik and Xjk:

Prij(γ) = Prij(νi ⊗ μj ⊗ μk) − Prij(Upi(νi, π)) + Prij(μi ⊗ Prjk(Upi(νi, π))) − Prij(π)

= νi ⊗ μj − νi ⊗ μj + μi ⊗ Prj(Upi(νi, π)) − μi ⊗ μj

= νi ⊗ μj − νi ⊗ μj + μi ⊗ μj − μi ⊗ μj = 0;

Prik(γ) = Prik(νi ⊗ μj ⊗ μk) − Prik(Upi(νi, π)) + Prik(μi ⊗ Prjk(Upi(νi, π))) − Prik(π)

= νi ⊗ μk − νi ⊗ μk + μi ⊗ Prk(Upi(νi, π)) − μi ⊗ μk

= νi ⊗ μk − νi ⊗ μk + μi ⊗ μk − μi ⊗ μk = 0;

Prjk(γ) = Prjk(νi ⊗ μj ⊗ μk) − Prjk(Upi(νi, π)) + Prjk(μi ⊗ Prjk(Upi(νi, π))) − Prjk(π)

= μj ⊗ μk − Prjk(Upi(νi, π)) + Prjk(Upi(νi, π)) − μj ⊗ μk = 0.

Since νi �b μi, we have

νi ⊗ μj ⊗ μk �b μi ⊗ μj ⊗ μk ∈ Π({μij}{i,j}∈I3,2).

Besides, it follows from assertion 6.5(b) that
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Upi(νi, π) �b π ∈ Π({μij}{i,j}∈I3,2).

Hence, by assertion 6.3(c) we have Prjk(Upi(νi, π)) �b Prjk(π) = μjk = μj ⊗ μk, and therefore

μi ⊗ Prjk(Upi(νi, π)) �b μi ⊗ μj ⊗ μk ∈ Π({μij}{i,j}∈I3,2).

Thus, it follows from assertion 6.7(a) that the function F and the extension of all f12, f13, and f23 to the 
space X are integrable with respect to all of the summands of equation (27), and therefore that functions 
are integrable with respect to γ. In particular,∫

X

F dγ =
∫

Xij

fij dPrij(γ) +
∫

Xik

fik dPrik(γ) +
∫

Xjk

fjk dPrjk(γ) = 0.

On the other hand, we have∫
X

F dγ =
∫
X

F d(νi ⊗ μj ⊗ μk) −
∫
X

F dUpi(νi, π) +
∫
X

F d(μi ⊗ Prjk(Upi(νi, π))) −
∫
X

F dπ.

Since Upi(νi, π) �b π, by assertion 6.7(c) we have∫
X

F dUpi(νi, π) ≥ 0.

By assertion 6.7(b) we have ∫
X

F d(μi ⊗ Prjk(Upi(νi, π))) ≤ ‖c‖∞ .

Thus, we get

0 =
∫
X

F dγ ≤
∫
X

F d(νi ⊗ μj ⊗ μk) −
∫
X

F dπ + ‖c‖∞ . �

Lemma 6.9. For 1 ≤ i ≤ 3, let νi be a probability measure on Xi such that νi �b μi. Then F ∈ L1(X, ν1 ⊗
ν2 ⊗ ν3) and ∫

X

F d(ν1 ⊗ ν2 ⊗ ν3) ≥ −12 ‖c‖∞ .

Proof. The proof is similar to the proof of Lemma 6.8. We have νi⊗ νj �b μi⊗μj = Prij(π), and therefore 
the measure Upij(νi ⊗ νj , π) is well-defined for all {i, j} ∈ I3,2. Consider the following measures:

γ(0) =
∑

{i,j}∈I3,2

Upij(νi ⊗ νj , π);

γ(1) =
∑

(i,j,k)∈S3

μi ⊗ Prjk(Upij(νi ⊗ νj , π));

γ(2) =
∑

{i,j}∈I3,2

μi ⊗ μj ⊗ Prk(Upij(νi ⊗ νj , π));
{i,j,k}={1,2,3}
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γ(3) =
∑

{i,j}∈I3,2
{i,j,k}={1,2,3}

μi ⊗ μj ⊗ νk;

γ = ν1 ⊗ ν2 ⊗ ν3 − γ(0) + γ(1) − γ(2) − γ(3) + 2π.

We claim that Prij(γ) = 0 for all {i, j} ∈ I3,2. Let (i, j, k) be a permutation of indices (1, 2, 3). By 
construction,

γ(0) = Upij(νi ⊗ νj , π) + Upik(νi ⊗ νk, π) + Upjk(νj ⊗ νk, π).

It follows from assertion 6.5(c) that

Prij(Upij(νi ⊗ νj , π)) = νi ⊗ νj ,

and therefore

Prij(γ(0)) = νi ⊗ νj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π)). (28)

Next, let us find the projection of γ(1) onto the space Xij . The measure γ(1) can be written as follows:

γ(1) = μi ⊗ Prjk(Upij(νi ⊗ νj , π)) + μj ⊗ Prik(Upij(νi ⊗ νj , π))

+ μi ⊗ Prjk(Upik(νi ⊗ νk, π)) + μk ⊗ Prij(Upik(νi ⊗ νk, π))

+ μj ⊗ Prik(Upjk(νj ⊗ νk, π)) + μk ⊗ Prij(Upjk(νj ⊗ νk, π)).

It follows from assertion 6.5(d) that

Prij(μi ⊗ Prjk(Upij(νi ⊗ νj , π))) = μi ⊗ Prj(Upij(νi ⊗ νj , π)) = μi ⊗ νj ,

Prij(μj ⊗ Prik(Upij(νi ⊗ νj , π))) = Pri(Upij(νi ⊗ νj , π)) ⊗ μj = νi ⊗ μj ,

and we trivially have

Prij(μi ⊗ Prjk(Upik(νi ⊗ νk, π))) = μi ⊗ Prj(Upik(νi ⊗ νk, π)),

Prij(μk ⊗ Prij(Upik(νi ⊗ νk, π))) = Prij(Upik(νi ⊗ νk, π)),

Prij(μj ⊗ Prik(Upjk(νj ⊗ νk, π))) = Pri(Upjk(νj ⊗ νk, π)) ⊗ μj ,

Prij(μk ⊗ Prij(Upjk(νj ⊗ νk, π))) = Prij(Upjk(νj ⊗ νk, π)).

Thus, we get

Prij(γ(1)) = μi ⊗ νj + νi ⊗ μj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π))

+ Pri(Upjk(νj ⊗ νk, π)) ⊗ μj + μi ⊗ Prj(Upik(νi ⊗ νk, π))
(29)

Finally, by construction

γ(3) = νi ⊗ μj ⊗ μk + μi ⊗ νj ⊗ μk + μi ⊗ μj ⊗ νk,

so we get

Prij(γ(3)) = νi ⊗ μj + μi ⊗ νj + μi ⊗ μj . (30)
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Similarly, we conclude that

Prij(γ(2)) = Pri(Upjk(νj ⊗ νk, π)) ⊗ μj + μi ⊗ Prj(Upik(νi ⊗ νk, π)) + μi ⊗ μj . (31)

Thus, from equations (28)-(31) we get

Prij(γ) = Prij(νi ⊗ νj ⊗ νk) − Prij(γ(0)) + Prij(γ(1)) − Prij(γ(2)) − Prij(γ(3)) + 2Prij(π)

= νi ⊗ νj − νi ⊗ νj − Prij(Upik(νi ⊗ νk, π)) − Prij(Upjk(νj ⊗ νk, π))

+ μi ⊗ νj + νi ⊗ μj + Prij(Upik(νi ⊗ νk, π)) + Prij(Upjk(νj ⊗ νk, π))

+ Pri(Upjk(νj ⊗ νk, π)) ⊗ μj + μi ⊗ Prj(Upik(νi ⊗ νk, π))

− Pri(Upjk(νj ⊗ νk, π)) ⊗ μj − μi ⊗ Prj(Upik(νi ⊗ νk, π)) − μi ⊗ μj

− νi ⊗ μj − μi ⊗ νj − μi ⊗ μj + 2μi ⊗ μj

= 0.

Let us verify that the functions F and the extensions of fij to the space X for all {i, j} ∈ I3,2 are 
integrable with respect to γ. First, since νt �b μt for 1 ≤ t ≤ 3, we have

ν1 ⊗ ν2 ⊗ ν3 �b μ1 ⊗ μ2 ⊗ μ3 ∈ Π({μij}{i,j}∈I3,2).

Let (i, j, k) be a permutation of indices (1, 2, 3). It follows from assertion 6.5(b) that Upij(νi⊗νj , π) �b π, 
and therefore γ(0) �b π. Next, since Upij(νi⊗νj , π) �b π, it follows from assertion 6.3(c) that Prjk(Upij(νi⊗
νj , π)) �b Prjk(π) = μj⊗μk and Prk(Upij(νi⊗νj , π)) �b Prk(π) = μk. Hence, μi⊗Prjk(Upij(νi⊗νj , π)) �b

μ1 ⊗ μ2 ⊗ μ3 and μi ⊗ μj ⊗ Prk(Upij(νi ⊗ νj , π)) �b μ1 ⊗ μ2 ⊗ μ3, and therefore

γ(1) �b μ1 ⊗ μ2 ⊗ μ3 ∈ Π({μij}{i,j}∈I3,2) and γ(2) �b μ1 ⊗ μ2 ⊗ μ3 ∈ Π({μij}{i,j}∈I3,2).

Finally, since νk �b μk, we have μi ⊗ μj ⊗ νk �b μ1 ⊗ μ2 ⊗ μ3, and therefore

γ(3) �b μ1 ⊗ μ2 ⊗ μ3 ∈ Π({μij}{i,j}∈I3,2).

Thus, by assertion 6.7(a) the function F and the extension of fij to the space X for all {i, j} ∈ I3,2 are 
integrable with respect to all summands from the definition of γ, and therefore that functions are integrable 
with respect to γ. In particular,∫

X

F dγ =
∫

X12

f12 dPr12(γ) +
∫

X13

f13 dPr13(γ) +
∫

X23

f23 dPr23(γ) = 0.

Since Upij(νi ⊗ νj , π) �b π for all {i, j} ∈ I3,2, it follows from assertion 6.7(c) that∫
X

F dγ(0) ≥ 0.

Applying assertion 6.7(b) to all terms of the definition of γ(1), we conclude that∫
F dγ(1) ≤ 6 ‖c‖∞ .
X
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Finally, applying Lemma 6.8 to all terms of γ(2) and γ(3), we get∫
X

F dγ(2) ≥ 3
∫
X

F dπ − 3 ‖c‖∞ and
∫
X

F dγ(3) ≥ 3
∫
X

F dπ − 3 ‖c‖∞ .

Thus, we get the following inequality:

∫
X

F dγ ≤
∫
X

F d(ν1 ⊗ ν2 ⊗ ν3) + 6 ‖c‖∞ + 2

⎛⎝3 ‖c‖∞ − 3
∫
X

F dπ

⎞⎠+ 2
∫
X

F dπ

= 12 ‖c‖∞ − 4
∫
X

F dπ +
∫
X

F d(ν1 ⊗ ν2 ⊗ ν3),

and therefore ∫
X

F d(ν1 ⊗ ν2 ⊗ ν3) ≥ 4
∫
X

F dπ − 12 ‖c‖∞ .

It follows from assertion 6.7(c) that 
∫
X
F dπ ≥ 0; hence,∫

X

F d(ν1 ⊗ ν2 ⊗ ν3) ≥ 4
∫
X

F dπ − 12 ‖c‖∞ ≥ −12 ‖c‖∞ . �

Theorem 6.10. Let X1, X2, X3 be Polish spaces, let μi ∈ P(Xi) for 1 ≤ i ≤ 3, and let μij = μi ⊗ μj for all 
{i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. If {fij}{i,j}∈I3,2 is a solution to the 
related dual problem, then

f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞

for μ1 ⊗ μ2 ⊗ μ3-a.e. points x ∈ X.

Proof. Denote F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3), and denote μ = μ1 ⊗ μ2 ⊗ μ3. For 1 ≤
i ≤ 3, let Ai ∈ Bi be a measurable subset of Xi. If μi(Ai) = 0 for some 1 ≤ i ≤ 3, then μ(A1×A2×A3) = 0, 
and therefore 

∫
A1×A2×A3

F dμ = 0.
Suppose otherwise that μi(Ai) > 0 for all 1 ≤ i ≤ 3. Denote νi = (1[Ai]/μi(Ai)) · μi, where 1[A] is 

an indicator function of the set A. The measure νi is a probability measure and νi ≤ (1/μi(Ai)) · μi, and 
therefore νi �b μi. By Lemma 6.9, we conclude that 

∫
X
F d(ν1 ⊗ ν2 ⊗ ν3) ≥ −12 ‖c‖∞. By construction,

∫
X

F d(ν1 ⊗ ν2 ⊗ ν3) =
∫
A1×A2×A3

F dμ

μ1(A1)μ2(A2)μ3(A3)
.

Thus, we get ∫
A1×A2×A3

F dμ ≥ −12 ‖c‖∞ · μ(A1 ×A2 ×A3) for all Ai ∈ Bi. (32)

Consider the measure (F + 12 ‖c‖∞) · μ. By equation (32) this measure is non-negative on a semialgebra 
A0 = {A1 ×A2 ×A3 : Ai ∈ Bi}, and therefore this measure is non-negative on every element of σ(A0), and 
this σ-algebra coincides with the Borel σ-algebra on the space X. Thus, the measure (F + 12 ‖c‖∞) · μ is 
non-negative, and therefore F (x1, x2, x3) + 12 ‖c‖ ≥ 0 for μ-a.e. points x ∈ X. �
∞
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Theorem 6.11. Let X1, X2, X3 be Polish spaces, let μi ∈ P(Xi) for 1 ≤ i ≤ 3, and let μij = μi ⊗ μj for all 
{i, j} ∈ I3,2. Let c : X → R+ be a bounded continuous cost function. Then

(a) there exists a solution {fij}{i,j}∈I3,2 to the relaxed dual problem (see Definition 5.16) such that

−17 ‖c‖∞ ≤ fij(xi, xj) ≤ 131
3 ‖c‖∞ ;

(b) there exists a solution {fij}{i,j}∈I3,2 to the standard dual problem such that

−262
3 ‖c‖∞ ≤ fij(xi, xj) ≤ 131

3 ‖c‖∞ .

Proof. First, it follows from Theorem 5.19 that there exists an optimal (real-valued) solution {fij}{i,j}∈I3,2

to the relaxed dual problem. By Theorem 6.10 we conclude that the inequality

‖c‖∞ ≥ f12(x1, x2) + f13(x1, x3) + f23(x2, x3) ≥ −12 ‖c‖∞ (33)

holds for μ1 ⊗ μ2 ⊗ μ3-almost all points.
Consider the optimal finite (3, 2)-function F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3). Let A

be the set of points (x1, x2, x3) ∈ X such that either F (x1, x2, x3) < −12 ‖c‖∞ or F (x1, x2, x3) > ‖c‖∞. 
By inequality (33) we have μ1 ⊗ μ2 ⊗ μ3(A) = 0. Applying Lemma 5.5 to the indicator function of the set 
A, we conclude that there exists a point (y1, y2, y3) ∈ X such that for each α ∈ I3 the set Aα = {xα ∈
Xα : (xα, y{1,2,3}\α) ∈ A} have a zero measure with respect to μα.

For each α ∈ I3 consider the function Fα : xα 
→ F (xαy{1,2,3}\α). If xα /∈ Aα, then ‖c‖∞ ≥ Fα(xα) ≥
−12 ‖c‖∞, and therefore this inequality holds for μα-almost all xα ∈ Xα. Consider the functions

f̂12(x1, x2) = F (x1, x2, y3) −
1
2F (x1, y2, y3) −

1
2F (y1, x2, y3) + 1

3F (y1, y2, y3),

f̂13(x1, x3) = F (x1, y2, x3) −
1
2F (x1, y2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3),

f̂23(x2, x3) = F (y1, x2, x3) −
1
2F (y1, x2, y3) −

1
2F (y1, y2, x3) + 1

3F (y1, y2, y3).

By Example 5.4 the equation F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) holds for all (x1, x2, x3) ∈
X. In addition, one can easily verify that the inequality

−17 ‖c‖∞ ≤ f̂ij(xi, xj) ≤ 131
3 ‖c‖∞

holds for μij-almost all (xi, xj) ∈ Xij .
Thus, there exists a triple of bounded measurable functions {gij} such that gij = f̂ij almost everywhere 

and

−17 ‖c‖∞ ≤ gij(xi, xj) ≤ 131
3 ‖c‖∞

for all (xi, xj) ∈ Xij . The inequality

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = F (x1, x2, x3) ≤ c(x1, x2, x3)

holds at all points except a zero (3, 2)-thickness set, and therefore {ĝij} ∈ Ψc({μij}{i,j}∈I3,2). Finally, we 
have
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∫
X12

g12 dμ12 +
∫

X13

g13 dμ13 +
∫

X23

g23 dμ23 =
∫
X

F dμ

=
∫

X12

f12 dμ12 +
∫

X13

f13 dμ13 +
∫

X23

f23 dμ23,

and therefore {gij} is a solution to the relaxed dual problem satisfying assertion 6.11(a).
Since {gij} ∈ Ψc({μij}{i,j}∈I3,2), there exists a triple of subsets Yij ⊂ Xij such that μij(Yij) = 0 and if 

(xi, xj) /∈ Yij for all {i, j}, then

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) ≤ c(x1, x2, x3).

Consider the triple of functions {ĝij}: ĝij(xi, xj) = g(xi, xj) if (xi, xj) /∈ Yij , and ĝij(xi, xj) = −262
3‖c‖∞

otherwise. We have ĝij(xi, xj) = gij(xi, xj) almost everywhere, and one can easily verify that the inequality

ĝ12(x1, x2) + ĝ13(x1, x3) + ĝ23(x2, x3) ≤ c(x1, x2, x3)

holds for all points (x1, x2, x3) ∈ X. Thus, {ĝij} is a solution to the standard dual problem satisfying 
assertion 6.11(b). �
6.2. Uniqueness of a continuous dual solution for the cost function x1x2x3

Let us recall to the reader our main example of the multistochastic (3, 2)-problem:

Problem 6.12. For 1 ≤ i ≤ 3, let Xi = [0, 1], let μij be the restriction of the Lebesgue measure to the square 
[0, 1]2, and let c(x1, x2, x3) = x1x2x3.

Primal problem. Find a uniting measure π ∈ Π({μij}{i,j}∈I3,2) such that

∫
x1x2x3 dπ → min .

Dual problem. Find a triple of functions {fij}{i,j}∈I3,2 , fij ⊂ L1([0, 1]2) such that

∑
{i,j}∈I3,2

fij(xi, xj) ≤ x1x2x3 for all (x1, x2, x3) ∈ [0, 1]3,

∑
{i,j}∈I3,2

1∫
0

1∫
0

fij(xi, xj) dxidxj → max .

In [19] the authors describe solutions to these problems. First, we define a binary operator ⊕ (called 
“bitwise exclusive or” or just “xor”) on the segment [0, 1].

Definition 6.13. Given x and y on [0, 1], we consider their binary representations x = 0,x1x2x3 . . .2, y =
0,y1y2y3 . . .2. We agree that every dyadic rational number less than 1 has a finite numbers of units in 
its decomposition. The number 1 will be always decomposed as follows: 1 = 0,111 . . .2. Then we define 
x ⊕ y = 0,x1 ⊕ y1 x2 ⊕ y2 . . .2, where ⊕ is an addition in F2.

Using this binary operation, the solutions to the primal problem can be described as follows:
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Fig. 4. The sets J1, J2 and J3.

Theorem 6.14 (Primal problem solution). Consider the mapping T : [0, 1]2 → [0, 1]3, (x, y) 
→ (x, y, x ⊕ y). 
Denote by π the image of the Lebesgue measure restricted to the square [0, 1]2 under the mapping T . Then 
π is a solution to primal Problem 6.12.

In [19] the authors show that π is concentrated on the set

{(x, y, z) ∈ [0, 1]3 : x⊕ y ⊕ z = 0},

and this set is a self-similar fractal, which is called “Sierpińsky tetrahedron”. Let us verify for the complete-
ness of the picture the following description of the support of π.

Definition 6.15. Denote by Ja1,a2,a3
n the image of [0, 1]3 under the mapping

(x1, x2, x3) 
→
(
a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
.

Let

Jn =
⋃

0≤ai<2n

a1⊕a2⊕a3=0

Ja1,a2,a3
n .

One can find images of J1, J2 and J3 on Fig. 4. Denote

S =
⋂
n≥1

Jn.

The set S is called Sierpińsky tetrahedron.

Lemma 6.16. The set Jn contains a point (x1, x2, x3) if and only if there exist binary representations of each 
coordinates xi =

∑∞
k=1 xi,k/2k such that x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n.

Proof. First, suppose that (x1, x2, x3) ∈ Jn. By construction, there exist integers a1, a2, a3 such that 0 ≤
ai < 2n, bitwise xor of a1, a2 and a3 is zero, and (x1, x2, x3) ∈ Ja1,a2,a3

n . Since

Ja1,a2,a3
n =

[
a1

2n ,
a1 + 1

2n

]
×
[
a2

2n ,
a2 + 1

2n

]
×
[
a3

2n ,
a3 + 1

2n

]
,

we conclude that xi = (ai + yi)/2n for all 1 ≤ i ≤ 3, where 0 ≤ yi ≤ 1.
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Since ai < 2n, the binary representation of ai contains at most n digits. Let ai,1ai,2 . . . ai,n2 be the binary 
representation of ai supplemented by zeros up to length n. Since a1⊕a2⊕a3 = 0, we have a1,k⊕a2,k⊕a3,k = 0
for all 1 ≤ k ≤ n. Hence, if yi =

∑∞
k=1 yi,k/2k, then

xi =
n∑

k=1

ai,k
2k +

∞∑
k=n+1

yi,k−n

2k

provided by xi = (ai + yi)/2n. This equation provides a binary representation of each coordinates xi =∑∞
k=1 xi,k/2k such that x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n.
Suppose that (x1, x2, x3) is a point on [0, 1]3 and xi =

∑∞
k=1 xi,k/2k for 1 ≤ i ≤ 3, where all xi,k are 0 or 

1, and x1,k⊕x2,k⊕x3,k = 0 for all 1 ≤ k ≤ n. Denote by ai an integer formed by the first n digits of xi after 
radix point. We have xi = (ai+yi)/2n for 1 ≤ i ≤ 3, where 0 ≤ yi ≤ 1, and therefore (x1, x2, x3) ∈ Ja1,a2,a3

n . 
In addition, 0 ≤ ai < 2n, and since x1,k⊕x2,k⊕x3,k = 0 for all 1 ≤ k ≤ n, we conclude that a1⊕a2⊕a3 = 0. 
Thus, (x1, x2, x3) ∈ Ja1,a2,a3

n ⊂ Jn. �
Using that, we can describe all points of the Sierpińsky tetrahedron in terms of their binary representa-

tions.

Proposition 6.17. The Sierpińsky tetrahedron S contains a point (x1, x2, x3) if and only if there exist binary 
representations of each coordinates xi =

∑∞
k=1 xi,k/2k such that

x1,k ⊕ x2,k ⊕ x3,k = 0 for all k;

Proof. Suppose that (x1, x2, x3) is a point on [0, 1]3 and xi =
∑∞

k=1 xi,k/2k for 1 ≤ i ≤ 3, where all xi,k are 
0 or 1, and x1,k ⊕ x2,k ⊕ x3,k = 0 for all k. Then it follows from Lemma 6.16 that (x1, x2, x3) is contained 
in Jn for all n. Thus,

(x1, x2, x3) ∈
⋂
n≥1

Jn = S.

Suppose that (x1, x2, x3) ∈ S. Then (x1, x2, x3) ∈ Jn for all n, and therefore there exist binary represen-
tations of each coordinates xi =

∑∞
k=1 x

n
i,k/2k such that xn

1,k ⊕ xn
2,k ⊕ xn

2,k = 0 for all 1 ≤ k ≤ n. For any 
nonnegative real number, there are at most two binary representations of this number, and therefore there 
exist at most eight triples of binary representations of the point (x1, x2, x3). Hence, there exists at least one 
of them xi =

∑∞
k=1 xi,k/2k such that the property x1,k ⊕ x2,k ⊕ x3,k = 0 for all 1 ≤ k ≤ n holds for an 

infinite number of n. Thus, x1,k ⊕ x2,k ⊕ x3,k = 0 for all k. �
Proposition 6.18. The Sierpińsky tetrahedron S has the following properties:

(a) the set S a closed subset of [0, 1]3;
(b) a point (x, y, x ⊕ y) is contained in S for all x, y ∈ [0, 1];
(c) if Sa1,a2,a3

n is the image of S under a mapping

(x1, x2, x3) 
→
(
a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
,

then

S =
⋃

0≤ai<2n,

Sa1,a2,a3
n

a1⊕a2⊕a3=0
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Proof. The set Jn is closed since Jn is a finite union of closed sets. Thus, since S is an intersection of the 
closed sets Jn, we conclude that S is closed too, and this implies assertion 6.18(a).

Assertion 6.18(b) trivially holds by Proposition 6.17.
Let us verify assertion 6.18(c). Suppose that (x1, x2, x3) ∈ S. By Proposition 6.17, there exist binary 

representations xi =
∑n

k=1 xi,k/2k such that x1,k ⊕x2,k ⊕x3,k = 0 for all k. Denote by ai an integer formed 
by the first n digits of xi after radix point. We have 0 ≤ ai < 2n, and since x1,k ⊕ x2,k ⊕ x3,k = 0 for 
all k, we conclude that a1 ⊕ a2 ⊕ a3 = 0. In addition, xi = (ai + yi)/2n, where yi =

∑n
k=1 xi,n+k/2k. By 

Proposition 6.17 (y1, y2, y3) ∈ S, and therefore (x1, x2, x3) ∈ Sa1,a2,a3
n . Thus

S ⊆
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Sa1,a2,a3
n

Suppose that (x1, x2, x3) ∈ Sa1,a2,a3
n , where 0 ≤ ai < 2n and a1 ⊕ a2 ⊕ a3 = 0. Since ai < 2n, the 

binary representation of ai contains at most n digits. Let ai,1ai,2 . . . ai,n2 be the binary representation of 
ai supplemented by zeros up to length n. Since a1 ⊕ a2 ⊕ a3 = 0, we have a1,k ⊕ a2,k ⊕ a3,k = 0 for all 
1 ≤ k ≤ n.

By construction, there exists a point (y1, y2, y3) ∈ S such that xi = (ai + yi)/2n. By Proposition 6.17, 
there exist binary representations yi =

∑∞
k=1 yi,k/2k such that y1,k ⊕ y2,k ⊕ y3,k = 0. Hence,

xi = ai + yi
2n =

n∑
k=1

ai,k
2k +

∞∑
k=n+1

yi,k−n

2k ,

and therefore by Proposition 6.17 (x1, x2, x3) ∈ S. Thus,

S ⊇
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Sa1,a2,a3
n ,

and this completes the proof of assertion 6.18(c). �
Following the proof of the main result in [19] the reader can extract the following statement:

Theorem 6.19. For 1 ≤ i ≤ 3, let Xi = [0, 1], let μij be the Lebesgue measure restricted to the square [0, 1]2, 
and let c(x1, x2, x3) = x1x2x3. If the measure π is uniting for {μij}{i,j}∈I3,2 and supp(π) � Jn for some n, 
then there exists a measure π̃ ∈ Π({μij}{i,j}∈I3,2) such that∫

[0,1]3

x1x2x3 π̃(dx1, dx2, dx3) <
∫

[0,1]3

x1x2x3 π(dx1, dx2, dx3).

If π is a solution to primal Problem 6.12, then it follows from Theorem 6.19 that supp(π) ⊆ Jn for all n. 
Hence, supp(π) ⊆ ∩n≥1Jn, and this implies the following proposition.

Proposition 6.20. If π is a solution to primal Problem 6.12, then supp(π) ⊆ S, where S is the Sierpińsky 
tetrahedron.

Using that, let us prove that there exists a unique solution to primal Problem 6.12.

Lemma 6.21. There exists at most one measure π on [0, 1]3 such that supp(π) ⊆ S and Pr12(π) coincides 
with the Lebesgue measure μ12 on the square [0, 1]2.
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Proof. Let Γ = {(x, y, x ⊕ y) : (x, y) ∈ [0, 1]2}. It follows from assertion 6.18(b) that Γ ⊆ S. Consider the 
set Sb = S\Γ, and consider a point (x1, x2, x3) ∈ Sb. Suppose that both points x1 and x2 are not dyadic 
rationals. If x is not a dyadic rational, then there exists a unique binary representation of x. Hence, it follows 
from Proposition 6.17 that there exists at most one z ∈ [0, 1] such that (x1, x2, z) ∈ S. By assertion 6.18(b)
we have (x1, x2, x1 ⊕ x2) ∈ S, and therefore x3 = x1 ⊕ x2. Thus, (x1, x2, x3) ∈ Γ, and this contradicts the 
point selection.

This contradiction proves that if (x1, x2, x3) ∈ Sb, then at least one of x1 and x2 is a dyadic rational. 
Hence, μ12(Pr12(Sb)) = 0, and therefore π(Sb) = 0 provided by Pr12(π) = μ12. Thus, since supp(π) ⊆ S, 
we get π(Γ) = 1.

Let A be a measurable subset of [0, 1]3. Since π(Γ) = 1, we have π(A\Γ) = 0, and therefore

π(A) = π(A ∩ Γ). (34)

Denote AΓ = A ∩ Γ. The set AΓ is a measurable subset of Γ. Since for each (x1, x2) ∈ [0, 1]2 there exists 
exactly one x3 such that (x1, x2, x3) ∈ Γ, we get

AΓ = (Pr12(AΓ) ×X3) ∩ Γ.

Applying equation (34) to the set Pr12(AΓ) ×X3, we get

π((Pr12(AΓ) ×X3) ∩ Γ) = π(Pr12(AΓ) ×X3) = μ12(Pr12(AΓ))

provided by Pr12(π) = μ12. From all equations above we get

π(A) = π(AΓ) = π((Pr12(AΓ) ×X3) ∩ Γ) = μ12(Pr12(AΓ)).

Thus, the measure of the set A with respect to π is independent on π, and therefore there exists at most 
one measure π such that supp(π) ⊆ S and Pr12(π) = μ12. �
Theorem 6.22. There exists a unique solution π to primal Problem 6.12.

Proof. If π is a solution to the problem, then Pr12(π) = μ12, and it follows from Proposition 6.20 that 
supp(π) ⊆ S. By Lemma 6.21, there exists at most one measure π with that properties. Thus, there exists 
at most one solution to primal Problem 6.12.

The existence of a solution follows from Theorem 2.8. �
Finally, let us find exactly the support of the solution to primal Problem 6.12.

Proposition 6.23. If π is the solution to primal Problem 6.12, then supp(π) = S.

Proof. It follows from Proposition 6.20 that supp(π) ⊆ S ⊂ Jn for all n, and therefore π(Jn) = 1. By 
definition of Jn,

Jn =
⋃

0≤ai<2n,
a1⊕a2⊕a3=0

Ja1,a2,a3
n .

We have

Pr12(Ja1,a2,a3
n ) =

[
a1
n
,
a1 + 1

n

]
×
[
a2
n
,
a2 + 1

n

]
.
2 2 2 2



N.A. Gladkov et al. / J. Math. Anal. Appl. 506 (2022) 125666 67
For each pair a1, a2 such that 0 ≤ a1, a2 < 2n there exists a unique a3 such that 0 ≤ a3 < 2n and 
a1 ⊕ a2 ⊕ a3 = 0. Hence, projections to X1 ×X2 of all components of Jn overlapping by the sets of measure 
zero with respect to μ12, and therefore

π(Ja1,a2,a3
n ) = μ12(Pr12(Ja1,a2,a3

n )) = 1
4n if a1 ⊕ a2 ⊕ a3 = 0. (35)

Suppose that supp(π) �= S. Since supp(π) is closed, there exist a point x0 ∈ S and a non-negative integer 
n such that if |x − x0| < 21−n, then x is not contained in supp(π). Since x0 ∈ S ⊂ Jn, there exist integers 
a1, a2, a3 such that 0 ≤ a1, a2, a3 < 2n, bitwise xor of a1, a2, a3 is zero, and x0 ∈ Ja1,a2,a3

n . We have

Ja1,a2,a3
n =

[
a1

2n ,
a1 + 1

2n

]
×
[
a2

2n ,
a2 + 1

2n

]
×
[
a3

2n ,
a3 + 1

2n

]
;

hence, diam(Ja1,a2,a3
n ) < 21−n, and therefore supp(π) ∩ Ja1,a2,a3

n = ∅. This contradicts equation (35). �
In [19] the authors also found a solution to the dual Problem 6.12.

Theorem 6.24 (Dual problem solution). Denote

f(x, y) =
x∫

0

y∫
0

s⊕ t dsdt− 1
4

x∫
0

x∫
0

s⊕ t dsdt− 1
4

y∫
0

y∫
0

s⊕ t dsdt.

Then the triple of functions fij : (xi, xj) 
→ f(xi, xj) is a solution to dual Problem 6.12.

This solution to the dual problem is not unique. First, for 1 ≤ i ≤ 3 let fi be an integrable function on 
the segment [0, 1]. Consider the following functions

f̂12(x1, x2) = f12(x1, x2) + f1(x1) − f2(x2),

f̂23(x2, x3) = f23(x2, x3) + f2(x2) − f3(x3),

f̂13(x1, x3) = f13(x1, x3) + f3(x3) − f1(x1).

Clearly ∑
{i,j}∈I32

f̂ij(xi, xj) =
∑

{i,j}∈I32

fij(xi, xj) for all (x1, x2, x3) ∈ [0, 1]3

and

∑
{i,j}∈I32

1∫
0

1∫
0

f̂ij(xi, xj) dxidxj =
∑

{i,j}∈I32

1∫
0

1∫
0

fij(xi, xj) dxidxj ,

and therefore the functions {f̂ij} are also the solution to the dual problem.
In what follows, we prove that there is no other continuous solutions to the related dual problem.

Lemma 6.25. If a triple of functions {fij}{i,j}∈I3,2 is a solution to dual Problem 6.12, function fij is con-
tinuous for all {i, j} ∈ I3,2, and a1, a2 and a3 are non-negative integers such that 0 ≤ a1, a2, a3 < 2n and 
a1 ⊕ a2 ⊕ a3 = 0, then
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|F (x1, x2, x3) − x1x2x3| ≤
13
23n for all (x1, x2, x3) ∈ Ja1,a2,a3

n ,

where

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

and

Ja1,a2,a3
n =

[
a1

2n ,
a1 + 1

2n

]
×
[
a2

2n ,
a2 + 1

2n

]
×
[
a3

2n ,
a3 + 1

2n

]
.

Proof. Since {fij}{i,j}∈I3,2 is a solution to the dual problem, we have

F (x1, x2, x3) ≤ x1x2x2 for all (x1, x2, x3) ∈ [0, 1]3. (36)

Let π be the solution to primal Problem 6.12. We have 
∫
F dπ =

∫
x1x2x2 dπ, and therefore

F (x1, x2, x3) = x1x2x3 for π-a.e. (x1, x2, x3) ∈ [0, 1]3.

The function F (x1, x2, x3) − x1x2x3 is continuous; hence, the equation holds for all (x1, x2, x3) ∈ supp(π). 
By Proposition 6.23, the support of π coincides with the Sierpińsky tetrahedron S, and therefore

F (x1, x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S. (37)

Consider the following functions:

f̂12(x1, x2) = 23nf12

(
a1 + x1

2n ,
a2 + x2

2n

)
− a1a2a3

3 − a2a3x1 + a1a3x2

2 − a3x1x2,

f̂13(x1, x3) = 23nf13

(
a1 + x1

2n ,
a3 + x3

2n

)
− a1a2a3

3 − a2a3x1 + a1a2x3

2 − a2x1x3,

f̂23(x2, x3) = 23nf23

(
a2 + x2

2n ,
a3 + x3

2n

)
− a1a2a3

3 − a1a3x2 + a1a2x3

2 − a1x2x3,

where 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 3. We claim that {f̂ij} is a solution to the dual problem.
First, one can easily verify that

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) =

23n
[
F

(
a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
− a1 + x1

2n · a2 + x2

2n · a3 + x3

2n

]
+ x1x2x3. (38)

Using inequality (36), we conclude that

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) ≤ x1x2x3 for all (x1, x2, x3) ∈ [0, 1]3. (39)

If (x1, x2, x3) ∈ S, then (
a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
∈ Sa1,a2,a3

n .

By assertion 6.18(c), Sa1,a2,a3
n ⊂ S; hence, if (x1, x2, x3) ∈ S, then by (37) we get
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F

(
a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
= a1 + x1

2n · a2 + x2

2n · a3 + x3

2n ,

and therefore

f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S.

Since supp(π) = S, we have

∫
[0,1]2

f̂12(x1, x2) dx1dx2 +
∫

[0,1]2

f̂13(x1, x3) dx1dx3 +
∫

[0,1]2

f̂23(x2, x3) dx2dx3

=
∫

[0,1]3

(
f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

)
dπ =

∫
[0,1]3

x1x2x3 dπ. (40)

By equations (39) and (40) we conclude that {f̂ij} is a solution to dual Problem 6.12.
The cost function x1x2x3 is non-negative and μij = μi ⊗ μj for all {i, j} ∈ I3,2. Thus, we are under 

assumptions of Theorem 6.10. We have ‖x1x2x3‖∞ = 1, where 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ 3, and therefore

−12 ≤ f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3) ≤ x1x2x3 ≤ 1

for almost all (x1, x2, x3) ∈ [0, 1]3. Since all f̂ij are continuous, we conclude that inequalities holds for all 
points, and therefore∣∣∣f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3)

∣∣∣ ≤ 12 for all (x1, x2, x3) ∈ [0, 1]3.

Using equation (38), we conclude that∣∣∣∣F (a1 + x1

2n ,
a2 + x2

2n ,
a3 + x3

2n

)
− a1 + x1

2n · a2 + x2

2n · a3 + x3

2n

∣∣∣∣ ≤ 12 + x1x2x3

23n ≤ 13
23n

for all (x1, x2, x3) ∈ [0, 1]3, and therefore

|F (x1, x2, x3) − x1x2x3| ≤
13
23n for all (x1, x2, x3) ∈ Ja1,a2,a3

n . �
Lemma 6.26. Let {fij}{i,j}∈I3,2 be a solution to the dual Problem 6.12. If {i, j} ∈ I3,2, a number n is a 
positive integer, numbers ai and aj are non-negative integers such that 0 ≤ ai, aj < 2n, and (xi, xj) and 
(yi, yj) are arbitrary points in the square[

ai
2n ,

ai + 1
2n

]
×
[
aj
2n ,

aj + 1
2n

]
,

then ∣∣∣∣∣∣∣fij(xi, xj) − fij(yi, xj) − fij(xi, yj) + fij(yi, yj) −
yi∫

xi

yj∫
xj

s⊕ t dsdt

∣∣∣∣∣∣∣ ≤
54
23n .

Without loss of generality it can be assumed that {i, j} = {1, 2}. Let a3 = a1 ⊕ a2, and let (x1, x2, x3)
and (y1, y2, y3) be arbitrary points of the cube Ja1,a2,a3

n . We have
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F (x1, x2, x3) − F (y1, x2, x3) − F (x1, y2, x3) + F (y1, y2, x3)

= f12(x1, x2) − f12(y1, x2) − f12(x1, y2) + f12(y1, y2). (41)

In addition,

x1x2x3 − y1x2x3 − x1y2x3 + y1y2x3 = x3(x1 − y1)(x2 − y2). (42)

On the other hand, it follows from Lemma 6.25 that

|F (x1, x2, x3) + F (y1, y2, x3) − x1x2x3 − y1y2x3

− F (y1, x2, x3) − F (x1, y2, x3) + y1x2x3 + x1y2x3| ≤ 4 · 13
23n = 52

23n .

Thus, taking into account equations (41) and (42), we get

|f12(x1, x2) − f12(y1, x2) − f12(x1, y2) + f12(y1, y2) − x3(x1 − y1)(x2 − y2)| ≤
52
23n . (43)

Since (x1, x2, x3) ∈ Ja1,a2,a3
n , we have |a3/2n − x3| ≤ 2−n. Since (y1, y2, y3) ∈ Ja1,a2,a3

n , we also have 
|x1 − y1| ≤ 2−n and |x2 − y2| ≤ 2−n. Thus,

∣∣∣x3(x1 − y1)(x2 − y2) −
a3

2n (x1 − y1)(x2 − y2)
∣∣∣ = ∣∣∣a3

2n − x3

∣∣∣ · |x1 − y1| · |x2 − y2| ≤
1

23n . (44)

Next, let t be a point on the interval (a1/2n, (a1 + 1)/2n), and let s be a point on an interval (a2/2n, (a2 +
1)/2n). One can easily verify that

a1 ⊕ a2

2n ≤ s⊕ t ≤ (a1 ⊕ a2) + 1
2n ,

and therefore, since a1 ⊕ a2 = a3, we get∣∣∣∣∣∣
y1∫

x1

y2∫
x2

s⊕ t dsdt− a3

2n (x1 − y1)(x2 − y2)

∣∣∣∣∣∣ ≤ 1
2n · |x1 − y1| · |x2 − y2| ≤

1
23n . (45)

Summarizing inequalities (43), (44), and (45), we conclude that∣∣∣∣∣∣f12(x1, x2) − f12(y1, x2) − f12(x1, y2) + f12(y1, y2) −
y1∫

x1

y2∫
x2

s⊕ t dsdt

∣∣∣∣∣∣ ≤ 54
23n .

Lemma 6.27. If a triple of functions {fij}{i,j}∈I3,2 is a solution to dual Problem 6.12 and fij is continuous 
for all {i, j} ∈ I3,2, then

fij(xi, xj) − fij(xi, 0) − fij(0, xj) + fij(0, 0) =
xi∫
0

xj∫
0

s⊕ t dsdt

for all (xi, xj) ∈ [0, 1]2.
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Proof. Let {uk}Nk=0 and {vl}Ml=0 be arbitrary points on the segment [0, 1]. One can easily verify that

N∑
k=1

M∑
l=1

(fij(uk, vl) − fij(uk−1, vl) − fij(uk, vl−1) + fij(uk−1, vl−1))

= fij(uN , vM ) − fij(u0, vM ) − fij(uN , v0) + fij(u0, v0)

(46)

and

N∑
k=1

M∑
l=1

uk∫
uk−1

vl∫
vl−1

s⊕ t dsdt =
uN∫
u0

vM∫
v0

s⊕ t dsdt. (47)

Let (xi, xj) be an arbitrary point on the square [0, 1]2. Let N = �2nxi�, and let M = �2nxj�. Finally, let 
uk = k/2n for all 0 ≤ k < N and uN = xi, and similarly let vl = l/2n for all 0 ≤ l < M and vM = xj . By 
construction, both points (uk−1, vl−1) and (uk, vl) belong to the square[

k − 1
2n ,

k

2n

]
×
[
l − 1
2n ,

l

2n

]
,

and therefore by Lemma 6.26 we have∣∣∣∣∣∣∣fij(uk, vl) − fij(uk−1, vl) − fij(uk, vl−1) + fij(uk−1, vl−1) −
uk∫

uk−1

vl∫
vl−1

s⊕ t dsdt

∣∣∣∣∣∣∣ ≤
54
23n

for all 1 ≤ k ≤ N and for all 1 ≤ l ≤ M .
Taking into account equations (46) and (47), we conclude that∣∣∣∣∣∣fij(xi, xj) − fij(xi, 0) − fij(0, xj) + fij(0, 0) −

xi∫
0

xj∫
0

s⊕ t dsdt

∣∣∣∣∣∣
≤

N∑
k=1

M∑
l=1

∣∣∣fij(uk, vl) − fij(uk−1, vl) − fij(uk, vl−1)

+ fij(uk−1, vl−1) −
uk∫

uk−1

vl∫
vl−1

s⊕ t dsdt
∣∣∣

≤
N∑

k=1

M∑
l=1

54
23n = 54 ·N ·M

23n .

Thus, since N, M ≤ 2n, we get∣∣∣∣∣∣fij(xi, xj) − fij(xi, 0) − fij(0, xj) + fij(0, 0) −
xi∫
0

xj∫
0

s⊕ t dsdt

∣∣∣∣∣∣ ≤ 54
2n

for all (xi, xj) ∈ [0, 1]2 and for every positive integer n, and therefore

fij(xi, xj) − fij(xi, 0) − fij(0, xj) + fij(0, 0) =
xi∫ xj∫

s⊕ t dsdt. �

0 0
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Theorem 6.28. If a triple of functions {fij}{i,j}∈I3,2 is a solution to Problem 6.12 and fij is continuous for 
all {i, j} ∈ I3,2, then there exist continuous functions fi : [0, 1] → R, 1 ≤ i ≤ 3, such that

f12(x1, x2) = f(x1, x2) + f1(x1) − f2(x2),

f23(x2, x3) = f(x2, x3) + f2(x2) − f3(x3),

and

f13(x1, x3) = f(x1, x3) + f3(x3) − f1(x1),

where

f(x, y) =
x∫

0

y∫
0

s⊕ t dsdt− 1
4

x∫
0

x∫
0

s⊕ t dsdt− 1
4

y∫
0

y∫
0

s⊕ t dsdt.

Proof. First, consider the function

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3).

It follows from equation (37) that

F (x1, x2, x3) = x1x2x3 for all (x1, x2, x3) ∈ S.

By assertion 6.18(b), all the points (0, x, x), (x, 0, x) and (x, x, 0) are contained in S, and therefore

F (0, x, x) = F (x, 0, x) = F (x, x, 0) = 0 for all x ∈ [0, 1]. (48)

In particular, taking x = 0, we conclude that

f12(0, 0) + f13(0, 0) + f23(0, 0) = F (0, 0, 0) = 0. (49)

Denote f̂ij(xi, xi) = fij(xi, xj) − fij(0, 0). We have f̂ij(0, 0) = 0; it follows from (49) that

F (x1, x2, x3) = f̂12(x1, x2) + f̂13(x1, x3) + f̂23(x2, x3).

By Lemma 6.27 we have

f̂ij(xi, xj) =
xi∫
0

xj∫
0

s⊕ t dsdt + f̂ij(xi, 0) + f̂ij(0, xj), (50)

and therefore

F (x1, x2, x3) =
x1∫
0

x2∫
0

s⊕ t dsdt +
x1∫
0

x3∫
0

s⊕ t dsdt +
x2∫
0

x3∫
0

s⊕ t dsdt

+ ϕ1(x1) + ϕ2(x2) + ϕ3(x3),

(51)

where
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ϕ1(x1) = f̂12(x1, 0) + f̂13(x1, 0),

ϕ2(x2) = f̂12(0, x2) + f̂23(x2, 0),

ϕ3(x3) = f̂13(0, x3) + f̂23(0, x3).

(52)

Since f̂i,j(0, 0) = 0 for all {i, j} ∈ I3,2, we have ϕi(0) = 0 for all 1 ≤ i ≤ 3. Hence, using equations (48)
and (51) we get

0 = F (0, x, x) =
x∫

0

x∫
0

s⊕ t dsdt + ϕ2(x) + ϕ3(x),

0 = F (x, 0, x) =
x∫

0

x∫
0

s⊕ t dsdt + ϕ1(x) + ϕ3(x),

0 = F (x, x, 0) =
x∫

0

x∫
0

s⊕ t dsdt + ϕ1(x) + ϕ2(x)

for all x ∈ [0, 1]. Thus, we obtain

ϕi(x) = −1
2

x∫
0

x∫
0

s⊕ t dsdt (53)

for all x ∈ [0, 1] for 1 ≤ i ≤ 3.
Consider the functions fi(xi), 1 ≤ i ≤ 3, satisfying the following equations:

f̂12(x1, 0) = f1(x1) −
1
4

x1∫
0

x1∫
0

s⊕ t dsdt,

f̂23(x2, 0) = f2(x2) −
1
4

x2∫
0

x2∫
0

s⊕ t dsdt,

f̂13(0, x3) = f3(x3) −
1
4

x3∫
0

x3∫
0

s⊕ t dsdt.

(54)

The function fi is continuous for 1 ≤ i ≤ 3. Combining equations (52) and (53) we get

f̂12(0, x2) = ϕ2(x2) − f̂23(x2, 0) = −1
2

x2∫
0

x2∫
0

s⊕ t dsd− f̂23(x2, 0),

and using the representation of f̂23 from equation (54) we get

f̂12(0, x2) = −f2(x2) −
1
4

x2∫
0

x2∫
0

s⊕ t dsdt. (55)

Substituting equations (54) and (55) into (50) we obtain the following relation:
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f̂12(x1, x2) =
x1∫
0

x2∫
0

s⊕ t dsdt + f̂12(x1, 0) + f̂12(0, x2)

=
x1∫
0

x2∫
0

s⊕ t dsdt− 1
4

x1∫
0

x1∫
0

s⊕ t dsdt− 1
4

x2∫
0

x2∫
0

s⊕ t dsdt + f1(x1) − f2(x2)

= f(x1, x2) + f1(x1) − f2(x2).

Similarly, we conclude that f̂23(x2, x3) = f(x2, x3) + f2(x2) − f3(x3) and f̂13(x1, x3) = f(x1, x3) + f3(x3) −
f1(x1).

Finally, since f12(0, 0) + f13(0, 0) + f23(0, 0) = 0, there exist real numbers C1, C2 and C3 such that 
f12(0, 0) = C1 − C2, f23(0, 0) = C2 − C3 and f13(0, 0) = C3 − C1. Thus,

f12(x1, x2) = f̂12(x1, x2) + f12(0, 0) = f(x1, x2) + (f1(x1) + C1) − (f2(x2) + C2),

f23(x2, x3) = f̂23(x2, x3) + f23(0, 0) = f(x2, x3) + (f2(x2) + C2) − (f3(x3) + C3),

f11(x1, x3) = f̂13(x1, x3) + f13(0, 0) = f(x1, x3) + (f3(x3) + C3) − (f1(x1) + C1). �
6.3. Example of a discontinuous solution to a dual problem

Usually, dual multimarginal problem admits a regular solution provided the cost function is regular. For 
instance, applying the Legendre-type transformation, one can prove (see [30, Theorem 2.2] for more details) 
that there exists a solution {ϕi}ni=1 to the dual multimarginal problem with the following property: for all 
1 ≤ i ≤ n and for all xi ∈ Xi,

ϕi(xi) = inf
xj∈Xj ,
j �=i

⎛⎝c(x1, . . . , xn) −
i−1∑
j=1

ϕj(xj) −
n∑

j=i+1
ϕj(xj)

⎞⎠ .

If c is a Lipschitz function with the Lipschitz constant L, then the expression inside the infimum is also a 
Lipschitz function in xi with the same Lipschitz constant. Then ϕi is the infimum of Lipschitz continuous 
functions with common constant; therefore, ϕi is Lipschitz continuous as well.

In this section we prove that a natural solution to the dual (3, 2)-problem with Lipschitz c can be even 
discontinuous and (in a sense) unique.

Consider the following (3, 2)-problem.

Problem 6.29. For 1 ≤ i ≤ 3, let Xi = [0, 1], let μij be the restriction of the Lebesgue measure onto the 
square [0, 1]2, and let c(x1, x2, x3) = max(0, x1 + x2 + 3x3 − 3).

Primal problem. Find a uniting measure π ∈ Π({μij}{i,j}∈I3,2) such that∫
c(x1, x2, x3) dπ → min .

Dual problem. Find a triple of functions {fij}{i,j}∈I3,2 , fij ⊂ L1([0, 1]2) such that∑
{i,j}∈I3,2

fij(xi, xj) ≤ c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3,

∑ 1∫ 1∫
fij(xi, xj) dxidxj → max .
{i,j}∈I3,2 0 0
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The cost function c(x1, x2, x3) = max(0, x1 + x2 + 3x3 − 3) is Lipschitz continuous, and the triple of 
measures {μij}{i,j}∈I3,2 is reducible; hence, there is no duality gap, and solutions to both primal and dual 
problems exist.

Proposition 6.30. Let

f12(x1, x2) = 0 for all points (x1, x2) ∈ [0, 1]2;

f13(x1, x3) =
{

0, if x3 < 2
3 ,

x1 + 3
2x3 − 3

2 , if x3 ≥ 2
3 ;

f23(x2, x3) =
{

0, if x3 < 2
3 ,

x2 + 3
2x3 − 3

2 , if x3 ≥ 2
3 .

Denote F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3). Then

(a) F (x1, x2, x3) ≤ c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3;
(b) if the value of x1 + x2 + 3x3 is integer and (x1, x2, x3) �= (0, 0, 2/3), then F (x1, x2, x3) = c(x1, x2, x3).

Proof. First, one can easily verify the following representation for the function F :

F (x1, x2, x3) =
{

0, if x3 < 2
3 ,

x1 + x2 + 3x3 − 3, if x3 ≥ 2
3 .

(56)

Thus, F (x1, x2, x3) ≤ max(0, x1 + x2 + 3x3 − 3) = c(x1, x2, x3) for all (x1, x2, x3) ∈ [0, 1]3, and this implies 
assertion 6.30(a).

Suppose that the value of x1 + x2 + 3x3 is integer. Consider the case x3 < 2/3. Equation (56) implies 
that F (x1, x2, x3) = 0. Since x1, x2 ≤ 1, we have x1 + x2 + 3x3 < 4, and therefore x1 + x2 + 3x3 ≤ 3. Thus, 
c(x1, x2, x3) = max(x1 + x2 + 3x3 − 3, 0) = 0 = F (x1, x2, x3).

Consider the case x3 ≥ 2/3. By equation (56), F (x1, x2, x3) = x1+x2+3x3−3. If (x1, x2, x3) �= (0, 0, 2/3), 
then x1 +x2 +3x3 > 2, and therefore, since x1 +x2 +3x3 is integer, x1 +x2 +3x3 ≥ 3. Thus, if (x1, x2, x3) �=
(0, 0, 2/3), then c(x1, x2, x3) = x1 + x2 + 3x3 − 3 = F (x1, x2, x3), and this implies assertion 6.30(b). �

We claim that the constructed triple of functions {fij}{i,j}∈I3,2 is a solution to the dual Problem 6.29. 
By Proposition 6.30 it is enough to find a measure π ∈ Π({μij}{i,j}∈I3,2) such that π is concentrated on the 
set {(x1, x2, x3) : frac(x1 + x2 + 3x3) = 0} where frac(x) means the fractional part of x. The proof of the 
following lemma is easy and is left to the reader.

Lemma 6.31. Let π1,1,1 be the surface probability measure concentrated on two triangles that form a set

{(x1, x2, x3) : frac(x1 + x2 + x3) = 0}.

Then Prij(π1,1,1) coincides with the Lebesgue measure restricted to the square [0, 1]2 for all {i, j} ∈ I3,2.

Using this lemma, we prove a more general statement.

Proposition 6.32. Assume we are given positive integers a1, a2 and a3. Then there exists a measure 
πa1,a2,a3 ∈ Π({μij}{i,j}∈I3,2) concentrated on the set

{(x1, x2, x3) : frac(a1x1 + a2x2 + a3x3) = 0}.
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Proof. Let t1, t2 and t3 be non-negative integers such that 0 ≤ ti < ai for 1 ≤ i ≤ 3. Consider the mapping

T : (x1, x2, x3) 
→
(
x1 + t1

a1
,
x2 + t2

a2
,
x3 + t3

a3

)
.

Let πt1,t2,t3
a1,a2,a3

be the image of the measure π1,1,1 under the mapping T . First, if (y1, y2, y3) = T (x1, x2, x3), 
then a1y1 + a2y2 + a3y3 = (x1 + x2 + x3) + (t1 + t2 + t3). Hence,

frac(x1 + x2 + x3) = frac(a1y1 + a2y2 + a3y3),

and therefore, since π1,1,1 is concentrated on the set {(x1, x2, x3) : frac(x1 + x2 + x3) = 0}, the measure 
πt1,t2,t3
a1,a2,a3

is concentrated on the set {(y1, y2, y3) : frac(a1y1 + a2y2 + a3y3) = 0}.
In addition, for all {i, j} ∈ I3,2 the measure Prij(πt1,t2,t3

a1,a2,a3
) is the image of Prij(π1,1,1) under the mapping

(xi, xj) 
→
(
xi + ti
ai

,
xj + tj

aj

)
.

Thus, Prij(πt1,t2,t3
a1,a2,a3

) is proportional to the Lebesgue measure restricted to the square[
ti
ai
,
ti + 1
ai

]
×
[
tj
aj

,
tj + 1
aj

]
. (57)

Let

πa1,a2,a3 = 1
a1a2a3

∑
0≤ti<ai

πt1,t2,t3
a1,a2,a3

.

The measure πa1,a2,a3 is a probability measure concentrated on the set

{(y1, y2, y3) : frac(a1y1 + a2y2 + a3y3) = 0}.

In addition, it follows from (57) that Prij(πa1,a2,a3) is the Lebesgue measure restricted to the square 
[0, 1]2. �

Using this proposition, we immediately obtain the following theorem.

Theorem 6.33. The triple of functions {fij}{i,j}∈I3,2 described in Proposition 6.30 is a solution to the dual 
Problem 6.29, and the measure π1,1,3 ∈ Π({μij}{i,j}∈I3,2), concentrated on the set

{(x1, x2, x3) : frac(x1 + x2 + 3x3) = 0},

is a solution to the primal Problem 6.29.

Unlike Problem 6.12, a solution to the primal Problem 6.29 is non-unique.

Proposition 6.34. Let π1 be the restriction of the Lebesgue measure to the set {(x1, x2, x3) : 0 ≤ x1, x2 ≤
1, 0 ≤ x3 ≤ 1/3}, and let π̂1,1,2 be the image of the measure π1,1,2 described in Proposition 6.32 under the 
mapping

T : (x1, x2, x3) 
→
(
x1, x2,

2
3x3 + 1

3

)
.
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Fig. 5. The support of the solution π described in Proposition 6.34. The support of the measure π1 is red, and support of π̂1,1,2 is 
blue. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Then the measure π = π1 + 2
3 π̂1,1,2 is uniting and the function F (x1, x2, x3) described in Proposition 6.30

satisfies: F (x1, x2, x3) = c(x1, x2, x3) π-a.e. Consequently, the measure π is a solution to the primal Prob-
lem 6.29 (see Fig. 5).

Remark 6.35. In fact, the constructed measure 2
3 π̂1,1,2 is also the restriction of π1,1,3 to [0, 1]2 × [1/3, 1]; 

therefore, the uniting measures provided in Theorem 6.33 and Proposition 6.34 are distinct only on a bottom 
part [0, 1]2 × [0, 1/3] of the space X.

Proof of Proposition 6.34. By construction, Pr12(π1) is proportional to the restriction of the Lebesgue mea-
sure to the square [0, 1]2. The mapping T does not change the projection of a measure onto the space X12, 
and therefore Pr12(π̂1,1,2) is also proportional to the restriction of the Lebesgue measure to the square [0, 1]2. 
Thus, Pr12(π) = μ12.

The measure Pr13(π1) coincides with the restriction of the Lebesgue measure to the rectangle 
{(x1, x3) : 0 ≤ x1 ≤ 1, 0 ≤ x3 ≤ 1/3}. The measure Pr13(π̂1,1,2) is the image of Pr13(π1,1,2) under the 
mapping

(x1, x3) 
→
(
x1,

2
3x3 + 1

3

)
.

Thus, 2
3Pr13(π̂1,1,2) coincides with the restriction of the Lebesgue measure to the rectangle {(x1, x3) : 0 ≤

x1 ≤ 1, 1/3 ≤ x3 ≤ 1}, and therefore Pr13(π) = μ13. Similarly, Pr23(π) = μ23, and we conclude that 
π ∈ Π({μij}{i,j}∈I3,2).

Let (x1, x2, x3) be a point in [0, 1]3 such that x3 ≤ 1/3. By equation (56) we have F (x1, x2, x3) = 0. In 
addition, x1 + x2 + 3x3 − 3 ≤ 0, and therefore c(x1, x2, x3) = 0. Thus, since supp(π1) = {(x1, x2, x3) ∈
[0, 1]3 : 0 ≤ x3 ≤ 1/3}, we conclude that F (x1, x2, x3) = c(x1, x2, x3) π1-a.e.

Let (x1, x2, x3) be an arbitrary point in the cube [0, 1]2, and let (y1, y2, y3) = T (x1, x2, x3). We have 
y1 + y2 + 3y3 = x1 + x2 + 2x3 + 1, and therefore

frac(y1 + y2 + 3y3) = frac(x1 + x2 + 2x3).

Hence, we conclude that π̂1,1,2 is concentrated on the set {(x1, x2, x3) : frac(x1+x2+3x3) = 0}, and therefore 
by assertion 6.30(b) F (x1, x2, x3) = c(x1, x2, x3) π̂1,1,2-a.e.

Thus, F (x1, x2, x3) = c(x1, x2, x3) for π-almost all points (x1, x2, x3) ∈ [0, 1]3, and the measure π is a 
solution to the primal Problem 6.29. �
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Unlike the primal problem, the dual problem admits a unique solution in the following sense.

Proposition 6.36. Let {gij} be a solution to the relaxed dual Problem 6.29. Then the equation

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

holds for almost all (x1, x2, x3) ∈ [0, 1]3, where the triple of functions {fij}{i,j}∈I3,2 is defined in Proposi-
tion 6.30.

First, let us verify the following statement.

Lemma 6.37. Let {gij} be a solution to the relaxed dual Problem 6.29 (see Definition 5.16). Then there exist 
integrable functions ϕ1 and ϕ2 such that g12(x1, x2) = ϕ1(x1) + ϕ2(x2) almost everywhere.

Proof. Consider the finite (3, 2)-function

G(x1, x2, x3) = g12(x1, x2) + g13(x1, x3) + g23(x2, x3).

Since {gij} is a solution to the relaxed dual problem, the equation G(x1, x2, x3) = c(x1, x2, x3) holds π-
almost everywhere, where π is a solution to the primal problem defined in Proposition 6.34. In particular, 
G(x1, x2, x3) = c(x1, x2, x3) for almost all points (x1, x2, x3) ∈ [0, 1]3 such that 0 ≤ x3 ≤ 1/3. Since 
c(x1, x2, x3) = max(x1 + x2 + 3x3 − 3, 0) = 0 if x3 ≤ 1/3, we conclude that G(x1, x2, x3) = 0 for almost all 
(x1, x2, x3) ∈ [0, 1]3 such that 0 ≤ x3 ≤ 1/3.

In particular, there exists a point 0 ≤ x
(0)
3 ≤ 1/3 such that the equation G(x1, x2, x

(0)
3 ) = 0 holds for 

almost all (x1, x2) ∈ [0, 1]2. Hence, if we denote ϕ1(x1) = −g13(x1, x
(0)
3 ) and ϕ2(x2) = −g23(x2, x

(0)
3 ), then 

the equation

g12(x1, x2) = −g13(x1, x
(0)
3 ) − g23(x2, x

(0)
3 ) = ϕ1(x1) + ϕ2(x2)

holds for almost all (x1, x2) ∈ [0, 1]2.
Let us verify that ϕ1 and ϕ2 are integrable. Since g12 is integrable, it follows from the Fubini-Tonelli 

theorem that for almost all x(0)
2 ∈ [0, 1] the function x1 
→ g12(x1, x

(0)
2 ) = ϕ(x1) +ϕ2(x(0)

2 ) is also integrable. 
Since ϕ2(x(0)

2 ) is a constant, we conclude that ϕ1(x1) is integrable. The integrability of ϕ2 is proven in the 
same manner. �

It follows from Lemma 6.37 that if {gij} is a solution to the relaxed dual problem, then we can set 
ĝ12(x1, x2) = 0, ĝ13(x1, x3) = g13(x1, x3) +ϕ1(x1) and ĝ23(x2, x3) = g23(x2, x3) +ϕ2(x2). Then the equation

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = ĝ12(x1, x2) + ĝ13(x1, x3) + ĝ23(x2, x3)

holds for all (x1, x2, x3) ∈ [0, 1]3 except a zero (3, 2)-thickness set, and therefore the triple of functions {ĝij}
is also a solution to the relaxed dual problem. Thus, in Proposition 6.36 we may additionally assume that 
g12(x1, x2) = 0 for all (x1, x2) ∈ [0, 1]2.

Lemma 6.38. Let ϕ1 and ϕ2 be integrable functions defined on the segment [0, 1]. Suppose that there exists 
a real ε > 0 such that the inequality ϕ1(x1) + ϕ2(x2) ≤ 0 holds for almost all points (x1, x2) such that 
0 ≤ x1 + x2 ≤ 1 + ε. Then

1∫
ϕ1(x1) dx1 +

1∫
ϕ2(x2) ≤ 0.
0 0
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Fig. 6. The supports of the measures μ1 and μ2 for the case ε = 1
4 . The set A1 is colored red, and the set A2 is blue.

Moreover, if the equality is achieved, then ϕ1(x1) +ϕ2(x2) = 0 for almost all (x1, x2) ∈ [0, 1]2. The same 
is true if we replace the inequality 0 ≤ x1 + x2 ≤ 1 + ε with 1 − ε ≤ x1 + x2 ≤ 2.

Proof. Without loss of generality we may assume that ε = 1/n for some positive integer n. Consider the 
set A1 = {(x1, x2) ∈ [0, 1]2 : min(x1, x2) ≤ 1/(2n)}. Let μ1 be the restriction of the Lebesgue measure to 
the set A1. One can easily verify that if ρ is the density of the projection of μ1 to the axis, then ρ(x) = 1
if 0 ≤ x ≤ 1/(2n) and ρ(x) = 1/(2n) if 1/(2n) < x ≤ 1. In addition, if min(x1, x2) ≤ 1/(2n), then 
0 ≤ x1 + x2 ≤ 1 + 1/(2n), and therefore the inequality ϕ1(x1) + ϕ2(x2) ≤ 0 holds μ1-almost everywhere.

Consider the set A2 = {(x1, x2) ∈ [0, 1]2 : �2nx1� +�2nx2� = 2n}. Let μ2 be the restriction of the Lebesgue 
measure to the set A2. If �2nx1� +�2nx2� = 2n, then 2nx1 +2nx2 < 2n +2, and therefore x1 +x2 < 1 +1/n. 
Hence, ϕ1(x1) +ϕ2(x2) ≤ 0 for μ2-almost all points (x1, x2). In addition, the projection of μ2 to the axis is 
proportional to the restriction of the Lebesgue measure to the segment [1/(2n), 1], and the density of this 
projection is equal to 1/(2n) on this segment. See Fig. 6 for the visualization of the sets A1 and A2.

Consider the measure μ = μ1 + (2n − 1)μ2. The projections of this measure to the axes coincides with 
the restriction of the Lebesgue measure to the segment [0, 1]. In addition, supp(μ) ⊂ {(x1, x2) ∈ [0, 1]2 : 0 ≤
x1 + x2 ≤ 1 + 1/n}. Thus, we have

1∫
0

ϕ1(x1) dx1 +
1∫

0

ϕ2(x2) dx2 =
∫

[0,1]2

(ϕ1(x1) + ϕ2(x2))μ(dx1, dx2) ≤ 0.

Assume that the equality holds. Then ϕ1(x1) +ϕ2(x2) = 0 μ-almost everywhere. In particular, ϕ1(x1) +
ϕ2(x2) = 0 for almost all points (x1, x2) ∈ A1, and therefore this equation holds for almost all points (x1, x2)
such that 0 ≤ x2 ≤ 1/(2n). Thus, by the Fubini-Tonelli theorem there exists a point x(0)

2 ∈ [0, 1/(2n)] such 
that the equation ϕ1(x1) +ϕ2(x(0)

2 ) = 0 holds for almost all x1 ∈ [0, 1], and therefore there exists a constant 
C1 = −ϕ2(x(0)

2 ) such that ϕ1(x1) = C1 almost everywhere.
Similarly, there exists a constant C2 such that ϕ2(x2) = C2 almost everywhere. Then

0 =
1∫

0

ϕ1(x1) dx1 +
1∫

0

ϕ2(x2) dx2 = C1 + C2,

and therefore ϕ1(x1) + ϕ2(x2) = 0. The case of the inequality 1 − ε ≤ x1 + x2 ≤ 2 is proven in the same 
manner. �
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Proof of Proposition 6.36. By Lemma 6.37 we may assume that g12 ≡ 0. Consider the finite (3, 2)-function

G(x1, x2, x3) = g13(x1, x3) + g23(x2, x3).

The function G is integrable and the inequality G(x1, x2, x3) ≤ c(x1, x2, x3) holds for almost all points 
(x1, x2, x3) ∈ [0, 1]3. Hence, there exists a set A ⊆ [0, 1] with full measure such that if x(0)

3 ∈ A, then 
the function G(·, ·, x(0)

3 ) is integrable and the inequality G(x1, x2, x
(0)
3 ) ≤ c(x1, x2, x

(0)
3 ) holds for almost all 

(x1, x2) ∈ [0, 1]2.
Assume that x(0)

3 ∈ A and that x(0)
3 < 2/3. Consider the (3, 2)-function

F (x1, x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3) = f13(x1, x3) + f23(x2, x3).

By equation (56) we have F (x1, x2, x
(0)
3 ) = 0 for all (x1, x2) ∈ [0, 1]2.

Denote ε = 2 − 3x(0)
3 . We have ε > 0. If x1 + x2 ≤ 1 + ε, then x1 + x2 + 3x(0)

3 − 3 ≤ 0, and therefore

c(x1, x2, x
(0)
3 ) = max(x1 + x2 + 3x(0)

3 − 3) = 0 = F (x1, x2, x
(0)
3 ).

In addition, since G(x1, x2, x
(0)
3 ) ≤ c(x1, x2, x

(0)
3 ) for almost all points (x1, x2), we conclude that the in-

equality G(x1, x2, x
(0)
3 ) ≤ F (x1, x2, x

(0)
3 ) holds for almost all points (x1, x2) such that 0 ≤ x1 + x2 ≤ 1 + ε.

Consider the functions

ϕ1(x1) = g13(x1, x
(0)
3 ) − f13(x1, x

(0)
3 ) and ϕ2(x2) = g23(x2, x

(0)
3 ) − f23(x2, x

(0)
3 ). (58)

We have

ϕ1(x1) + ϕ2(x2) = G(x1, x2, x
(0)
3 ) − F (x1, x2, x

(0)
3 ).

Hence, the function ϕ1(x1) + ϕ2(x2) is integrable on [0, 1]2, and therefore both functions ϕ1 and ϕ2 are 
integrable on [0, 1]. In addition, the inequality ϕ1(x1) +ϕ2(x2) ≤ 0 holds for almost all points (x1, x2) such 
that 0 ≤ x1 + x2 ≤ 1 + ε. Thus, it follows from Lemma 6.38 that

∫
[0,1]2

(
G(x1, x2, x

(0)
3 ) − F (x1, x2, x

(0)
3 )
)
dx1dx2 =

1∫
0

ϕ1(x1) dx1 +
1∫

0

ϕ2(x2) dx2 ≤ 0.

Moreover, if the equality holds, then G(x1, x2, x
(0)
3 ) = F (x1, x2, x

(0)
3 ) almost everywhere.

Assume that x(0)
3 ∈ A and that x(0)

3 > 2/3. By equation (56) we have

F (x1, x2, x
(0)
3 ) = x1 + x2 + 3x(0)

3 − 3.

Denote ε = 3x(0)
3 − 2 > 0. If x1 + x2 > 1 − ε, then x1 + x2 + 3x3 − 3 > 0, and therefore

c(x1, x2, x
(0)
3 ) = max(x1 + x2 + 3x(0)

3 − 3, 0) = x1 + x2 + 3x(0)
3 − 3 = F (x1, x2, x

(0)
3 ).

Hence, since G(x1, x2, x
(0)
3 ) ≤ c(x1, x2, x

(0)
3 ) for almost all (x1, x2), we conclude that ϕ1(x1) + ϕ2(x2) ≤ 0

for almost all points (x1, x2) such that 1 − ε ≤ x1 + x2 ≤ 2, where the functions ϕ1 and ϕ2 are defined in 
equation (58). Thus, it follows from Lemma 6.38 that∫

2

G(x1, x2, x
(0)
3 ) dx1dx2 ≤

∫
2

F (x1, x2, x
(0)
3 ) dx1dx2, (59)
[0,1] [0,1]
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and if the equality holds, then G(x1, x2, x
(0)
3 ) = F (x1, x2, x

(0)
3 ) for almost all (x1, x2).

Summarizing these results, we conclude that if x(0)
3 ∈ A and if x(0)

3 �= 2/3, then inequality (59) holds, 
and therefore, since A is a set of full measure, we have∫

[0,1]3

G(x1, x2, x3) dx1dx2dx3 ≤
∫

[0,1]3

F (x1, x2, x3) dx1dx2dx3.

Since {gij} is a solution to the relaxed dual problem, the equality holds, and therefore the equality in 
inequality (59) is achieved for almost all x(0)

3 . Thus, for almost all x(0)
3 ∈ [0, 1] the equation F (x1, x2, x

(0)
3 ) =

G(x1, x2, x
(0)
3 ) holds for almost (x1, x2) ∈ [0, 1]2, and therefore

g12(x1, x2) + g13(x1, x3) + g23(x2, x3) = f12(x1, x2) + f13(x1, x3) + f23(x2, x3)

almost everywhere. �
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