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1. Introduction

This paper is a continuation of our previous work [19], where we studied a natural generalization of the
transportation or Monge-Kantorovich problem.

Let p and v be probability measures on measurable spaces X and Y, and let ¢ : X XY — R be a
measurable function. The classical Kantorovich problem is the minimization problem

c(x,y) dm — inf

XxXY

on the space II(u, v) of probability measures on X x Y with fixed marginals p and v.
It is well-known that this problem is closely related to another linear programming problem, which is

called “dual transportation problem”
/fdu+/gdu—>sup.

The dual transportation problem is considered on the couples of integrable functions (f, g), satisfying f(x)+
g(y) <c(z,y) forallz e X,y €Y.

Nowadays, the Monge-Kantorovich theory attracts growing attention. The reader can find huge amount
of information in the following books and surveys papers: [1,6,13,16,22,23,32,33,36,37].

A particular case of the multistochastic problem is the multimarginal transportation problem. In the
multimarginal problem one considers the product of n > 2 spaces and n independent marginals i1, ..., fy.
Some classical results on the multimarginal problem is contained in book [32], in particular, functional-
analytical duality theorems, applications to probability etc. Nevertheless, till recent, only the case of two
marginals was in focus of research. A revival of interest in the case of many marginals is partially motivated
by applications in economics and quantum physics [10,11,14,31]. Our motivation to study the cost function
ryz in R? is partially related to the multimarginal problem considered in [18].

In [19] we introduce a more general problem, which we call “multistochastic problem”. Compare to the
classical (multimarginal) case this new problem is genuinely more difficult. Even its well-posedness depends
on the structure of the marginals in a complicated way. The aim of this work is to fill many gaps related to
basic properties of the problem.

The paper is organized as follows: the reader can consider Section 2 as an extended introduction, where
we present the results of the paper, our previous results, open questions, examples, and discuss relations
to other problems. In Section 3 we study sufficient conditions for existence of a feasible measure for the
multistochastic problem. In Section 4 we give a proof of a duality theorem which is based on the duality
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theory for linearly constrained transportation problem. In Section 5 we study sufficient conditions for the
existence of a dual solution and construct an example of non-existence. In Section 6 we give explicit uniform
bounds for the dual solution under assumption that the cost function is bounded. Then we prove uniqueness
of the primal and dual solutions in our main example studied in [19]. Finally, we give an example showing
that a dual solution can be discontinuous even for a nice cost function c.

2. The multistochastic Monge—Kantorovich problem. Preliminaries, examples, and open questions

We start with the formulation of the multistochastic problem in the most general setting. Let
X1, Xs,..., X, be measurable spaces equipped with o-algebras Bi,...,B,. It will be assumed through-
out that X; are Polish spaces and B; are Borel o-algebras. For arbitrary space X let us denote by P(X)
the space of all probability measures on X.

Definition 2.1. Let p, ¢ be nonnegative integers, ¢ < p. Let us denote by Z, , or Z,, the family of subsets
{1,2,...,p} of cardinality ¢. In addition, the family of all subsets of {1,2,...,p} will be denoted by Z, =
U 0 Zpq-

q=0-Pq

Definition 2.2. For all a € 7, let us set X, = [];c, Xi- The product of all spaces X = H?:l X; will be
denoted by X. For a fixed o € Z,, the projection of X onto X, will be denoted by Pr,. In addition, for
arbitrary = € X the image of x under projection Pr,, will be denoted by z4: 2o = Pr,(x). We also denote
by Pry (1) € P(X,) the pushforward of measure p € P(X) by Pr,.

Definition 2.3. Assume that for every a € 7, we are given a probability measure u, on X,. We say that
a measure pu € P(X) is uniting if Pr,(u) = po for all @ € Z,. The set of all uniting measures will be
denoted by II(X, {{ta }aez,, ) We will omit the explicit mention of the space X in the notation if this space
is uniquely determined from the context.

Given the family of probability measures {pq}acz,,, we will consider the cost function ¢ defined on

nk?
the space X with the following property: there exists a collection of integrable functions {c,}acz,,,
ca € L1(Xa,pa), such that |c(z)] < >0 <7 ca(za). Every such a function c is integrable with re-
spect to all uniting measures 7 € I({fia}aez,,). Indeed, one has [y [c[dr < 37 o7 [y calta) dpta, if

le(z)| <3 pez,, CalTa)- So, for these cost functions c the following problem is correctly defined:

Problem 2.4 (Primal (n,k)-Monge—Kantorovich problem). Given Polish spaces X1,...,X,, fiz family of
measures o, € P(Xa), a € L, and a measurable cost function c. Assume that there exist integrable
functions co € L1(Xa, pa), @ € Lyk, such that |c(x)| <3 cr . cala). Then we are looking for

inf /c dm,
WGH({Ma}aeznk)
X

where infimum is taken among the all uniting measures .

In what follows, we will additionally require ¢ and {cq }aez,, to be continuous, and this motivates us to
introduce the following functional spaces

CL(XOHM(X) = C(Xa) N Ll(,ua)a

Cr( X, {patacz,,) = {c € C(X) :e(x)] < Z ca(Tq) for some {cq}aez, ., Ca € C’L(Xa,ua)} .

aElyy
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The notation Cr, means “the function c is continuous and belongs to the space L'(u)”. In addition, we
denote by Cy(X) the space of all bounded continuous functions on X, Cy(X) C CL(X, {tta }aez,, ) for every

family {pa taez, -

Example 2.5. ((3,2)-problem) Consider a product of three spaces X = X; x X5 x X3, probability measures
H12, H23, W13 ON X1 X Xg, X2 X Xg, X1 X X3 respectively. Then e H({Hij}{i,j}elg,z) if and only if M is a
measure on X such that

Pria(p) = pa2, Pris(p) = pas, Prag(p) = pi2s.

Throughout this work we use notation like p;; (meaning the measure on X; x X;) or Z,,; with two indices
without commas in most places. Also note that p;; is the same as j;; since indices o are unordered sets.

In this introductory section we briefly describe several aspects of this problem. In particular, we discuss
previously known results, examples, open problems, and relation to other research.

2.1. Feasibility of the problem, Latin squares and descriptive geometry

The multistochastic problem is overdetermined and a uniting measure does not always exist. It is clear
that a necessary condition for existence of a uniting measure is the following consistency condition:

Prong(ta) = Prans(ps) = Prans(p).

This condition is not sufficient (see [19] and other examples below), but we show that this condition is
sufficient for existence of a signed uniting measure (see Theorem 3.6).

Nevertheless, in certain situations the set of feasible measures is very rich. This happens, for instance,
if X; are finite sets of the same cardinality and all the measures i, are uniform. The natural continuous
generalization is: X; = [0,1] and p, are the Lebesgue measures on [0, 1]* of the corresponding dimension .
A natural related discrete combinatorial object is a Latin square. We recall that a Latin square is an n x n
array filled with symbols from {1,...,n}, each occurring exactly once in each row and exactly once in each
column. To see the relation let us consider an n x n Latin square S containing first n integers. Then the
discrete measure

1
2 > bijsa)
07

on {1,...,n}® has uniform projections to discrete xy, rz, yz planes.
More generally, the (n, k)-multistochastic problem is always feasible for the system of measures

po = [ 1 @ € Tk,

i€

where 1, ..., u, are fixed measures on Xq,..., X,.

We believe that this example provides a natural source of applications, this is why a big part of our
results is related to this particular case.

An interesting example of the optimal transportation problem was studied in connection with applications
to the density functional theory, namely, the Hohenberg—Kohn theory. The Hohenberg—Kohn theory consid-
ers a model of N electrons whose arrangement in the space R?" is determined by the density py (21, ..., 7xN).
The energy of pairwise interaction of electrons is specified as the density integral over the Coulomb potential:
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Vee:/ Z —pN(w177xN)de'1de

1<i<j<N |zi — ;]

Due to the symmetry,

3 p2(x,y)
ee — 4(1(1,
v / o —y T

1<i<j<N

where po(z,y) = [ pn(z,y, 23, ,2n) dz3 ... dzN.
In the Hohenberg-Kohn theory, the ground state is described by a functional that depends only on the
density of one electron

p(x) = /pN(a:,ZQ,m an)dzy - day.

For this purpose Ve.(p2) is approximated by the functional Ve.(p), depending only on p. The correct ap-
proximation is the key problem in this theory.
It turns out that the natural approximation is the approximation by the functional

1
0= gt |
For example, this functional occurs when the so-called “semi-classical limit” is taken. Trivially, the functional
F is the Kantorovich functional (for the pair of equal marginals) with the cost function Iw%yl This cost
function is called Coulomb cost function.

In [12] the passage to the limit is made rigorously, and some sufficient conditions for the existence and
uniqueness of a solution for the Kantorovich functional are found. For a generalization to a wider class of
“repulsive cost functions” see [10]. For further progress in physical applications, see [4]. In [9] transport
inequalities and concentration inequalities for the Coulomb cost function are obtained.

In this setting, the multistochastic Monge-Kantorovich problem can be applied if we have additional
restrictions on joint distributions of electrons. For example, if we know that every set of k electrons is
mutually independent, we can consider the (n, k)-problem with the fixed family of projections pq = [, ¢, -

Other source of inspiration might arise from the engineering, in particular, the descriptive geometry. In
engineering it is common to depict a three-dimensional body using its two (as originally suggested by father
of descriptive geometry, Gaspard Monge, who also gave his family name to Monge—Kantorovich problem) or
three orthogonal projections onto orthogonal two-dimensional planes. So an engineer might find themselves
reconstructing a three-dimensional body by its top view, front view and side view. When instead of a body
one has a measure, that turns into finding a set of uniting measures in (3, 2)-problem.

A necessary and sufficient condition for existence of a measure with a given system of marginal distribu-
tions in the spirit of linear programming duality was established by H. Kellerer [24]. Assume we are given
a system of marginal distributions p,, where o belongs to some system A of subsets of {1,...,n}. This
system admits a uniting measure if and only if

Z/fa(xa)duazo

acA

for all bounded continuous family of functions {fa(%a)}acz,, satisfying > 4 fa(za) > 0. We give an
independent proof of this fact for A = Z,; in Section 3. Note, however, that this criterion does not seem to
be very practical. We establish some easy-to-check sufficient conditions for existence of uniting measure in
terms of uniform bounds for densities. In particular, we prove the following (see Theorem 3.11):
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Theorem 2.6. For given natural numbers 1 < k < n there exists a constant Apr > 1 which admits the
following property.

Assume we are given a consistent (see Definition 5.2) family of probability measures po € P(Xo), o €
Tk, and another family of probability measures v; € P(X;), 1 < i < n. Assume that every measure fiq,
a € Tyg, is absolutely continuous with respect to vo =[]

ica Vir

Ha = Pa * Va-

Finally, assume that there exist constants 0 < m < M such that every density p,, satisfies m < po, < M
Va-almost everywhere for all o € Ty,.
Then II({ o taez,, ) is not empty provided % < Mk-

We will give precise bounds for the constant Ass.

Remark 2.7. Solvability of the primal problem. As soon as the set of uniting measures is not empty, the
proof of existence of a solution to the primal problem for a lower semicontinuous cost is a standard exercise.

Theorem 2.8 (/19]). Assume that the cost function ¢ > 0 is lower semicontinuous. If II({{ta }aecz,,) i nOt
empty, then there exists a solution to the multistochastic problem.

2.2. Ezamples. Fractal structure versus smooth structure

The main example of an explicit solution to a multistochastic problem was found in [19]. The unexpected
beauty of this example was the main motivation for us for subsequent study of the multistochastic problem.

In the following example we consider a (3,2)-problem. Denote by II(pizy, fhyz, ftz2) the set of measures
with projections Prp,m = gy, Pro.m = piz., Pry.m = 11y,

Theorem 2.9 ([19]). Let pizy = Mgy, oz = Azzs fyz = Mgz be the two-dimensional Lebesgue measures [0, 1]2
and let ¢ = xyz. Then there exists a unique solution to the corresponding (3,2)-problem

/xyz dr — min, 7 € (Ugy, tys, taz)-
It is concentrated on the set
S ={(z,y,2): c®ydz =0},
where @ is the bitwise addition (see Definition 6.13). See Fig. 1.

The set & is called Sierpirisky tetrahedron.

We stress that some fractal solutions to a multimarginal transportation problem were known before our
work. See, for instance, [14], where multimarginal problem with the cost function of the type h(>_\; ;)
and the Lebesgue measure projections was considered. Though we don’t see any direct relation between
these examples, they have something in common: in both cases the entire construction relies on the dyadic
decomposition.

Remark 2.10. The (3, 2)-problem can admit not only fractal but also smooth solutions. For instance, consider
measurable functions f(z), g(y) and h(z) on [0,1]. Assume that h is injective, the set T' = {f(z) + g(y) +
h(z) = 0} is not empty, and p is a probability measure concentrated on I': p(T") = 1. Set piyy = Proyp, pyr =
Pry.p, pty: = Pry.p. Then p is the unique element of II(pgy, fyz, Haz). Indeed, let v € TI(fgy, thyzs faz)-
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Fig. 1. The solution is supported on Sierpinsky tetrahedron.

Clearly, [ (f(z)+g(y) + h(z))2 dv depends solely on the integrals of pairwise products of functions f, g, h
with respect to measures pigy, fty-, Ue-. Hence

/ (F(2) + g(y) + h(2))? dv = / (F(2) + g() + h(2)*du = 0,

this implies that v is concentrated on I'. Since h is injective, I' is the graph of the mapping (z,y) —
h=Y(—f(x) — g(y)), hence v is uniquely determined by its projection fi,, thus coincides with p.

In particular, this observation can be applied to construct an example of a solution concentrated on a
smooth set.

Example 2.11. The Lebesgue measure on [0,1]> N {z; + x5 + 23 = 1} is a solution to the (3,2)-problem,
where marginals are the two-dimensional Lebesgue measures concentrated on the set {z; +x; < 1} C [0, 1]2
and arbitrary cost function.

It is clear, that the smoothness of the solution in this example is just a matter of fact that II(pzy, tyz, thoz)
contains a unique (smooth) element. However, it is natural to expect that the solution may have a frac-
tal/non-regular structure provided uniting measures constitute a sufficiently large set.

The following problem, yet vaguely formulated, seems to be crucial for understanding of the structure of
solutions to (n, k)-problem.

Open problem 1. Is it true that solutions to (n,k)-problem have “fractal structure” provided
II({fta } ez, ) contains sufficiently “rich” set of measures?

2.3. Duality and the Kantorovich problem with linear constraints

As in the classical case the multistochastic problem admits the corresponding dual problem:

Problem 2.12 (Dual (n, k)-Monge—Kantorovich problem). Assume we are given Polish spaces X1,...,Xn, a
fized family of measures {fiatact,,, and a cost function ¢ € Cr(X, {tta}acz,, ). Find
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sup Y / fo dptas

f<e OCEInan

where the supremum is taken among the functions f having the form f(x) = >_ o7 fa(za), where fo €
LN (X fa)-

Definition 2.13. We say that there is no duality gap for the (n, k)-problem if

min ¢ dr = su /adon
WeH({H&}aEI,,Lk)/ b Z f H

<
f<e OLEInan

where fo € LN(Xa, p1a), f(2) = Zaelnk fa(@a).

The absence of duality gap was shown in [19] under assumption of compactness of the spaces X;. In this
work we prove the following result:

Theorem 2.14. There is no duality gap for (n,k)-problem provided X; are Polish spaces and ¢ €
Cr(X, {tataez,)-

Our approach is based on the result of D. Zaev [38] on duality for the classical Kantorovich problem with
linear constraints. The transportation problem with linear constraints is the standard Kantorovich problem
with additional constraints of the type I(P) = 0, where [ is a linear functional on the space of measures.
The proof of Zaev is based on the general minimax principle.

2.4. Structure of dual solutions. Monge problem

Our main example of a dual solution is given in the following theorem.

Theorem 2.15 ([19]). Let pgy = Mgy, oz = gz, fyz = gz be the two dimensional Lebesgue measures on
[0,1]* and ¢ = zyz. Then the triple of functions (f(z,y), f(x,2), f(y,z)), where

x Yy T

x y vy
1 1
f(x,y)://t@sdtds—z//téBsdtds—z//tEBsdtds
0 00 0 0

0

solves the corresponding dual multistochastic problem.

Remark 2.16. The uniqueness result for this problem under assumption of continuity of the dual solution is
proved in the present paper in Theorem 2.30.

The solution to the dual problem given in Theorem 2.15, has the following relation to the solution 7 to
the primal problem (see Theorem 2.9): 7 is concentrated on the graph of the mapping (z,y) — fuy(z,y),
ie.

Z:fzy(xay) (1)

m-almost everywhere.
Let us note that f admits a non-negative mixed derivative f,,, but derivatives f,, fy, do not exist (at
least in the classical sense).
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The relation (1) can be derived from the fact that the support & of the solution 7 is a fractal set. Indeed,
function f(x,y)+ f(z,2) + f(y,2) — xyz is non positive and equals zero 7-a.e. Thus for m-almost all points
the first order condition

fe(@,y) + fo(x,2) = yz (2)

is satisfied.

Next, it is easy to show that for m-almost every point M = (zo,yo,20) € & the set & contains points of
the type M + t,v, where t,, is a sequence tending to zero and vector v belongs to a set V' containing three
independent vectors. One can prove this using the fractal structure of &. Consequently, one can differentiate
(2) along V and deduce (1) from these relations.

Thus in this particular case the solution admits the following properties.

(a) The solution is concentrated on the graph of a mapping z = T'(z,y).

(b) This mapping T has the form T'(x,y) = fuy(x,y), where (f, g, h) is a solution to the dual problem. The
same holds for g, h.

(¢) Function f(z,y) is a cumulative distribution function (up to a term depending on z and a term
depending on y) of a positive measure on a plane. Equivalently, fg,(x,y) > 0 almost everywhere.

These properties together resemble the result by Brenier [7] that in usual Monge—Kantorovich problem
for cost function — -y (or equivalently ||z — y||?) one has the optimal transport plan concentrated on the
graph of the gradient of some convex function ¢ such that (¢, ¢*) is a solution to the dual problem. Here
we have function ¢ = xyz and optimal transport plan concentrated on the graph of the mixed derivative of
some function f with positive mixed derivative which is also a solution to the dual problem.

Definition 2.17. (Optimal mapping.) Let T satisfy (a). Then we say that T is an optimal mapping,.

One can ask whether any solution to (3,2)-problem (under natural assumptions on the marginals) with
the cost function zyz does satisfy properties (a), (b), (c). We show that in fact no one of these properties
are satisfies in general.

Example 2.18. The solutions to (3, 2)-problems are not always concentrated on graphs; (a) fails. Consider
the sphere S = {22 +y? + 22 = 1}, and consider the quarter sphere S; = SN {x > 0,y > 0}, So = SN{z <
0,y >0}, S3=S5N{zr <0,y <0}and Sy = SN{z > 0,y < 0}. Let m be the surface measure on the
3/4-part of the sphere S; U SoU Sy, and let fizy, firz, fty- be the corresponding two-dimensional projections.

Slightly modifying the arguments of Remark 2.10 we prove that if 7 is a measure with projections jiz,,
Moz and p,., then T is concentrated on the set Sq U Sy U S4. For each point of Sy there is no other point of
S1 U S5 U .Sy with the same projection onto the coordinate plane Oxz, and therefore the restriction of the
measure 7 to Sz is fully determined by its projection p,,. and coincides with 7|g,.

Similarly, the restriction of @ to Sy is fully determined by its projection f,. and coincides with |g,.
Hence, 7|, = T —m|s, — 7|s,. Thus, the projections of 7|s, and 7|g, to the coordinate planes are the same,
and then 7|s, = 7|g,. So we conclude that 7 is the only measure with projections fizy, fiz, by, and there
is no optimal mappings 1, T, and T},

See also Example 5.10 for a discrete counterexample.

Example 2.19. Example without dual solutions satisfying (1); (b) fails. This example is considered in The-
orem 6.33. In this example f,, is either zero or not defined.
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Example 2.20. Non-uniqueness for the dual problem; (c) fails. In the problem considered in Example 2.11
there exist many dual solutions. To see this let us note that the following inequality holds for all (z,y, z) €
[0,1]® and a fixed constant A > 0, equality holds if and only if z +y + 2 = 1:

(x+y+z—1)*(x+y+2z+A4)>0.
Developing the left-hand side we see that this inequality is equivalent to

TYz > fA(mvy) + fA(xVZ) + fA(flj,Z),

where

S N N | 2?2 xy  y? 1-24 A
Fale) = 5 +07) — gente+ )~ (4-2) (G4 24 L) - 120y - £

Clearly, the triple (fa(z,y), fa(x, 2), fa(y, z)) solves the dual problem for every A > 0. Note that (1) and
(c) fails for all A > 0.

Thus we see that the particular form (1) of the optimal mapping related to (3,2)-problem with cost
function zyz is related to the fractal structure of the solution. Motivated by these observations we state the
following problem.

Open problem 2. Assume that 7 is a solution to a (3, 2)-problem with the cost function zyz. Find general
sufficient conditions for presentation of 7 in the form

z= fzy(xay)a

where f(z,y), g(x, z), h(y, z) solve the corresponding dual multistochastic problem.

It seems quite difficult to describe the general structure of solutions to (3, 2)-problem with ¢ = zyz, since
it is very sensitive to non-local properties of the marginals. Something can be established under very strong
“smoothness” assumptions, as presented in the proposition below. But we stress that this situation can not
pretend to describe a reasonable model case.

Proposition 2.21. Consider a triple of twice continuously differentiable functions f(z,y), g(z,z), h(y,z)
satisfying f(x,y) + g(z, 2) + h(y, z) > xyz. Assume, in addition, that

I'={f(z,y) +9(z,2) + h(y, 2) = xyz}

s a two-dimensional smooth surface.
Let I'y,I'y, I, be sets defined by equations:

r,= {x = hyZ}v Fy = {y = gzz}a r,= {Z = fzy}

Then for every point (o, Yo, 20) € I' the following alternative holds:

(A) (z0,%0,20) belongs to at least two of sets I'y,T'y,T.: (z0,%0,20) € (T NT,) YT NTL) YT, NT2)
(B) (x0,y0,20) ¢ Tx UT, UT', and the vector field

1 1 1
(e o)
l'_hyz Y — Gzz Z_fxy

is orthogonal to T at (xo, Yo, 20)-
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Proof. Since every (z,y,z) € I' is a minimum point of f(z,y) + g(x, z) + h(y, 2) — xyz, then the functions

u=yz— fole,y) = gu(w,2), v =22 = fy(2,y) = hy(y, 2), w =2y — g:(2,2) = h=(y, 2)

vanish on I'. Hence their gradients

Vu = (*fzm *gmmaszmyay*gmz)
Vo = (2 = fay, = fyy = hyy, @ — hyz)
Vuw = (y —Gxz, T — hyza —Gzz — hzz)

are orthogonal to I'. Then they are collinear, because I" is two-dimensional.

Assume that (z,y, z) belongs to at least one of the sets I'y,,I'y, ., say to I',. Then z = f,, at this point.
This implies that either Vu is zero or — fy,, — hyy = 0,  —hy. = 0 (because Vv = AVu, Vw = pVu for some
A, ). In the first case y = g5, and (z,y, z) € I',NT",, while in the second case z = hyy and (z,y,2) € T.NT,.

Repeating these arguments with the other derivatives, we see that either (z,y,2) € (I'; NTy) JTz N
)y, nr,) or (z,y,2) ¢ 'y NIy NT,. In the second case all the 2 x 2 minors equal zero, hence

(= hy:) (2 — fay)
Y — Gaz

Jyy + hyy = —
(similarly for other coordinates). This gives that N is orthogonal to I. O

Remark 2.22. Having in mind our main example from Theorem 2.9 with the solution on the tetrahedron,
one can expect that (B) never holds. However, (B) can happen, an example is given in Example 2.20.
Our belief is that one should expect (A) for fractal solutions and (B) for smooth solutions. In fact, we
show in Section 6.2 that (under some additional assumptions) any dual solution in our main example must
satisfy alternative (A) and we derive uniqueness from this. However, we are unable so far to make a precise
statement saying that (A) / (B) corresponds to fractal/smooth structure.

Remark 2.23. (Vector fields orthogonal to smooth solutions). Assume that 7 is a solution to a (3, 2)-problem
concentrated on the surface I' and alternative (B) holds. Assume, in addition, that = has a density with
respect to the two-dimensional Hausdorff measure

™= p<$a Y, Z) ) H2|F-
Denote by pzy, pzz, py. the density of the corresponding projections fizy, fizz, fby.. Then

pay(,y)|cos(N, (0,0,1))| = p(z,y, 2)

for every (z,y,2) € I" and

1 1 1
ey ) =2l 2l = f”'\/ I R Ry -l ey 5

Similarly for the other densities. This easily leads to the following relations: for every (z,y, z) € I" the vector
field

) )

(sign(ﬂc — hy) sign(y — gs2) sign(z — fzy))
Pyz Pz Py
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(3, a)
(23,93)

The slice z = 0. The slice z = 1. The slice z = 2.
Fig. 2. The visualization of the primal solution to the problem considered in Example 2.24. Each picture shows the restriction of

the primal solution to the set z = 0, 1, 2. In the white points the density function is equal to 0, and in the black points it is equal
to 3. Almost every horizontal and vertical section of the black body has a length 1/3. Compare to Fig. 3.

is orthogonal to I' and

1 1 1 1
2 =3 +— + = :
pA(z,y,2)  pr(zy)  pr(x,2)  pl(y,2)

In particular, we obtain that one of the vector fields

(il +1 j:l)
Pyz Pzz Py

is (locally) orthogonal to T'.

Example 2.24. (c) fails; relation to the transportation problem with uniform bound on density. Consider
the following (3, 2)-problem with X =Y = [0,1] and Z = {0,1,2}. Let p; = p1, be the Lebesgue measure
on [0, 1], and let 11 be the uniform discrete measure on {0, 1,2}. ¢ = zyz and gy = piz @ iy, foz = fla @ iz,
Pyz = by @ . Then the solution is concentrated on the graph of a function z = T'(x,y), where T takes
values in {0, 1, 2}.

We suspect that there exists a solution (f, g, h) to the dual problem such that f admits a mixed derivative
fzy everywhere except for the boundaries of the black regions from Fig. 2, and, wherever it exists, fz,(z,y) =
z = T(x,y). That is close to the property (c) of our main example, but whatever happens on boundaries
prevents f from being a cumulative distribution function of a positive measure.

Based on Fig. 2, we show that the inequality

[, 1) + flxe,y2) — flx1,y2) — f(x2,91) >0

can not hold for all 1 < x2, y1 < y2. Alternatively, f can not be a cumulative distribution function of some
non-negative measure ¢, so (c) fails and in particular z = f;, can not hold everywhere.

By the complementary slackness condition, at almost every black point (x,y, z) we have f(x,y)+g(z,2)+
h(y, z) = zyz. In particular, if we choose the points (z1,y1), (€1,¥2), (z2,y1), and (x4, y2) forming a rectangle
R; as on Fig. 2 (slice z = 0), we obtain the following equation:

C(R1) = f(z1,91) + f(w2,y2) — f(21,92) — f(72,91)
= f(x1,91) + 9(21,0) + h(y1,0) + f(22,y2) + g(x2,0) + h(y2,0)
— f(@1,92) — g(21,0) — h(y2,0) — f(z2,91) — g(22,0) — h(y1,0)
=0.
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Similarly, if we choose the points (z3,ys), (z3,v4), (4,y3), and (x4,y4) forming a rectangle Ry as on
Fig. 2 (slice z = 1), then ¢ of R, is strictly positive by the complementary slackness condition:

C(R2) = f(x3,y3) + f(xa,ya) — f(w3,94) — f(24,93)
= f(x3,y3) + g(w3,1) + h(ys, 1) + f(24,y1) + g(x4,1) + h(ya, 1)
— f(@3,ya) — g(x3,1) — h(ya, 1) — f(z4,93) — g(x4,1) — h(ys, 1)

= x3Y3 + T4Ys — T3Y4 — T4y3 > 0.

This contradicts the fact that the rectangle R, is a subset of R;.

Remark 2.25. It is worth noting that patterns in sets {z = 0}, {z = 1} (see Fig. 2) appeared in literature
before. One can show that these patterns are exactly solutions to an optimal transportation problem with
capacity constraints considered in [29,28] which we will mention below. More explanations are given in [39].

Remark 2.26. It worth noting that the condition f(x1,y1) + f(z2,y2) — f(z1,y2) — f(x2,91) > 0 for all
r1 < Ta, y1 < yo corresponds to a bit different primal problem, where assumptions on the marginals are
replaced by assumptions that the marginals are first-ordered stochastically dominated by given measures.
That means that the distribution functions of marginals are pointwise not greater than the distribution
functions of given measures. We choose this term since it is generalizes the concept of first-order stochastic
dominance from decision theory from R to R2. But we don’t pursue this viewpoint here.

2.5. Solvability of the dual problem

Section 5 is devoted to existence of a solution to the dual problem. We establish a sufficient existence
condition for the dual problem in the spirit of a classical result of Kellerer [25] for the multistochastic
problem, but with a self-contained independent proof.

The main assumption on the cost function for solvability of the dual problem is the following bound:

@< Y Calea). (3)

o€l

for some integrable functions, C,: X, — R U {400} This is a generalization of the Kellerer’s assumption.

However, as shown in Section 5.3, unlike in multimarginal case, this bound is not enough even for (3, 2)-
problem. So another assumption, which is specific for (n, k)-problem, should be done on marginals. Namely,
we have to assume that the system of measures {f }acz,, is reducible. The latter means that there exists a
measure p € II({gq taez,,) and the system of probability measures {v;}}_;, v; € P(X;) such that for some
0<e<C

cv < p<C, (4)

where v = [], ;. Our main existence/nonexistence result is the following Theorem (see details in Theo-
rem 5.19 and Proposition 5.24):

Theorem 2.27. If the system {iq}acz

. Us reducible, then under assumption (3) there exists a relazed in a

sense of Definition 5.16 solution to the dual multistochastic problem.

Without assumption of reducibility the dual solution may not exist. More precisely, there exists an example
of a probability measure y on the space X = N3 and the cost function c: X — {0,1} such that there is no
solution to the dual multistochastic problem for the system
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pij = Prijp.

Now the question is how to understand if the collection {4 }aez,, is reducible. Luckily, we have Theo-

nk
rem 3.13 extending Theorem 2.6 which gives us a sufficient condition for the collection of measures to be

reducible.
2.6. Other properties of dual solutions: boundedness and (dis)continuity

In Section 6 we study basic properties of solutions to the dual (3,2) problem: boundedness and con-
tinuity. It is known that for the classical (multimarginal) problem the dual solution is bounded provided
|c| is bounded. But this is crucial that in the classical case the dual solution is a sum of functions in
non-overlapping variables. This is the reason why it is hard to extend the arguments to the general (n, k)-
case. We establish the following result on the boundedness of solutions.

Theorem 2.28. Let X, X5, X3 be Polish spaces, p; € P(X;) for 1 <i <3, and let p;; = p; @ pj; for all
{i,7} € I3 2. Let c: X — Ry be a bounded continuous cost function. If {fi;j}(ijyez,, s a solution to the
related dual problem, then

fiz(x1, 22) + fis(x1, x3) + faz(x2,23) > —12|c||

for p1 ® pe @ us-almost all points x € X.
Moreover, there exists a solution { fi;} (i jyez,., to the dual problem such that for every couple {i,j} € Z3 2
and for all x € X the following inequality holds:

2 -~ 1
—265 lell oo < fij(wisz;) < 13§ llell o -

Another important feature of the classical Monge-Kantorovich problem: for a cost function ¢ with nice
geometric/regularity properties the corresponding dual solutions are regular. This happens because the dual
functions are related by Legendre transform, which is highly regularizing. We can not expect this for the
(n, k)-problem, the following example demonstrates that a solution can be unique and discontinuous even
for very simple and nice cost: maximum of two linear functions (see Theorem 6.33).

Example 2.29. Let X =Y = Z = [0, 1]. Consider the (3, 2)-problem with the cost function
¢ =max(0,z +y+ 3z — 3),

where fi.y, flzz, [y. are the Lebesgue measures restricted to [0, 1]2. Then the dual problem admits a unique
discontinuous solution, given by the following formulas:

fr2(w1,2) = 0 for all points (z1,z2) € [0,1]%;
0 if x5 < 2
hs(rres) =4 . 0
r1+5w3— 5, ifzz >33
0 if 23 < 2
fos(zo,23) = 5 5 ° g’
o+ 5wz — 5, ifzz > 3.
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2.7. Uniqueness result for the main example

In Section 6 we establish the following results for our main example: (3,2)-problem with the two-
dimensional Lebesgue marginals.

Theorem 2.30. If a triple of functions {fij}{ijyez,. 95 a solution to the problem from Theorem 2.15 and
every fi; is continuous for all {i,j} € I3 2, then there exist continuous functions f;: [0,1] = R, 1 <7 <3,
such that

Ji2(w1, w2) = f(z1,22) + fi(w1) — fa(w2),
faz(x2,23) = f(x2,73) + fa(w2) — f3(73),

and

fis(@1,23) = f(z1,23) + f3(w3) — fi(71),

where

T Y

T y vy
1
f(x,y)z//s@tdsdt— //SEBtdsdt—Z//s@tdsdt.
00 00 00

Remark 2.31. We believe that this problem admits no other (discontinuous) solutions, but have no proof of
this.

] =

2.8. Relation to other problems

We mentioned already that the multistochastic problem is closely related to the Kantorovich problem with
linear constraints studied by Zaev in [38]. More precisely, our problem can be reduced to the Kantorovich
problem with linear constraints, see explanations in Section 4.

Another related problem is, of course, problem with uniform constraint on the density, sometimes called
“the capacity constrained problem” (see [29,28,15]). The solution to the problem from Example 2.24 admits
the following structure: there is a partition of the unit square into several parts, each of them is either
a homothetic image of the body shown on Fig. 3 or its complement. This set is a solution to a capacity
constrained problem and appeared for the first time in [28]: find a function 0 < h < 3 on [0, 1]* maximizing
integral

/ zyh(z,y) dedy
A

such that h(z,y)dzdy has the Lebesgue projections onto both axes. Then the solution h takes values in
{0,3} and {h = 3} is the body on Fig. 3. The precise construction relating these two problems is fairly
tedious and we will not give its description here. It can be found in [39].

It seems to be a highly nontrivial task to give the precise description of Fig. 3. This is especially difficult,
because numerical experiments demonstrate that it coincides up to a very small set with a figure, which
boundary is piecewise smooth and can be parametrized by piecewise elementary functions (polynomials).

Among the other problems which can be “embedded” into the linearly constrained transportation problem
let us mention the martingale transportation problem [23,2], problems with symmetries [17,26,27].
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Fig. 3. The support of a solution to a capacity constrained problem (see [29,28]). Compare to Fig. 2.

Finally, there is a connection between the multistochastic problem and the transportation problem with
convex constraints, in particular, problems on the space of measures with given ordering. In particular, in
the (3,2)-problem with the cost function zyz the natural ordering on the space of measure is ordering by
first-order stochastic dominance, i.e. for two measures p, v on the plane we say that p is not less than v if
the distribution function F), is not less than F), (see Remark 2.26). We plan to study the related modified
(3,2)-problem in the subsequent work. Here we just mention that there are many recent paper with very
interesting results dealing with convex ordering and optimal transportation, see [21,20].

3. Existence of a uniting measure for (n, k)-problem
8.1. Setting of the problem, basic facts

Unlike the classical Monge-Kantorovich problem, existence of a uniting measure for a (n, k)-problem is
a nontrivial task. In the multimarginal Monge-Kantorovich problem, which is a particular case of (n,k)-
problem with k = 1, the uniting measure always exists: this is [}, w;. In the case of (n, k)-problem one
has the following necessary condition:

Proposition 3.1. Assume that the set ILI({1ia }aecz,, ) @ not empty. Let pu € T({ o taez,,) be arbitrary uniting
measure. Then for all o, B € I, the following relation holds:

Prang(ta) = Prang(ps) = Pransg(p)-

Definition 3.2. We say that the collection of measures {piq}aez,, is consistent, if it satisfies Prong(pia) =
Pronsg(pg) for all o, 5 € Zyy,.

The consistency assumption for n = 3, k = 2 was considered in [19]. In what follows, we consider
only consistent collections of measures. For a consistent collection, the measures p3 are well-defined for all
B € L, where t < k. Indeed, denote g = Pro(uq) for arbitrary « € Z,; containing 5. The consistency
assumption implies that the result is independent of the choice of a.

Proposition 3.3. Unlike the multimarginal problem, the consistency assumption is not sufficient for 1 < k <
n.

Proof. Let X; = {0,1,...,k — 1} for all 1 < ¢ < n. For every a € Z,;; let us construct the corresponding
measure fi, on the set X,. If a = {iy,4a,...,ix}, then every point of X, is given by coordinates x =
(%5, @iy, -5 2i, ), where z;, € {0,1,...,k—1} forall 1 < ¢ < k. Set pq(z) = k*=F if Zle x5, =1 (mod k)
and pq(z) = 0 in the opposite case.
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It is easy to check that the consistency assumption of Definition 3.2 holds: the projection of any measure
o onto X g is uniform if | 3] < |a. Assume that a uniting measure p exists. Since the projections are non-zero,
@ is not zero itself. Take a point & = (x1, z32, ..., x,) such that p(z) > 0. Then for all @ = {iy,...,ix} € Tnk
the relation Zle x;, = 1 (mod k) holds, in the opposite case the p-mass of the projection of (x;,, T4y, ..., i, )
onto X, is zero, hence projection of u does not coincide with p,.

We extract from condition Zle x;, = 1 (mod k), which holds for all {i1,...,it} € Zsk, k < n that
x; = x; (mod k) for all 1 <4, j < n. Then Zle z;, = k-x1 =0%# 1 (mod k). We obtain a contradiction. O

A different continuous example for n = 3, k = 2 the reader can find in [19] (Remark 2.3).
8.2. Existence of a signed measure

It follows from the previous proposition that the consistency assumption is not sufficient for existence of
a uniting measure. Nevertheless, it is sufficient for existence of a signed measure.
Let v; € P(X;) be an arbitrary family of probability measures.

Definition 3.4. For all a € Z,,;, 0 < t < k let us extend o to X in the following way: fiq = fta ® Higa v;.
In addition, set fi; = Zaezm I, Where 0 <t < k.

Proposition 3.5. Let the variables {)\t}fzo be a solution to the following upper-triangular system of linear
equations:

min(k,n—k+1) n—k
> (ti>/\t=0 for 0<i<k,
t=1

min(k,n—k+k)

n—k
Z (tk)At:1 s A\ =1

t=k

Then for any consistent collection of probability measures {liotacz,, and for any sequence of probability

measures {v;}I_,, the projection of the signed measure u = Zf:o Aefie on Xo 08 po for every o € Ipg.

Proof. Introduce the following notation: for a € Z,,, 0 < t < k, and for 8 € Z,,; we define

ﬁg :MB®HV7HB Ca,
i¢p
1€EQ
iy =) g
BELnt
BCa
Note that this notation generalizes measures fig and fi; introduced in Definition 3.4 in the following sense:
if @ ={1,...,n} then g = g and jf = ;.
Let us fix o € Zp. For arbitrary 8 € I, where ¢t < k, the pushforward of fig by the projection of X
onto X, is equal to the product of Prong (i) by Prays (Hiw Vi). The first term is pgna, the second term

is Hiea\ﬁ v;. It is easy to realize that their product is ﬁgma.
Let us project zi; onto X,. By the definition of fi;, one can get

N B ¢ —k\ _ i —k\ -
P = ¥ =3 ¥ (1) =3 (0
BELnt =0 ’Y»yeczgi A
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Then the projection of y = Zf:o Aefir onto the space X, can be written as a linear combination of f$':

k
Pro(p) =) cifif,
i=0

where
k min(k,n—k+1)
n—=k n—k

Since the coefficients \; solve the linear system (5), we conclude that ¢; = 0 for all 0 < i < k and ¢; = 1.
Thus,

Pro(p) = pii.

By the definition,

iy =Y ng
BELnk
BCa

and the only g € Z,,; satisfying the property 8 C o is 8 = a. So,

~a ~

[ =Ho =pa = Pra(p) =pa
foralla € Z,,. O

The system of linear equations (5) introduced in Proposition 3.5 is upper triangular, and the coefficients
placed on the main diagonal are equal to 1. Then this system has a unique solution {\;}¥_,. Thus, the
following theorem holds.

Theorem 3.6. There exists a unique family of real coefficients {\;}¥_, such that in the (n,k)-problem with a
consistent family { o Yacz,, of probability measures, a linear combination p = Zf:() Aifiz satisfies Pry(p) =
W for all o € Ty.

Example 3.7. Let us give an example in the (3,2)-case. One has

1o =11 Q@ Vo ® s,
1= @2 @3+ 11 @l ®rs+ v ® vy @ g,
fio = pi2 @ V3 + p13 @ Vg + pag @ V.

The projections of these measures onto X; x Xy are given by

Pris(fio) = 11 @ va,

Pria(fi1) = Pria(p ® v @ v3) + Pria(v; @ e ® v3) + Pria(v; @ va ® us)
= Qe+ 11 @ s + 11 ® vy,

Priso(fiz) = Prio(pi2 ® v3) 4+ Pria(pis ® va) + Pria(pes ® v1)
= p12 + p1 @ V2 + 11 @ pa.
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Thus for arbitrary coefficients A\g, A1, A2 one can find projection of Agpig + A1f11 + Aojio onto X x Xo:

Prig(Xofio + Mfin + Aefiz) = (Ao + A)vi @ vo + (A1 + A2) (1 @ vo + vy @ pi2) + Aapira.

In order to have equality Pria(Aofio+ A1 /i1 +Aafie) = p12 it is sufficient to require A\g+XA; = 0, A1+ X2 =0,
A2 = 1. This system has a unique solution A\g = 1, \y = —1, Ay = 1. Thus Pri2(fig — 11 + fi2) = p12. By the
reason of symmetry Priz(fo — fi1 + f2) = p13 and Praz(fio — fi1 + fiz) = pi23.

3.8. Dual condition for existence of a uniting measure

The following existence criterion for uniting measure is a particular case of a result obtained by Kellerer
n [24]. We give an independent proof based on the use of the minimax theorem.

Theorem 3.8. Let X, Xo, ..., X, be compact metric spaces and let u, € P(X.), a € L, be a fizved
family of measures (consistent or not). Then I1({iqtacz,,) is not empty if and only if for every collection
of functions {fo}acz,., fo € LY (Xa, o) satisfying assumption Ywcr,, fa(a) = 0 for all x € X the
following inequality holds:

Z /faduazo-

OéGInan

Proof. The existence of a uniting measure trivially implies the inequality. If u € TI({1q }aez,,, ) and the set
of functions f, satisfies the assumption of the theorem, the function F'(z) = > .7 fa(%a) is integrable
with respect to p and the following inequality holds:

> /fadﬂa:/quZ/Od,uzo.

DéEInan X X

Let us prove the theorem in the other direction. Assume that the collection of measures {iq tacz,, does
not satisfy assumptions of Definition 3.2. Then there exists o, 5 € Z,x, such that the measures v; = Prongpta
and vo = Pronppp are different. Let A be a subset of X,np satistying v1(A) < vo(A). Set: fo(zq) = 1 if
zang € A and 0 in the opposite case. In addition, set fz(xzg) = —1 if z4np € A, and 0 in the opposite case;
fy(zy) =0, if v ¢ {a, B}. Then }° 7 fy(zy) =0 for all z € X. On the other hand

Z [y dpy = fo dpo + | f5 dpg =v1(A) —v2(A) <0.
oo frne]

'YEInkX‘y Xg

Thus, one can assume without loss of generality that the collection of measures {puq}acz,, satisfies
Definition 3.2. We apply the following version of the minimax theorem (see [8,36]):

Theorem 3.9 (Fenchel-Rockafellar Duality). Let E be a normed vector space and E* be the corresponding
dual space. Consider convex functions ® and U on E, taking values in R U {+o0}. Let ®* and U* be the
corresponding Legendre transforms. In addition, assume that there exists z € E satisfying ®(z) < o0,
U(z) < +o00. Then

nf[W + @] = max[~®"(—2) - ¥*(=)].
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Let E be the space of continuous bounded functions on X equipped with the uniform convergence norm
[| |loo- According to Radon theorem E* is the space of finite signed measures on X equipped with the full
variation norm. Set:

0, ifu >0,

400 otherwise.

@ZUEC[,(X)—}{

> aeT,n fXa Ug dfie, i u(z) =D c7 | Ua(Ta) for ug € Cyp(Xa),
400 otherwise.

\I/:uer(X)—>{

Function ¥ does not depend on representation of u as sum of u,. Indeed, if u is a signed measure
satisfying Propu = pq for all a € Z,x, then fX u du = Za€Ink fXa Uq dit- The signed measure p exists by
Theorem 3.6. It is easy to check that functions ¥ and ® are convex; in addition, function u = 1 satisfies
D (u) < +o00 and ¥(u) < 400, so by the minimax theorem the following equality holds:

mf[\IlJr(I)] = max[—®*(—z) — U*(2)].

zeE*

It is easy to check that
1nf[<I> + 9] = g(l,f>0 Z /ua it

Let us find ®*(—).

®*(—7) = sup f/udw :finf/udﬂ
u>0 u>0

X X

If 7 is nonnegative, then f yu dr > 0 for all uw > 0. Otherwise f y u dm can take arbitrary small values.
Hence

0, if >0,
<I>*(—7r)={ =

400, otherwise.

In the same way we check that

0 'fPa = HMas
\I/*(ﬂ'):{’l LT lu

400, otherwise.

Thus the maximum max,¢pg«[—®*(—m) — ¥*(7)] equals 0, if there exists a nonnegative uniting measure,
otherwise it equals —oo. In particular, if a uniting measure does not exist, then infs~ s >0 f < Jo dppa =
—o0. Hence there exist continuous functions f, satisfying ) [ < Ja dpa <0, O

8.4. Sufficient condition for existence of a uniting measure

Let us mention the following trivial sufficient condition for existence of uniting measure.

Proposition 3.10. Assume that there exists a family of measures v; € P(X;), 1 < i < n, such that p, =
[Tica vi for all o € Ly, Then the set IL({pia Yaez,,.) is non-empty and [];_, v; is a uniting measure.
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We generalize this sufficient condition using Theorem 3.6.

Theorem 3.11 (Density condition). For given natural numbers 1 < k < n there exists a constant App > 1
which admits the following property.

Assume we are given a consistent family of probability measures po, € P(Xa), a € Znk, and another
family of probability measures v; € P(X;), 1 <i < n. Assume that every measure o, & € In, is absolutely
continuous with respect to vy, =[]

ica Vit

Ha = Pa * Va-

Finally, assume that there exist constants 0 < m < M such that every density p, satisfies m < po, < M
Va-almost everywhere for all o € Ty.
Then I1({ta }act,,) is not empty provided & < X,

Proof. The definition of m implies that u, —m - v, is a nonnegative measure for all « € Z,,, hence m < 1,
because both p, and v, are probability measures. In addition, if m = 1, the p, — v, = 0 for all a € Z,,%.
In this case the measure v = [}, v; is uniting.

Consider the case m < 1. Note that u!, = (o — m - vo)/(1 —m) is a probability measure for all

«a € Tk, which is absolutely continuous with respect to v, and its density is bounded from above by
m
1-m
implies that given measures v; and pl, one can construct a family of measures fi; and find numbers \; such

(Mg — 1) > 0. In addition, the family of measures u!, satisfies consistency condition. Theorem 3.6

that the signed measure Zf:o 11y is uniting. Note that !, is absolutely continuous with respect to v, for all
a € Ty, 1 <t < k, moreover, its density is bounded from above by 7~ (A,x —1). This means that the same
condition holds for 7i/,, where we consider the corresponding density with respect to v = []}"_, v;. Hence [} is
absolutely continuous with respect to v and its density is bounded almost everywhere by (?) = (A — 1),
We infer from this that the density of the signed uniting measure /' = Zf:o Ak} is bounded from below
k
by — o M (7) T2 Ak — 1) = —C - 2 (Ayx — 1), where C depends on (n, k) only.

Let us prove that the assertion of the theorem holds for A\, = 1 + % For the set of measures p, we
constructed a uniting signed measure p’ which density with respect to v is almost everywhere bounded from
below by number —C'- 17— (A — 1) = =77 Then p = (1 —m)p’ +mv is a uniting measure for the family
{lta}aez,,, and its density is nonnegative v-almost everywhere, hence p is nonnegative. 0O

Thus we obtained a sufficient condition for existence of uniting measure for a wide class of functions.
Moreover, the uniting measure obtained in Theorem 3.11 admits a bounded density. However, it is often
helpful to require density to be bounded away from zero.

Definition 3.12. We say that measures  and v on the same measurable space (X, F) are uniformly equivalent,
if there exists a Radon—Nikodym density p of p with respect to v, which is bounded from above and from
below by positive constants: 0 < m < p(z) < M for all x € X.

In particular, uniformly equivalent measures are absolutely continuous with respect to each other.

The existence of uniting measure uniformly equivalent to []}_, v; is stronger than the existence of any
uniting measure (see Example 5.10). We will call such measures reducible later (see Definition 5.8) and we
will need the existence of a reducible uniting measure to prove the existence of dual solution. Luckily we

have a similar theorem.

Theorem 3.13 (Uniformly equivalent density condition). Under assumption of Theorem 3.11 there exists
constant Apr > 1 with the following property. If all o € T, satisfy m < po < M vo-almost everywhere
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and & < Ank, then the set TL({jta Yacz,,) contains at least one measure which is uniformly equivalent to

H;L:l Vi.

Proof. The proof follows the lines of the proof of Theorem 3.11. There we introduced constant C. One can
check that if A\, < 1+ % then the density of the constructed measure p is separated from zero. It is also
obvious that this measure is bounded. O

Remark 3.14. We are interested in maximal possible values for A\, and Xnk in Theorem 3.11 and Theo-
rem 3.13. Though their values constructed in the provided proofs are arbitrarily close to each other, that
may not be the case for their maximal values.

3.5. Estimates for (3,2)-case
In the (3,2)-case one can obtain explicit estimates on the optimal value of Az2 from Theorem 3.11.
Proposition 3.15. For Az2 > 2 the conclusion of Theorem 3.11 does not hold.

Proof. Let X; = Xy = X3 = {0,1} and let every v; be the uniform probability measure on X;. Let us
construct measures 12, f13, fiog on spaces X1 x Xo, X7 x X3 and Xy x X3 respectively. Consider the
positive numbers m and M such that M/m = A3y and 2(m + M) = 1. Set p;;(x;, xj) = M, if v; +x; = 1;
and p;;(x;, ;) = m otherwise. The constructed measures are probability measures: 11;;(X; x X;) = 1, which
follows from the equation 2(m + M) = 1.

Assume that a uniting measure p exists. Consider the following sums:

A= 6m = 112(0,0) + p12(1,1) 4+ 1£13(0,0) + p13(1, 1) + p23(0,0) + p23(1, 1)
= 30(0,0,0) + u(1,0,0) + (0, 1,0) + (0,0, 1)
4 (1,1,0) + 20(1,0,1) + u(0,1,1) + 3p(1,1, 1),
B =6M = j112(0,1) + p12(1,0) + £13(0, 1) + p13(1,0) + 223(0, 1) + p23(1,0)
— 2(1,0,0) + 21(0,1,0) + 241(0,0, 1) + 244(1, 1,0) + 211(1,0,1) + 2u(0, 1, 1).

On one hand 24 < B, because 2m < M. On the other hand, analyzing expressions on the right-hand
sides we see that 24 > B. We get a contradiction. 0O

. In particular, there exists a uniting

[\Sl[9N)

Proposition 3.16. The conclusion of Theorem 3.13 holds for ng =
measure w, which is uniformly equivalent to v = v1 ® 1o ® v3.

Proof. Let 0 < m < M be constants from Theorem 3.11: m < p;; < M forall 1 <¢ < j < M v;;-almost
everywhere. Clearly, m <1 < M.If m =1 or M =1, then p;; = v;;, this means that v is a uniting measure
itself.

For m < 1 < M, we claim that the following expression for ;1 gives us a nonnegative uniting measure.

po= 41 @ pp @ p3 — 2 (11 @ 2 @ pz + p1 @ va ® iz + p1 @ pia @ v3)
+2(pn12 @ vz + 13 @ Vo + oz @ v1) — (12 ® p3 + 13 @ flo + foz @ 1) .

Note that contrary to the proof of Theorem 3.11 this measure is not a linear combination of fi, defined in
Definition 3.4.

Let us first check that p is nonnegative. To this end we prove that its density with respect to v = 11 RuoRv3
is nonnegative almost everywhere. The density of u with respect to v has the form
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3—/:(131,552,553) = 4p1(z1)p2(x2)p3(x3) — 2 (p1(x1)p2(22) + p1(x1)p3(xs) + p2(r2)ps(r3))

+ 2 (pr2(x1,22) + p13(z1, x3) + pas(x2, x3))
— (p12(w1, w2) p3(w3) + p13(w1, x3)p2(T2) + p23(w2, 23)p1(21)) -

Assumption m < p;;(z;, z;) < M implies that, for v;-almost all z; the inequality m < p;(z;) < M holds,
_ dps

where p; = 2. The assumption of the theorem implies 1 < M < ngm = %m. Thus, it is sufficient to check

inequality

4p1paps — 2(p1p2 + pips + p2p3) + 2(p12 + p13 + p23) — (Pip2s + pP2p1z + pspiz) > 0

for all m < py,pij; < %m, % < m < 1, and for the proof of uniform boundedness it is sufficient to prove that
there exists constant £(m) > 0 such that

d(pi,pij) = 4p1p2p3s — 2(p1p2 + P1P3 + P2p3) + 2(P12 + P13 + P23) — (P1P23 + P2pi13 + P3pi2) > €(M).

For each fixed m, the 6-tuple of variables p; and p;; lies in a compact K,, given by conditions m <
DisDij < %m. Function d is continuous, so it achieves a minimum at some point p € K,,. Note that d is
linear in every variable p;,p;;, thus p can be taken such that every variable equals m or %m at p. The
coefficient of p;; equals 2 — p;, > 0 provided p; < %m < %, hence this function is strictly increasing in p;;.
Then at p one has p;; = m for all 1 <4,j < 3. Finally, we reduce the proof to the following inequality we

have to check:

4p1p2p3 — 2(p1p2 + p1p3 + p2p3) — m(p1 + p2 + p3) + 6m > e(m)

where all p; € {m, %m}, % <m <1
Since the function is symmetric we have to check the following inequalities:

1. py=ps=p3=m: 4m3—9m2+6m>()if§<m<1;
2. plzgm,pgngzm: 6m3—2—23m2—|—6m>01f§<m<1;
3. plzpzzgm,pgzm: 9m3—2—29m2—|—6m>01f%<m<1;
4. p1:p2:p3:%m: %m3718m2+6m>0if%<m<1.
Every inequality can be easily checked and we complete the proof of nonnegativity of p and its uniform
equivalence to v.
It remains to check that 4 is uniting for p;;:

Prio(p) = 4p1 @ po — 201 ® g — 2p1 @ vo — 21 @
+ 2012 + 201 @ Vo + 201 @ pg — pr1o — p1 @ P2 — p1 @ 2 = p12.

In the same way we check that the desired identities hold for other projections. O

One can prove another estimate for A3o = 2. Unfortunately, the arguments in our proof can not be used
to prove uniform equivalence of p and v.

Proposition 3.17. For the value A\3o = 2 the conclusion of Theorem 5.11 holds. Together with Proposi-
tion 3.15, we get that 2 is the greatest possible value for A3a.
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Proof. The proof we have is fairly long. It lasts till page 27 and contains a series of rather technical lemmas.
Let 0 < m < M be constants from Theorem 3.11. Consider the following set:

d(ﬂz’j — Pry; (3)

A= {5 — nonnegative measure on X7 X Xo X X3: pi
Vij

e M for all {Z,]} S 1372} .

This set is not empty because it contains the trivial (zero) measure. In addition, A is weakly closed. From
assumption m < w we infer that p; > Pr;(€), hence A is uniformly tight and the variations of
measures from A are uniformly bounded. Then the Prokhorov theorem for non-probability measures (see
[5, Volume II, Theorem 8.6.2]) implies that A is weakly compact. Hence there exists an extreme measure

Emax, where functional &,,,x(X) attains its maximum.

Remark 3.18. Later &, will be one of the components of our measure, so note that we can say nothing
about its Radon—Nikodym density with respect to v. That means that this argument can not be generalized
to prove the existence of uniting measure uniformly equivalent to v and so says nothing about ng. In fact
we do not know if ng can be taken arbitrarily close to 2.

For all {i,j} € Z3 2 Radon—Nikodym derivative W is defined up to measure 0. So let us fix
ij
some realization and use it later.

Lemma 3.19. For v-almost all x € X there exists a couple {i,j} € I3 o such that

d(pij — Prij(§max))
dl/ij

(2, z5) =m.

Proof. Assume the converse. Then for the set

d(pij — Priz(§m))
dl/ij

E:{xeX: (x4, ;) >m for all {i,j}61-372}

we have v(E) > 0. Then there exists € > 0 such that

d(pij — Prij(§m))
dVij

EE:{:UGX: (i, 2;) > m+e forall {i,j}eI&g}

satisfies v(E.) > 0. Let A be the measure which density (with respect to v) equals € on E. and 0 otherwise.
It is easy to check that &max + A € A, (Emax + EA)(X) > Emax(X) and this contradicts to definition of
gmax~ I:‘

Consider the family of probability measures

/ pij — Prij (§max) .
= S 1< < 3.
lu’l] 1 _ gmax(X) Y — 7’7] —

Since {p1;;} is consistent, the family of measures {u;;} is consistent too. Since max € A, we have m/a <
dpi;/dvi; < M /o almost everywhere, where av = 1 — {ax(X). Hence, the family {u;;} satisfies assumptions
of Proposition 3.17. Moreover, if a measure p’ is uniting for M;j, then the measure u = au’ + Epax is uniting
for p;;. Thus, it is sufficient to solve the problem only for ,ugj.

Now, we replace i;; with p;, m and M with m/a and M/« respectively. We may assume that densities

pi = %, pij = Z‘; 4 gatisfying the following assumptions:
; >
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1. m < pij(xs, ;) <M, 1<4i,j<3forall zeX.
2. [y pij(xs, x5) vi(de;) = pi(x;) for all z; € X;.
3. For v-almost all € X at least one of the numbers p;;(x;,x;), 1 <1,j < 3, equals m.

Assumptions 1 and 2 are always fulfilled after changing p; and p;; on a set of zero measure, and the last
one follows from Lemma 3.19. Under these assumptions one can prove the following lemma:

Lemma 3.20. Assume that p;, pi; satisfy Assumptions 1-3. Then for v;j-almost all (z;,x;) € X;; one of the
following conditions holds: p;;(x;,x;) =m or p;(x;) + pj(z;) <m+ M.

Proof. Let k € {1,2,3}\{4,;}. Let us denote by X/ the set of couples (z;,7;) € X;; such that for vx-almost
all 1, € X}, one of the numbers p;;(z;, z;), pix(zi, z) and p,x(z;, zx) equals m. Assumption 3 implies that
X, has full measure with respect to v;;.

Let (z;,z;) € Xj;. Assume that pij(zi,x;) > m. The for vg-almost all z, € X}, at least one of the
numbers p;x (2, zx) and pji(x;, xk) equals m. In particular, p;i(z;, &) + pjx(2;, vx) < m+ M for vi-almost
all z; € Xi. Then we infer from 1, 2

pi(x;) + pj(z;) = /pik(xi,ﬂfk) dvi, + /ij(l'j»l'k) dvy <m+ M. O
Xk Xk

Changing, if necessary, density functions p;, p;; on a set of zero measure, we can assume, in addition,
that the following holds:

4. For all (z;, ;) € X;; one has p;;(z;,x;) =m or pi(z;) + pj(z;) <m+M,1<4,5<3.

Lemma 3.21. Let the density functions p;, pi; satisfy Assumptions 1-4. Then for all i # j and all x; € X;
the following inequality holds:

pi(xi) —m
vi(zj € Xj: pj(z;) <m+ M — pi(x;)) > M—m

Proof. Fix a point x; € X;, and denote by A be the set of points x; € X satisfying p;;(x;,z;) = m. Then

pi(z;) = fXj pij(xi, ;) dej < myj(A)+ M(1 —v;(A)), which implies v;(A4) < M%’;nm

On the other hand Assumption 4 implies that for all z; € X;\ A the inequality p;(z;) + pj(z;) < m+ M
holds. Hence

S PilTi) — m

vi(2j € Xjo pj(Xg) Sm+ M = pi(2:)) 2 v (X\A) =1 -v;(4) 2 ————. O

(n)

%

(n)

Choosing a sequence x; ~ such that p;(x;"’) — M; = sup,, ¢y, pi(x;) and passing to the limit one gets

the following corollary:

Corollary 3.22. Let M; = sup, ¢ x, pi(z;). Then for all j # i the following inequality holds:

Mi—m

_m.

vi(e; € Xj: pi(X;) <m+ M — M;) >

Lemma 3.23. Let p;, p;; satisfy Assumptions 1-4 and % < 2. Then inequalities

2 m 2
gémél, pi(l‘z’)§§ <3+\/3—E>
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hold for all x; € X;, 1 <1< 3.

Proof. Let M; =sup,, ., pi(x;). Assume that M; > Ms and M; > M3. It is sufficient to check that %m >1

and My < % (3+,/3- 2).

Assume that %m > M. Then, since My = sup, cx, p1(z1), one has M; > 1. This implies %m >M; > 1.

Moreover, My < %m < % (3—|— £/3— %)

Consider the case M; > %m. Set A ={xs € Xa: pa(x2) < m+ M — M;}. Then the following holds:

1= /pQ(XQ) d1/2 S (m—I—M - MI)Z/Q(A) + M2 (1 - VQ(A))

X

< (m+ M — Ml)VQ(A) + M1 (1 — I/Q(A)) = (m+M — 2M1)V2(A) +M1.

Corollary 3.22 implies vo(A) > 2=m > M _ 1 (here we use M < 2m). Applying this inequality and the

. — M-m — m
inequality My > %m one gets

1 S (m—|— M — 2M1)I/2(A) + M1 S (3m - 2M1)V2(A) —|—M1

M M\° M
§(3m—2M1)<ﬁ1—1)+M1=m<—2<#> +6#—3>.

The function —222 4 6x — 3 is decreasing on = > %, hence

M\?> M 3\ 3 3
1<m|—2(=) +6—= -3 <m|-2(2) +6-2-3]=2m.
m m 2 2 2
Moreover, —2(%)2—1—6%—32%,thus%ﬁ%(3+q/3—%>. m|

Let us describe explicit constructions of uniting measures for m = % and % <m< 1. Ifm= %, then

pi(x;) < 5 (3 +4/3 — %) =1 for all z; € X;. Measures pu; and v; are probability measures, ’;‘—;Z < 1. Hence
;i = v;. The desired measure is given by

=1 ® fo3 + fo @ p1z + U3 © pi2 — 211 @ o2 @ .

This measure is nonnegative: Z—’;(zh T2, x3) = p12(T1, T2)+p13(x1, T3)+p2s(z2, x3)—2 > 0 since p;(z;, z;) >

m = % In addition, it is uniting:

Prig(p) = p1 ® po + po @ p + paz — 21 @ p = i1z,

and the same for other projections.
Let us consider the case % <m <1 Set: u=,/3— % Then % = %(3 —u?); u satisfies 0 < u < 1 under
assumption % < m < 1. The desired measure is given by

5u+9
H=- 3M1®H2®M3+2u( V1 Q2 Qs

m2u(u+ 1) u+1)
u+3

mu(u + 1)3 (1 @ pa ® pz + 11 @ Vo ® pg + pi1 @ pa @ v3)
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5u+9
u(u+1)3
U+ 2

+2m (23 @ V1 + i3 ® Vo + 12 @ v3)

(M @ro@us+ 11 @ e Qg+ 11 Qe ® pg)

2
—m(#z3®#1+ﬂl3®#2+ﬂ12®#3)-

This measure is uniting for j;;:

Prio(y) = (4 ut+3  _ Su+9 u+ 2 (1 ® pia + i1 © va)
124 = mu(u+ 1)3 u(u+1) u—|—1 Lz e
_ 8 n u+3 4 ®
m2u(u+1)3 mu(u+1)2  m(u+1)2 R
+ (2 Su+9 _ 5 Su+ 9 & vy + u+2 2
u(u+ 1)3 wlu+1)3) 17 C m(u+1)2 H2

= M12.

To prove the desired equality we substitute % = %(3 —u?) and check that all the terms are zero except the
last one. In addition, the coefficient of u12 equals 1. We do the same for the other projections.
To check nonnegativity of p it is sufficient to check that the following expression is nonnegative:

— 8p1paps + 4m(u + 3)(p1p2 + p1ps + p2ps) — 2m> (5u + 9)(p1 + p2 + p3)
+ 2mPu(u + 1) (u + 2)(p12 + p13 + p23) — 2mu(u + 1)(p1p2s + p2p13 + P3pi2)
+2m?(5u + 9),

where p; = pi(z;), pi;j = pij(zi,z;). One has m < p;; < 2m by our assumption, m < p; <
3+ 37%>:%(u+3) and 2 < m <1 by Lemma 3.23.
This function is linear in p;; with the coefficient

2m2u(u + 1) (u + 2) — 2mu(u + )pp > 2m*u(u + 1) (u + 2) — m>u(u + 1) (u +3) >0

(here we use that v < 1), hence one can set p;; = m for all 1 <4, j < 3. In this case the expression is equal

to

— 8p1paps + 4m(u + 3)(p1p2 + p1ps + papz) — 2m” (5u + 9)(p1 + p2 + p3)
+ 6m3u(u 4 1) (u + 2) — 2m2u(u + 1)(p1 + p2 + p3) + 2m?(5u + 9)
= — 8p1paps + 4m(u + 3)(p1p2 + p1ps + paps) — 2m*(u + 3)%(p1 + p2 + p3)
+ 6m3u(u + 1) (u +2) — m>(u? — 3)(5u + 9)
= (m(u+3) —2p1)(m(u+3) — 2p2)(m(u+ 3) — 2p3) > 0.
This completes the proof of the well-posedness.

So, indeed, for the value A3o = 2 the conclusion of Theorem 3.11 holds. This completes the proof of
Proposition 3.17. O

One can prove many other sufficient conditions of existence of uniting measures. One of the examples is
given in the next theorem.
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Theorem 3.24. Assume that a consistent family of measures {ji;}ijrez,, satisfies pi; > %,ui ® pj, 1 <

1,7 < 3. Then there exists a uniting measure.

Proof. The desired measure is given by

2 2 2
= <M12 - §M1 ®M2) & pz + <M13 - §M1 ®M3> Q@ p2 + (N23 - §M2 ®M3> & p-

Indeed, one has

2 2 2
Pria(p) = piz2 — gm @ pg + p1 & 2 — §“1 Q 2 + p2 @ 1 — §“1 & p2 = H12,

analogously for other projections. Thus p is uniting. O
4. Connection to the Monge—Kantorovich problem with linear constraints
4.1. Monge—Kantorovich problem with linear constraints: definitions and basic facts

D. Zaev considered in [38] the multimarginal transportation problem with additional linear constraints.
In this subsection we formulate basic definitions and theorems of his paper.

Let X1, X5, ..., X, be Polish spaces equipped with Borel o-algebras, X := X; x --- x X, p1,..., ln, are
probability measures on Xq, ..., X, respectively.

Let W be an arbitrary linear subspace in Cr(X, {ur}}_;). Let us consider the following subspace in the
set of measures:

My ({pr i) = {ﬂ' e I({ur}tr_q): /w dr =0 for all w € W} .

Finally, we are ready to formulate our constrained problem:

Problem 4.1 (Monge-Kantorovich problem with linear constraints). Given Polish spaces X = X1 x ... X,
Borel probability measures py, € P(Xy), a cost function ¢ € Cr(X,{ux}}_,), and a linear subspace W C
Cr(X, {ur}pzy) find

inf /c(x) dm
mellw ({pr}tr=1) 4

The following theorems are the main results of [38]:
Theorem 4.2. Problem with additional linear constraints has a solution if the set Iy ({pr}1_,) is not empty.

Theorem 4.3 (Kantorovich duality with additional linear constraints). Let X1,..., X,, and X = X1 x---x X,
be Polish spaces, let p, € P(Xg), k = 1,...,n, and let W be a linear subspace of Cr(X,{ur}y_,), c €
Cr(X,{ux}i_y)- Then

n
inf cdr = su / k) dug,
weanuk}zzn/ f+w2c,; fulw) dia
X Xk

where f(x1,...,2n) = Y pey fu(2k) and fi, € Cr(Xg, i), w € W. Moreover, if ¢ € Cp(X) and W C Cy(X),
then the supremum can be taken on the set of bounded continuous functions fi, € Cp(Xk).
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4.2. A problem with linear constraints which is equivalent to the multistochastic problem

Let us consider again the multistochastic Monge—Kantorovich problem on Polish spaces X3, ..., X,. We
are given (Z) probability measures u, on X,, where o € Z,;, and a cost function ¢ : X — R, X =
X; X -+ X X,. Our aim is to construct an equivalent Monge-Kantorovich problem with linear constraints.
Then we can apply Kantorovich duality from Theorem 4.3 for the (Z) spaces X, with marginals p, (note
that these spaces are themselves “composite”) and restrictions correspond to the dependencies of {X,} in
X.

In what follows we denote

X=]] X
a€lnk

For every a € 7, we define the corresponding natural projection Pr, : X = Xa.

Definition 4.4. For all a € Z,,;, and i € « let us consider projection 7%, := Prx, o Prx_. In what follows 7,
denotes the projection operator and, at the same time, the image of £ € X under action of this operator.
The set {Z}!, can be viewed as a set of coordinates of Z in X.

Definition 4.5. The subspace P C X will be defined as follows:

P:{ie)z:%g:%};foralla,ﬁefnk,ieaﬂﬁ}.

The subspace P can be characterized in terms of a diagonal operator. The space X is isomorphic to
n—1

(X1 X -+ x Xn)(k—l) = X(Z:i): to verify this it is sufficient to interchange factors in the product of

spaces Xo = [];c, Xi- Let A be the diagonal mapping from X onto X = X(::i). It is easy to see that
this mapping is well-defined, because it does not depend on permutation of spaces in the isomorphism
X 2 (X;x-x Xn)(zj). Hence P is the image of X under action A and restriction of A on P acts
bijectively.

The following properties of A are direct consequences of its definition:

Proposition 4.6. Operator A generates an operator A, : P(X) — P()Z') acting on measures, which has the
following properties:

1. For every measure u € P(X) the support of A.(u) is a subset of P.

2. Operator A, is a bijection between P(X) and the set of measures p € 79()?) with the property supp(u) C
P.

3. Every p € P(X) and every o € Iy, satisfy Pro(u) = Prx_ (Ax(p)).

4. Let p be an arbitrary probability measure on X and let ¢ € L*(X,p). Let ¢ be a measurable function on
X such that &(Z) = ¢(A~X(Z)) for all ¥ € P. Then ¢ € LY(X,A,(n)) and Jxcdp = [5¢dA(n) =
Jp € dAL ().

The following theorem is an immediate corollary of these properties

Theorem 4.7. Let ¢ € Cp(X, {jtia}acz,,) be a function on X and ¢ € CL(X,{fta}acz,,) be any extension
ofcoA™': P C X = R to the whole space X. Then

inf /c dr = __inf /Ed{.
m€Il(X {patacz,,) el(X {pataez,y,)
X supp(§)CP
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The minimum on the left-hand side is attained if and only if the minimum on the right-hand side is attained.

Remark 4.8. It is worth to remind the reader that ¢ € CL(X,{ftatacz,,) means that ¢ is a continuous
function on X and there exists such a collection of functions f, such that [c(Z)| < > 7 . fo(Za). The
existence of such ¢ extending c o A~! is not obvious. We prove it in Lemma 4.10.

Consider the distance function d; on X; and the family of functions fo R X - R,
wé/@(i) := min(d; (7%, %}3), 1)

for all v, B € Z,,x, i € aNf. Note that every w’, 5 Is a nonnegative, continuous, bounded from above function,
hence w5 € Cy(X) C CL(X, {fia}aez,,)- In addition, if some measure p € P(X) satisfies [ w5 du =0,
then supp(p) C (whg) ' (0) = {T € X : 7, = T}}.

Let us define the space of linear restrictions:

W = span{w’ s} C Cy(X) C CL(X, {ftataez,)-

It follows from the observations collected above that for every m € P()Z' ) the equality [w dr = 0 holds for
all w € W if and only if supp(w) C P. Hence

M (X, {po}oer,,) = {7 € (X, {j1a}acz,) : supp(r) < P}.
Having this in mind, we can give another formulation of Theorem 4.7:

Theorem 4.9. Let ¢ € Cp(X, {ia}acz,,) be a function on X and ¢ € CL(X,{fta}acz,,) be any extension
of coA™': P C X = R to the entire space X. Then

inf /c drm = _inf /E dg,
TrEH(X,{Na}aeInk)X Celw (X {Hataez,y)

and the minimum on the left-hand side is attained if and only if it is attained on the right-hand side.

This theorem gives another formulation of the transportation problem with linear constraints which is
equivalent to our multistochastic problem. It remains to prove that there exists a function ¢ which satisfies
our requirement.

Lemma 4.10.

a) Let ¢ € Cy(X). There exists a function ¢ € Cy(X) which is an extension of co A~' onto X.
b) Let ¢ € Cr(X,{fta}acz,,). There exists a function ¢ € Cpr(X,{fta}actz,,) (note that c and ¢ belong to
different spaces) which is an extension of co A% onto X.

Proof. Let pr be the projection of X = X(Zj) onto a fixed factor. It is easy to see that pr is continuous
and pro A =id on X.

a) Assume that ¢ € Cy(X) and |¢] < M for some number M. Set ¢(Z) := c¢(pr(z)). Function ¢ is
continuous, |[¢] < M and &Z) = ¢(A~(F)) for all Z € P. Thus, ¢ is an extension of ¢o A~ onto X and
¢e Cy(X).
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b) Assume that ¢ € Cp(X, {fta }aez,,)- Then [c(z)| < 3 ez fa(®a). Set

= 2aezy, falZa), i c(pr(Z)) <=3 ez, falTa),
5(5) = ZaEInk fa(fa), if c(pr(f)) > ZaEInk f(!(fa)a
c(pr(7)), otherwise.

The function ¢ constructed in this way is continuous, [¢(Z)| < Y ez fo(Ta) and &(T) = ¢(A™H(T)) for all
7 € P. Thus, ¢ is an extension of co A~ onto X and ¢ € Cp(X, {ftatacz,,). O

Theorem 4.3 implies the following duality relation:

Proposition 4.11. Under assumptions of the previous theorem

inf /c dr = sup /fa zo) dita,
‘ITEH(X7{)U'(¥}0¢€Ink) Ftw<e ; ( )
X o nan

where f(z) =) ez, fa(Ta), fa € CL(Xa, pa) (or Cp(Xa), if c € Cp(X)), w € W.

Assume that for the family of functions f, there exists w € W such that }° 7 fa(Ta) +w(Z) < ¢(T)
for all 7 € X. In particular, this equality holds for all z € P. Then for all x € X

Y falA@)a) + w(A(@) < E(A(@)).

a€Ly,y

Moreover, ¢(A(z)) = ¢(z), w(A(z)) = 0, A(x)a = Ta, hence Y 7 fa(za) < c(z) for all x € X. One gets

sup Z /foz -Ta d,ua<sup Z /.fa xa dpte -

fHw<e o7, SCaeluny,

In addition, the following inequality holds:

inf ¢ dm > su / (zq) d
WGH(Xv{#a}aeInk))Z o Z o) it

Summarizing these results we get the following final version of our duality theorem that generalizes the
duality theorem for compact spaces proven in the paper [19, Theorem 3.2]:

Theorem 4.12 (Kantorovich duality). Assume we are given Polish spaces X1,..., X, and a family of mea-
sures o € P(Xo), where a € Ty Let ¢ € Cp(X, {pta tacz,,) be a cost function on X. Then

inf c dm = sup / o dita,
WGH({lia}aEInk)/ Z f K

f<c
o€, nkx,

where f(z) = > 7, fa(za) and fo € Cr(Xa,pa) for all a € I,y. Moreover, if ¢ € Cp(X), then the
supremum can be taken on the set of bounded continuous functions fo € Cp(Xyo). If the set TI({pa tacz,,)
is nmon-empty, the infimum on the left-hand side is attained.
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Remark 4.13. Note that the statement of this theorem holds even when the set II({ }aez,, ) is empty. In
this case, we define the infimum in the left-hand side to be +00. The supremum in the right-hand side is also
equal to +o0o. For the case of compact spaces, it follows from Theorem 3.8, and for the case of non-compact
X, this is a part of the Kantorovich duality Theorem 4.3 proven by Zaev.

5. Sufficient conditions for existence of a dual solution
5.1. Definition and properties of (n, k)-functions

Definition 5.1. Assume we are given Polish spaces X1, ..., X,, and a positive integer 1 < k < n. A function
F: X — [—00,400) is called an (n, k)-function if there exists a collection of functions {fa}aez,,» fo: Xa —
[—00, +00) satisfying

F(z) = Z falza)

o€l

for all x € X. If F(x) > —oo for each = (and therefore f,(zs) > —oo for all z, € X,), F is called a finite
(n, k)-function.

This definition is given without any additional assumptions on the functions f, and the function F'. We
prove that for every (n, k)-function F there exists a “regular” collection of functions {fa}aez,, such that
F(x) =3 cz,, fa(za) forall x € X.

Let us introduce more notations. For z, € X, 3 € Xg, such that o N = &, we denote by z,25 a
point from the space X8, whose coordinates will be the union of the coordinates z, and zg. In addition,

we write n = {1,2,...,n}.

Proposition 5.2. Let F' be a finite (n, k)-function defined on the space X. Fiz y € X. For each o € I,, we
define a function Fo: o v F(Zayn\a) on the space X,.

Then there exists a sequence of real numbers {\;}¥_, depending only on n and k such that F(x) =
Y weT,, fa(a:a) for each x € X, where

~

fa(xa) = Z /\|5|Flg($5), [ NS Ink-
BCa

This representation of F' is regular in the following sense: if F' is a measurable / continuous / bounded
function, then for all a € 7, the function f, is measurable / continuous / bounded too.

Example 5.3. Let F be a finite (n,1)-function. Fix y = (y1,¥y2,...,yn) € X. Let Ag = % —1land \; = 1.
Then

~ n—1 n—1
fl(x’b) = F’L(‘TZ) - F@ = Fi(y17°"7yi717wi7yi+17"‘7yn) -

F(yi, -, Yn)-

Since F' is a finite (n, 1)-function, there exists a sequence of functions f;: X; — R such that F(z1,...,z,) =
fi(x1) + -+ fo(zy) for all x € X. One can easily verify that

~

Fiwi) = fiw) = Filw) + - (alon) + =+ falyn))

and therefore F(x) = Y7, fi(x;) for all z € X.
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Example 5.4. Let F' be a finite (3, 2)-function. Fix (y1,92,y3) € X. Let A\g = 1/3, Ay = =1/2 and A\ = 1.
Then by construction

~ 1 1 1
fi2(x1, 22) = F(x1, 22,y3) — EF($17Z/2793) - §F(y1a$2ay3) + gF(yhyQ,ys),

-~ 1 1 1
fis(x1,23) = F(x1,y2,23) — EF($17Z/273J3) - §F(y1,y2,x3) + §F(y1,y2,y3),

-~ 1 1 1
faz(x2,23) = F(y1, 22, 23) — §F(yl7$27y3) - §F(y1,y27$3) + §F(y1,y2,y3).

Similarly to Example 5.3 we can verify that

F(x1, 29, 23) = fro(z1,22) + f1s(x1, 23) + fag(22, 23)
for all x € X.

Proof of Proposition 5.2. Consider a function F: X — R defined as follows:
ﬁ(m) = Z fa(za).
€L,k

~

Since by construction f(za) = > 5c, Mg F(7s), one has
Fy=% > Aabsles).
BEL, a€Zk: BCa

For every f € Z,, let us find the amount Ag of numbers a € 7, satisfying 8 C a. If |8| > k, then there

is no such a. Otherwise, it can be easily verified that Ag = (Z:Ilgl‘) Hence,

. n— 8] S (n—t
F(x) = Mg Fs(xg) = At Fs(xp).
ﬁeIn:ZﬂKk <k_|”8|) e ; (k_t> [3621711, o

Since F' is a finite (n, k)-function, there exists a collection of functions {fo}aez,,, fo: Xo — R, such
that for all z € X we have

For each 8 € Z, the function Fg(z) can be represented as follows:

Fg(zg) = Z fryus(@yys),

¥,0€Ly,

where the sum is taken for all pairs of disjoint sets of indices 7,0 € Z,, satisfying v C 3, 6 C n\f and
|v| 4+ |0] = k. Hence, the function F'(x) can be represented as follows:

k
Fo) =3 (1 21) & Bolen = 3 et ©
=0 BELnt v,0€T,

where the last sum is taken for all pairs of disjoint sets of indices v and ¢ such that |y| + |§| = k, and ¢, 5
is a linear combination of {\;}*_, with constant coefficients.
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Let us find the coefficient ¢, 5. To this end, let us find for each 0 < ¢ < k the amount of indices
B € I, satisfying v C 8 and § C n\S. If t < ||, then this quantity is trivially zero. Similarly, it is zero if
t >n—|d| =n—k+|vy|. Otherwise, exactly |7y| indices of 5 are fixed, and we need to choose ¢ — || indices
from n — |y| — |6] = n — k available items. Hence, the amount of such g is (;f'fl) Substituting this into
equation (6) we get

min(k,n—k+7))

om0 ()

t=||

In particular, the coefficient ¢, s depends only on |v|.
In order for the equality F'(z) = F(x) to hold, it is sufficient to require that the coefficients ¢, s satisfy
the following equalities:

L if |y =k,
Cy6 = .
0, otherwise.

We obtain the system of linear equations on A

min(k,n—k+a) n—t n—k
Z )\t( )( )20 for0 <a<k,
k—t/\t—a
t=a
min(kfk-i-k) \ - n—k -
Ne—t)\t—k) F 7
t=k
The matrix of this linear system is upper-triangular and all diagonal elements are not equal to 0.
Hence, this system admits a unique solution {\;}¥_,. Thus, if fo(7s) = >scaNpFp(zp), then F(x) =
ZaeInk f(,(:z:a) forallz € X. O

For 1 < i < n, we fix a probability measure pu; on the space X;. For each a € Z,, we denote by u, the
probability measure [[,., p; on the space X,, and we denote by p the probability measure [], ., i on
the space X. If a finite (n, k)-function F' is integrable (with respect to ), one might expect that there exists
a collection of integrable functions {fa}aez,, (With respect to o) such that F(x) = 3 o7 = fa(2a). We
will prove it in Theorem 5.6 using a collection of integrable functions {fa} constructed in Proposition 5.2.

To achieve this let us first verify the following lemma:

Lemma 5.5. Let X;, 1 <1 < n, be Polish spaces equipped with the Borel o-algebras, and for every i let u;
be a probability measure one X;. Let c: X — R be an integrable function on X. Fiz a point y € X, and for
each a € I, let us denote by cq the function x4 — c(Talyn\a) defined on Xo. For o = @ the function cg is
a constant function on the one-point space Xg which is equal to c(y), and ||ca||, is just the absolute value
of c(y)-

Then there exists a point y € X such that ||ca||, < 2" |||, for all a € Z,.

Proof. For each a € Z,, the spaces Xp,\o X X, and X are canonically isomorphic, and therefore the function
¢ can be viewed as a function of two arguments c(xn\m Yo ), Where Tp\a € Xn\ao and Yo € Xq.
By the Fubini-Tonelli theorem, the function |c¢(-, y4)| is integrable for p,-almost all y, and

el = [ ] Tetomas sl pmadma) | i) )

Xo Xn\a
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Consider the internal function from this expression:

Co (yoc) = / |C(xn\on ya)‘ Hn\a (d'rn\a)-
Xn\a

This function is non-negative. In addition, it follows from (7), Cp € L*(Xa, pta) and ||Cyll; = ||c||;. Let
A, = {ya € Xo: Cuya) > 271 ||c||1} )

If |[c[|; = 0, then Cq(yaq) is equal to 0 for pa-almost all points y,, and therefore p,(Aq) = 0. Otherwise, it
follows from Markov’s inequality that

1 Cally 1
«a Aa <0 Ca a) Ha da = = .
palde) < gy [ Coton)elde) = i =
Xao

In both cases we conclude that p,(As) < 27771,
If y € Pr; ' (X, \Aa), then

Calya) <27 |c]l,
and therefore the function cp\q: Tr\a = ¢(Tp\a¥a) is integrable with respect to jip\o and

lemvally = Calya) <27 lell -

Let us define

A= [ Pr(Xa\Ao).

o€,

Then if y € A, for all a € Z,, the function cp\o: Tr\a = ¢(Tp\a¥a) is integrable and ch\aHl < 27|,
We only need to verify that A is non-empty. We have

- 1
i (Prot (Xa\Aa)) = o (Xe\Aa) =1 = pra(Aa) 2 1= oo,
and therefore

Tl o, 2% 1

M(A)71_2n+1 =77 ontl 2°
Thus, A is a set of positive measure, and therefore A # @. O

Theorem 5.6. For every 1 < i < n, let X; be a Polish space equipped with the Borel o-algebra, and let p; be
a probability measure on X;. There exists a constant C' depending only on n and k such that for any finite
(n, k)-function F € L' (X, ) there exists a collection of integrable functions {fatacz, s fa € L' (Xas o),
such that

F(z)= Y fal(@a)

a€lny

for allx € X and Hﬁx”l < C-||F||y for all o € Ty.
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Proof. Consider a finite (n, k)-function F' defined on the space X. By Lemma 5.5 there exists a point y € X
such that the function Fy: 4 — F(Za¥n\a) is integrable and ||F, ||, < 2"+ ||F||; for all o € Z,.

By Proposition 5.2 there exists a sequence of real numbers {\;}}_, such that F(z) =Y .7 ﬁl(xa) for
all z € X, where

o~

fa(l'a) = Z )\‘mFg(xg), a Ink'
BCa

Since Fz € L' (X3, ug) for all 8 € Z,,, we conclude that fa € LY (X4, f1o)- In addition,

fa

k
k
(=X il 1l <2 1L Y =2 Y () .
BCa t=0

BCa

fo

Thus, we conclude that ’

< C-||F|ly, where
1

and this constant depends only on n and k. O

Example 5.7. Let us find a constant C' explicitly for the case of the (3, 2)-problem. Consider a finite integrable
(3,2)-function F. There exists a point y € X = X; x Xy x X3 such that ||F,||; < 16| F||, for all « € T;.

By Example 5.4 the functions

N 1 1 1
fra(w1,2) = F(w1,22,y3) — §F($17y27y3) - §F(y1,$2,y3) + gF(ylayz,ys),

N 1 1 1
fia(w1,23) = F(21,y2,73) — §F($17y27y3) - §F(y1,y275€3) + gF(ylvy%yS)v

—~ 1 1 1
faz(x2, 23) = F(y1, 22, 23) — §F(y1,x27y3) - §F(y1,y2,x3) + gF(yhymys),

satisfy the equation F(z1,zq,23) = flg(xl,xg) —+ ﬁg(l’l,l’g) + ]?gg(xg,xg) for all (z1,29,23) € X. All
functions {f;;} are integrable with respect to p; ® p;. In addition,

-~ 1 1 1
| Bz, < IEC o)l 4+ 5 IFC w20l + 5 1 F @ 9)ll + 51F w2, ws)

1 1 1
<16(1l+=4+=-+=)||F Fl, .
<16(1+5+5+3 ) Il <3807l

Similarly,

fAlgH < 38||F||, and HJ?%H < 38||F||;, and therefore we can put C' = 38. This constant estimate
1 1
is crude, but we do not need to know the optimal value.

We want to generalize this property to a wider class of measures that are uniformly equivalent to the
product of their projections to one-dimensional spaces.

Definition 5.8. We call the probability measure p on the space X reducible if for 1 < i < n there exists a
probability measure v; on spaces X; such that p is uniformly equivalent to [[,,.,, -
We call the consistent set of probability measures {fi }acz,, reducible if there exists a uniting reducible

nk
measure p € II({fia taez,, )-
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If the probability measures 1 and v on the space X are uniformly equivalent, then their projections
are also uniformly equivalent: Pr,u is uniformly equivalent to Pr,v for all a € Z,. In particular, if the
set of measures {iq tacz,, is reducible, then pu; = Pr;(u) is uniformly equivalent to v;. Then the measure
[1i<;<, ti is uniformly equivalent to the measure J], -, ., v;. Hence, the following is true:

Proposition 5.9. A collection of probability measures {pia }acz,, i reducible if and only if there exists a
uniting measure pi € Il({fta taez,, ), which is uniformly equivalent to [T, pi-

If the set of measures i, is reducible, then for all 8 € Z,+, t < k, the measure pg is uniformly equivalent
to Hieﬁ ;. It is easy to see that this condition is not sufficient.

Example 5.10. Let X7, X2 and X3 be discrete spaces, each consisting of two elements {0,1}. Define a
probability measure j;; on the space X; x X; as follows:

1 .
=, ifx; #xj,

pij(@i, 25) = 3 Y
5, otherwise.

The triple of measures {fi;} (i j}ez,, i consistent. In addition, every measure j;, {i,7} € I3z, is
uniformly equivalent to y; ® ;. The set H({Mz‘j}{i,j}ezw) is non-empty: consider the following measure
on the space X7 x Xo X X3: p(x1,29,23) = 0 if 1 = 9 = x3, otherwise u(zq, 22, x3) = 1/6. It is easy to
check that u € H({ﬂij}{i,j}elg,g)-

Let v € TI({#i5}{i,jyezs..)- Then the following equations hold:

v(0,0,0) + v(0,0,1) = p12(0,0) =

(0,0,1) + (0,1,1) = p135(0,1) =

D= Wl O~

v(0,1,1) +v(1,1,1) = pos(1,1) =

From these equations we get v(0,0,0) + v(1,1,1) = 0. From the non-negativity of the measure we get
v(0,0,0) = v(1,1,1) = 0, and then we easily verify that v(z1,x2,z3) = 1/6 for the remaining points. Thus
H({Mij}{i,j}elgg) consists of a single measure that is not uniformly equivalent to p; ® s ® 3.

The following theorem generalizes Theorem 5.6 to reducible collections of measures.

Theorem 5.11. For 1 < i < n, let X; be a Polish space equipped with the Borel o-algebra, and let u be a
reducible probability measure on X. Denote po = Pro(p). Then there exists a constant C,, depending on
the measure u and parameters (n,k) such that for any finite (n,k)-function F € L'(X,p) there exists a
collection of integrable functions {J?a}aeInk; fa € LY(Xa, pta), such that

F(z)= Y fal@a)

a€lny

forallz € X and

fa

<C,-||F
piy < G IF g

forall o € Iy
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Proof. Since p is reducible, there exist probability measures v; € P(X;) and positive reals m and M such
that m-v < p < M -v, where v = [[, ., ., V-

Consider a finite (n, k)-function F' € L'(X, u). Since > m - v, the function F is integrable with respect
to v and

1] 2 ||F||L1

W = (w)

Denote v, = Hiea v;. It follows from Theorem 5.6 that there exists a collection of integrable functions
{fa}ozelnka fa € Ll (Xou Va) such that

Z J?a(xa)

Q€

for all z € X and

~ C
fa SE”FHLl

for all @ € Z,,x, where C' is a constant depending only on n and k&

C-Fl

L(v a) (v) (1)

Since M - v > u, we have M - v, > p,, for all a € Z,,;. Hence, the function fa is integrable with respect
to o and

M
e Mep,
(Va) m

Fa fa

for all @ € Z,,5,. Thus, we can put C,, = %C. O

Ll(“a) ‘

5.2. Existence of a dual solution for reducible collections of measures
First, we generalize the notion of the proper thickness of the set introduced in [35].

Definition 5.12. Let X3,..., X,, be Polish spaces, and for each o € Z,, let u, be a probability measure on
the space X,. For a measurable set A C X define its proper (n, k)-thickness as

sth(A):inf{ > ha(Ya):Ya CXa,AC | Pr;l(Ya)}. (8)
a€Ly,y, a€Lyy,

We are going to use this notion in the particular case of sets with zero proper thickness.

Proposition 5.13. Ifsth(A) = 0, then the infimum in (8) is attained: there exist measurable subsets Y, C Xq,
a € Ty, such that 1o (Yo) =0 and A C U ez, Pr t(Ya).
Proof. The proof follows the proof of [35, Lemma 2.5.4]. If for a collection of measurable subsets {Yy }aez,,

we have A C Uz, Pr,, ' (Y,), then f, = 1[Y,] satisfy the inequality

for all z € X, where 1[A] is the characteristic function of the set A. Moreover, it is clear that
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> [tttz = 3 (¥

QGInan a€l,y

Since sth(A) = 0, we can consider a minimizing sequence of collections of functions { f(gt)}a, 0 X, -
[0, 1], such that

S 10 () > 1]4](x)

€L,k

for all z € X and

> [ 10 paldea) 0.
O‘GIWVXQ e

Since fét) is non-negative for all a € Z,;, and for all ¢, we conclude that

/ f(gtt) (Ta) pa(dra) T) 0 for all o € Zp.
Xa

Let us recall the formulation of the Komlés theorem.

Theorem 5.14 ([5, Theorem 4.7.24]). Let i1 be a finite nonnegative measure on a space X, let {fn} C L'(u),
and let

sup [[fnll L1,y < oo
n

Then, one can find a subsequence {g,} C {f.} and a function g € L*(u) such that, for every sequence
{hn} C {gn}, the arithmetic means (hy + -+ hy)/n converge almost everywhere to g.

Using this theorem and passing, if necessary, to subsequences, we may assume that the sequence

1
g — 5 (f(g}) +...+f&t>)

converges to some integrable function g, pq-almost everywhere in X, for all @ € Z,,;. Thus, we can suppose
that

9o (To) = limsup ggf)(a:a) for all z, € X,.

t—o0

By construction we obtain 0 < go(74) < 1 for all z, € X,. Also, since ) o7 g((lt)(xa) > 1[A](x) for all
x € X and for all ¢, we conclude that

Z ga(xo) > 1[A](z) for all z € X. (9)
a€lnk

In addition, since | g((f) (z4)] < 1 it follows from the Lebesgue’s dominated convergence theorem that

[ gta) () = fim [ o0 a(dra) = fim [ 410(00) paldze) =0,

Xa Xa Xa
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Thus, since the function g, is non-negative, we conclude that g, (z,) = 0 for p,-almost all z, € X,,.
Consider the collection of sets {Y, }aez

nk:
Yo = {24 € Xo: galxa) > 0}.

Since g, is equal to 0 almost everywhere on X,,, we have . (Y,) = 0. In addition, if € A, then it follows
from inequality (9) that > .7 ¢a(za) > 1, and therefore there exists at least one o € Z; such that

Jda(xa) > 0 or equivalently x,, € Y. Thus, A C UaeInk. Pr;I(Ya). g

Definition 5.15. We say that a measurable set A C X is a zero (n,k)-thickness set if sth(A) = 0, or
equivalently if there exist a collection of measurable subsets Y,, C X,,, a € Z,,; such that u,(Y,) = 0 for all
o and A C Uger, Prt(Ys).

In addition to the standard dual multistochastic problem, we consider a more convenient relaxed dual
problem.

Definition 5.16 (Relaxed dual problem). Let ¢ be a measurable cost function on the space X. Denote by

Ve({patae,,)

the set of collections of integrable functions {fo}acz,,, fa: Xoa — R such that inequality

holds at all points x € X except a zero (n, k)-thickness set. Then, in the relaxed dual problem we are looking
for

T=sw 8 3 [ fulita) haldna): {fa € Vel{ha)oez, )

OZEInan
First, let us verify that Kantorovich duality also holds for the relaxed dual problem.

Theorem 5.17 (Kantorovich duality for the relaxed dual problem). Assume we are given Polish spaces
Xi,..., Xy and a family of measures o € P(Xo), where o € Lyy,. Let ¢ € CL(X,{fta}aez,,) be a cost
function on X. Then

inf /cd7r = sup /fa A,
{falel. Z

mell afa
(nebacz, (e dact) 0eTueg).

If the set II({pta taez,,) i non-empty, the infimum on the left-hand side is attained.

Proof. If {fo} € U.({ta}acz,, ), then there exists a collection of measurable subsets Y, C X, such that
to(Ye) =0 and

Z fa(za) < c(z) for all x ¢ U Pr ' (Yy).

a€Lyy, a€lyy

Consider the collection of functions {f,} defined as follows: fo(2) = fa(Za) if Zo & Yo and fa(za) = —00
otherwise. For all « € 7, the function f, coincides with f, almost everywhere with respect to u., and
therefore
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Z/faxa fo(dzs) = Z/faxa fio(dz,)

o€l o€l

In addition, the inequality > .7 fa(za) < c(z) holds for all # € X. Thus, for any uniting measure
7 € II({pa taez,,) We have

Z /faa:a te(dry) = Z /faxa to(dzy) —/(Z f xa>d7r§/c(:1c)d7r.
a€ln,k o€l X a€lny X

In particular, we conclude that

inf cdm > su / o Albes 10
wEH({Ha}aeznk! {faleW P Z o ap 10)

C({.U‘a}OtGInk) a€lnky

which is usually called “the weak duality”. Since every collection of functions {f,}acz,, satisfying the
conditions fo € CL(Xa,fta) and > 7 fa(za) < c(z) for all z € X belongs to the space V({/ia }aez,, )
we conclude that

wp S [fdpaz s Y [ fadu

{fa}e\ljc({.ua}ozelnk) aEInkX faecL(ngﬂa)v QEInkX
« a<c o

By Theorem 4.12,

inf cdr = su / dity;
WEH({#a}aeInk/ 3 2 [ Judia

fQG%L (j("(’:'u“)’ aEIncha

thus, the equality is achieved in expression (10). O

In [25] the following theorem was proved, establishing the existence of a dual solution in the multi-
marginal case.

Theorem 5.18 (Kellerer). For every 1 < i < n, let X; be a Polish space equipped with a Borel probability
measure ;. Let ¢: X1 X -+ x X, = [—00, +00] be a measurable cost function on the space X1 X «-+ x Xp,.
Suppose that there exists a sequence of integrable functions {¢;}1_q, ¢; : X; — (—00, +00] such that inequality

n
| (x17 S Z xl

holds for all (z1,...,z,) € X.
Then the supremum in the relaxzed dual Monge-Kantorovich problem

ap 3 / i) pades) s {oi}y € Wo({pui}iy)

le

is finite and attained.

We prove the multistochastic generalization of this theorem for the case of reducible collection of projec-
tions.
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Theorem 5.19 (Supremum reachability in relazed dual problem). For every 1 <i < n, let X; be a Polish space,
let {ita}acz, s ta € P(Xa) be a reducible collection of probability measures, and let ¢: X — [—o00,4+00]
be a measurable cost function on the space X. Suppose that there exists a collection of integrable functions
{CatacT s Ca: Xa — (—00,+00] such that the inequality

(@) < Y calwa)
€L,k

holds for all x € X.
Then the supremum in the relazed dual multistochastic Monge-Kantorovich problem

T=sw 8 3 [ fulita) haldna): {fabocz,, € Vellha)oez,.) (1)

OLGInkXQ
1s finite and attained.

Proof. Replacing ¢, with |cy| we may assume that the function ¢, is non-negative for all o € Z,j. Let
¢t Xo — [0,400) be an arbitrary finite integrable function such that ¢ (x,) = co(2q) for ps-almost all
To € Xo. Consider a function ¢* on the space X:

“(2) c(x), if ¢ (zq) = calzy) for all z, € X,
c*(z) =
0, otherwise.

It trivially follows from the construction that ¢*(x) = ¢(x) for all © € X except a zero (n, k)-thickness
set. Hence,

Ve({ttataez,) = Ve ({1 taez, i )-

In addition, [¢*(z)| < > ez, cal(®a) for all x € X. In particular, since ¢}, (zo) < +oo for all z, € X, and
for all @ € Z,,x, we conclude that |¢*(z)| < 400 for all z € X. Thus, replacing ¢ with ¢* and replacing c,
with ¢, for all @ € Z,,,, we may assume that |e(z)| < oo for all z € X and 0 < ¢o(24) < +oo for all
To € X, and for all o € Z,,%.

Denote

J = Z /ca(xa)ua(dxa).
aEInan

The function ¢, : X, — [0, +00) is finite and integrable with respect to p, for all a € Z,,x; in addition,

Z (—ca(zq)) < c(z) for all z € X.

a€l,y
Thus, {—ca}acz,, € Ye({lta}tacz, ), and therefore the set U.({1a}acz,, ) I8 non-empty and

7>y /(—ca(xa))ua(daca):—j.

CKEInan

Since the collection of measures {iq}acz,, is reducible, there exists a reducible measure p €
U ({tta }aez,, ). Since co € L'(Xa, ta), the extension of ¢, to the space X is integrable with respect to
pt. Thus, since |e(z)| < 3 ez ca(2a) € L'(X, 1), we conclude that ¢ € L'(X, p).
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Let {fo}aez,, € Yel{ttataez,,)- Since fo € L} (X4, ita), the extension of f, to the space X is integrable
with respect to u. Hence,

Z /f (Ta) fla(drs) / Z fa(za) p(do)

QEInan a€l,y

We have > .7 fa(za) < c(z) at all points except a zero (n, k)-thickness set. Since y is a uniting measure,

every set of zero (n,k)-thickness has zero measure with respect to u. Hence, > .7  fo(7a) < c(z) for
p-almost all z € X, and therefore

S Jalwa)uld) < [ @) ptdz) < 3 [ calwa) paldra) = 7.
/ / /

b'e a€l,y b'e aEInkxa

Thus, we conclude that

3 / folta) fo(da) < 7 for all {fa} € Uol{a}aez,n).

OCEInan

and therefore .J < .J. In particular, the supremum in (11) is finite.
Consider the maximizing sequence of collections of functions { fo(f)}aeznk € U.({tataez,,) such that

S [ 100 walden) — .
ocEInan nree

We may assume that

Z / O (24) pta(dze) > —J for all t. (12)

OCEInan

For each t consider the finite (n,k)-function F®)(z) = Y aeT,, o (o). Let us bound the norm of
the function F®) from above. Since F*)(z) < ¢(x) for all points except a zero (n, k)-thickness set, and
c(®) <> per,, Cal®a) for all z € X, we conclude that FO(z) < > wct,, CalTa) for p-almost all z € X.

Finally, since } .7 ca(7a) > 0, we have

FO(z) 4+ |FO(2)| = max(0,2F® () < 2 Z ca(zq)

a€lpy

for p-almost all © € X. Combining this with inequality (12) we get

|7

Ft) (dz) <2 / (o) o (dz g, /F(t)a: dz) < 3J.
o /| CCEEDS aldra) — [ FO@) plz) <

aeInkX X

Since p is reducible, for each ¢t by Theorem 5.11 there exists a collection of finite integrable functions
{fét)}aeznk such that the equation

FO(x Z f(t) (2a)

a€lnk

holds for all x € X and
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for all @ € Z,. In particular, {ﬁ(f)} € V.({#ta}taez,,) for all ¢, and this sequence of collections is also

e

[e3%

< 3C’ =C
L (p)

<c, HF“)

Ll(Ma)

maximizing. Thus, replacing { f((,f)} with {]?D(f)}, we may assume that the inequality

<C

(t)
fOl Lt (Ha) o

holds for all o € Z,,;, and for all ¢.
In particular,

§ < +o0

L' (pa)

for all a € Z,,;,. Hence, using the Komlo$ theorem and passing, if necessary, to subsequences, we may assume
that the sequence of functions

1
90(@a) =5 (S +-+ 1), teN,

converges to some function g, € L'(X,, fta) fa-almost everywhere in X, for all a € Z,.
For each t consider the finite (n, k)-function

G(t Z g

o€l

H—\n—\

(F(l)( Y4+ F® (x)) )

We have G®)(z) < ¢(x) for all z € X except a zero (n,k)-thickness set, and therefore {gét)}aeznk €
U.({ttataez,, ) for all t. In addition, it follows from the properties of the CeSaro mean that the sequence of
collections {gg )}aeInk is maximizing as well as { f(gf)}aeznk

Let us verify that {9 tacz,, € Ye({tatacz,, ). For every t there exists a collection of measurable subsets
(A pez., AP C X, such that pa(AY) =1 and GO (z) < c(z) for all z € X such that z, € AL for all
a € T,i. In addition, for each a € Z,,;, there exists a measurable subset A/ C X, such that p,(AL) =1
and if 2, € A/, then ¢ (z4) = go(ra) as t — oco.

For a € Z,,1, let
_ A’ (m A(t))

For any = € ¢z, Pr,'(A.) we have D oweT . gg’)( o) < ¢(zx) for all ¢ and
()
Z 9o’ (Ta) o Z 9ga(Ta)-
a€lny a€Lny
Thus, if z € N,ez,, Pr,'(A,), then > aez,, 9a(Ta) < ¢(x), and therefore, since ji(Aq) = 1, we conclude

that {ga}a€l—nk eV ({MQ}QGInk)'
Consider the finite (n, k)-function G(2) =" 7 = ga(Ta). We have

G® () —— G(x)

t—o0

for all € X except a zero (n, k)-thickness set, and therefore the sequence of functions {G*)} converges
pointwise to G p-almost everywhere. In addition,
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G(t)(x) < Z ca(Ta) € LY(X, )

a€lng

for p-almost all z, and therefore it follows from the reverse Fatou lemma that

_ )
J = lim [ GY(2) p(de) /G Z/gaxauaxa)

X a€lnkx,,
Thus, the supremum in (11) is attained on the collection of functions {¢gs}acz,,. O

Combining this result with Theorem 4.12, we get the following general duality theorem for the case of
reducible projections.
Theorem 5.20 (General duality theorem). For every 1 < i < n, let X; be a Polish space, let {po}act, >
to € P(Xo) be a reducible collection of probability measures, and let ¢ € Cpr(X, {ita taez,,) be a continuous
cost function on the space X. Then there exists a uniting measure 1 € W ({uatacz,,) and a collection of
integrable functions {fotact, > fo: Xa = [—00,+00), such that

Z fa(za) < c(z) forallz € X
o€l
and

[e@mtan = 3 [ falia) nalda).

X QGInan

In particular, w is a solution to the related primal (n,k)-problem, and {fo}acz,, s a solution to the related
dual (n, k)-problem.

5.3. Unreachability of the supremum in the dual problem in the irreducible case

In contrast to the multi-marginal case, in the theorem proved above, the essential requirement is the
irreducibility of the set of measures p,. In the following paragraph we construct a multistochastic (3,2)-
problem with a bounded continuous cost function such that the supremum in the corresponding dual problem
can not be attained.

Let X; = X9 = X3 = N. For 1 < ¢ < 3, the space X; is a Polish space equipped with the discrete
topology. For each n denote

An = {(n+ 1’”7”)’(n’n+]‘7n)’ (n7n7n+]‘)}'

One can easily verify that these sets are pairwise disjoint.
Consider the measure p,, on the space X = X; x Xy X X3 defined as follows:

if (n1,n2,n3) € A, for some n,

0, otherwise.

‘We have
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and therefore the measure p, is a probability measure.
Consider another measure u. on the space X: let u.(n1,n2,n3) = 27"7"27" for all (n1,n9,n3g) € X.
We have

1 | 1 — 1
:us(X): Z 2n1+ng+n3_<z 27l1>.<z 2n2><z 2n3>_1’

(n1,m2,n3)EX ni1=1 na=1 nz=1

and therefore . is a probability measure too.

Lemma 5.21. Consider the probability measure p = (1 — a)pp + e, where 0 < o < 1. For {i,j} €
I3, denote pi; = Prij(u). If v € T({pij}qijrezs.) 8 a uniting measure for the triple of projections
{Hij}{i,j}ezg,zf which means it has the same projections as u, then

V(x)sz,@(l _#)_g

T n2 (n+1)2) 2n
for all x € A, for alln.

Proof. First, let us find p;; explicitly. We have

> 1 1
Pri;(pe)(ni,n;) = Z e Ty for all (n;,n;) € NZ2.
n=1
In addition, one can easily verify that
0, if |77,1 - 71j| Z 2,

Prij(pp)(ni, ny) =
ayzs if [ni —n;| <1 and min(ng,n;) = n.

In particular, since p;; = (1 — a)Pr;;(1p) + oPr;; (1), we obtain the following equations:

«

,U'ij(nianj) = o1
((m:)oz‘) + Qni‘inj if [n; — n;| <1 and min(n;,n;) = n.

Fix a positive integer m. Consider the following functions f;;: N? — R:

1

0, otherwise;

) if (n15n2) = (m+17m)a

fi2(ni,ng) = {

—1, ifny=m+1andng € {m—1,m+ 1},

fi3(n1,n3) = {

0, otherwise;

-1, ifng=mand ng ¢ {m—1,m,m+ 1},

f23(ng,n3) = {

0, otherwise.

The function f;; is bounded, and therefore is integrable with respect to p;;. Using equations (13) we get
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2(1 — ) a
/f12 dpz = pri2(m + 17m) = 2m2 + 92m+1"
o 2(1 — «) o
/f13 dpz = —pz(m+1,m —1) —pig(m +1L,m+ 1) = T2m T 2(my 1) 2Emrr
=« o « « o «
/fzde23=— Z M23(man):_ZW+22mf1 +22—m+22m+1 >_2_m+22—m'
ng¢{m—1,m,m+1} n=1

Summarizing this, we obtain
/f12 dpa2 +/f13 dpas +/f23 dpas
>2(1—a) 1 1 +( a o« )_& u
2 m2  (m+1)2 92m+1 ~ 92m+t2 om (14)
- 21l—-a) (1 1 a
w2 m?  (m+1)2 om’

Consider the (3, 2)-function

F(ni,n2,n3) = fiz2(n1,n2) + fiz(n1,n3) + faz(ng, ns3).

Let us verify that F(ni,ng,n3) < 0 if (n1,n9,n3) # (m + 1,m,m). Indeed, since fi3 < 0 and fa3 <
0, we conclude that if F(nyi,n2,n3) > 0, then fia(ni,ne) > 0, and therefore (ny,n2) = (m + 1,m). If
ny ¢ {m — 1,m,m + 1}, then by construction fa3z(m,ns) = —1, and fi3(m + 1,n3) = 0, and therefore
F(m+ 1,m,n3) = 0. Otherwise, if ng € {m — 1,m + 1}, then fiz(m + 1,n3) = —1 and fao3(m,nz) =0, and
therefore F(m + 1,m,ng) = 0 too.

In addition, F'(m + 1,m,m) = 1, and therefore if  is a probability measure on the space X, then

/F(?’h,Tlg,ﬂ3)’Y(dﬂ1,d?’l2,dn3) <~y(m+1,m,m).
X

Combining this with inequality (14), we conclude that if v € TI({xi;} i jyez, .,), then

7W+meUZ/FmemMMmdmﬂw)

X
= /f12 dpe + /f13 dpas +/f23 dpas
>2(1—a)(i_ 1 >_&
2 m?  (m+1)2 om’
For the remaining points of A,, the inequality is proved in the same manner. 0O

Corollary 5.22. There exists a real ag € (0,1) such that if v € T({ij}{ijyezs.)s then y(x) > 0 for all
x € A, for all n, where p;; = Pri; (1 — ao)pep + copte).

Proof. By Lemma 5.21 we only need to prove that there exists ag € (0,1) such that the inequality

0-a) (1 1 \_a_,
2 n? (n+1)2 2n
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holds for all n € N, or equivalently

2(1 - 2=n
(-
4O

T —- (15)
n2 ~ (nF1)2

One can easily verify that the function in the right hand-side of the inequality converges to 0, and

therefore there exists a constant M such that the inequality

2—77,
M >~

11
n? (n+1)2
holds for all positive integer n. Thus, the inequality (15) follows from

2(1 — o)

3 > M
T

and therefore every ag such that 0 < ag < 2/(M7? + 2) is suitable. O

Theorem 5.23. Let o be the constant constructed in Corollary 5.22. Let p = (1 — ag)pp + aofte, and for
{i,j} € I35 let p;j = Pry;(p). Consider the cost function ¢: X — {0,1}: c(z) =1 ifx € A,, for somen, and
c(x) = 0 otherwise. Then the supremum in the corresponding relazed dual (3,2)-problem (see Definition 5.16)
can not be attained.

Proof. The cost function ¢ is a bounded continuous function on the space X equipped with the discrete
topology. Since p;;(n;,n;) > 0 for all (n;,n;) € X;;, the subset A of X is a zero (3, 2)-thickness set if and
only if A = @. Thus, the triple of functions {f;}{ j1ez,, belongs to W.({1;}ij)ez,,) if and only if the
inequality

fiz(ni, n2) + fiz(n1,n3) + faz(ne, ng) < e(ni, ne, n3)

holds for all (ny,ng,n3) € X.
The set TI({14ij}{s,jyez, ) is non-empty, and therefore it follows from Theorem 4.12 that

YEI({pis}{i,j1ezs o

min )/CdVZSUP Z/fij dpij: Y fij(@i ;) < oz, w2, 73)
Xij

Assume that the supremum in the dual problem is attained. Then there exists a uniting measure v €
({45} i jrezs.,) and a triple of integrable functions { fi;} i jyez, ., fij: Xij — [—00,+00) such that

fi2(n1,n2) + fiz(ni,n3) + faz(na, ng) < c¢(ni,ne2,n3)
for all (ny,n9,n3) € X and
/ fr2 dpao + / fizdpas + / foz dpiaz = /Cd’7~
Xi12 X13 Xa3 X

It follows from equation (13) that p;;(n;,n;) > 0 for all pairs of positive integers (n;,n;). Hence, since
fij is integrable with respect to p;;, we conclude that f;; can not take value —oo.
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Consider the finite (3, 2)-function

F(ni,n2,n3) = fi2(n1,n2) + fis(n1,n3) + faz(na, n3). (16)

Since f;; is integrable with respect to u;; and the measure «y is uniting, the function F' is integrable with

/FdVZ /f12du12+/f13dul3+/f23dM23=/Cd7-
X X12 X13 X23 X

Since in addition F(ny,n2,n3) < c¢(ni,n2,ng) for all (n1,n2,n3) € X, we conclude that F(ni,n2,ng) =
¢(n1,n2,n3) v-almost everywhere. It follows from Corollary 5.22 that v(z) > 0 if z € A,, for some n, and

respect to v and

therefore
Fin+1,n,n)=F(n,n+1n)=Fnnn+1)=1 (17)

for all n € N.
One can easily verify using equation (16) that for all n € N we have

Fin+1ln+1,n+1)—F(n,n,n)
= Fnyn+1ln+ 1)+ Fn+1l,nn+1)+Fn+1,n+1,n)
—F(n+1,n,n)— Fn,n+1,n)— Fn,nn+1).

Since, F(n1,na,n3) < ¢(ny,ng,n3) and c(ny, ng,ng) = 0 if the point (n1,n2,n3) is not contained in the set
LIS, A, the inequality

Fnon+1l,n+1)+Fn+1,n,n+1)+ Fn+1,n+1,n) <0
holds for every positive integer n. In addition, it follows from equation (17) that
F(n+1,n,n)+ F(n,n+1,n)+ F(n,n,n+1) = 3.
Summarizing this, we conclude that F(n+ 1,n+ 1,n+ 1) < F(n,n,n) — 3, and therefore
F(n,n,n) < F(1,1,1) =3(n—1) <¢(1,1,1) =3(n — 1) = =3(n — 1),

for all n € N.
In particular, we conclude that for all n € N the following inequality holds:

|fi2(n,n)| + [ fiz(n,n)| + | f23(n,n)| = 3(n — 1).

Using this inequality and equation (13), we can bound from below the > || fi;| L1 ()
ij)

120l 21 urs) + 118l pr gy + 1231 L1 (ping

> Z (If12(n, n)| - paz(n,n) + [frs(n,n)| - pas(n, n) + | faz(n, n)| - pas(n, n))

200l S L sl + 1 fusn )]+ s, )

n=1
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2(1 — ap) = 3(n —1)
> ) ; 2 = 400.

Thus, at least one the functions f;; is not integrable, and this contradiction proves Theorem 5.23. O

The measure p constructed in Theorem 5.23 is strictly positive at every point of the space X. In particular,
this means that u is equivalent to Pry () @ Pra(p) @ Pra(u). Thus, we obtain the following proposition, which
demonstrates that in Theorem 5.19, we cannot replace “uniform equivalence” with simple equivalence.

Proposition 5.24. Let X1 = Xo = X3 = N. There exists a probability measure p on the space X = X7 X
Xo X X3 and a cost function ¢ : X — {0,1} such that the following conditions hold:

(i) measure p is equivalent (but not uniformly equivalent) to p1 ® ps ® us, where p; = Prju;
(ii) there is no optimal solution to the relaxed dual problem for the cost function ¢ and projections p;j,
where p; = Pr;p.

In the classical Monge-Kantorovich problem the dual solution may not exist provided c¢ is unbounded.
In [34,3] authors introduce the concept of strong c-monotonicity, which generalizes the c-monotonicity and
allows us to find a generalized dual solution.

Definition 5.25. A Borel set I' C X x Y is strongly c-monotone if there exist Borel measurable functions
p: X — [-00,+0), ¥: Y — [—00,+00) such that ¢(z) + ¢¥(y) < e(z,y) for all (z,y) € X xY and
o(x) + ¥(y) = c(z,y) holds if (z,y) € T'. A transport plan m € II(u,v) is strongly c-monotone if 7 is
concentrated on a strongly c-monotone Borel set.

One can easily verify that strong c-monotonicity implies c-monotonicity, and if there exists a solution
to the dual problem, then every optimal transport plan is strongly c-monotone. In [3] authors prove that
under general assumptions on the cost function the transport plan 7 is optimal if and only if 7 is strongly
c-monotone.

Theorem 5.26 (/3, Theorem 3]). Let X, Y be Polish spaces equipped with Borel probability measures p, v,
and let c: X XY — [0, 00] be Borel measurable and p®v-a.e. finite. Then a finite transport plan m € II(p, v)
is optimal if and only if it is strongly c-monotone.

In particular, for every finite optimal transport plan 7 there exist (not necessary integrable) functions ¢,
¥ such that ¢(x) + () < ¢(x,y) and the equality holds 7-a.e. We can naturally generalize the concept of
strong c-monotonicity to the multistochastic Monge-Kantorovich problem as follows.

Definition 5.27. A Borel set I' C X is strongly c-monotone if there exist Borel measurable functions
{fotaet,is fa: Xoa = [—00,+00) such that the inequality

holds for all z € X and the equality is achieved if € T'. A transport plan m € I({ua }acz,,) is strongly
c-monotone if 7 is concentrated on a strongly c-monotone Borel set T'.

We do not know whether there exists a strongly c-monotone transport plan in the problem considered in
Theorem 5.23. In what follows, we construct another example of the (3,2)-problem and prove that in this
example there is no strongly c-monotone optimal transport plan.
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As in the previous example, let X7 = Xo = X3 = N. For each n denote
B,={(n,n+1,n+1),(n+1L,n,n+1),(n+1,n+1,n)}.

Consider the following measure p defined on the space X; x X5 x X3 as follows:

1
— if (n1,n2,n3) € A, U By, for some n,
u(ny,ng,ms) = { (™) (18)
0 otherwise.

One can check that 4 is a probability measure. Finally, for {i,j} € Z3 2 denote p;; = Pr;; ().
Lemma 5.28. The measure p is the only uniting measure for the triple of projections {j1ij}{i jyezs,..-

Proof. Let v € I1({fti;} i j}ezs.)- For {i,j} € T3 2, the projection p;; is concentrated on the set {(n;,n;) €
NZ2: |n; —n;j| < 1}, and therefore the transport plan v is concentrated on the set

S = {(n1,n2,n3) € N*: max{ni,na,n3} — min{ni,na,n3} <1} = |_| ({(k, k, k)} U Ay UBy).
k=1

Let us prove that -« is uniquely defined by its values on the diagonal, and if we denote a, = v(k, k, k),
then we have

:u“(nlan27n3) - (al + -+ an) if (n17n27n3) € ATI for some n,

y(n1,m2,m3) = { (19)

w(ny,ma,n3) + (a1 + -+ ayp) if (n1,n2,n3) € B, for some n.
Since v € TL({ij}{i,jyez, ), for all n € N we have
Pria(y)(n,n) = pa(n,n).
The left-hand side of the equation is equal to >, <, v(n,n, k) = an +y(n,n,n — 1) +y(n,n,n + 1), and

the right-hand side is equal to ), <, pu(n,n,k) = p(n,n,n — 1) + p(n,n,n + 1). Here, we assume that
w(ny,ma,n3) = y(ny, na,n3) = 0 if at least one of the variables (n1,n2,n3) is less than 1. Thus,

y(n,n,n+1)+~y(n,n,n—1)+a, = p(n,n,n+1) + pn,n,n —1)
< y(n,n,n+1) —pu(n,n,n+1)=pun,nn—1)—vymn,nn—1) —a,. (20)
In addition,

Pris(v)(n,n —1) = paz(n,n — 1)
Syn,n—1,n—1)+~vn,nn—1)=punn—1n—-1)+pu(n,nn—1) (21)
< uny,n,n—1) —y(n,n,n—1)=~vn,n—1,n—1) — un,n—1,n-1).

Thus, it follows from equations (20) and (21) that
7(n,n,n—|— 1) —H(”an7”+ 1) = 7(n7n_ 1,7’7,— 1) _M(n7n_ 1,77,— 1) — Qn. (22)
Due to the symmetry, one can interchange the second and the third variable:

yn,n+1,n)—un,n+1,n)=vn,n—1,n—-1)—pn,n—1,n—1) —a,. (23)
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After that one can interchange the first and the third variable:
'y(n,n+ ]-777’) _N(n7n+ 1)”) = ’)/(TL— ]-7n_ 17“) —M(TL— ]-,n_ 1777‘) — Qnp. (24)

Equations (22) and (23) have identical right-hand sides, and equations (23) and (24) have identical left-hand
sides. Thus, the left-hand side of (22) is equal to the right-hand side of (24), i.e. the following equation holds
for all n € N:

yn,n,n+1)—pun,nn+1)=vn—-1,n—-1,n) —pun—1,n—1,n) — a,.
Applying this formula n times, we conclude that
y(n,n,n+1) — p(n,n,n+1) =~(0,0,1) — u(0,0,1) — (a1 + -+ an) = —(a1 + - - + ap).
So, due to the symmetry,
y(ni,n2,n3) = p(ny,ng,n3) — (a1 + - -+ + ay) for all (ny1,ng,n3) € Ay,.
Substituting the last equation into equation (20), we conclude that
pn,n,n—1)—vy(n,nn—1)=—(a1 + -+ an-1);
therefore, due to the symmetry,
v(n1,ng,ng) = p(ni,na,ng) + (a1 + -+ - + ay) for all (n1,n2,n3) € By,
and this completes the proof of formula (19).
We have ji(n1,n2,n3) = (7n)~2 for all (ny,n2,n3) € A,, and therefore a; + - - + a,, < (7n)~2 for all n.

Thus, since all a,, are nonnegative, we conclude that vy(k, k, k) = a;, = 0 for all k, and therefore v = u by
equation (19). O

It follows from the previous lemma that p is the unique optimal solution to the multistochastic problem
with arbitrary bounded cost function. Next, we construct the cost function ¢ such that p is not strongly
c-monotone. The existence of this example demonstrates that we can not generalize the equivalence of
optimality and strongly c-monotonicity to the multistochastic case.

Theorem 5.29. Let yu be the measure on N® defined in equation (18), and let p;; = Pr;;(u). Consider the
cost function c¢: N3 — {0,1}: ¢(x) = 1 if x € B,, for some n, and c¢(x) = 0 otherwise. Then there are no
functions { fij} i jrezs.s fij: N? = [—00,4+00) such that

fi2(na,m2) + fiz(ni,n3) + fas(n2, n3) < c(ni,n2,n3)
for all (ny,n2,n3) € N and the equality holds p-a.e.
Proof. Assuming the opposite, consider the following (3, 2)-function:
F(n1,n2,n3) = fi2(ni,n2) + fis(ni,n3) + faz(ng, ng). (25)

Since {fi;}{i,jyezs., satisfy the assumptions of the theorem, we have F(ni,ng,n3) = c(n1,n2,n3) p-a.e.
Hence, since p(ni,ne,n3) > 0 for all (ny,ne,n3) € A, U By, we get
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Fn+1,n,n)=F(n,n+1,n)=F(n,nn+1)=0, (26)
Fnon+1l,n+1)=Fn+1,nn+1)=Fn+1l,n+1ln) =1

for all n € N.
Applying (25) one can easily verify the following equation:

Fn,n,n)+ Fn,n+1l,n+ 1)+ F(n+1Lnn+1)+ F(n+1n+1,n)
=Fn+1Ln+ln+1)+F(n+1,nn)+ F(n,n+1,n)+ F(n,n,n+1).

Combining this with equation (26), we get F'(n,n,n) +3 = F(n+ 1,n+ 1,n+ 1) for all n, and therefore
the inequality

F(n,n,n)=Fn+kn+kn+k)—3k<cnh+kn+kn+k)—3k<1-3k

holds for all n,k € N. Thus, F(n,n,n) = —oo for all n. In particular, F(1,1,1) = —oo, and therefore
fij(1,1) = —oo for some {7, j} € I3 5. Without loss of generality we may assume that f12(1,1) = —co. Then
F(1,1,2) is also equal to —oo, and this contradicts equation (26). O

6. Properties of the dual solution in (3, 2)-problem
6.1. Boundedness of the dual solution

In the classical Monge-Kantorovich problem for the bounded cost function ¢(x, y) we can transform every
solution to the dual problem to the bounded one, using Legendre transformation.

Proposition 6.1. Let X and Y be Polish spaces, let p € P(X) and v € P(Y), and let c: X xY — Ry be a
cost function. If ¢ is a bounded continuous cost function, then there exists a solution (p,1) to the related
dual problem such that both p(x),¥(y) lie between — |||, and ||c||, forallz € X andy €Y.

Proof. The proof is an adaptation of the argument from the proof of [36, Theorem 1.3]. Let (¢,%) be
a solution to the dual problem provided by [32, Theorem 2.4.3]. If 7 is a solution to the related primal
problem, then ¢(x) 4+ 9(y) = ¢(z,y) ma.e. In particular, there exists a point (zg,y0) € X X Y such that
w(xo) + ¥ (yo) = c(zo,yo) > 0. For any real number s the pair of functions (¢ — 5,9 + s) is also a solution
to the dual problem. By a proper choice of s, we can ensure

gp(xo) >0, 7#(yO) > 0.

Since ¢(z) + ¥(y) < clz,y), we have p(z) < c(@,y0) — $(yo) < c(x,y0) for all @, and ¥(y) < c(zo,y) -
o(x0) < ¢(xo,y) for all y. Consider the Legendre transformation of the function ¢:

?(x) = inf (c(z,y) — ¢(y)).

yey

c(z,y) for all x € X and for all y € Y. From the inequality ¢(z) <
o(x) for all z. Since @(z) < ¢(x,y) — ¥(y) for all y, we have

By construction, p(z) + ¥(y)

<
c(z,y) — ¥(y) we see that B(x) >

P(x) < e@,50) = ¢ (yo) < llell o

and it follows from the inequality ¥ (y) < ¢(xo,y) that
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@(.’IJ) 2> ylfelf/(c($7y) - C(.Z‘(),y)) > — ||cHoo

Hence, P is an integrable function; since @(z) > ¢(x) for all x, we have

[e@ntn) + [vtwvian = [ @ utdn) + [ vl via,
Y

X X Y

and therefore (@, ) is a solution to the dual problem.
Finally, define

¥(y) = inf (c(z,y) - P(2)).
By the same arguments we conclude that (%, ) is a solution to the dual problem and — |||, < ¥(y) < |||,
forally e Y. O

We want to generalize this observation to the multistochastic case.

Definition 6.2. Given finite measures p and v on the space X, we say that yu <, v (where “b” means
“bounded”) if there exists a positive real M such that u < M - v.

The following properties trivially follow from the definition.
Proposition 6.3. Let pn and v be finite measures on the space X . Suppose that u < v. Then

(a) p is absolutely continuous with respect to v;
(b) LX(X, 1) 2 LY (X, v);
(¢) if X = X1 x -+ x X,,, then Prou <3 Prov for all a € Z,.

Definition 6.4. Let X1,...,X,, be Polish spaces, let 7 € P(X), and let v, be a probability measure on X,
for some a € Z,, such that v, < m,. Let p be a density function of v, with respect to m,. Then denote by
Up, (Va, ™) the measure p*(z) - m, where p*(z) = p(z,) for all z € X.

Proposition 6.5. Let X1,..., X, be Polish spaces, let m1 € P(X), and let v, be a probability measure on X,
for some a € I, such that v, <p To. Then

) the measure Up,, (va, ) is well-defined;
) Up,,(Va, m) Kp 75
c) if B 2 a, then Prg(Up,(Va, m)) = Upy (Va, m5);
) if B C a, then Prg(Up, (va, ™)) = Prg(va);
) if ™= o @ pg for po € P(Xo) and pg € P(Xp), then Up,(Va, T) = v ® lg.

Proof. Assertion 6.5(a) is trivial: if v, = p1 - T = p2 - Ta, then p1(z4) = p2(24) for T4-a.e. x4 € X4, and
therefore pi(x) = p3(z) for m-a.e. x € X. In addition, since v, <} 74, there exists a positive real M such
that p(z,) < M for me-a.e. z, € X,, and therefore p*(z) < M for m-a.e. z € X. Hence, p* € LY(X, )
and the measure p* - 7 is well-defined. Furthermore, since p* < M m-a.e, we have Up(vy,7) < M - 7; thus,
Up(vy, ™) <p 7 and assertion 6.5(b) holds.

We have Up(vy, ) = p(24) - 7. The function p does not depend on coordinates z; for all ¢ ¢ «. Hence, if
82 «aand B €Z,, then Prg(p(zq) - ) = p(q) - mg. Since Pro(7m3) = mq, we conclude that Up, (vo, 7g) =
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p(zy) - mg. Thus, if B D «, then Prg(Up,(va,m)) = Up,(va,Pr), and this implies assertion 6.5(c). In
addition, we have Pry(p(zy) - m) = p(2a) - To. = Va, and therefore Pr, (Up, (v, 7)) = v,. Hence, if 8 C a,
then Prg(Up, (Va, 7)) = Prg o Pro(Up, (Va, 7)) = Pra(v,), and this implies assertion 6.5(d).

Finally, suppose that m = po ® pg. Then m, = o, and therefore vy = p-mo = p - pto. Thus, vq ® pg =
(p(za) - fta) @ g = p(za) - ™ = Up,(Va, ), and this implies assertion 6.5(e). O

Let X1, X2, X3 be Polish spaces, let p; € P(X;) for 1 <i <4, and let p;; = p; ® pj for all {4, j} € Zs ».
Let ¢c: X — R, be a nonnegative bounded continuous cost function. The space TI({1si;}{i j}ez, ) is non-
empty, since p1 ® ps ® us € H({Mij}{i,j}eIg,z)» and therefore by Theorem 4.12 there is no duality gap. In
addition, since the family of measures {,uij}{i,j}ezu is reducible, by Theorem 5.19 there exists a solution
to the related dual problem. Thus, there exists a solution 7 € II({;}{ij}ez, ) to the primal problem and
a solution {f;;}, fij € L'(Xij;, pwi;) to the dual problem, and

/Cdﬂ:/f12dM12+/f13dﬂ13+/f23dM23-
X

X12 Xi3 Xas
Lemma 6.6. Let 7 be a probability measure on X. Suppose that there exists v € IU({pi;}{ijrez,,) Such that

T Lp y. Then extensions of all fia, f13 and fag to the space X are integrable with respect to the measure 7.

Proof. The extension of f;; is integrable with respect to 7 if and only if fi; € L' (X;;, Pr;;(7)). Since 7 <y 1,
by assertion 6.3(c) we have Pr;;(7) <3 Pr;;(v) = wij, and therefore by assertion 6.3(b) we conclude that
LY( X5, Prij (7)) 2 LN(Xij, 1i5) 3 fij- O

Denote F(x1, 22, x3) = fia(z1,x2) + fiz(z1, x3) + fos(z2, x3).

Lemma 6.7. Let @ be a probability measure on X. Suppose that there exists v € T({pij} (i jyez,,) Such that
T <y y. Then

(a) the function F and the extensions of all fi2, f13 and fag to the space X are integrable with respect to
the measure T;

(b) / Fd < |e|l.;

X
(c) if ™ <p 7, then /FdTr > 0.
X

Proof. Assertion 6.7(a) trivially follows from Lemma 6.6. Since {fi;}{i jjez,, is a solution to the dual
problem, we have F(x1,x2,23) < ¢(x1,z2,2z3) for all x € X. In particular,

/Fd%g/cd%g lell o s

X X

and this implies assertion 6.7(b).
Since Pr;j(m) = w;;, by assertion 6.7(a) the function F € L' (X, 7) and

/Fdﬂ-: /fl2d77+/f13dﬂ'+/f23d7r

X Xi12 X3 Xo3
= /f12du12+/f13dul3+/f23du23=/cd7r.
X112 X

X3 Xa3
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Since in addition F'(z1,x2,23) < c(z1,x2,x3) for all x € X, we conclude that F(z1,za,23) = c(z1, T2, x3)
for m-a.e. x € X. Thus, if T <} 7, then F (1, x2,x3) = ¢(x1, 22, x3) T-a.e., and therefore

/Fd%:/cd%ZO
X X

since ¢ > 0. This implies assertion 6.7(c). O

Lemma 6.8. Let (i,7,k) be a permutation of indices (1,2,3). Let v; be a probability measure on X; such that
vi <p pi- Then F € LN X,v; @ p; @ py,) and

/Fd(l/i®,uj ® p) > /Fdﬂ— lello -
X X

Proof. Since v; < p;, we have v; <, Pr;(m), and therefore the measure Up, (v;, 7) is well-defined. Consider
the following measure:

v = @ py @ pg — Up,;(vi, ) + pi @ Prj(Up; (v, 7)) — 7. (27)

We claim that all the projections of v to the spaces X;;, X, and X, are zero measures. First, by asser-
tion 6.5(c) and assertion 6.5(e) we have

Pri;(Up; (vi, m)) = Up; (v, Prij(m)) = Up; (vi, i @ ) = vi ® pj,
Prix(Up;(vi, 7)) = Up;(vs, Prie(m)) = Up;(vi, i ® i) = vi ® pu.
Next, we find the projections of Up;(v;, m) to the spaces X; and Xj:

Pr;j(Up;(vi, ) = Prj o Pri;(Up;(vi, ™)) = Prj(vs @ ;) =
Pry(Up, (v, 7)) = Pry o Pry(Up,; (vi, 7)) = Pri(v; @ ) = phge-

Finally, we find the projections of v to the spaces X;;, X;r and X:

Pri;j(y) = Prij(v; ® p; @ pg) — Pri;(Up; (v, 7)) + Prij (s @ Prjp(Up; (vs,m))) — Pry;(m)
= Vi @ py — vi @ pj + i @ Pry(Up; (v, ) — pi ©
= Vi @ pj — v @ pij 4 i @ prj — pi @ pj = 0;

Prig(v) = Prir(vi @ pj @ p) — Prig(Up; (vi, 1)) + Prig (i @ Prj(Up; (vi, 7)) — Prig(m)
= Vi @ puk — Vi @ e + pi @ Pry(Up; (v, ™)) — s @ e
=V Q Uk — Vi @ i + i @ pie — s @ g = 05

Prji(y) = Prjp(vs ® p; ® px) — Prjr(Up;(vi, 7)) + Prjr (s @ Prjr(Up;(v4, 7)) — Prjg(m)
= pj @ pe — Prju(Up; (v, 7)) + Prjie(Up; (vi, m)) — pj @ pue = 0.

Since v; <p 4, we have

Vi @y @ pie b pi @ pig @ prg € I({ g} i jyets..)

Besides, it follows from assertion 6.5(b) that
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Up; (vi, m) <o 7 € U({ 13} i jyezs.)-

Hence, by assertion 6.3(c) we have Prj(Up;(vs, 7)) <p Prju(m) = pjx = p; ® pr, and therefore

i @ Prj(Up,(vi, m)) < i @ pi @ pre € I({ptij}{ijyezsn)-

Thus, it follows from assertion 6.7(a) that the function F' and the extension of all fi2, f13, and fa3 to the
space X are integrable with respect to all of the summands of equation (27), and therefore that functions
are integrable with respect to «. In particular,

/ Fdy= / fiy dPrj (Y / fir dPrig(y / fir dPrjx(7) = 0.
X k

ij
On the other hand, we have
/Fah = /Fd(l/i ® p; @ p) — /FdUpi(Vi,ﬂ) + /Fd(,ui ® Prji(Up;(vs,m))) — /Fdw.
X b'e X X X
Since Up, (v, ™) <p m, by assertion 6.7(c) we have
X

By assertion 6.7(b) we have
[ Pt Prsu(Up, (i) < el
X

Thus, we get

O:/Fd'yg/Fd(z/i®uj®,uk)—/Fd7r+||c||oo. s
X X X

Lemma 6.9. For 1 <i < 3, let v; be a probability measure on X; such that v; <y p;. Then F € LY (X, 1 ®
Vo X 1/3) and

/Fd(l/1 ®ry ®@u3) > —12]cl

X

Proof. The proof is similar to the proof of Lemma 6.8. We have v; ® v; <3 p; @ p; = Pr;;(m), and therefore
the measure Up,;(v; ® v;,m) is well-defined for all {7, j} € Z3 . Consider the following measures:

7O = Z Upy;(vi @ vj, m);

{1,j}€Z32
YW= 3" i ®@Pry(Upy(vi @ vy, 7));
(4,5,k)€S3
7 = Z ti @ pij @ Pre(Upy; (v @ vj,m));
{9,J}€Z3,2

{i.5,k}={1,2,3}
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oY wemen
{i,j}€Z3,2
{t,5,k}={1,2,3}

T=11 01 ®vs — 70 441 -1 ) 4 og,

We claim that Pry;(y) = 0 for all {i,j} € 3. Let (4,4, k) be a permutation of indices (1,2,3). By
construction,

7O = = Upy; (vi @ vj,m) + Upy (v @ vg, ) + Upjk(”j ® Vg, ).
It follows from assertion 6.5(c) that

Prij(Upij(Vi Quj,mM)) =1v; QVj,
and therefore
Pri; (%) = vi ® vj + Pryj(Upy (vi ® v, m)) + Py (Up,(v; @ v, ). (28)
Next, let us find the projection of 41) onto the space X;j. The measure 4 can be written as follows:
Y = p; @ Prjw(Up,; (v @ vj,m)) + 115 ® Prig(Upy; (v; ® vj, 7))
+ 11i @ Prji(Up, (vi ® vig, ™)) + puge @ Prij (Upg, (v @ v, )
+ 1j @ Prip(Upyy, (v @ v, ) + pe @ Prij (Upy.(v; @ v, ).
It follows from assertion 6.5(d) that
Prij (i ® Prji(Upy; (v @ vj,m))) = 1 @ Prj(Upy;(v; @ vj, 7)) = pi @ vj,
Pri;(pj ® Pri(Up,;(vi @ vj,m))) = Pri(Up;;(vi @ vj, ) @ pj = vi ® puj,
and we trivially have

( (Upir(vi @ v, m))) = p1; @ Prj(Upy (vi @ v, 7)),
Prij (e ® Prij(Upg,(vi ® vg, 7)) = Pri; (Upi (vi ® vi, m)),
( (Upji(
( (Upji(

Prij(p; @ Pri(Upjy,(v; @ vi, m))) = Pri(Upjy (v @ vk, ™)) @ pj,
Prij (e @ Prij(Upyp (v; @ vg, m))) = Prij(Up;i (v @ vg, 7).
Thus, we get
Pri; (V)

= pi @ Vj +v; @ pij + Prij(Upy, (vi @ v, ) + Prij (Upj (v @ vk, 7))

(29)
+ Pri(Upjr(v; ® vi, 7)) ® pj + pi @ Prj(Upy (vi @ v, 7))

Finally, by construction

’Y(S):Vi®uj®Mk+#i®l/j®ﬂk+#i®ﬂj®l/k,

so we get

Prij(“Y(S)) =V Q@ pj + i @V 4 pi Q . (30)
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Similarly, we conclude that
Pry; (7)) = Pry(Upp (v © v, ) © i + i ® Prj(Upyi (v © v, 7)) + 1 © pyj. (31)
Thus, from equations (28)-(31) we get
Pri;(y) = Prij(v; @ v; @ vg) — Pry; (’y(o)) + Pr;; (’y(l)) — Pr; -(’y ) Pr; ( ) + 2Pr;;(7)
= 11 ® vy — ¥ ® vy — Prig(Upyy (v ® viy ) — Prig(Upy (v ® v, )
+ i @ vj + v ® pj + Prij(Upy (vi @ vig, m)) + Prij(Upj (v ® v, )

i (
+ Pri(Upji(v; @ vg, 7)) ® pj + pi @ Prj(Upy (v; @ v, 7))
™)) =

= Pri(Upj(vj @ vg, ™)) @ pj — pi @ Prj(Upyy, (vi @ vk, ) — i @ p;

— Vi @y — i @ V5 — i @ g + 20 @ py
=0.

Let us verify that the functions F' and the extensions of f;; to the space X for all {i,j} € I3 are
integrable with respect to 7. First, since vy < p for 1 <t < 3, we have

v @ vy @y L 1 @ pg @ 3 € T({ 1k } i jyers .. )-

Let (4, j, k) be a permutation of indices (1,2, 3). It follows from assertion 6.5(b) that Up,;(v;®@v;, ) < T,
and therefore v(9) <, 7. Next, since Up,; (v;®v;, ) <4 , it follows from assertion 6.3(c) that Prjx (Up,; (1;®
vj,m)) <p Prji(m) = pj@pg and Pry(Up,; (vi@v;, m)) < Pri(m) = pg. Hence, p; @Prjy, (Up,; (vi®@v;, m)) <b
p1 @ pg @ pz and g @ py @ Pri(Up; (v @ vy, ) < 11 @ pi2 @ g, and therefore

Y <y 1 @ po ® ps € M({pij}igyezs,) and ¥ < p1 @ po @ s € T({ s} i jyezsn)-
Finally, since v <3 pk, we have pu; @ pj ® v <p 11 @ po ® us, and therefore
Y < 1 @ po @ s € I({pij Hijyezs »)-

Thus, by assertion 6.7(a) the function F and the extension of f;; to the space X for all {i,j} € Z3 2 are
integrable with respect to all summands from the definition of -, and therefore that functions are integrable

with respect to . In particular,

/Fd’Y* / fi2 dPria(y /f13dPr13 /fzsdPr23( ) =0.

X Xi12 Xi3

Since Up,;(v; ® vj, ) <p 7 for all {7, j} € I3 9, it follows from assertion 6.7(c) that

/ Fdy® > 0.
X

Applying assertion 6.7(b) to all terms of the definition of v(!), we conclude that

JECEEIEN
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Finally, applying Lemma 6.8 to all terms of v and 73, we get

/pu¢®23/fww—MMk)mm /pu%%zg/iwﬂ—mwu.
X X X X

Thus, we get the following inequality:

[ravs [Pavnenow o, +2 (3l -3 [ Far| +2 [ Fn
X X X X

:12||cHoo—4/Fd7r+/Fd(u1®V2®V3),
X b'e

and therefore

/Fd(yl®1/2®u3)24/Fd7r—12|\c||00.
b'e X

It follows from assertion 6.7(c) that [ F'dr > 0; hence,

/ﬁﬂm®w®@z4/Fm—uw@z_mMu.u
X X

Theorem 6.10. Let X, Xo, X3 be Polish spaces, let p; € P(X;) for 1 <i <3, and let ;5 = p; ® pj; for all
{i,j} € I3 2. Let c: X — Ry be a bounded continuous cost function. If {fi;}(ijyez,, s a solution to the
related dual problem, then

fra(wy, @2) + frz(wr, x3) + faz(w2, 23) > —12]|c[|
for p1 @ po @ ps-a.e. points v € X.

Proof. Denote F(x1,x2,23) = fia(x1,x2) + fi3(x1,23) + fos(x2, x3), and denote g = 1 ® po ® pg. For 1 <
i <3, let A; € B; be a measurable subset of X;. If u;(A;) = 0 for some 1 <4 < 3, then u(A; x A3 x A3) =0,
and therefore [, ., Fdu=0.

Suppose otherwise that p;(A;) > 0 for all 1 < ¢ < 3. Denote v; = (1[A;]/1i(A4;)) - ps, where 1[A] is
an indicator function of the set A. The measure v; is a probability measure and v; < (1/p;(A;)) - pi, and
therefore v; < ;. By Lemma 6.9, we conclude that [, Fd(r1 ® vy @ v3) > —12||¢|| . By construction,

Jayxanxa, Fdu
Fdlvyy @y Q@us) = 1X A2 X5 .
)[ (v @) = A e Aaial As)
Thus, we get
Fdp > —12c||, - u(A1 x Ag x Ag) for all A; € B;. (32)
A1><A2><A3

Consider the measure (F' 4 12|c|| ) - - By equation (32) this measure is non-negative on a semialgebra
Ao = {A1 x Ay x A3: A; € B;}, and therefore this measure is non-negative on every element of o(Ag), and
this o-algebra coincides with the Borel o-algebra on the space X. Thus, the measure (F' 4 12|[c[|) - p is
non-negative, and therefore F(z1, 2, x3) + 12 ||c||,, > 0 for p-a.e. points x € X. O
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Theorem 6.11. Let X, Xo, X3 be Polish spaces, let p; € P(X;) for 1 <i <3, and let p;; = p; @ pj for all
{i,j} € Z35. Let c: X — Ry be a bounded continuous cost function. Then

(a) there exists a solution { fi;} (i jyez,., to the relaved dual problem (see Definition 5.16) such that

1
ATl < fig(@i z5) <135 el o 5

(b) there exists a solution { fij}{i jyez,. to the standard dual problem such that
2 1
262 el < fisCr ) < 13 oo

Proof. First, it follows from Theorem 5.19 that there exists an optimal (real-valued) solution { fi;} (i j}ez, »
to the relaxed dual problem. By Theorem 6.10 we conclude that the inequality

lelloe = fr2(zy, 22) + fiz3(z1, 23) + faz(22, 23) > —12]|cf| (33)

holds for p; ® pe ® ps-almost all points.

Consider the optimal finite (3,2)-function F(z1, x2,x3) = fi2(21,22) + fi3(x1,23) + fos(x2,z3). Let A
be the set of points (z1,z2,23) € X such that either F(z1,z9,23) < —12]c[|, or F(z1,x2,23) > ||c[ -
By inequality (33) we have u1 ® pe ® pusz(A) = 0. Applying Lemma 5.5 to the indicator function of the set
A, we conclude that there exists a point (y1,¥2,y3) € X such that for each o € Z3 the set A, = {z, €
Xao: (Ta,y{1,2,30\a) € A} have a zero measure with respect to fi.

For each o € T3 consider the function Fy: o = F(2ay{1,2,30\0)- If Za & Aq, then |[c|| o > Fu(za) >
—12||¢|| ., and therefore this inequality holds for jio-almost all z, € X,. Consider the functions

~ 1 1 1
fi2(z1, 22) = F(x1, 22,y3) — §F(1;1,y2,y3) - §F(y1,x2,y3) + §F(y1,y2,y3),

—~ 1 1 1
f13(x1,23) = F(21,y2,73) — §F(1‘1’y27y3) - §F(y17y27333) + §F(yhy2,y3),

—~ 1 1 1
fa3(w2, 23) = F(y1, 72, 73) — §F(Z/17$27y3) - §F(y1ay27$3) + gF(Z/hyz,y?)

By Example 5.4 the equation F(z1,z2,z3) = flg(xl, x2)+]?13(£v1, :103,)4-]?23(3627 x3) holds for all (21, z9,23) €
X. In addition, one can easily verify that the inequality

~ 1
—17|lell o < fij(zi x)) < 132 llell oo
holds for p;j-almost all (z;,x;) € X;;.
Thus, there exists a triple of bounded measurable functions {g;;} such that g;; = f;; almost everywhere
and
1
17 el < gig(ois ) < 135 el
for all (z;,z;) € X;;. The inequality
g12(z1,72) + g13(1, 23) + g23(T2, 23) = F(71, 22, 73) < (71, T2, 73)

holds at all points except a zero (3,2)-thickness set, and therefore {g;;} € Wc({f1i;} i j}ez,,)- Finally, we
have
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/912du12+ /913dﬂ13+ /923dM23:/qu
X

X12 XlS X23

/f12dM12+/flsdul3+/f23dﬂ23,

X12 X23

and therefore {g;;} is a solution to the relaxed dual problem satisfying assertion 6.11(a).
Since {gij} € Ye({iij}1i,j1ezs..), there exists a triple of subsets Y;; C X;; such that p;;(Yi;) = 0 and if
(x;,x;) ¢ Y, for all {i,5}, then

g12(x1, ®2) + g13(w1, x3) + gaz(w2, x3) < c(x1, 2, T3).

Consider the triple of functions {gi;}: i; (%s, 2;) = g(@i, ;) if (5,2;) ¢ Vij, and (w5, 25) = =263 ||c[ls0
otherwise. We have g;;(x;, ;) = gij(xi, z;) almost everywhere, and one can easily verify that the inequality

g12(x1, x2) + G13(w1, ¥3) + go3(w2, x3) < c(x1, 2, x3)

holds for all points (z1,z2,x3) € X. Thus, {g;;} is a solution to the standard dual problem satisfying
assertion 6.11(b). O

6.2. Uniqueness of a continuous dual solution for the cost function xixoxs

Let us recall to the reader our main example of the multistochastic (3, 2)-problem:

Problem 6.12. For 1 <i <3, let X; = [0, 1], let u;; be the restriction of the Lebesque measure to the square
[0,1]2, and let c(x1, 72, 73) = T17273.
Primal problem. Find a uniting measure ™ € I({ui;}{i jyez,,) such that

/xlxgxg dm — min.
Dual problem. Find a triple of functions {fi;} (i jyez, > fij € L*([0,1]?) such that

Z fij(@i, xj) < xizazs for all (x1,x2,23) € [0, 13,

{i.d}€Ls 2
11
//f” x;, ;) dr;dz; — max.
00

In [19] the authors describe solutions to these problems. First, we define a binary operator @ (called

{i,j}€Z3,2

“bitwise exclusive or” or just “xor”) on the segment [0, 1].

Definition 6.13. Given x and y on [0, 1], we consider their binary representations z = 0,2122%3 ..., Yy =
0,y1Y2Y3 - . .o. We agree that every dyadic rational number less than 1 has a finite numbers of units in
its decomposition. The number 1 will be always decomposed as follows: 1 = 0,111...,. Then we define

r®y =021 Dy1x2PYs2...9, where @ is an addition in Fs.

Using this binary operation, the solutions to the primal problem can be described as follows:
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zy

Fig. 4. The sets Jy, J2 and Js.

Theorem 6.14 (Primal problem solution). Consider the mapping T: [0,1]> — [0,1]3, (z,y) — (z,y,2 © y).
Denote by T the image of the Lebesque measure restricted to the square [0,1]? under the mapping T. Then
 is a solution to primal Problem 6.12.

In [19] the authors show that 7 is concentrated on the set
{(z,y,2) € [0,1]3: By dz =0},

and this set is a self-similar fractal, which is called “Sierpinsky tetrahedron”. Let us verify for the complete-
ness of the picture the following description of the support of 7.

Definition 6.15. Denote by J21:92:93 the image of [0, 1]> under the mapping

a1+ az+2x2 az+ T3
(331,332,333)'—> .

on 7 9n 7 9n
Let
ai,az,a
o= e
0<a;<2"
a1®azPaz=0

One can find images of Ji, J> and J3 on Fig. 4. Denote

&= n

n>1

The set G is called Sierpirisky tetrahedron.

Lemma 6.16. The set J,, contains a point (x1,x2,x3) if and only if there exist binary representations of each
coordinates x; =Y po T /28 such that x1 ) ® xox D3 =0 for all 1 <k < n.

Proof. First, suppose that (z1,z2,23) € J,. By construction, there exist integers ai, as, as such that 0 <
a; < 2™, bitwise xor of ay, as and ag is zero, and (z1,x2,x3) € J2192:%3, Since

J01:02,05 [al a1—|—1] y {az a2+1} o {ag a3+1]’

on’ on on’ on on’ on

we conclude that x; = (a; +y;)/2" for all 1 < i < 3, where 0 < y; < 1.
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Since a; < 2", the binary representation of a; contains at most n digits. Let @; 1a; 2 ... @, be the binary
representation of a; supplemented by zeros up to length n. Since a1 ®as®as = 0, we have a; Bas Paz =0
for all 1 < k < n. Hence, if y; = > p—; ¥ix/2", then

n

R

k=1 k=n+1

provided by x; = (a; + y;)/2". This equation provides a binary representation of each coordinates z; =
ooy xi’k/2k such that ©1 , @ z2p ®xgp =0forall 1 <k <n.

Suppose that (z1, 9, z3) is a point on [0,1]* and z; = > "7, x5 /2F for 1 <i < 3, where all ;  are 0 or
1,and z; Bz B3y = 0 for all 1 < k < n. Denote by a; an integer formed by the first n digits of z; after
radix point. We have x; = (a; +y;)/2" for 1 < i < 3, where 0 < y; < 1, and therefore (21,2, x3) € Ji1:92:93,
In addition, 0 < a; < 2", and since z1 B x2 P x3 ) = 0 for all 1 <k < n, we conclude that a1 as®az = 0.
Thus, (x1,z2,23) € Jo*2% C J,. O

Using that, we can describe all points of the Sierpinisky tetrahedron in terms of their binary representa-
tions.

Proposition 6.17. The Sierpirisky tetrahedron & contains a point (x1, z2,x3) if and only if there exist binary
representations of each coordinates x; = 220:1 xi7k/2k such that

1 P xor Bz =0 for all k;

Proof. Suppose that (z1,z2,x3) is a point on [0,1]% and ; = >_p2, z;/2" for 1 <4 < 3, where all z; ;, are
Oor 1, and z1 % ® xok ® 34 = 0 for all k. Then it follows from Lemma 6.16 that (x1, z9,z3) is contained
in J, for all n. Thus,

Suppose that (21, z2,23) € &. Then (21,22, x3) € J, for all n, and therefore there exist binary represen-
tations of each coordinates z; = Y -, 332,6/2’~C such that 27, @ x5, ®ay, =0 for all 1 <k < n. For any
nonnegative real number, there are at most two binary representations of this number, and therefore there
exist at most eight triples of binary representations of the point (x1, 22, x3). Hence, there exists at least one
of them x; = Z:ozl mi7k/2k such that the property 1, ® x2r @ 3 = 0 for all 1 < k < n holds for an
infinite number of n. Thus, z1; @ 22 @ a3, =0 forall k. O

Proposition 6.18. The Sierpinsky tetrahedron & has the following properties:

(a) the set & a closed subset of [0,1]3;
(b) a point (z,y,x & y) is contained in S for all z,y € [0,1];
(c) if G21:92:93 4g the image of & under a mapping

(Il,ﬂjg,l‘:ﬁ) — (

a; +x1 as + xo a3+x3>
)

on 7 9n 7 9n
then
_ ai,az,a
S = U Sa1a2,a3
0<a;<2",

a1@az®az=0
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Proof. The set .J, is closed since J,, is a finite union of closed sets. Thus, since & is an intersection of the
closed sets J,,, we conclude that & is closed too, and this implies assertion 6.18(a).

Assertion 6.18(b) trivially holds by Proposition 6.17.

Let us verify assertion 6.18(c). Suppose that (z1,22,23) € &. By Proposition 6.17, there exist binary
representations x; = 22:1 xi’k/Qk such that =, ® 22 @ x5 = 0 for all k. Denote by a; an integer formed
by the first n digits of z; after radix point. We have 0 < a; < 2", and since 21, P 221 H 23 = 0 for
all k, we conclude that a1 ® as ® ag = 0. In addition, z; = (a; + y;)/2", where y; = ZZ=1 xi,n+k/2k. By
Proposition 6.17 (y1,y2,y3) € &, and therefore (z1, x2,x3) € &%1:92:%3 Thus

ec |J g
0<a;<2",
a1Bas@az=0

Suppose that (z1,22,23) € G929 where 0 < a; < 2" and a3 @ az @ ag = 0. Since a; < 2", the
binary representation of a; contains at most n digits. Let @; 1a; ... n, be the binary representation of
a; supplemented by zeros up to length n. Since a1 ® az ® a3 = 0, we have a1, ® az; ® azr, = 0 for all
1<k<n.

By construction, there exists a point (y1,¥y2,y3) € & such that z; = (a; + y;)/2™. By Proposition 6.17,
there exist binary representations y; = Y oo, yi7k/2]c such that y1 x ® y2.x ® y3,x = 0. Hence,

n

o0
ai + yi @ik Yih—
Ti = ZQnZ:ZQZk+ Z Zan’
k=1 k=n-+1

and therefore by Proposition 6.17 (z1,x2,23) € &. Thus,

& D U Ga1,02,03

0<a;<2",
a1®az®az=0

and this completes the proof of assertion 6.18(c). O
Following the proof of the main result in [19] the reader can extract the following statement:

Theorem 6.19. For 1 <i <3, let X; = [0,1], let p;; be the Lebesque measure restricted to the square [0,1]2,
and let c(x1, 2, x3) = x17273. If the measure m is uniting for {{1ij} (i jyez,, and supp(m) ¢ Jp, for some n,
then there exists a measure © € U({pij} (i jez,.,) such that

x12ox3 T(dry, dxe,dxs) < / x1woxs w(dry, dre, dxs).
[0,1]3 [0,1]3

If 7 is a solution to primal Problem 6.12, then it follows from Theorem 6.19 that supp(w) C J,, for all n.
Hence, supp(n) C Ny>1Jyp, and this implies the following proposition.

Proposition 6.20. If 7 is a solution to primal Problem 6.12, then supp(w) C &, where & is the Sierpirisky
tetrahedron.

Using that, let us prove that there exists a unique solution to primal Problem 6.12.

Lemma 6.21. There exists at most one measure © on [0,1]> such that supp(r) C & and Priz(7) coincides
with the Lebesgue measure ji12 on the square [0, 1]%.
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Proof. Let I' = {(z,y,2 ®y): (z,y) € [0,1]?}. It follows from assertion 6.18(b) that I' C &. Consider the
set &, = G\I', and consider a point (z1,x2,x3) € &;. Suppose that both points x; and x5 are not dyadic
rationals. If  is not a dyadic rational, then there exists a unique binary representation of x. Hence, it follows
from Proposition 6.17 that there exists at most one z € [0, 1] such that (21,22, 2) € &. By assertion 6.18(b)
we have (21, x9,21 @ 22) € &, and therefore x5 = x1 @ 9. Thus, (21, 29,23) € T, and this contradicts the
point selection.

This contradiction proves that if (z1, 22, x3) € Gp, then at least one of 27 and x5 is a dyadic rational.
Hence, p12(Pri2(6p)) = 0, and therefore 7(S,) = 0 provided by Pria(n) = p12. Thus, since supp(n) C &,
we get w(I") = 1.

Let A be a measurable subset of [0, 1]3. Since 7(I") = 1, we have 7(A\I') = 0, and therefore

m(A) =7(ANT). (34)

Denote Ar = ANT. The set Ar is a measurable subset of I'. Since for each (z1,x3) € [0, 1]? there exists
exactly one xg such that (z1,x9,z3) € T, we get

Ar = (Pri2(Ar) x X3)NT.
Applying equation (34) to the set Prio(Ar) x X3, we get
m((Pri2(Ar) x X3) NT) = m(Pri2(Ar) x X3) = p12(Pr12(Ar))
provided by Pria(7) = p12. From all equations above we get
m(A) = m(Ar) = m((Pr12(Ar) x X3) NT) = p12(Pri2(Ar)).

Thus, the measure of the set A with respect to 7 is independent on 7, and therefore there exists at most
one measure 7 such that supp(n) € & and Pria(n) = p12. O

Theorem 6.22. There exists a unique solution m to primal Problem 6.12.

Proof. If 7 is a solution to the problem, then Pris(7w) = p12, and it follows from Proposition 6.20 that
supp(7) € &. By Lemma 6.21, there exists at most one measure 7 with that properties. Thus, there exists
at most one solution to primal Problem 6.12.

The existence of a solution follows from Theorem 2.8. O

Finally, let us find exactly the support of the solution to primal Problem 6.12.
Proposition 6.23. If 7 is the solution to primal Problem 6.12, then supp(n) = &.

Proof. It follows from Proposition 6.20 that supp(w) C & C J, for all n, and therefore 7(J,) = 1. By
definition of J,,

J, = U Ja1:a2,a3,

Ogai<2”,
a1®az®az=0

We have

1 1
PrlQ(ngjamaS) = |:;_i7 a12j; :| B |:;_72L7 a22—: :| :
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For each pair ai,as such that 0 < aj,as < 2" there exists a unique az such that 0 < a3 < 2™ and
a1 @ as ® az = 0. Hence, projections to X7 X Xs of all components of J,, overlapping by the sets of measure
zero with respect to p12, and therefore

1
m(JO192:93) = 1115 (Pryg(J0192:93)) = o if a1 ®as ®az =0. (35)
Suppose that supp(m) # &. Since supp(7) is closed, there exist a point xg € & and a non-negative integer
n such that if |z — 20| < 217", then z is not contained in supp(r). Since 2y € & C J,,, there exist integers
a1, a2, as such that 0 < a1, as,as < 2", bitwise xor of a1, as,as is zero, and zy € J*2:*3. We have

ng,ag,ag _ |:a’1 CL1+1:| |:a2 a2+1:| % |:CL3 043+1:|;

on’  9n %’ on on’  9n
hence, diam(J21:92:93) < 217" "and therefore supp(w) N J21:92:% = g, This contradicts equation (35). O
In [19] the authors also found a solution to the dual Problem 6.12.

Theorem 6.24 (Dual problem solution). Denote

T Yy

T T y oy
1 1
f(m,y)://s@tdsdt—Z//s@tdsdt—z//séatdsdt.
0 00 00

0

Then the triple of functions fi;: (x;, ;) = f(zi, x;) is a solution to dual Problem 6.12.

This solution to the dual problem is not unique. First, for 1 <i < 3 let f; be an integrable function on
the segment [0, 1]. Consider the following functions

Fiza(z1,22) = fio(wy, @) + fi(21) — folwa),
J?23(9C27963) = fag(z2, 23) + fa(x2) — f3(x3),
Fis(xr,23) = fis(wr, @3) + fa(xs) — fila).

Clearly

Z f” Zi, xj) Z fij(xi,xj) for all (zq,x2,x3) € |0, 1]3

{1,j}€Z32 {i,J}€L32

and

11 11
// ij(Ti, xj) deyde; = //fw x;, %) dridz;,
00 00

and therefore the functions {ﬁ]} are also the solution to the dual problem.

1,j}€T32 {i,j}€ZL32

In what follows, we prove that there is no other continuous solutions to the related dual problem.

Lemma 6.25. If a triple of functions {fij}{ijjez,, 9 a solution to dual Problem 6.12, function f;; is con-
tinuous for all {i,j} € I3 2, and a1, as and ag are non-negative integers such that 0 < a1, as, a3 < 2™ and
a1 ®as ®az =0, then
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13
(21, 22, 23) = 212233] < o5 for all (21, 22, 23) € Jph 2,

where
F(x1,72,73) = fi2(x1,22) + f13(x1,23) + fa3(w2, x3)
and
Jorez.as _ [%7a12:1] y [;_i’arz;l} y B_i’%;l]

Proof. Since {fi;}{i jyez,. is a solution to the dual problem, we have
F(Il,l’Q,I’g) S L1222 fOI‘ all (xl,xg,xg) S [O, 1]3
Let 7 be the solution to primal Problem 6.12. We have de?T = f T12T229 dm, and therefore

F (21,29, 13) = 112923 for m-a.e. (z1, 2, x3) € [0,1]3.

The function F(x1,x9,x3) — x122x3 is continuous; hence, the equation holds for all (z1, z2, x3) € supp(n).

By Proposition 6.23, the support of m coincides with the Sierpinsky tetrahedron &, and therefore
F(x1,x9,x3) = z12023 for all (x1,x9,23) € 6.

Consider the following functions:

J?12(l‘17$2) =2%"f1 (

ay +x1 a2+ xg) a1a2a3 a2a3r1 + a1as3xs

T 3 5 — azT172,
~ 3n a1 +x1 asz+ x3 a1a2a3 a2a3%1 + a102T3
fis(z1,23) = 27" f13 TR =3 - 5 — a3,
n 3n az +x2 asz+ 3 a1a2a3  1043T2 + GA102%3
fa3(z2,23) = 2°" fo3 on " on 3 5 — a1T23,

where 0 < z; <1 for 1 <i < 3. We claim that {ﬁ]} is a solution to the dual problem.
First, one can easily verify that

Fia(@r,22) + fia(z1, 23) + foz(wo, 23) =

93 | a1 +x1 a2+ x2 a3+ x3 _a1+$1.a2+$2.a3+.’[}3
gn 7 9n 7 9n n 2n n

Using inequality (36), we conclude that
Fra(@1,@2) + fra(w1, 23) + fas(w, x3) < wywams for all (x1,72,23) € [0,1]%,

If (1‘171‘271‘3) € 6, then

<a1+x1 as +x2 az+ 3

ai,az,as3
on 7 on 7 on )66” '

By assertion 6.18(c), &%1:929 C &; hence, if (21,22, 23) € &, then by (37) we get

+ T1x223.

(37)

(38)

(39)
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r a1 +x1 a2+ x2 a3+ x3 _a1+m1 as +x2 a3+ x3
on 7 gn 0 gn )T on T om gm0

and therefore
Fra(@1, 2) + fis(@1,23) + faz(wa, ©3) = 1295 for all (z1, 29, 23) € 6.
Since supp(w) = &, we have

/ﬁ2($1,$2)dﬂf1d$2+ / J?13($1,5”3)d931d9€3+ / J?23($2,553)d332d$3
[0,1]2 [0,1]2 [0,1]2

= / (ﬁz(fﬁhm)+j?13(:c1,x3)+,7?23(x2,x3)) dm = / x1x0x3dm.  (40)
[0,1]3 [0,1]3

By equations (39) and (40) we conclude that {ﬁj} is a solution to dual Problem 6.12.
The cost function zjxex3 is non-negative and p;; = p; ® p; for all {i,j} € T3 . Thus, we are under
assumptions of Theorem 6.10. We have ||z1zo23||, = 1, where 0 < x; <1 for all 1 < ¢ <3, and therefore

-12 < J?12($1,CU2) + fis(zy,x3) + J?23(CU2,CU3) <xzirox3 <1

for almost all (z1, 79, z3) € [0,1]3. Since all ﬁj are continuous, we conclude that inequalities holds for all
points, and therefore

‘]?12(901,552) + J?13($1,$3) + J?23(SU2,$3) < 12 for all (21, 72,23) € [0,1]°.

Using equation (38), we conclude that

I3 a1+ x1 as+xy asz+ x3 a1 +x1 ags+x2 as—+zrs < 12 + x12073 < 13
on ’ on ’ on - on ’ on ’ on — 23n — ﬁ

for all (w1, 9, 23) € [0,1]%, and therefore
F( — | < 13 for all € e g
|F(z1, 22, 73) — 212273| < 93n or all (z1,z2,23) n .
Lemma 6.26. Let {fi;}(ij1ez,, be a solution to the dual Problem 6.12. If {i,j} € I32, a number n is a

positive integer, numbers a; and a; are non-negative integers such that 0 < a;,a; < 2", and (x;,x;) and
(vi,y;) are arbitrary points in the square

[ai ai—i—l] « |:aj aj+1:|7

on’ 9 on’ on
then
Yi Yj 54
fij(@isxj) = fiz(is5) — fig (@i, y5) + fij (i, y5) — //S ®tdsdt| < o5
ZTi Tj

Without loss of generality it can be assumed that {i,j} = {1,2}. Let a3 = a1 @ a2, and let (x1,z2, x3)
and (y1,y2,y3) be arbitrary points of the cube J2%2:%3 We have
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F(x1,x9,23) — F(y1, 22, x3) — F(x1,y2,23) + F(y1, Y2, 23)
= fi2(z1,22) — fiz(y1, 22) — fro(w1,92) + fr2(yi, y2).  (41)

In addition,

T1T2x3 — Y1223 — T1Y223 + Y1Y223 = T3(x1 — Y1) (22 — ¥2). (42)

On the other hand, it follows from Lemma 6.25 that

|F (1,22, 23) + F(y1, Y2, T3) — T1T2T3 — Y1Y223

13 52
= F(yr,22,23) = F(x1,y2,03) + y12223 + 1223 <4+ 50 = o5
Thus, taking into account equations (41) and (42), we get
52
|fra(@1, 22) = frz(yr, @2) = fra(@n,92) + fra(yn, 92) — sz — y1) (22 —y2)| < o5 (43)

Since (z1,x2,x3) € Ji199%  we have |az/2" — x3] < 27", Since (y1,y2,y3) € Ji%%  we also have
|1 —y1] < 27™ and |zg — yo| < 27™. Thus,

as 1
So | o -l e el < o (49)

a
z3(z1 —y1) (w2 — y2) — Q—Z(iﬂl —y1)(z2 — 2 ’ =
Next, let ¢ be a point on the interval (a;/2", (a1 +1)/2™), and let s be a point on an interval (as/2", (as +
1)/2™). One can easily verify that

aliazgs@t§%7

and therefore, since a; ® as = a3, we get

Y1 Y2

a 1
s @ tdsdt — 2—2(431 —y)(@2 —y2)| < o - o =l - e — el < o5 (45)

L1 T2
Summarizing inequalities (43), (44), and (45), we conclude that

Y1 Y2
54
fia(x1,22) — fia(yr, x2) — fiz(z1,92) + fi2(y1, y2) —//s@tdsdt < 280

xr1 T2

Lemma 6.27. If a triple of functions { fij} (i jyez,, 95 a solution to dual Problem (.12 and fi; is continuous
for all {i,j} € I3 2, then

fij (@i, a5) — fij(@5,0) — f5;(0,2;) + £i;(0,0) ://s@tdsdt

for all (z;,z;) € [0,1]2.
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Proof. Let {ux}Y_, and {v;}2, be arbitrary points on the segment [0, 1]. One can easily verify that

N M
SO ik vr) = Fig(wn—1,v0) = fij (ur, vr-1) + fij (ur—1,v1-1))
k=11=1 (46)

= fij(uN7UM) - fij(uoﬂfM) - fij(uNa vg) + fij(uo, o)

and
M Uk UN VM
Z / / 5@ tdsdt = //s@tdsdt. (47)
k=11=1
Uk—1 V-1 Uup vo

Let (z;, ;) be an arbitrary point on the square [0,1]%. Let N = [2"x;], and let M = [2"z;]. Finally, let
p=Fk/2" for all 0 < k < N and uy = z;, and similarly let v; = /2" for all 0 <1 < M and vy = ;. By
construction, both points (ug—1,v;—1) and (ug,v;) belong to the square

k—1 k -1 1
gn on| | Ton e |
and therefore by Lemma 6.26 we have

Uk vy

fij(ur,vr) — fij(ur—1,v) = fij(ur, vi—1) + fij (Ue—1,v1-1) — / / s @ tdsdt| < 2on

Uk—1 Vi—1

forall 1< k< N andforall1<[<M.
Taking into account equations (46) and (47), we conclude that

fij(%l”j)—fz‘j(xi,O)—fij(O,xj)Jrfij(O,o)—//s@tdsdt
0

M:

<y

k=

fij(u, vr) — fij(up—1,v) — fij(ur, vi—1)

._.
I

1

Uk vl

+fij(uk—1,vl—1)—/ /s@tdsdt‘

Uk—1 V-1

M54 N-M
IR RS

Mz

1i=1

I/\ -
Il

Thus, since N, M , we get
f 54
fij(@i,x5) — fij(2:,0) — fi;(0,2;) + £i;(0,0) — //S@tdet < on
b0

for all (z;,x;) € [0,1]? and for every positive integer n, and therefore

fij(‘ri’mj)_fij(mivo)_fij(07xj)+fij(070)://S@tdsdt. O
00
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Theorem 6.28. If a triple of functions {fi;}{i jyez,, 95 a solution to Problem 0.12 and fi; is continuous for
all {i,5} € I3 2, then there exist continuous functions f;: [0,1] = R, 1 < i < 3, such that

fi2(@1,2) = f(21,22) + f1(21) — fa(22),
fas(w2,3) = f(x2,23) + fa(w2) — f3(3),

and
fis(@1,23) = f(21,23) + f3(23) — fi(21),

where

T Y T y vy
1 1
f(m,y)://s@tdsdt—Z//s@tdsdt—z//s@tdsdt.
00 00 00

Proof. First, consider the function
F(x1,72,73) = f12(21,72) + f13(21,23) + faz(w2,73).
It follows from equation (37) that
F(x1,x9,x3) = z12923 for all (x1,x9,23) € 6.
By assertion 6.18(b), all the points (0, z, z), (x,0,z) and (x,x,0) are contained in &, and therefore
F(0,z,2) = F(2,0,2) = F(z,2,0) =0 for all z € [0, 1]. (48)
In particular, taking z = 0, we conclude that
f12(0,0) + f13(0,0) + f23(0,0) = £'(0,0,0) = 0. (49)
Denote ﬁ-]— (@i, i) = fij(zi,25) — fi;(0,0). We have ﬁ-j(O, 0) = 0; it follows from (49) that
F(x1,32,23) = fra(21,32) + fi(w1, 23) + fas(w2, 73).

By Lemma 6.27 we have

z;

ﬁj(a:i,xj)://s@tdsdt+ﬁj(zi,0)+f:']-(07xj), (50)
0 0

and therefore

F(xl,xg,xg)://s@tdsdt—l—//s@tdsdt—i—//s@tdsdt
00 0 0 00 (51)
+ o1(w1) + p2(22) + p3(x3),

where
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pr(@1) = fia(1,0) + fra(a1,0),
p2(i2) = fr2(0,2) + fas (2, 0), (52)
©3 F13(0, 23) + fas(0, z3).

Since ﬁ-’j(O, 0) =0 for all {i,j} € Z3,2, we have ¢;(0) = 0 for all 1 < i < 3. Hence, using equations (48)
and (51) we get

0=F(0,:10736)://sEBtdsdt—&—gog(x)—|—<,03,($c)7
00

0:F(x,07x)://s@tdsdt+<p1(x)+<p3(x),
00

OzF(%x,O)://s@tdsdt+cp1(x)+<p2(a:)
00

for all z € [0,1]. Thus, we obtain

l\DlH

//s@tdsdt (53)
for all x € [0,1] for 1 < ¢ < 3.

Consider the functions f;(z;), 1 < i < 3, satisfying the following equations:

1 T1

in 1
J12(21,0) = fi(21) — — s @ tdsdt,
g

T2 T2

~ 1

f23(72,0) = fa(w2) — ~ s @ tdsdt, (54)
]

R 1 T3 T3

f13(0,23) = f3(x3) — — s @ tdsdt.
/]

The function f; is continuous for 1 < ¢ < 3. Combining equations (52) and (53) we get

T2 T2

f12(0,152)zé02($2) Jas(2,0 ———//S@tdsd f23(152’ 0),

and using the representation of f23 from equation (54) we get

T2 T2

n 1
f12(0,22) = — fa(w2) — ~ s @ tdsdt. (55)

Substituting equations (54) and (55) into (50) we obtain the following relation:
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1 T2

J?lz(fﬂhxz)://S@tdet‘i‘J?12(331,0)+J?12(07$2)

T1 T2 1 Tl Ty 1 T2 T2
://s@tdsdt—Z//S@tdsdt—Z//s@tdsdt-i—ﬁ(m)—h(%z)
0 0 0 O 0 0

= [(z1,22) + fi(w1) — fa(z2).

Similarly, we conclude that fgg(xg,xg) = f(z2,x3) + fo(xa) — f3(x3) and ﬁg(xl, x3) = f(x1,x3) + f3(x3) —
f1($1)-

Finally, since f12(0,0) + fi3(0,0) + f23(0,0) = 0, there exist real numbers C;, Cy and Cs such that
f12(0,0) = C1 — Cs, f23(0,0) = Cy — C3 and f13(0,0) = C3 — Cy. Thus,

fr2(wy,w2) = J/c\12($17l‘2) + f12(0,0)
faz(x2,23) = J?23($2,$3) + f23(0,0)
fu(@,23) = fiz(z1,23) + f13(0,0)

f(@1,22) + (fi(21) + C1) = (fa(z2) + C2),
f(z2,23) + (fa(z2) + C2) — (f3(73) + C3),
f(z1,23) + (f3(xs3) + C3) — (fi(z1) + C1). O

6.3. Example of a discontinuous solution to a dual problem

Usually, dual multimarginal problem admits a regular solution provided the cost function is regular. For
instance, applying the Legendre-type transformation, one can prove (see [30, Theorem 2.2] for more details)
that there exists a solution {y;}!_; to the dual multimarginal problem with the following property: for all
1 <i<nand for all z; € X,

i—1 n
pi(zi) = inf | (e, 20) = S wila) = Y wilxy)
i =1 j=it

If ¢ is a Lipschitz function with the Lipschitz constant L, then the expression inside the infimum is also a
Lipschitz function in x; with the same Lipschitz constant. Then ¢; is the infimum of Lipschitz continuous
functions with common constant; therefore, ¢; is Lipschitz continuous as well.

In this section we prove that a natural solution to the dual (3,2)-problem with Lipschitz ¢ can be even
discontinuous and (in a sense) unique.

Consider the following (3, 2)-problem.

Problem 6.29. For 1 < i < 3, let X; = [0,1], let p;; be the restriction of the Lebesgue measure onto the

square [0,1)%, and let c(x1, 22, x3) = max(0, 21 + z2 + 323 — 3).
Primal problem. Find a uniting measure ™ € I({ui;}{i jyez,,) such that

/c(xl, Z9,x3)dm — min.
Dual problem. Find a triple of functions {fi;} (i jyezs.,, fij C LY([0,1]?) such that

Z fij(@i, xj) < e(xr, 2, x3) for all (x1,22,23) € [0, 1]?,
{i,j}€Z3,2

11
//f” x;, xj) dridr; — max.
0 0

{i,J}€L3,2
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The cost function c¢(x1,z2,x3) = max(0,2; + z2 + 3x3 — 3) is Lipschitz continuous, and the triple of
measures { [t} {; j}ez, . 5 reducible; hence, there is no duality gap, and solutions to both primal and dual
problems exist.

Proposition 6.30. Let

fi12(x1,22) = 0 for all points (x1,22) € [0, 1}2;

0 if rg3 < 2
fis(zy, @) =4 5 5 f 2’7
T+ 523 — 35, ifxs > 53
0 if x3 < 2
(o) =1 dmsw
Ty +5x3 — 5, ifwz > 3.

Denote F(x1,2x2,23) = fi2(x1,22) + fi3(x1,23) + faz(x2,x3). Then

(a) F(z1,79,73) < c(x1,22,73) for all (v1,z2,73) € [0,1]3;
(b) if the value of x1 + x2 + 3x3 is integer and (x1,x2,x3) # (0,0,2/3), then F(x1,x2,x3) = c(x1, T2, T3).

Proof. First, one can easily verify the following representation for the function F':

: 2
0, lffE3<§,

F(l’l,l‘g,l’g) = { (56>

T + a2 + 3x3 — 3, ifIgZ%.

Thus, F(x1,22,23) < max(0,z1 + 22 + 323 — 3) = c(x1, x2, x3) for all (z1, 22, x3) € [0,1]%, and this implies
assertion 6.30(a).

Suppose that the value of x1 + x5 + 3z3 is integer. Consider the case z3 < 2/3. Equation (56) implies
that F'(x1,29,23) = 0. Since 21,29 < 1, we have x1 + x9 + 3x3 < 4, and therefore 21 + 25 + 323 < 3. Thus,
c(x1, e, x3) = max(ry + x2 + 3z3 — 3,0) = 0 = F (1,22, x3).

Consider the case x3 > 2/3. By equation (56), F'(z1, 22, x3) = 21+ 22+3x3—3. If (21, 22, 23) # (0,0,2/3),
then x1 + 29+ 323 > 2, and therefore, since x1 + 2 + 323 is integer, x1 + 22+ 3x3 > 3. Thus, if (z1, z2, x3) #
(0,0,2/3), then c¢(x1,z2,23) = ©1 + 22 + 323 — 3 = F(x1, 22, 23), and this implies assertion 6.30(b). O

We claim that the constructed triple of functions {fi;}{i j}ez,, is a solution to the dual Problem 6.29.
By Proposition 6.30 it is enough to find a measure 7 € TI({14i; }{i,j}ez, ,) such that 7 is concentrated on the
set {(x1,z2,x3): frac(x; + x2 + 3x3) = 0} where frac(z) means the fractional part of x. The proof of the
following lemma is easy and is left to the reader.

Lemma 6.31. Let w1 1,1 be the surface probability measure concentrated on two triangles that form a set
{(x1, 22, x3): frac(zq + z2 + x3) = 0}.
Then Pr;;(m1.1,1) coincides with the Lebesque measure restricted to the square [0,1]% for all {i,j} € T3 .
Using this lemma, we prove a more general statement.

Proposition 6.32. Assume we are given posiltive integers ay, as and as. Then there exists a measure
Tas,a9,a5 € H({uij}{i,j}ez&z) concentrated on the set

{(z1,x2,x3): frac(a1x1 + azxs + azzs) = 0}.
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Proof. Let t1, t2 and t3 be non-negative integers such that 0 < t¢; < a; for 1 < ¢ < 3. Consider the mapping

T+t xo+ta 3+t
T:(Jfl,.TQ,st)’—)( ! 17 2 27 2 3)'
ay a9 as

Let /12" be the image of the measure 71 1,1 under the mapping T First, if (y1,y2,y3) = T(x1, 72, x3),

then a1y1 + a2y2 + asys = (33‘1 + 22 + .733) + (tl + 1y + t3). Hence,
frac(z1 + 22 + 23) = frac(a1yr + a2y + asys),

and therefore, since 7111 is concentrated on the set {(x1,z2,x3): frac(x; + x2 + x3) = 0}, the measure

futats is concentrated on the set {(y1,¥2,y3): frac(aiy1 + asys + asys) = 0}.

In addition, for all {i,j} € T35 the measure Pry;(wl%2% ) is the image of Pr;;(m1,1,1) under the mapping

(zi,7;) (x_"h, “73_""J> _

a; Qj

™

Thus, Pry;(n}tt2:% ) is proportional to the Lebesgue measure restricted to the square
t; t;+1 t; ti+1
A, (57)
a; a; Q;j a;
Let

1
_ E t1,t2,t3
Tay,a2,a3 = 7ra177a2’,a3'
a1azas3 0<t; <
Sti<ag

The measure 7, q,,q, iS a probability measure concentrated on the set

{(y1,y2,y3): frac(a1yr + asy» + asys) = 0}.

In addition, it follows from (57) that Pr;;(7a, a,,a5) is the Lebesgue measure restricted to the square
[0,12. O

Using this proposition, we immediately obtain the following theorem.

Theorem 6.33. The triple of functions {fij}{i,j}el'sg described in Proposition 6.30 is a solution to the dual
Problem 6.29, and the measure 7113 € U({pij}{ijyezs.,), concentrated on the set

{(z1, 29, x3): frac(zy + z2 + 323) = 0},
s a solution to the primal Problem 6.29.
Unlike Problem 6.12, a solution to the primal Problem 6.29 is non-unique.

Proposition 6.34. Let m be the restriction of the Lebesque measure to the set {(x1,22,23): 0 < 21,29 <
1,0 < 23 < 1/3}, and let 71,12 be the image of the measure 71 12 described in Proposition 6.52 under the
mapping

2 1
T: (z1,T2,T3) — (xl,xg, gl’g + §> .
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z3

X

Fig. 5. The support of the solution 7 described in Proposition 6.34. The support of the measure m; is red, and support of 71,1 2 is
blue. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Then the measure m = m + %7?171,2 is uniting and the function F(x1,x2,x3) described in Proposition 6.50
satisfies: F(x1,xq,23) = c(x1, 22, x3) T-a.e. Consequently, the measure 7 is a solution to the primal Prob-
lem 6.29 (see Fig. 5).

Remark 6.35. In fact, the constructed measure 27,12 is also the restriction of 7113 to [0,1]% x [1/3,1];
therefore, the uniting measures provided in Theorem 6.33 and Proposition 6.34 are distinct only on a bottom
part [0,1]2 x [0,1/3] of the space X.

Proof of Proposition 6.34. By construction, Pri(7) is proportional to the restriction of the Lebesgue mea-
sure to the square [0, 1]2. The mapping T does not change the projection of a measure onto the space X2,
and therefore Pry2(711 2) is also proportional to the restriction of the Lebesgue measure to the square [0, 1]2.
Thus, Pris(mw) = pio.

The measure Priz(m) coincides with the restriction of the Lebesgue measure to the rectangle
{(z1,23): 0 < 21 < 1,0 < z3 < 1/3}. The measure Pri3(71,1,2) is the image of Prig(m 1,2) under the
mapping

T1,23)—~ | X1, =3+ = |.
1,43 1 3 3 3

Thus, %Prlg(%1’1’2> coincides with the restriction of the Lebesgue measure to the rectangle {(z1,23): 0 <
x1 < 1,1/3 < a3 < 1}, and therefore Pris(n) = p13. Similarly, Prog(m) = o3, and we conclude that
m € M({pij Higyezs )-

Let (z1,22,73) be a point in [0,1]3 such that 3 < 1/3. By equation (56) we have F(x1,z2,23) = 0. In
addition, x; + z3 + 323 — 3 < 0, and therefore ¢(x1, zo,23) = 0. Thus, since supp(m;) = {(x1,z2,23) €
[0,1]3: 0 < 23 < 1/3}, we conclude that F(xq,z2,73) = c(x1, T2, 23) T1-a.e.

Let (z1,72,73) be an arbitrary point in the cube [0,1]%, and let (y1,y2,y3) = T(x1, 72, 23). We have
Y1+ y2 + 3ys = x1 + 2 + 2z3 + 1, and therefore

frac(yr + y2 + 3y3) = frac(zq + x2 + 2z3).

Hence, we conclude that 71 1,2 is concentrated on the set {(z1, 2, x3): frac(x1+x2+3x3) = 0}, and therefore
by assertion 6.30(b) F(z1, z2,23) = c(z1, T2, 3) T1,1,2-8.€.

Thus, F(xq,72,23) = c(x1, 29, 13) for m-almost all points (21,72, x3) € [0,1]?, and the measure 7 is a
solution to the primal Problem 6.29. O
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Unlike the primal problem, the dual problem admits a unique solution in the following sense.
Proposition 6.36. Let {g;;} be a solution to the relaxed dual Problem 6.29. Then the equation

g12(x1, x2) + g13(x1, 23) + gas(w2, x3) = fr2(w1,x2) + fiz(z1,23) + foz(w2,3)

holds for almost all (z1,x2,x3) € [0,1]3, where the triple of functions {fij}ijyezs., s defined in Proposi-
tion 0.50.

First, let us verify the following statement.

Lemma 6.37. Let {g;;} be a solution to the relazed dual Problem (.29 (see Definition 5.16). Then there exist
integrable functions p1 and po such that gio(x1,T2) = w1(x1) + p2(x2) almost everywhere.

Proof. Consider the finite (3, 2)-function

G(x1, 22, 23) = g12(x1, 22) + g13(21, 23) + gos (w2, x3).

Since {g;;} is a solution to the relaxed dual problem, the equation G(z1,z2,23) = c(x1,x2,23) holds 7-
almost everywhere, where 7 is a solution to the primal problem defined in Proposition 6.34. In particular,
G(z1,79,23) = c(x1,T2,23) for almost all points (z1,z2,23) € [0,1]° such that 0 < z3 < 1/3. Since
c(x1, 9, x3) = max(xy + x2 + 3x3 — 3,0) = 0 if 23 < 1/3, we conclude that G(x1,za, 23) = 0 for almost all
(71,2, 23) € [0,1]3 such that 0 < z3 < 1/3.

In particular, there exists a point 0 < xz(,,o) < 1/3 such that the equation G(xl,a:g,a:go)) = 0 holds for
almost all (z1,x2) € [0, 1]%. Hence, if we denote ¢ (z1) = *glg(IhIgO)) and @a(z2) = 7923(:1:2,1:;(30)), then
the equation

g12(z1,22) = —913(561796:(30)) - 923(562756%0)) = p1(x1) + @a2(z2)

holds for almost all (x1,x2) € [0, 1]%.
Let us verify that ¢; and ¢y are integrable. Since gio is integrable, it follows from the Fubini-Tonelli

theorem that for almost all xéo) € [0,1] the function z1 — g12(z1, xéo)) = p(z1)+ 2 (wéo)) is also integrable.

Since o (;U;O)) is a constant, we conclude that o1 (z1) is integrable. The integrability of ¢o is proven in the

same manner. O

It follows from Lemma 6.37 that if {g;;} is a solution to the relaxed dual problem, then we can set
G12(z1,x2) =0, g13(x1,x3) = g13(21, 23) + @1 (x1) and gag(xe, x3) = gos(xa, x3) + w2 (x2). Then the equation

g12(x1,72) + g13(x1, x3) + g23(w2, x3) = gi2(w1, x2) + g13(w1, 3) + Goz(w2, 73)

holds for all (z1, 9, z3) € [0, 1]% except a zero (3, 2)-thickness set, and therefore the triple of functions {g;;}
is also a solution to the relaxed dual problem. Thus, in Proposition 6.36 we may additionally assume that
g12(w1,22) = 0 for all (zq,22) € [0,1]%

Lemma 6.38. Let 1 and ¢2 be integrable functions defined on the segment [0,1]. Suppose that there exists
a real € > 0 such that the inequality @1(x1) + w2(z2) < 0 holds for almost all points (x1,x2) such that
0<z1+x2<1+¢. Then

1 1
/<p1(a:1) dry + /902(.%2) <0.
0 0
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Fig. 6. The supports of the measures p1 and po for the case € = i. The set A; is colored red, and the set Ay is blue.

Moreover, if the equality is achieved, then p1(x1) + p2(x2) = 0 for almost all (z1,z2) € [0,1]2. The same
1s true if we replace the inequality 0 < x1 4+ xz9 < 14+c withl —e < x1 + 2 < 2.

Proof. Without loss of generality we may assume that ¢ = 1/n for some positive integer n. Consider the
set Ay = {(z1,22) € [0,1]?: min(x1,22) < 1/(2n)}. Let py be the restriction of the Lebesgue measure to
the set A;. One can easily verify that if p is the density of the projection of pu; to the axis, then p(z) =1
if 0 <z <1/(2n) and p(z) = 1/(2n) if 1/(2n) < x < 1. In addition, if min(xy,z2) < 1/(2n), then
0 <z + 2 <1+41/(2n), and therefore the inequality ¢1(z1) + ¢2(z2) < 0 holds pi-almost everywhere.

Consider the set Ay = {(z1,22) € [0,1]?: [2nz1]+|2nxa] = 2n}. Let s be the restriction of the Lebesgue
measure to the set As. If |2nz4 | + [ 2n22] = 2n, then 2nx; +2nxs < 2n+2, and therefore z1 +x2 < 14+1/n.
Hence, p1(x1) + ¢2(z2) < 0 for pe-almost all points (z1,z2). In addition, the projection of s to the axis is
proportional to the restriction of the Lebesgue measure to the segment [1/(2n), 1], and the density of this
projection is equal to 1/(2n) on this segment. See Fig. 6 for the visualization of the sets A; and A,.

Consider the measure p = p1 + (2n — 1)us. The projections of this measure to the axes coincides with
the restriction of the Lebesgue measure to the segment [0, 1]. In addition, supp(u) C {(z1,z2) € [0,1]2: 0 <
1+ 22 <14 1/n}. Thus, we have

1 1
/ or(an) don + / pa(w2) doa = / (p1(21) + pa(2)) pu(dr, dirz) < 0.
0 0 [0,1]2

Assume that the equality holds. Then ¢1(z1) + p2(22) = 0 p-almost everywhere. In particular, ¢1(z1) +
wa(x9) = 0 for almost all points (x1,x2) € Aj, and therefore this equation holds for almost all points (1, z2)
such that 0 < 29 < 1/(2n). Thus, by the Fubini-Tonelli theorem there exists a point méo) € [0,1/(2n)] such

that the equation ¢4 (1) + @2(x§0)) = 0 holds for almost all z; € [0, 1], and therefore there exists a constant

C, = *QDQ(.’,U%O)) such that (1) = C; almost everywhere.

Similarly, there exists a constant Cy such that ps(29) = Cy almost everywhere. Then

1 1
/<P1 x1 d$1+/¢2 x2) dxgy = Cy + Cy,
0 0

and therefore ¢;(21) + w2(22) = 0. The case of the inequality 1 — e < a7 + 22 < 2 is proven in the same

manner. O
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Proof of Proposition 6.36. By Lemma 6.37 we may assume that g12 = 0. Consider the finite (3, 2)-function

G(x1, 2, x3) = g13(z1, T3) + gos(z2, x3).

The function G is integrable and the inequality G(z1,x2,x3) < c(x1,z2,x3) holds for almost all points
(z1,22,73) € [0,1]3. Hence, there exists a set A C [0,1] with full measure such that if xéo) € A, then
the function G(-, -, xéo)) is integrable and the inequality G(z1, 2, xg )) < ¢(x1, o, a:g ) holds for almost all
(z1,22) € [0,1]%.

Assume that xé € A and that x ) < 2/3. Consider the (3, 2)-function

F(xy,22,23) = fiz(z1,22) + fiz(z1,23) + fos(r2, 23) = fiz(x1, 23) + fas(x2, 23).

By equation (56) we have F(J:l,:cg,a:g )) =0 for all (z1,z2) € [0,1]°.
Denote ¢ = 2 — 396( ). We have ¢ > 0. If r1+ 22 <1+¢, then z1 + 2o + 3x§0) — 3 <0, and therefore

C($1,$2,$é0)) = max(r1 + x2 + 33:&0) -3)=0= F(]Jhl'g,l'éo)).

In addition, since G(z1, 22,z (0)) < c(zl,:rg, (0 )) for almost all points (x1,x2), we conclude that the in-
equality G(z1, 22, x5 o )) < F(xl,xg,xg ) holds for almost all points (z1,z2) such that 0 <z + 29 <1+e.
Consider the functlons

v1(z1) = 913(331,33:(30)) - f13($17$§0)) and @o(x2) = goz(22, 33:(30)) - f23($27$§0))~ (58)
We have

o1(11) + 2(2) = Glar, 22, 25) — F(a1,22,25)).

Hence, the function ¢1(x1) + @2(x2) is integrable on [0, 1]%, and therefore both functions ¢; and ¢y are
integrable on [0, 1]. In addition, the inequality ¢1(z1) + @2(22) < 0 holds for almost all points (x1, x2) such
that 0 < x1 + 22 <1+ &. Thus, it follows from Lemma 6.38 that

1 1
/ (G(xl,xg,xgo)) F(xl,xg,:cé ))> dxidxre = /gpl(xl)dm + /(pg(a:g) dxoy < 0.
012 0 0

Moreover, if the equahty holds, then G(z1, z2, acgo)) = F(z1, 22, xéo)) almost everywhere.
Assume that x ) € A and that x(o) > 2/3. By equation (56) we have

F(xq, 22, xéo)) =z +x0+ Bng) - 3.
Denote ¢ = 3x§0) —2>0.If 21 + 9 > 1 — ¢, then &1 + x5 + 323 — 3 > 0, and therefore
C($1,$2,$g0)) = max(x; + 2 + 3x§0) —-3,0) =21 + 2+ 3x§0) —-3= F($1,J32,$§ )).
Hence, since G(x1,x2,x © )) < c(xl,:cg,xg )) for almost all (x1,x2), we conclude that p1(z1) + wa(x2) <0

for almost all points (a:l,mg) such that 1 —e < 1 + z2 < 2, where the functions ¢; and (o are defined in
equation (58). Thus, it follows from Lemma 6.38 that

/G(ml,mg,xg )dxidre < / F(xl,xg,:cg ) dx1das, (59)
[0,1]2 [0,1]2
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and if the equality holds, then G(z1,x2, a:z(,}o)) = F(x1, 2, xéo)) for almost all (z1,x2).

Summarizing these results, we conclude that if xéo) € A and if acéo) # 2/3, then inequality (59) holds,
and therefore, since A is a set of full measure, we have

/G(.’El,xg,xg)dl'ldl'gdx,?,S /F(xl,xg,xg)dxld(ﬂgdl’g.
[0,1]3 [0,1]3

Since {g;;} is a solution to the relaxed dual problem, the equality holds, and therefore the equality in
inequality (59) is achieved for almost all xéo) . Thus, for almost all xgo) € [0, 1] the equation F(z1, 22, xgo)) =
G((L‘l,l'g,l'éo)) holds for almost (z1,z2) € [0, 1]?, and therefore

g12(z1,22) + g13(21, 23) + go3(x2, x3) = fr2(x1, x2) + fiz(x1, x3) + faz(22, x3)

almost everywhere. 0O
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