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Abstract

We prove an inequality for the expected values of functions on the hypercube,
generalizing both the Harris–Kleitman inequality and a previous result by the au-
thors.

1 Introduction

The Harris–Kleitman inequality is a result in probability theory independently discovered
by Harris [H60] and Kleitman [K66], each from a different perspective. Harris used it to
show that the critical probability for a bond percolation on Z2 is at least 1

2
; Kleitman

proved it as a generalization of a conjecture by Erdös on subset families with no disjoint
subsets.

We consider our probability space to be the hypercube Hn = 2[n] and µ to be a
probability product measure on it. For x, y ∈ Hn we say x ⪯ y if x is coordinatewise less
or equal to y. The subset of Hn is called closed upwards if with each x it contains all
y such that x ⪯ y. In particular, the indicator function of each closed upward subset is
nondecreasing.

The Harris–Kleitman inequality says that any two closed upwards events have a non-
negative correlation.

Theorem 1.1. Let A and B be two subsets of Hn closed upwards. Then, for a probability
P given by a product measure µ, one has

P(A ∩B) ≥ P(A)P(B).

One can think of Theorem 1.1 the following way. Let M2 be the diamond poset given
by Figure 1.

Theorem 1.2. Let Hn be split into parts Sa, Sb1, Sb2 and Sc such that if x ⪯ y then x
belongs to a part indexed by an element of M2 not less than the part of y. Then

µ(Sa)µ(Sc) ≥ µ(Sb1)µ(Sb2).

As we will see in Example 2.4, this is the only condition on µ(Sa), µ(Sb1), µ(Sb2) and
µ(Sc).

In the applications arising from Bernoulli percolation, Hn is mapped to various posets.
So in Section 2, we study the inequalities for the sizes of the preimages of poset elements
under these mappings. In Section 3 we give the applications of these inequalities to
connection probabilities in Bernoulli bond percolation.
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Figure 1: Poset M2

Definition 1.3. We say that for the given poset P a vector of probabilities {mp}p∈P is
realizable if there exists n such that Hn can be split into subsets Sp indexed by p ∈ P
such that if x ∈ Sa and y ∈ Sb are such that x ⪯ y, then a ≤P b and there is a product
measure µ on Hn such that µ(Sp) = mp.

Example 2.4 gives a characterization of realizeable vectors for M2 poset. We only
have necessary conditions for a vector of probabilities to be realizeable, but we pose
Conjecture ?? saying that this condition is also sufficient.

In Section 4, we provide a computationally tractable way to check whether a vector of
probabilities for a poset P satisfies all our inequalities. Finally, in Section ?? we provide
conjectures on realizeability.

2 Main results

Theorem 2.1. Let µ be a probability product measure on 2[n]. Let g(x, y) be a function
on 2[n] × 2[n] such that for any x ⪯ y, z ⪯ t one has

g(x, z) + g(y, t) ≤ g(x, t) + g(y, z). (1)

Then

Eµ×µg(x, y) ≥ Eµg(x, x). (2)

Moreover, if the sign in (1) is reversed, the sign in (2) reverses as well.

Proof. The proof proceeds by the induction on n. For n = 0, equation (2) turns into
equality. Consider the last coordinate and let µ′ be the projection of µ onto the rest of
the coordinates. It will also be a product measure. Moreover, the projection of µ to the
last coordinate will assign probability p to 0 and 1 − p to 1. Let x and y be generated
independently according to µ′ and x−, x+, y− and y+ be defined as x and y supplied
with the last coordinate equal to 0 and 1 respectively. From the induction hypothesis,
we know that Eµ′×µ′g(x−, y−) ≥ Eµ′×µ′g(x−, x−) and Eµ′×µ′g(x+, y+) ≥ Eµ′×µ′g(x+, x+).
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Combining this with the condition (1) applied to x−, x+, y− and y+ we get

Eµ×µg(x, y)

= Eµ′×µ′
(
p2g(x−, y−) + p(1− p)g(x−, y+) + p(1− p)g(x+, y−) + (1− p)2g(x+, y+)

)
= p(1− p)E

(
g(x−, y+) + g(x+, y−)− g(x−, y−)− g(x+, y+)

)
+ pEµ′×µ′g(x−, y−) + (1− p)Eµ′×µ′g(x+, y+)

≥ 0 + pEµ′g(x−, x−) + (1− p)Eµ′g(x+, y+)

= Eµg(x, x).

If the sign in (1) is reversed, we switch the direction of the only inequality in the
chain, completing the proof.

In particular, Theorem 2.1 generalizes the original Harris–Kleitman theorem. We
now present a functional generalization of the Harris–Kleitman inequality, which can be
particularly useful in certain applications. The original version is recovered when f1 and
f2 are characteristic functions of A and B respectively.

Theorem 2.2. Let f1 and f2 be nondecreasing functions on Hn, then f1 and f2 correlate
nonnegatively with respect to µ. In other words,

Eµ (f1(x)f2(x)) ≥ Eµ×µf1(x)f2(y) = Eµf1(x)Eµf2(y)

Proof. Consider g(x, y) = f1(x)f2(y). Then for x ⪯ y, z ⪯ t one has

g(x, z) + g(y, t)− g(x, t)− g(y, z) = f1(x)f2(z) + f1(y)f2(t)− f1(x)f2(t)− f1(y)f2(z)

= (f1(y)− f1(x))(f2(t)− f2(z)) ≥ 0.

So, the condition of Theorem 2.1 holds and the conclusion is

Eµ (f1(x)f2(x)) ≥ Eµ×µf1(x)f2(y) = Eµf1(x)Eµf2(y)

which shows that f1 and f2 have nonnegative correlation with respect to µ.

We notice that it is convenient to consider g to be constant on subsets of Hn. This
motivates the following partial case of Theorem 2.1. It can be seen as the set of restrictions
on realizable vectors of probabilities for a given poset.

Theorem 2.3. Let P be a poset of size m and Hn be split into subsets Sp indexed by
p ∈ P such that if x ∈ Sa and y ∈ Sb are such that if x ⪯ y then a ≤P b. Let A be an
m×m matrix satisfying the condition

Aa,c + Ab,d ≤ Aa,d + Ab,c, (3)

whenever a <P b and c <P d. Then for any probability product measure µ we have∑
a,b∈P

Aa,bµ(Sa)µ(Sb) ≥
∑
a∈P

Aa,aµ(Sa) (4)

Proof. We use Theorem 2.1 for the function g that is constant within the subsets Sp. For
x ∈ Sa and y ∈ Sb we put g(x, y) = Aa,b. It is easy to check that condition (3) implies
(1) for g and so∑

a,b∈P

Aa,bµ(Sa)µ(Sb) = Eµ×µg(x, y) ≥ Eµg(x, x) =
∑
a∈P

Aa,aµ(Sa).
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Figure 2: Poset M3

An example poset to keep in mind here is the posetM3 that is the poset of the smallest
nondistributive lattice (see Figure 2). This poset was used in [G24a]. It corresponds to a
partition lattice of a set {1, 2, 3}. So for bond percolation one can think of inequalities on
sizes of Sp as inequalities on Boolean combinations of the events “vertex i is connected
to vertex j” (see Theorem 3.2).

Example 2.4. For a diamond poset (see Figure 1), the vector of probabilities

{ma,mb1 ,mb2 ,mc}

is realizable if and only if mamc ≥ mb1mb2 .

Proof. Indeed, if the vector is realizable, then we apply Theorem 2.3 with

A =

a b c d
a 0 0 0 1
b 0 0 −1 0
c 0 −1 0 0
d 1 0 0 0

,

which gives the needed inequality. Conversely, if mamc ≥ mb1mb2 , denote by p the excess

of mc over its minimal attainable value: p = mc −
mb1

mb2

ma
and 1− p =

(ma+mb1
)(ma+mb2

)

ma
.

Then consider the following product measure on {0, 1}3: the first coordinate is 0 with

probability 1 − p =
(ma+mb1

)(ma+mb2
)

ma
and 1 with probability p, the second coordinate is

0 with probability ma

ma+mb1
and 1 with probability

mb1

ma+mb1
and the third coordinate is 0

with probability ma

ma+mb2
and 1 with probability

mb2

ma+mb2
. Then consider the sets

Sa = {(0, 0, 0)};
Sb1 = {(0, 1, 0)};
Sb2 = {(0, 0, 1)};
Sc = {(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

One can see that the probabilities of these sets are equal to the corresponding mp.

Remark 2.5. Poset M2 is a partial case of a hypercube poset. For hypercube posets
the measures on them given by realizable vectors of probabilites are called FUI in [K22].
Example 2.4 is a partial case of a more general statement [G24a, Proposition 3.1]. If a
vector {mp}p∈Hk

on a hypercube Hk satisfies an FKG property

mxmy ≤ mx∨ymx∧y,
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Figure 3: Cube poset

for any x, y ∈ Hk, then it is realizeable. The proof gives a bound that it is realizeable by
a measure on Hn for n = 2k − 1.

One can bootstrap the inequality from Hn to Hk as in [G24a] and show that Theo-
rem 2.1 and 2.3 hold for any FUI measure µ, in particular proving the FKG-inequality
[FKG71].

For general posets, it is unclear what are the conditions on the vector {mp} to be
realizable. One can merge some of the nodes of P to form a diamond poset and apply the
Harris–Kleitman inequality to the merged parts. This operation gives restrictions that
are a partial case of the restrictions given by Theorem 2.3.

In 2001, Richards [R04] stated a third-degree inequality for a cube poset Pcube (Fig-
ure 3). The proof was later found to contain significant problems and the statement
remains a conjecture.

Conjecture 2.6. For any realizable vector {mp} corresponding to the poset Pcube, define
mA,mB and mC as the sum of elements where the corresponding letter doesn’t have an
overline and mAB,mAC and mBC as the sum of vectors where both letters don’t have an
overline. Then

2mABC +mAmBmC ≥ mAmBC +mBmAC +mCmAB.

Sahi and Lieb were able to prove partial cases of this conjecture [S08, LS22].

Definition 2.7. We say that for the given poset P the vector of probabilities {m−
p }p∈P

can be glued with the vector {m+
p }p∈P if there exists some n, a probability product

measure µ on Hn and two subdivisions of Hn into parts S−
p and S+

p such that

• S−
a is contained in

⋃
b<Pa S

+
b ;

• µ(S−
p ) = m−

p ;

• µ(S+
p ) = m+

p .
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Theorem 2.8. If Let A be an m×m matrix satisfying the condition

Aa,c + Ab,d ≤ Aa,d + Ab,c, (5)

whenever a <P b and c <P d. Suppose in addition that whenever a ≤P b, Aa,b ≥ 0. Then
for any poset P and any vectors {m−

p }p∈P and {m+
p }p∈P that can be glued together, one

has ∑
a,b∈P

Aa,bm
−
a m

+
b ≥ 0

3 Applications to Bernoulli percolation

3.1 Inequalities for connectivity events

Initially, Harris–Kleitman inequality was used in Bernoulli bond percolation to show that
the critical probability pc for the square lattice is at least 1

2
. Our inequalities also tell

something about connectivity probabilities in percolation. We use the notation from
[G24b].

Definition 3.1. Consider a Bernoulli bond percolation on a finite graph G = (V,E)
where each edge e ∈ E has a probability we of being open. Let Eo be the random set
of open edges. We call the connected components of Go = (V,Eo) clusters. We denote
by “v11v12 . . . v1i1|v21 . . . v2i2| . . . |vn1 . . . vnin” the event that the vertices v11, . . . , v1i1 ∈ V
belong to the same cluster, vertices v21, . . . , v2i2 belong to the same cluster, . . . , vertices
vn1, . . . , vnin belong to the same cluster, and, moreover, these clusters are all different. By
P(v11v12 . . . v1i1|v21 . . . v2i2| . . . |vn1 . . . vnin) we denote the probability of this event in the
underlying bond percolation. In particular, P(abc) denotes the probability that vertices
a, b, c ∈ V lie in the same cluster, and P(a|b|c) is the probability that a, b and c belong
to 3 different clusters.

The following theorem was proven in [G24a] (see also an alternative proof in [GZ24]).
We put the proof in the context of our results.

Theorem 3.2. Let G = (V,E) be a finite graph and a, b, c are vertices in V . Let P be
taken over Bernoulli percolation on G. Then

P(abc)P(a|b|c) ≥ P(ab|c)P(ac|b) +P(ab|c)P(a|bc) +P(ac|b)P(a|bc).

Proof. Since events ab, ac and bc are all increasing and if two of them happen, the third
is forced, the events abc, ab|c, ac|b, a|bc and a|b|c form the poset on Figure 4.

Consider the following matrix A labeled by the elements of the poset

A =

abc ab|c ac|b a|bc a|b|c
abc 0 0 0 0 1
ab|c 0 0 −1 −1 0
ac|b 0 −1 0 −1 0
a|bc 0 −1 −1 0 0
a|b|c 1 0 0 0 0

(6)

It is easy to check the condition (3) for A, so, by Theorem 2.3, we get

2
(
P(abc)P(a|b|c)−P(ab|c)P(ac|b)−P(ab|c)P(a|bc)−P(ac|b)P(a|bc)

)
≥ 0.
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Figure 4: Partition lattice of {a, b, c}

We can consider the larger partition lattices. The partition lattice on 4 element set
{a, b, c, d} is shown on Figure 5.

Figure 5: Partition lattice of {a, b, c, d}

Our method allows one to find new inequalities for the probabilities of the connectivity
events.

Theorem 3.3. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be
taken over Bernoulli percolation on G. Then

P(ab ∧ cd)−P(ab)P(cd) ≥ P(ab ∨ cd)(P(ac|bd) +P(ad|bc)) +P(ac|bd)P(ad|bc). (7)

Proof. Consider the following matrix A:
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A =

a
|b
|c
|d

a
|b
|c
d

a
|b
c|
d

a
|b
d
|c

a
|b
cd

a
b|
c|
d

a
b|
cd

a
c|
b|
d

a
c|
bd

a
d
|b
|c

a
d
|b
c

a
bc
|d

a
bd
|c

a
cd
|b

a
bc
d

a|b|c|d 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
a|b|cd 0 0 0 0 0 −1 0 0 −1 0 −1 −1 −1 0 0
a|bc|d 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
a|bd|c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
a|bcd 0 0 0 0 0 −1 0 0 −1 0 −1 −1 −1 0 0
ab|c|d 0 −1 0 0 −1 0 0 0 −1 0 −1 0 0 −1 0
ab|cd 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0
ac|b|d 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
ac|bd 0 −1 0 0 −1 −1 0 0 0 0 −1 −1 −1 −1 0
ad|b|c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
ad|bc 0 −1 0 0 −1 −1 0 0 −1 0 0 −1 −1 −1 0
abc|d 0 −1 0 0 −1 0 0 0 −1 0 −1 0 0 −1 0
abd|c 0 −1 0 0 −1 0 0 0 −1 0 −1 0 0 −1 0
acd|b 0 0 0 0 0 −1 0 0 −1 0 −1 −1 −1 0 0
abcd 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0

It acts as a certificate for Theorem 2.3 to show the inequality (7).

3.2 Inequalities for conditional measures

The work [BHK06] studies correlations for different connectivity events in the percolation
measure µ conditioned on the event a|b. It shows that any two events with positive
dependence on the component of a correlate nonnegatively and all such events correlate
nonpositively with the events with positive dependence on the component of b.

In the heart of the proof [H07] there is a sequence of product measures on hypercubes
of increasing dimension that approximate the Bernoulli percolation conditioned on a|b.
Additionally, it shows that the events positively dependent on the component of a are
closed upwards in these hypercubes while events positively dependent on the component
of b are closed downwards. In particular, if we only care about 4 vertices, it shows that
the events in Figure 6 give rise to a realizable vector {mp}p∈P . We interpret elements
of poset P as the events in Bernoulli percolation. Then the union

⋃
p∈P p = a|b and so

mp =
P(p)
P(a|b) .

Papers [BHK06, BK01] found the inequalities that follow from this poset by applying
the Harris–Kleitman inequality to the pair of the increasing events ac and ad and the pair
of increasing events ac and b|d. However, there are more restrictions on the probability
vectors realizable by the poset. In particular, one can notice a hidden M3 in this poset.

Corollary 3.4. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be
taken over Bernoulli percolation on G. Then

(P(acd|b) +P(ad|b|c) +P(ac|b|d))(P(a|bc|d) +P(a|bd|c) +P(a|bcd))
≥ P(ad|bc)P(ac|bd) + (P(ad|bc) +P(ac|bd))(P(a|b|c|d) +P(a|b|cd)). (8)

Proof. Consider the following A:
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a|bcd

a|bc|d

ad|bc

a|bd|c

a|b|c|d ∨ a|b|cd

ad|b|c

ac|bd

ac|b|d

acd|b

Figure 6: Poset of events conditioned on a|b

A =

a
|b
cd

a
|b
c|
d

a
d
|b
c

a
|b
d
|c

a
|b
|c
|d

∨
a
|b
|c
d

a
d
|b
|c

a
c|
bd

a
c|
b|
d

a
cd
|b

a|bcd 0 0 0 0 0 1 0 1 1
a|bc|d 0 0 0 0 0 1 0 1 1
ad|bc 0 0 0 0 −1 0 −1 0 0
a|bd|c 0 0 0 0 0 1 0 1 1

a|b|c|d ∨ a|b|cd 0 0 −1 0 0 0 −1 0 0
ad|b|c 1 1 0 1 0 0 0 0 0
ac|bd 0 0 −1 0 −1 0 0 0 0
ac|b|d 1 1 0 1 0 0 0 0 0
acd|b 1 1 0 1 0 0 0 0 0

One can see that it satisfies the condition (3). Indeed, it just comes from the matrix
(6) for the poset M3 one gets by merging together 3 top vertices of the poset as well as 3
bottom vertices. Writing the corresponding conclusion of Theorem 2.3 and multiplying
it by P(a|b)2 to get rid of conditional probabilities we get the needed (8).

The paper [BHK06] also defines a way to use two sets of vertices S, T instead of two
vertices a, b. If we apply their method to S = {a, b, c} and T = {d}, we will get the poset
M3 in Figure 7. Here

⋃
p∈P p = S|T := a|d ∧ b|d ∧ c|d, so

mp =
P(p)

P(a|d ∧ b|d ∧ c|d)
.

9



Writing the inequality corresponding to matrix (6) and multiplying it by the common
denominator of P(a|d ∧ b|d ∧ c|d)2, we get the following inequality.

abc|d

ab|c|d ac|b|d a|bc|d

a|b|c|d

Figure 7: Poset of connection events between a, b, c, d conditioned on a|d ∧ b|d ∧ c|d

Corollary 3.5. Let G = (V,E) be a finite graph and a, b, c, d are vertices in V . Let P be
taken over Bernoulli percolation on G. Then

P(abc|d)P(a|b|c|d) ≥ P(ab|c|d)P(ac|b|d) +P(ab|c|d)P(a|bc|d) +P(ac|b|d)P(a|bc|d).

3.3 Bunkbed conjecture for 2 posts

The bunkbed conjecture was first posed by Kasteleyn [BK01].
A bunkbed graph Gb consists of two isomorphic graphs G, called the upper and

lower bunks, and some additional edges, called posts; each post connects a vertex in the
upper bunk with the corresponding isomorphic vertex in the lower bunk. We assign a
probability to each edge, with each edge in the upper bunk assigned the same probability
as the corresponding isomorphic edge in the lower bunk. The probabilities on the posts
are arbitrary. We then run the Bernoulli bond percolation on the bunkbed graph with
the prescribed edge probabilities. The Bunkbed Conjecture states that in the resulting
random subgraph the probability that a vertex x in the upper bunk is connected to some
vertex y in the upper bunk is greater than or equal to the probability that x is connected
to y′, the isomorphic copy of y in the lower bunk.

There are many ways to reduce the conjecture to its partial cases. In particular, one
can assume that all posts have a probability of 0 or 1. In this case one can denote the
set of vertices of G adjacent to posts with probability 1 by W and contract each vertex
of W with its copy. In fact, the conjecture in this form appears in [BK01]. The vertices
of W are called transversal in [L09].

The partial case where |W | = 1 follows from the Harris–Kleitman inequality [L09,
Lemma 2.4].

4 Testing measure realizability on a poset

For a poset P consider a matrix FP defined by the following rules:

Definition 4.1. We say that a covers b (written as a ⋖ b) if a <P b and there are no
elements between a and b.
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Assume poset P has m elements and p pairs of elements (a, b) in a covering relation.
Then FP is an m × p matrix where each row corresponds to an element of P and each
column corresponds to a cover a⋖ b and

Fe,ab =


−1, if e = a,

1, if e = b,

0 otherwise.

Definition 4.2. A matrix A is called completely positive (see [BS03]) if it can be written
as a product A = BBT for some elementwise nonnegative matrix B. In particular, any
completely positive matrix is elementwise nonnegative and positive semidefinite.

Theorem 4.3. If vector x = {mp}p∈P is realizable, then there exists a completely positive
matrix p× p matrix M such that

FMF T = diag(x)− xxT . (9)

Proof. Assume x is realizable by a product measure µ on a hypercube Hn. For n = 0
one can take M = 0 and the statement would be true. For n ≥ 1 we use induction. Split
the cube into the upper and lower halves. Let p be the probability of the upper half
and µ′ be the probability measure on Hn−1 obtained as the projection of µ to n− 1 first
coordinates. Then µ′ coincides with µ conditioned on the upper or lower part of Hn. Let
M+ and M− be the matrices and x+ and x− be the vectors corresponding to µ+ and µ−.

To use the fact that the upper and lower parts can be glued together, consider the
subdivisions S− and S+ indexed by elements of P . Let y be the vector indexed by the
pairs a⋖ b from poset, such that yab = µ′({S−

a ∧S+
b }). By definition of F , x+−x− = Fy.

Note that all entries of y are nonnegative.
Now

diag(x)− xxT

= pdiag(x+) + (1− p)diag(x−)− p2x−x+T − p(1− p)(x+x−T + x+x+T )− (1− p)2x−x−T

= p(FM+F T ) + (1− p)(FM−F T ) + p(1− p)(x+ − x−)(x+ − x−)T

= F (pM+ + (1− p)M− + p(1− p)yyT )F T ,

and it is easy to see that M = pM++(1−p)M−+p(1−p)yyT is completely positive.

Testing if a particular vector x for a particular poset P satisfies condition (9) for
some positive semidefinite matrix M with nonnegative entries is a convex optimization
problem – the restrictions of M being nonnegative and positive semidefinite are convex
and can be solved using modern semi-definite programming optimizers. So, instead of
checking all inequalities coming from various matrices A satisfying condition (3), one can
run one instance of a semi-definite program.

Computationally, it is much more efficient. Even for a relatively small poset P4 from
Figure 5, possible matrices A form a 100-dimensional cone with more than 10 000
generators. So having a simple test helps.

Moreover, this test is as strong as checking all the generators. Let ⟨A,B⟩ = Tr(ATB)
be the Frobenius product of two matrices – the component-wise inner product of two
matrices as though they are vectors. Then (3) is equivalent to

⟨A,Feie
T
j F

T ⟩ ≥ 0 (10)
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for all 0 ≤ i, j ≤ p and (4) is equivalent to

⟨A, diag(x)− xxt⟩ (11)

for x = {mp}p∈P .

Proposition 4.4. If a vector x satisfies condition (9) for some nonnegative matrix M ,
then for every matrix A satisfying (10), it satisfies (11) as well.

Proof. Note that any nonnegative matrix M is a sum of terms of the form mijeie
T
j . Then

⟨A, diag(x)− xxT ⟩ = ⟨A,FMF T ⟩

= ⟨A,F
(∑

mijeie
T
j

)
F T ⟩ =

∑
mij⟨A,Feie

T
j F

T ⟩ ≥ 0

This shows that the realizability test of Theorem 4.3 is stronger than this of Theo-
rem 2.3 since it also adds the restriction that M is nonnegative definite.

Definition 4.5. We say one vector {m+
p }p∈P dominates another vector {m+

p }p∈P

5 Inequalities of degree at least 3

Our inductive method allows to prove inequalities of higher degree. The main lemma is

Theorem 5.1. Let µ be a probability product measure on 2[n]. Let g(x1, x2, . . . , xk) be a
function (2[n])k → R such that for any x1 ⪯ x′

1, . . . , xk ⪯ x′
k and for any i one has

g(x1, x2, . . . , xk) + g(x1, x2, . . . , xk) ≤ g(x, t) + g(y, z). (12)

Then

Eµkg(x1, x2, . . . , xk) ≥ Eµg(x, x, . . . , x). (13)

Proof.
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[BHK06] Jacob van den Berg, Olle Häggström, Jeff Kahn, Some conditional correlation
inequalities for percolation and related processes, Random Structures Algorithms
29 (2006), 417-435.

[BK01] Jacob van den Berg, Jeff Kahn, A correlation inequality for connection events in
percolation. Ann. Probab. 29 (2001), 123-126.

[BS03] Abraham Berman, Naomi Shaked-Monderer, Completely positive matrices,
World Scientific Publishing Co., Inc., River Edge, NJ, (2003), 206 pp.

[FKG71] Cornelius M. Fortuin, Pieter W. Kasteleyn, Jean Ginibre, Correlation inequal-
ities on some partially ordered sets, Comm. Math. Phys. 22 (1971), 89-103.

12



[G24a] Nikita Gladkov, A strong FKG inequality for multiple events, Bull. Lond. Math.
Soc., 2024, 7 pp.

[G24b] Nikita Gladkov, Percolation Inequalities and Decision Trees, arXiv:2408.08457
(2024), 20 pp.

[GZ24] Nikita Gladkov, Aleksandr Zimin, Bond percolation does not simulate site per-
colation, arXiv:2404.08873 (2024), 9 pp.
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