Recovering ${\mathfrak g}$ Modules from The Weyl Group Action

Tom Gannon

University of Texas at Austin

November 24, 2020

Representations of Semisimple Lie Algebras

- To study finite dimensional, complex representations of G (= SL_n), it suffices to study representations of its Lie algebra g := T₁(G).
- Conjugation of G on itself \mapsto Lie bracket on g.
- Example: If G = SL_n, sl_n = {traceless n × n matrices}, with Lie bracket of two matrices given by their commutator, i.e. [X, Y] = XY YX.

Definition

A (finite dimensional) representation of \mathfrak{g} is a vector space map $\mathfrak{g} \to \mathfrak{gl}_n$ sending the Lie bracket on \mathfrak{g} to the Lie bracket on \mathfrak{gl}_n , i.e. the commutator.

Example: \mathfrak{sl}_2

A useful basis:

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

With Lie bracket determined by:

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h$$

Note: [X, X] = 0 for all $X \in \mathfrak{g}$.

Remark: {Representations of \mathfrak{sl}_2 } = {Modules for U(\mathfrak{sl}_2)}, where

$$\mathsf{U}(\mathfrak{sl}_2) := \mathbb{C}\langle h, e, f \rangle / (he - ef = 2e, hf - fh = -2f, ef - fe = h).$$

Example: Representations of \mathfrak{sl}_2

Proposition

The finite dimensional representations of \mathfrak{sl}_n are *semisimple*, meaning any finite dimensional subrepresentation is a direct summand.

 \implies to classify finite dimensional \mathfrak{sl}_2 representations, it suffices to classify the irreducible ones.

Theorem - Classification of Irreducible \mathfrak{sl}_2 Representations

For any irreducible \mathfrak{sl}_2 representation V, there exists a unique nonnegative integer n and nonzero $v \in V$ such that:

- hv = nv
- *ev* = 0

and this *n* classifies the irreducible \mathfrak{sl}_2 representations!

In other words, {Finite Dimensional Irreducible Reps of \mathfrak{sl}_2 } $\longleftrightarrow \mathbb{Z}/\langle w \rangle$, where w is reflection about 0.

Representations of \mathfrak{sl}_3

• *Idea*: Use *all* diagonal matrices $t := \{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} : a + b + c = 0 \}.$

• Eigenvalues for
$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 are replaced by eigenvalues for t, i.e.

Definition

We say a nonzero vector in a \mathfrak{sl}_3 representation $v \in V$ is an *eigenvector* if there exists a linear map $\lambda : \mathfrak{t} \to \mathbb{C}$ such that for all $t \in \mathfrak{t}$,

$$t\mathbf{v}=\lambda(t)\mathbf{v}.$$

Picturing the Eigenvalues \mathfrak{t}^{\vee} Set L_1 such that $L_1\begin{pmatrix}a & 0 & 0\\ 0 & b & 0\\ 0 & 0 & c\end{pmatrix} = a.$

Set L_2, L_3 similarly. $\implies \mathfrak{t}^{\vee} = \{ aL_1 + bL_2 + cL_3 : a + b + c = 0 \}$

Pictured: Real points of \mathfrak{t}^{\vee}

Source: Matthew Fayers Coxeter Graph Paper

The Weyl Group and the Integers

Note also that S_3 acts \mathfrak{t}^{\vee} :

Role of integers in \mathfrak{sl}_2 is replaced by

$$\Lambda := \mathbb{Z}L_1 + \mathbb{Z}L_2 + \mathbb{Z}L_3$$

Irreducible Representations of \mathfrak{sl}_3

Theorem - Classification of Irreducible \mathfrak{sl}_3 Representations

We have a bijective correspondence

{Finite Dimensional Irreducible Representations of \mathfrak{sl}_3 } $\longleftrightarrow \Lambda/S_3$.

Remark: $S_3 \cong N_{SL_3}(T)/T$.

A Theme of Representation Theory

Theme

Data about G and \mathfrak{g} representations can be recovered from:

- A maximal torus T, or its associated Lie algebra t
- The 'integers' $\Lambda \subset \mathfrak{t}^{\vee}$
- The action of the Weyl group $W := N_G(T)/T$ on T or t.

Example: The Weyl group of SL_n is the symmetric group on n letters.

The Category \mathcal{O}_0

We want a category that captures all highest weights.

Definition

Let \mathcal{O}_0 denote the full (abelian) subcategory of (\mathfrak{g} -Mod) of modules M which have a highest weight vector and have *central character zero*, meaning elements like $h^2 + 2h + 4ef + 44 \in Z(U(\mathfrak{sl}_2))$ scale by 44.

Remark: Often times we also ask objects of \mathcal{O}_0 to also be finitely generated.

Example: The Verma module $\Delta_0 := U(\mathfrak{sl}_2) \otimes_{U(\mathfrak{b})} \mathbb{C} \in \mathcal{O}_0$, since

$$0 \rightarrow L_{-2} \rightarrow \Delta_0 \rightarrow L_0 \rightarrow 0$$

 $\implies \mathcal{O}_0$ is not semisimple!

Question: Can we recover \mathcal{O}_0 from Λ , T, and W?

Soergel's Endomorphismensatz

Soergel used combinatorics to reduce the study of \mathcal{O}_0 to a certain quotient category, $\mathcal{O}_{0,nondeg}.$

Theorem - Soergel 1990

We have an equivalence of categories

 $\mathcal{O}_{0,nondeg} \simeq (\mathsf{Sym}(\mathfrak{t}) \otimes_{\mathsf{Sym}(\mathfrak{t})^W} \mathbb{C})\text{-}\mathsf{Mod}.$

Geometrically, if $\chi : \mathfrak{t} \to \mathfrak{t}//W$ is the (GIT) quotient map, Sym $(\mathfrak{t}) \otimes_{Sym(\mathfrak{t})^W} \mathbb{C}$ is functions on $\chi^{-1}(0)$.

Example: If $\mathfrak{g} = \mathfrak{sl}_2$, $\chi^{-1}(0) = Spec(\mathbb{C}[\epsilon]/\epsilon^2)$.

Good News: There is an analogous version of this theorem for every central character, which 'seem to fit together'.

Bad News: The methods use to prove this result are very finite length.

Replacing \mathcal{O}_0 with Its Derived Category

Notation: $(\mathfrak{g}\text{-Mod})_0^N := \mathcal{D}(\mathcal{O}_0).$

Theorem - Soergel 1990, Derived Version

We have an equivalence

$$(\mathfrak{g}\operatorname{\mathsf{-Mod}})^{\sf N}_{0,\operatorname{\mathsf{nondeg}}}\simeq\operatorname{\mathsf{QCoh}}^{\operatorname{\mathsf{ren}}}(\chi^{-1}(0))$$

where $\chi:\mathfrak{t}\to\mathfrak{t}//W$ is the quotient map.

Remark: Renormalization occurs because some objects in $\mathcal{O}_{0,nondeg}$ don't have finite length projective resolutions.

Question: Can we recover the full category $(\mathfrak{g}-Mod)_{nondeg}^N$?

Removing Central Character Restriction

Answer: Yes, but we need to use Λ :

Definition

The affine Weyl group is the group $W^{\text{aff}} := \Lambda \rtimes W$.

Theorem - G. 2020

We have an equivalence

$$(\mathfrak{g}\operatorname{\mathsf{-Mod}})^{\mathcal{N}}_{\operatorname{\mathit{nondeg}}}\simeq \operatorname{\mathsf{QCoh}}^{\operatorname{\mathsf{ren}}}(\mathfrak{t}//W imes_{\mathfrak{t}//W^{\operatorname{aff}}}\mathfrak{t}/\Lambda).$$

Equivalently, we have

$$(\mathfrak{g}\operatorname{\mathsf{-Mod}})^{\mathcal{N}}_{\operatorname{\mathit{nondeg}}}\simeq \operatorname{\mathsf{QCoh}}^{\operatorname{\mathsf{ren}}}(\mathfrak{t}//\mathcal{W} imes_{\mathfrak{t}//\mathcal{W}^{\operatorname{aff}}}\mathfrak{t})^{\Lambda}.$$

Example: \mathfrak{sl}_2

 $\textit{Example: } (\mathfrak{sl}_2\text{-}\mathsf{Mod})^{\textit{N}}_{\textit{nondeg}}$ can be identified with $\mathbb{Z}\text{-}\mathsf{equivariant}$ sheaves on

where w denotes reflection across y = 0.

Concluding Remarks

Theorem - G. 2020

We have an equivalence

$$(\mathfrak{g}\operatorname{\mathsf{-Mod}})^{\mathcal{N}}_{\operatorname{\mathit{nondeg}}}\simeq \operatorname{\mathsf{QCoh}}^{\operatorname{\mathsf{ren}}}(\mathfrak{t}//W imes_{\mathfrak{t}//W^{\operatorname{aff}}}\mathfrak{t}/\Lambda).$$

Equivalently, we have

$$(\mathfrak{g}\operatorname{\mathsf{-Mod}})^{\mathcal{N}}_{\operatorname{\mathit{nondeg}}}\simeq \operatorname{\mathsf{QCoh}}^{\operatorname{\mathsf{ren}}}(\mathfrak{t}//\mathcal{W}\times_{\mathfrak{t}//\mathcal{W}^{\operatorname{aff}}}\mathfrak{t})^{\Lambda}.$$

Remark: We can also further identify the W action on the right category.

Remark: We also have versions for $\mathcal{D}(N \setminus G/N)_{nondeg}$, for the weakly T equivariant, and the weakly $T \times T$ equivariant category.

Remark: Recovering (g-Mod)^N from the quotient category is a work in progress with Gurbir Dhillon and Sam Raskin. *Thank you!*