Recovering \mathfrak{g} Modules from The Weyl Group Action

Tom Gannon
University of Texas at Austin

November 24, 2020

Representations of Semisimple Lie Algebras

- To study finite dimensional, complex representations of $G\left(=S L_{n}\right)$, it suffices to study representations of its Lie algebra $\mathfrak{g}:=T_{1}(G)$.
- Conjugation of G on itself \mapsto Lie bracket on \mathfrak{g}.
- Example: If $G=S L_{n}, \mathfrak{s l}_{n}=\{$ traceless $n \times n$ matrices $\}$, with Lie bracket of two matrices given by their commutator, i.e.
$[X, Y]=X Y-Y X$.

Definition

A (finite dimensional) representation of \mathfrak{g} is a vector space map $\mathfrak{g} \rightarrow \mathfrak{g l}_{n}$ sending the Lie bracket on \mathfrak{g} to the Lie bracket on $\mathfrak{g l}_{n}$, i.e. the commutator.

Example: $\mathfrak{s l}_{2}$

A useful basis:

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), e:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

With Lie bracket determined by:

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

Note: $[X, X]=0$ for all $X \in \mathfrak{g}$.
Remark: $\left\{\right.$ Representations of $\left.\mathfrak{s l}_{2}\right\}=\left\{\right.$ Modules for $\left.U\left(\mathfrak{s l}_{2}\right)\right\}$, where

$$
U\left(\mathfrak{s l}_{2}\right):=\mathbb{C}\langle h, e, f\rangle /(h e-e f=2 e, h f-f h=-2 f, e f-f e=h) .
$$

Example: Representations of $\mathfrak{s l}_{2}$

Proposition

The finite dimensional representations of $\mathfrak{s l}_{n}$ are semisimple, meaning any finite dimensional subrepresentation is a direct summand.
\Longrightarrow to classify finite dimensional $\mathfrak{s l}_{2}$ representations, it suffices to classify the irreducible ones.

Theorem - Classification of Irreducible $\mathfrak{s l}_{2}$ Representations

For any irreducible $\mathfrak{s l}_{2}$ representation V, there exists a unique nonnegative integer n and nonzero $v \in V$ such that:

- $h v=n v$
- $e v=0$
and this n classifies the irreducible $\mathfrak{s l}_{2}$ representations!
In other words, $\left\{\right.$ Finite Dimensional Irreducible Reps of $\left.\mathfrak{s l}_{2}\right\} \longleftrightarrow \mathbb{Z} /\langle w\rangle$, where w is reflection about 0 .

Representations of $\mathfrak{s l}_{3}$

- Idea: Use all diagonal matrices $t:=\left\{\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right): a+b+c=0\right\}$.
- Eigenvalues for $h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are replaced by eigenvalues for t, i.e.

Definition

We say a nonzero vector in a $\mathfrak{s l}_{3}$ representation $v \in V$ is an eigenvector if there exists a linear map $\lambda: \mathfrak{t} \rightarrow \mathbb{C}$ such that for all $t \in \mathfrak{t}$,

$$
t v=\lambda(t) v
$$

Picturing the Eigenvalues \mathfrak{t}^{\vee}

Set L_{1} such that $L_{1}\left(\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)\right)=a$.
Set L_{2}, L_{3} similarly. $\Longrightarrow \mathfrak{t}^{\vee}=\left\{a L_{1}+b L_{2}+c L_{3}: a+b+c=0\right\}$

Pictured: Real points of \mathfrak{t}^{\vee}
Source: Matthew Fayers Coxeter Graph Paper

The Weyl Group and the Integers

Note also that S_{3} acts \mathfrak{t}^{v} :

Role of integers in $\mathfrak{s l}_{2}$ is replaced by

$$
\Lambda:=\mathbb{Z} L_{1}+\mathbb{Z} L_{2}+\mathbb{Z} L_{3}
$$

Irreducible Representations of $\mathfrak{s l}_{3}$

Theorem - Classification of Irreducible $\mathfrak{s l}_{3}$ Representations
We have a bijective correspondence
\{Finite Dimensional Irreducible Representations of $\left.\mathfrak{s l}_{3}\right\} \longleftrightarrow \Lambda / S_{3}$.
Remark: $S_{3} \cong \mathrm{~N}_{\mathrm{SL}_{3}}(T) / T$.

A Theme of Representation Theory

Theme

Data about G and \mathfrak{g} representations can be recovered from:

- A maximal torus T, or its associated Lie algebra \mathfrak{t}
- The 'integers' $\wedge \subset \mathfrak{t}^{\vee}$
- The action of the Weyl group $W:=\mathrm{N}_{G}(T) / T$ on T or \mathfrak{t}.

Example: The Weyl group of $S L_{n}$ is the symmetric group on n letters.

The Category \mathcal{O}_{0}

We want a category that captures all highest weights.

Definition

Let \mathcal{O}_{0} denote the full (abelian) subcategory of (\mathfrak{g}-Mod) of modules M which have a highest weight vector and have central character zero, meaning elements like $h^{2}+2 h+4 e f+44 \in Z\left(U\left(\mathfrak{s l}_{2}\right)\right)$ scale by 44 .

Remark: Often times we also ask objects of \mathcal{O}_{0} to also be finitely generated.

Example: The Verma module $\Delta_{0}:=\mathrm{U}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{U}(\mathfrak{b}) \mathbb{C} \in \mathcal{O}_{0}$, since

$$
0 \rightarrow L_{-2} \rightarrow \Delta_{0} \rightarrow L_{0} \rightarrow 0
$$

$\Longrightarrow \mathcal{O}_{0}$ is not semisimple!
Question: Can we recover \mathcal{O}_{0} from Λ, T, and W ?

Soergel's Endomorphismensatz

Soergel used combinatorics to reduce the study of \mathcal{O}_{0} to a certain quotient category, $\mathcal{O}_{0, \text { nondeg }}$.

Theorem - Soergel 1990

We have an equivalence of categories

$$
\mathcal{O}_{0, \text { nondeg }} \simeq\left(\operatorname{Sym}(\mathfrak{t}) \otimes_{\operatorname{Sym}(\mathfrak{t})^{w}} \mathbb{C}\right)-\text { Mod }
$$

Geometrically, if $\chi: \mathfrak{t} \rightarrow \mathfrak{t} / / W$ is the (GIT) quotient map, $\operatorname{Sym}(\mathfrak{t}) \otimes_{\operatorname{Sym}(t) w} w$ is functions on $\chi^{-1}(0)$.

Example: If $\mathfrak{g}=\mathfrak{s l}_{2}, \chi^{-1}(0)=\operatorname{Spec}\left(\mathbb{C}[\epsilon] / \epsilon^{2}\right)$.
Good News: There is an analogous version of this theorem for every central character, which 'seem to fit together'.

Bad News: The methods use to prove this result are very finite length.

Replacing \mathcal{O}_{0} with Its Derived Category

Notation: $(\mathfrak{g} \text {-Mod })_{0}^{N}:=\mathcal{D}\left(\mathcal{O}_{0}\right)$.
Theorem - Soergel 1990, Derived Version
We have an equivalence

$$
(\mathfrak{g}-\operatorname{Mod})_{0, \text { nondeg }}^{N} \simeq \text { QCoh }{ }^{\text {ren }}\left(\chi^{-1}(0)\right)
$$

where $\chi: \mathfrak{t} \rightarrow \mathfrak{t} / / W$ is the quotient map.
Remark: Renormalization occurs because some objects in $\mathcal{O}_{0, \text { nondeg }}$ don't have finite length projective resolutions.

Question: Can we recover the full category $(\mathfrak{g}-\mathrm{Mod})_{\text {nondeg }}^{N}$?

Removing Central Character Restriction

Answer: Yes, but we need to use Λ :

Definition

The affine Weyl group is the group $W^{\text {aff }}:=\Lambda \rtimes W$.

Theorem - G. 2020
We have an equivalence

$$
(\mathfrak{g}-\mathrm{Mod})_{\text {nondeg }}^{N} \simeq \operatorname{QCoh}^{\text {ren }}\left(\mathfrak{t} / / W \times_{\left.\mathfrak{t} / / W_{\text {aff }} \mathfrak{t} / \Lambda\right) .}\right.
$$

Equivalently, we have

$$
(\mathfrak{g}-\mathrm{Mod})_{\text {nondeg }}^{N} \simeq \text { QCoh }{ }^{\text {ren }}\left(\mathfrak{t} / / W \times_{\left.\mathfrak{t} / / W_{\text {aff }} \mathfrak{t}\right)^{\wedge} ~}^{\text {. }}\right.
$$

Example: $\mathfrak{s l}_{2}$

Example: $\left.\left(\mathfrak{s l}_{2}-\mathrm{Mod}\right)\right)_{\text {nondeg }}^{N}$ can be identified with \mathbb{Z}-equivariant sheaves on

where w denotes reflection across $y=0$.

Concluding Remarks

Theorem - G. 2020
We have an equivalence

$$
(\mathfrak{g} \text {-Mod })_{\text {nondeg }}^{N} \simeq \operatorname{QCoh}^{\text {ren }}\left(\mathfrak{t} / / W \times_{\left.\mathfrak{t} / / W_{\text {aff }} \mathfrak{t} / \Lambda\right) .}\right.
$$

Equivalently, we have

$$
(\mathfrak{g}-\operatorname{Mod})_{\text {nondeg }}^{N} \simeq Q C o h^{\text {ren }}\left(\mathfrak{t} / / W \times_{\left.\mathfrak{t} / / W_{\text {aff }} \mathfrak{t}\right)^{\wedge} .}\right.
$$

Remark: We can also further identify the W action on the right category.
Remark: We also have versions for $\mathcal{D}(N \backslash G / N)_{\text {nondeg }}$, for the weakly T equivariant, and the weakly $T \times T$ equivariant category.

Remark: Recovering $\left(\mathfrak{g}\right.$-Mod) ${ }^{N}$ from the quotient category is a work in progress with Gurbir Dhillon and Sam Raskin.
Thank you!

