Categorical Representation Theory and the Coarse Quotient

Tom Gannon

University of Texas at Austin

March 20, 2022

Tom Gannon (University of Texas at Austin) Categorical Representation Theory

Setup

Today, let

- G denote a reductive algebraic group over $\mathbb C$
- *B* denote some choice of Borel subgroup.

Example

We can take $G := SL_n$ with choice of $B := \{upper triangular matrices\}$

and let

- \mathfrak{g} denote the Lie algebra $T_1(G)$
- $U(\mathfrak{g})$ denote the universal enveloping algebra.

Example

If
$$G = SL_2$$
, $\mathfrak{sl}_2 \cong \{ \text{traceless } 2 \times 2 \text{ matrices} \}$ and

$$U(\mathfrak{sl}_2) \cong \mathbb{C}\langle e, f, h \rangle / (ef - fe = h, he - eh = 2e, hf - fe = -2f).$$

Representation Theory Via Sheaves and Symmetries

Theorem (Beilinson-Bernstein '81)

The global sections functor $\Gamma : \mathcal{D}(G/B) \to \mathfrak{g}\text{-mod}_0$ is an exact equivalence of categories.

- $\mathcal{D}(G/B)$ is the category of \mathcal{D} -modules on G/B
- $\bullet \ \mathfrak{g}\text{-mod}_0$ denotes the $\mathfrak{g}\text{-representations}$ with central character zero

Idea: Use the symmetries of $\mathcal{D}(G/B)$.

- Left G-action on $G/B \rightsquigarrow$ essential image of Γ .
- Right $B \setminus G$ -action on G/B? Not defined.
- Residual symmetries: If $\mathcal{F} \in \mathcal{D}(G/B) \simeq \mathcal{D}(G)^B$ and $\mathcal{G} \in \mathcal{D}(G)^{B \times B} \simeq \mathcal{D}(B \setminus G/B)$, can define $\mathcal{F} \star^B \mathcal{G} \in \mathcal{D}(G/B)$.
- Action of D(B\G/B) → Hecke algebra symmetries
 → multiplicities of simples in Vermas

Categorical Symmetries

Theme: We can obtain concrete, representation theoretic information via sheaves and categorical symmetries.

Definition

A group *G* acting on a category *C* is the data exhibiting *C* as a module category for $(\mathcal{D}(G), \star)$.

Remark: Our categories are *DG categories* or \mathbb{C} -linear *stable* ∞ -*categories*.

Examples:

- If G acts on a variety X, then G acts on $\mathcal{D}(X)$.
- G acts on g-mod.

Invariants

Definition: If $G \curvearrowright C$, the *invariants* are $C^G := \underline{Hom}_G(triv, C)$.

Examples:

- If $G \curvearrowright X$, $\mathcal{D}(X)^G \simeq \mathcal{D}(X/G)$.
- $(\mathfrak{g}\operatorname{-mod})^G \simeq \operatorname{Rep}(G).$
- $\mathcal{D}(G/B)^N \simeq \mathcal{O}_0$.
- $\mathcal{D}(G)^{\mathcal{G}_{ad}}$ \ni character sheaves

Proposition: If G acts on C and $H \leq G$, then $\mathcal{D}(H \setminus G/H)$ acts on \mathcal{C}^H .

Remark: $\mathcal{D}(H \setminus G/H) \simeq \underline{\operatorname{End}}_{G}(\mathcal{D}(G/H)).$

Nondegenerate PGL₂-Categories and Classification

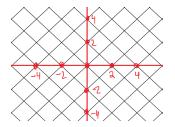
Definition: Let $G := PGL_2$. A nondegenerate G-category is a G-category C such that $C^{SL_2} \simeq 0$.

Theorem - G.

We have an equivalence of categories

$$G$$
-cat_{nondeg} \simeq IndCoh($\Gamma_{W^{aff}}$)-modcat

 \implies nondegenerate *G*-categories sheafify over $(\mathbb{A}^1/\mathbb{Z})//W$.



 $\Gamma_{W^{\text{aff}}}$ - The union of graphs of the affine Weyl group.

Whittaker Invariants

Definition: Given $G \curvearrowright V$, its *Whittaker invariants* are $V^{N,\psi} := \{v \in V : mv = \psi(m)v\}$ for a generic character $\psi : N \to \mathbb{C}$.

Definition: Given $G \curvearrowright C$, its *Whittaker invariants* are $C^{N,\psi} := \underline{Hom}_N(\operatorname{Vect}_{\psi}, C)$.

Remark:
$$\mathcal{H}_{\psi} := \mathcal{D}(G)^{N imes N, \psi imes \psi} \curvearrowright \mathcal{C}^{N, \psi}$$
.

Theorem - (Ginzburg, Lonergan, G.)

There is an equivalence of categories

$$\mathcal{H}_\psi \simeq \mathsf{IndCoh}(\mathfrak{t}^*// ilde{\mathcal{W}}^{\mathsf{aff}})$$

which is monoidal and which is *t*-exact up to cohomological shift.

 $\implies \mathcal{H}_{\psi}$ is symmetric monoidal!

The Coarse Quotient

Assumption: G is adjoint. **Definition:** The *stack quotient* t^*/W^{aff} is

$$\operatorname{colim}(\cdots \Longrightarrow W^{\operatorname{aff}} \times W^{\operatorname{aff}} \times \mathfrak{t}^* \Longrightarrow W^{\operatorname{aff}} \times \mathfrak{t}^* \Longrightarrow \mathfrak{t}^*)$$

Definition: The *coarse quotient* $t^*//W^{\text{aff}}$ is:

$$\operatorname{colim}(\cdots \xrightarrow{\longrightarrow} \Gamma_{W^{\operatorname{aff}}} \times_{\mathfrak{t}^*} \Gamma_{W^{\operatorname{aff}}} \xrightarrow{\longrightarrow} \Gamma_{W^{\operatorname{aff}}} \xrightarrow{t} \mathfrak{t}^*)$$

Proposition - G.

The projection map $\pi:\mathfrak{t}^*/W^{\mathsf{aff}}\to\mathfrak{t}^*//W^{\mathsf{aff}}$ induces

$$\mathsf{IndCoh}(\mathfrak{t}^*//\mathcal{W}^{\mathsf{aff}}) \xrightarrow{\pi^!} \mathsf{IndCoh}(\mathfrak{t}^*/\mathcal{W}^{\mathsf{aff}}) \simeq \mathsf{IndCoh}(\mathfrak{t}^*)^{\mathcal{W}^{\mathsf{aff}}}$$

which is fully faithful, *t*-exact, and whose essential image is sheaves *satisfying Coxeter descent*.

Nondegenerate G-Categories from Invariants

Theorem (Ben-Zvi–Gunningham–Orem)

The functor $\mathcal{C} \mapsto \mathcal{C}^N$ is conservative, and moreover induces

G-cat $\xrightarrow{\sim} \mathcal{D}(N \setminus G/N)$ -modcat.

Definition: A *G*-category is *nondegenerate* if for every rank one parabolic *P*, $C^{[P,P]} \simeq 0$.

Proposition: Every *G*-category *C* has a *G*-subcategory $\mathcal{C}_{nondeg} \xrightarrow{J_*} \mathcal{C}$ and has a functor $\mathcal{C} \xrightarrow{J^!} \mathcal{C}_{nondeg}$ which behaves like a quotient functor.

Theorem - G.

We have an equivalence of categories

$$G\text{-}\mathsf{cat}_\mathsf{nondeg} \simeq \mathsf{IndCoh}(\Gamma_{W^{\mathsf{aff}}})\text{-}\mathsf{cat}$$

 \implies nondegenerate *G*-categories sheafify over $\mathfrak{t}^*//W^{\text{aff}} \simeq (\mathfrak{t}^*/X^{\bullet})//W$.

Explicit Monoidal Equivalence

If G acts on C, we can define the *weak invariants* $C^{G,w}$.

Corollary: (Ben-Zvi–Gunningham) *G*-cat $\xrightarrow{\sim} \mathcal{D}(N \setminus G/N)^{T \times T, w}$ -modcat.

Theorem - G.

There are *t*-exact, monoidal, equivalences of categories

$$\mathcal{D}(N \backslash G/N)_{\text{nondeg}}^{(\mathcal{T} \times \mathcal{T}, w)} \simeq \text{IndCoh}(\Gamma_{W^{\text{aff}}})$$

$$\mathcal{D}(N \setminus G/N)_{nondeg} \simeq IndCoh(\Gamma_{W^{aff}})^{X^{\bullet} \times X^{\bullet}}$$

where X^{\bullet} is the character lattice of T.

• Right hand side only depends on the root datum.

• Koszul duality for $\mathcal{D}(N \setminus G/N)$?

Parabolic Restriction

Definition: Parabolic restriction is Res : $\mathcal{D}(G)^G \to \mathcal{D}(T)^T$ given by pull-push along $G/G \leftarrow B/B \to T/T$. **Definition:** The horocycle functor, for any $G \times G$ category C, is the composite: $\mathcal{C}^{G_{\Delta}} \xrightarrow{\text{oblv}} \mathcal{C}^{B_{\Delta}} \xrightarrow{Av_*^N} \mathcal{C}^{(N \times N)T_{\Delta}}$. **Proposition:** The parabolic restriction functor is the composite $\mathcal{D}(G)^G \xrightarrow{hc_{\mathcal{D}(G)}} \mathcal{D}(N \setminus G/N)^{T_{\Delta}} \xrightarrow{i^!} \mathcal{D}(T)^T$.

Conjecture - Ben-Zvi-Gunningham

Parabolic restriction lifts to a functor WRes : $\mathcal{D}(G)^{G,\heartsuit} \to \mathcal{D}(T)^{W,\heartsuit}$ such that if $\mathcal{F} \in \mathcal{D}(G)^{G,\heartsuit}$ has $hc(\mathcal{F})$ supported on T, then $W\text{Res}(\mathcal{F})$ satisfies Coxeter descent.

Theorem - G.

There is a lift $\tilde{hc}_{\mathcal{D}(G)_{nondeg}} : \mathcal{D}(G)_{nondeg}^{G} \to \mathcal{D}(N \setminus G/N)_{nondeg}^{T \rtimes W}$ such that if $\mathcal{F} \in \mathcal{D}(G)_{nondeg}^{G,\heartsuit}$ has $hc(\mathcal{F})$ supported on the torus, $\tilde{hc}(\mathcal{F})$ satisfies Coxeter descent.