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1 Kac-Moody Algebras as Generalizations of Semisimple Lie Al-
gebras

We’ll quickly recall the representation theory of a finite dimensional semisimple Lie algebra g over1 C; for
more information, see [FH91] or [Hum78] for the original sources or the Introduction to Representation
Theory mini course last year [Gan20]. This first day is definitely a little dense and faster than the other
days will be, so I will have (virtual) office hours upon request for anyone that wants to learn the language
of representation theory a little better.

1.1 The Finite Kac-Moody Algebra A1

We’ll start with the representation theory of the smallest dimensional semisimple Lie algebra, sl2, the Lie
algebra of traceless matrices with Lie bracket given by commutator of matrices. We will see later that this
is the finite Kac-Moody algebra of type A1.

Recall there are three distinguished elements (up to scalar multiple) h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, and

f :=

(
0 0
1 0

)
such that representations of sl2 are equivalently modules for the universal enveloping algebra

U(sl2) := C〈e, f, h〉/(ef − fe = h, he− eh = 2e, hf − fh = −2f).

Finite dimensional representations of sl2 (or any semisimple Lie algebra) are completely reducible; this
implies that any finite dimensional representation of sl2 splits as a direct sum of its irreducible representations.
Therefore it remains to classify the irreducible representations. Furthermore, it turns out that any sl2
representation is a direct sum of its various h eigenspaces, and one can check that e (respectively, f) applied
to an element in the λ ∈ C eigenspace maps to the λ+ 2 (repsectively, λ− 2) eigenspace. We can check by
hand the PBW theorem for U(sl2), which says that any element of U(sl2) can be written as a polynomial of
terms where all powers of f appear to the left of the powers of h, and all powers of h can be written to the
left of all powers of e. This more or less implies (after some algebra, see 11.1 of [FH91]):

Theorem 1.1. (Classification of Finite Dimensional Representations of sl2) For any finite dimensional U(sl2)
module V , there exists a unique up to nonzero scalar vector v ∈ V , called a highest weight vector, such that
ev = 0 and hv = nv for some nonnegative integer n ∈ N≥0.

Note this discussion is symmetric in e and f in the sense that representations can also be classified by
the lowest weight, a nonpositive integer. We will see this as the first manifestation of the Weyl group of a
semisimple Lie algebra, which for sl2 is the finite group generated by a single reflection, Z/2Z.

1.2 The Finite Kac-Moody Algebra A2

Next, we’ll start with the classical next example in the story of representation theory of semisimple Lie
algebras, sl3, which again we will see as a finite Kac-Moody algebra of type A2. There are a lot of terms
here, so see Appendix A for a summary of the notation. The natural replacement for the notion of h is the
two dimensional abelian2 Lie algebra h of diagonal matrices3. Instead of looking for eigenvalues of a single
h as above, we will look for eigenvalues of the entire Lie algebra h:

Definition 1.2. Let V be an h representation. We say that a nonzero v ∈ V is an eigenvector for the
eigenvalue λ ∈ h∗ if for any h ∈ h, hv = λ(h)v.

1In fact, much of what we’re going to be talking about works for an arbitrary algebraically closed field of charactersitic zero.
Often times in geometric representation theory, people work over an arbitrary closed field of characteristic zero to signal that
they are not using the topology of C in their results. In particular, most of these results apply for fields such as Q`, which
are abstractly isomorphic to C but not as topological fields. However, the specification of the field C will be important in the
setting of quantum groups, since the relationship to affine Kac-Moody algebras to quantum groups is given by exponentiation,
see Section 4.

2A Lie algebra is abelian if its Lie bracket is the zero bracket.
3I may also write this as t in lecture, but will try to be consistent.
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Remark 1.3. We could have applied a similar procedure for sl2 by setting h := Ch. One can check that
if v above is an eigenvalue for h, it is an eigenvalue for the one dimensional abelian Lie algebra Ch as in
Definition 1.2.

Just as for sl2, it turns out that for any semisimple Lie algebra g, any finite dimensional representation
V can be written as a direct sum of its h eigenvalues. Let’s apply this to the one canonical representation
of g we get just by nature of g being a Lie algebra, the adjoint representation g → Hom(g, g) given by
X 7→ [X,−].

Remark 1.4. At first, the notion of the adjoint representation may look abstract. The perspective of Lie
groups may help here–if G = SLn (or is any Lie group or algebraic group), then G naturally acts on the
tangent space at the identity g := T1(G). It can’t act by left or right multiplication, though, because that
would move the basepoint. Therefore the only way we can act is by conjugation. Taking the derivative of
this action yields the adjoint action.

Example 1.5. The adjoint representation of sl2 is an irreducible representation of highest weight 2. This
implies that there is a one dimensional eigenspace4 of h with eigenvalue 2, 0, and -2. One nonzero eigenvector
in each of these eigenspaces is e, h, and f respectively.

We now consider the eigenspaces of the adjoint representation of sl3. To do this, following 12.1 of [FH91], it

helps to choose indicator functions of the diagonal entries L1, L2, and L3, for example, L2(

a 0 0
0 b 0
0 0 −a− b

 :=

b. Then h∗ ∼= {aL1 + bL2 + cL3 : a+ b+ c = 0}.

Example 1.6. One can check that the adjoint representation of sl3 is an 8 dimensional irreducible repre-
sentation. Except for the 0 : h → C eigenspace, which is two dimensional, there are six one dimensional

eigenspaces. Two of them are given by eL1−L2
:=

0 1 0
0 0 0
0 0 0

 and eL2−L3
:=

0 0 0
0 0 1
0 0 0

. Specifically,

these two elements have eigenvalues L1 − L2 and L2 − L3 respectively.
A useful fact is that these two eigenvalues determine all others. Specifically, given these two roots, one

can check that eL1−L3 := [e1,2, e2,3] is another–it will have eigenvalue L1 − L3 = (L1 − L2) + (L2 − L3).
Furthermore, given one of the ei,j we’ve constructed we can construct the associated sl2 triple to the root (:=
eigenvalue in h∗ of the adjoint representation). For example, given the eigenvalue/root L1−L3, the associated

sl2 triple is given by (eL1−L3 , hL1−L3 , fL1−L3) where hL1−L3 :=

1 0 0
0 0 0
0 0 −1

 and fL1−L3 :=

0 0 0
0 0 0
1 0 0

.

Note that fL1−L3 is also an eigenvalue of the adjoint representation, with eigenvalue L3 − L1, and similarly
fL1−L2 and fL2−L1 .

We are soon in a position to generalize the notion of positivity5 for general g. With our choice of h,
we can plot our eigenvalues of the adjoint representation in the plane (with a clearer picture available by
clicking here):

4If you want to be fancy, you can call these eigenspaces of the one dimensional Lie algebra Ch with eigenvalues given by
the linear functions sending h to 2, 0, and -2 respectively. This will allow one to match the representation theory of sl2 more
closely with the general representation theory of semisimple Lie algebras.

5In fact, this problem actually comes up for sl2. Informally, this follows because we could have replaced e with −f and vice

versa and h with

(
−1 0
0 1

)
. In representation theory, it is often useful to remember that this is a choice up to action of the

Weyl group Z/2Z.
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Therefore, we see that a choice of positivity is equivalent to the choice of two roots which are not the negative
of each other. Implicitly above, we chose our two simple roots as L1 − L2 and L2 − L3. Note, however, this
was a choice, and there are in fact 6 different choices we could have made! These choices are permuted simply
transitively by the Weyl group, the group of reflections generated by the root hyperplanes, drawn above in
the picture. Note that the Weyl group S3 is generated by reflections in the root hyperplanes corresponding
to the simple roots (and correspond to the permutations swapping 1 and 2 and swapping 2 and 3). Just as
before, this data determines the finite dimensional representations of sl3. In fact, tomorrow in Section 2, we
will see that this data turns out to determine the Lie algebra itself.

1.3 The Finite Kac-Moody Algebra B2

We will now discuss a bit about the Lie algebra/finite Kac-Moody algebra of type B2 = C2, given by the
Lie algebra so5

∼= sp4. We have seen that to classify representations of this Lie algebra, it is of tremendous
interest to diagonalize the adjoint representation. One can check (see the first two pages of chapter 16 of
[FH91]) that, with choice of h ⊆ sp4 given by

h := {


a 0 0 0
0 b 0 0
0 0 −a 0
0 0 0 −b

 : a, b ∈ C}.

With this choice we can perform a similar analysis of the adjoint representation of sp4 and obtain (with
a clearer picture available by clicking here):
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Furthermore, just as above we can choose two simple roots. Just as before, the simple roots must be such
that exactly half of the roots can be obtained as sums of the simple roots. A standard choice is to choose
the roots 2L1 and L1 − L2. The main takeaway is that the roots here are of different length, unlike what
happens in type An (i.e. the semisimple Lie algebra sln). However, the structure is still rigid (eg, the angles
between all roots are an angle you know from trig class) and we will see tomorrow in Section 2 that one can
recover sp4 from this geometric data and choice of simple roots.

2 Affine Kac-Moody Algebras as Specific Kac-Moody Algebras

2.1 Recovering A Lie Algebra from Its Cartan Matrix

Yesterday, we saw that much of the information can be determined about a semisimple Lie algebra from the
action of the Weyl group on h∗ with choice of simple roots. Now we will discuss the converse–specifically,
if g is a semisimple Lie algebra with a choice of Cartan subalgebra h ⊆ g and a choice of Borel subalgebra
(i.e. choice of positive direction) b ⊆ g, what precise data do we need to recover our Lie algebra? Let us fix
these choices of h ⊆ b ⊆ g for today. We saw yesterday that it was important to determine the simple roots
in the plane, which we will now define:

Definition 2.1. A simple root is a positive root which cannot be written as the sum of two positive roots.

It turns out that given all simple roots, we can recover all the roots by repeatedly taking Lie brackets.
Therefore, if we wish to be minimalist about the data we are keeping around, we should only focus on the
simple roots. Now we will discuss a very cool fact about how different simple roots interact, which will give
you a taste of Lie theory:
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Proposition 2.2. ([eα, fβ ] = 0 if α 6= β)) Assume that α, β ∈ h∗ are two distinct simple roots, and let eα
and fβ be the associated image of e (respectively f) in the sl2 triple associated to α (respectively β).

We will prove this with a helpful lemma:

Lemma 2.3. If α, β : h → C are any roots and eα, eβ ∈ g are in the α, β eigenspaces6, then [eα, eβ ] =
ad(eα)(eβ) is in the α+ β eigenspace.

Proof. Let h ∈ h. We wish to compute ad(h)([eα, eβ ]) = [h, [eα, eβ ]]. Since this is a representation of Lie
algebras, we have:

[h, [eα, eβ ]] = −[eβ , [h, eα]]− [eα, [eβ , h]]

and so we can use the fact that the Lie bracket is anti-commutative multiple times to obtain

[h, [eα, eβ ]] = [[h, eα], eβ ] + [eα, [h, eβ ]].

Therefore, since eα and eβ are (generalized) eigenvalues for the adjoint action, we get that

[h, [eα, eβ ]] = α(h)[eα, eβ ] + β(h)[eα, eβ ]

and so [eα, eβ ] has (generalized) eigenvalue α+ β.

Proof of Proposition 2.2. By Lemma 2.3, we have that [eα, fβ ] has eigenvalue α − β. Swapping α and
β if necessary, we may assume that α − β is positive. However, this violates the simplicity of α, since
α = β + (α− β).

Remark 2.4. We can now re-interpret Proposition 2.2 as saying that if α and β are distinct simple roots,
then ad(fβ)(eα = 0. In particular, if α and β are distinct roots, then eα is a lowest weight vector for the sl2
triple (eβ , hβ , fβ).

Now we fix all simple roots of g. We see that for any two roots α, β, that eα is an eigenvalue for hβ .
It is of interest to record this eigenvalue. Let us arbitrarily order our simple roots and write aij such that
ad(hi)(ej) = aijej . It turns out these aij are precisely what is needed to recover our semisimple Lie algebra:

Definition 2.5. The matrix given by the aij above (again, for a fixed h ⊆ b ⊆ g) is called the Cartan matrix
for g.

We will now work through four examples:

Example 2.6. We saw that sl3 has dim(h∗) = 2, which implies the associated Cartan matrix is 2x2. We also
saw that h∗ has two simple roots of the same length, α := L1−L2 and β := L2−L3. Since sα(β) = β−(−1)α,

we obtain one entry of the Cartan matrix associated to this data:

(
? −1
? ?

)
. Since α and β have the same

length, we can do the computation with the roles of α and β switched and obtain that the (2,1) entry is also
−1. Finally, sα(α) = α− 2α and similarly for β, so the full Cartan matrix is:(

2 −1
−1 2

)
Example 2.7. We saw yesterday that sl2 has dim(h∗) = dim(Ch) = 1, so the Cartan matrix is 1 × 1. In
particular, h∗ one simple root, and so by Remark 2.8 we see the Cartan matrix is the 1× 1 matrix given by(
2
)
.

Remark 2.8. Note that for any sl2 triple we have, by defintion, that ad(hi)ei = 2ei. Therefore, the diagonal
entries of a Cartan matrix will always be 2.

6It turns out that the eigenspaces for roots are one dimensional, so this notation hopefully shouldn’t cause too much
confusion.
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Example 2.9. Now we compute the Cartan matrix for sp4, which as before will be a 2 × 2 matrix since
the dimension of our choice of Cartan is 2. By Remark 2.8, our diagonal entries will always be 2. Let α be
the short root and β be the long root. Then we see that sα(β) = α − (−1)β and sα(β) = β − (−2)α, so in
particular we see that the Cartan matrix is given by:(

2 −2
−1 2

)
Note that, so far, our off diagonal entries are always nonpositive.

Example 2.10. For type A1×A1 let α1 be the simple root associated to the first factor and α2 be the simple
root associated to the second. Then we see that sα1

(α2) = α2− 0α1 (since the two roots are perpendicular–
these correspond to a semisimple Lie algebra which is not simple). This is symmetric in swapping the two
α above, so the generalized Cartan matrix is: (

2 0
0 2

)
.

Exercise 2.11. Fix an h ⊆ b ⊆ g with n simple roots. Prove that for any distinct i, j, if ad(hi)(ej) = ai,jej ,
then −ai,j + 1 is the dimension of the associated sl2,i representation generated by ej . (Hint: We saw that
ej is a lowest weight vector if i 6= j. What happens if i = j?)

Exercise 2.12. The root system for the exceptional Lie algebra g2 is given as follows (with a clearer picture
available by clicking here):

Compute the Cartan matrix of g2. Try to avoid computing the adjoint action (g2 is 14 dimensional!) and
instead try to use Exercise 2.11.
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2.2 Generalized Kac-Moody Algebras

We will now start by recording some of the properties that a Cartan matrix of a semisimple Lie algebra and
discuss how we can use them to recover the Lie algebra itself.

Definition 2.13. A generalized Cartan matrix (GCM) of rank n is an n × n matrix A =
(
aij
)

of integers
such that

• (See Remark 2.8) aii = 2.

• (See Remark 2.4) If i 6= j, aij ≤ 0.

• (Orthogonality is a symmetric relation) We have aij = 0 if and only if aji = 0.

Remark 2.14. Sometimes, authors add the condition that a GCM is symmetrizable (see Definition 2.19
below). I am choosing to follow the definitions of chapter 27 of [EMTW20], which is slightly weaker than
the notion of a symmetrizable GCM, see [6] for the exact comparison.

Example 2.15. Any Cartan matrix of a semisimple Lie algebra is a generalized Cartan matrix.

Example 2.16. Define the generalized Cartan matrix of affine type Ã1 as

(
2 −2
−2 2

)
.

It turns out that this data is all that is needed to recover the Lie algebra of a semisimple Lie algebra. To
see this, we first note that we can recover g as a vector subspace of the universal enveloping algebra Ug as
the ‘degree one’ piece (in fancier language, Ug is graded and the vector space of grading 1 is canonically g,
as a Lie algebra). Therefore, to recover g it suffices to recover Ug (as a graded algebra).

Theorem 2.17. Given a semisimple Lie algebra g, let
(
aij
)

be its associated (generalized) Cartan matrix
of dimension n. Then the universal enveloping algebra Ug is given as the algebra generated by symbols
ei, hi, fi (1 ≤ i ≤ n), such that, for all i, j:

1. (The Lie algebra of a torus is abelian) [hi, hj ] = 0.

2. (hi eigenvalues are given by ith row of GCM) [hi, ej ] = aijej and [hi, fj ] = −aijfj .

3. (The triple ei, hi, fi is an sl2 triple) [ei, fi] = hi.

4. (ej is the lowest weight vector of an irrep of sl2,i for i 6= j) [ei, fj ] = 0 if i 6= j.

5. (The Serre relation, i.e. the dimension of the above irrep is 1− aij) We have ad(ej)
1−aij (ei) = 0 and

ad(fj)
1−aij (fi) = 0 for i 6= j.

Remark 2.18. We can re-interpret the Serre relation above in Theorem 2.17, via identifying ad(ej)ei =
ejei − eiej in the universal enveloping algebra, as the relation:

1−aij∑
s=0

(−1)s
(

1− aij
s

)
esjeie

aij+1−s
j = 0.

and the obvious analogoue for the fi and fj .

2.3 Finite (Generalized) Cartan Matrices

We have seen that any semisimple Lie algebra g (with choices of h ⊆ b) can be recovered from its generalized
Cartan matrix. We now seek to answer the question: which generalized Cartan matrices can appear?

Given a generalized Cartan matrix, we have seen that we can recover its universal enveloping algebra
above in Theorem 2.17. One can informally summarize this procedure as follows. Specifically, starting with
a simple root ei, we may repeatedly apply the various operators [ej ,−] to obtain all of the eigenvalues of the
adjoint representation. Now, we can ask: Why does this process ever stop? Note that the Serre relation in
Theorem 2.17 yields that repeatedly applying the operator [ej ,−] for the same ej must eventually terminate,
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but, as we will see below in Section 3.1, nothing in Theorem 2.17 states that, for example, (ad(ei)ad(ej))
n

vanishes for any n.
The answer is given in the fact that semisimple Lie algebras have a canonical positive definite bilinear

form, known as the Killing form. This means that we have an intuitive notion of distance on h. We won’t
emphasize the Killing form too much in this course (see [Gan20]), other than discussing how one can get the
Killing form from the generalized Cartan matrix.

Definition 2.19. A GCM A is symmetrizable if it can be written as a product A = DS for some diagonal
matrix D and symmetric matrix S.

Example 2.20. It turns out the finite Cartan matrices are all symmetrizable. For example, all Cartan
matrices of type An are themselves symmetric, and for type B2, we have:(

2 −2
−1 2

)
=

(
2 0
0 1

)(
1 −1
−1 2

)
Since symmetric matrices over Z ⊆ k have real eigenvalues, we can make the following distinction of

generalized Cartan matrices based on how much access we have to a usual notion of ‘distance’:

Definition 2.21. We say that a symmetrizable GCM A is finite type if the associated symmetric matrix
has all positive eigenvalues.

Then it turns out that semisimple Lie algebras are in bijective correspondence with positive definite,
symmetrizable GCM! We will say this in a way closer to the classification of simple Lie algebras via connected
Dynkin diagrams:

Indecomposable GCM

Assume you are given this generalized Cartan matrix and know it comes from a semisimple Lie algebra g:

A :=

 2 0 −2
0 2 0
−1 0 2

 .

Automatically, we see that this associated semisimple Lie algebra cannot be irreducible. The reason is
is because this the second simple root is perpendicular to the others. For example, we see that [h1, e2] =
a12e2 = 0, [e1, e2] = 0 (by the Serre relation), and [e1, f2] = 0 and so in the universal enveloping algebra of g
we have that the sl2 triple indexed by the first root commutes with the sl2 triple indexed by the second root,
so the representation theory reduces to the representation theory of the product. (In fact, using definitions
below, one can show this is a realization of the Lie algebra sp4×sl2). This motivates the following definition:

Definition 2.22. An decomposable GCM is an n× n generalized Cartan matrix for which there exists two
nonempty, disjoint subsets I, J ⊆ {1, ..., n} such that aij = 0 if i ∈ I, j ∈ J . We say a GCM is indecomposable
if it is not decomposable.

Compare this to Example 2.10, which is decomposable.

Classification of Simple Lie Algebras

With that being said, we can now state one of the fundamental theorems of representation theory in terms
of generalized Cartan matrices!

Theorem 2.23. There is a canonical bijection

{Simple Lie Algebras} ∼−→ {Indecomposible, finite type, symmetrizable GCM}.

Tomorrow, we’ll ask the question: What happens if you apply the same procedure of Theorem 2.17 to
other GCM?
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3 Affine Kac-Moody Algebras as Generalizations of the BGG Cat-
egory O

Yesterday, we saw that simple Lie algebras were given by indecomposible, finite type, symmetrizable GCM.
Furthermore, given such a GCM, we can go backwards via an explicit generators and relations procedure.
However, we may apply the universal enveloping algebra procedure to any GCM, and obtain the notion of
a Kac-Moody algebra (and, whatever an affine Kac-Moody algebra is, it’s a particular kind of Kac-Moody
algebra)!

3.1 Kac-Moody Algebras

The idea of a Kac-Moody algebra is simple, given the above information. We take the relations given to us
by Theorem 2.17, except that we don’t require our generalized Cartan matrix actually be a Cartan matrix,
i.e. actually come from a semisimple Lie algebra. Then, for a generalized n × n Cartan matrix A =

(
aij
)
,

the commutator of the Kac-Moody algebra g′(A) is the free Lie algebra generated by symbols hi, ei, fi for
i ∈ {1, ..., n} such that:

1. (The Lie algebra of a torus is abelian) [hi, hj ] = 0.

2. (hi eigenvalues are given by ith row of GCM) For all i, j ∈ h, [hi, ej ] = aijej and [hi, fj ] = −aijfj .

3. (The triple ei, hi, fi is an sl2 triple) [ei, fi] = hi.

4. (ej is the lowest weight vector of an irrep of sl2,i for i 6= j) [ei, fj ] = 0 if i 6= j.

5. (The Serre relation, i.e. the dimension of the above irrep is 1− aij) We have ad(ej)
1−aij (ei) = 0 and

ad(fj)
1−aij (fi) = 0 for i 6= j.

If A is symmetrizable, then we say our Kac-Moody algebra is symmetrizable.

Remark 3.1. One can generalize this definition slightly further and make this into the actual definition of
a Kac-Moody algebra used by Kac in his original book [Kac90]. Specifically, given a generalized GCM of
rank r, we may want to specify by hand a choice of roots {αj} in a chosen vector space h∗ of dimension7

2n − r and a choice of coroots {α∨i } in the dual space h. (For a semisimple Lie algebra, we can find the
coroots via the Killing form. However, for a general Kac-Moody algebra we will also have to specify them
by hand. However, this choice is unique up to isomorphism [Kac90, Proposition 1.1]). The full definition of
a Kac-Moody algebra can be found, for example, on the Wikipedia page. In the finite dimensional case, the
hi span h. In the general case, we must spell this condition for all h explicitly, since there is no condition
that the roots must span h∗.

From here on out, we will focus on those Kac-Moody algebras whose associated generalized Cartan matrix
is indecomposable.

Finite, Affine, and Indefinite Kac-Moody Algebras

In general, Kac-Moody algebras are more difficult to answer questions about (for example, any non-finite
Kac-Moody algebra turns out to be necessarily infinite dimensional). However, there is one class of examples
of Kac-Moody algebras, known as affine Kac-Moody algebras, for which more is understood. One way to
motivate this is as follows–if A = DS is a symmetrizable generalized Cartan matrix, we got a lot of mileage
if we knew that S was positive definite. We weaken this condition slightly.

Definition 3.2. Assume g is a symmetrizable Kac-Moody algebra such that its generalized Cartan matrix
A = DS is indecomposable.

• If S is positive definite, we say that g is finite.

7Other than so that this agrees with the semisimple Lie algebra case (i.e. 2n− r = 2n−n = n = dim(h) for a Cartan matrix
of a semisimple Lie algebra), I’m not sure why this dimension condition is needed or what it buys us.
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• If S is not positive definite but is positive semidefinite, we say that our irreducible8 g is an affine
Kac-Moody algebra.

• If S is not positive semidefinite, we say the GCM is indefinite.

Remark 3.3. It turns out that S cannot be negative definite or negative semidefinite.

We can now rephrase yesterday’s result that we have already seen regarding classification of semisimple
Lie algebras in terms of Kac-Moody algebras, see Theorem 2.23:

Theorem 3.4. The finite Kac-Moody algebras are precisely those Lie algebras given by semisimple Lie
algebras.

Example: ‘Affine A1’ = Ã1

It is high time for an example. Consider the generalized Cartan matrix of affine type A1, denoted Ã1, given
by the matrix

A :=

(
2 −2
−2 2

)
We will explore the commutator of the Kac-Moody algebra associated to A, given by generators and relations
above. Let κ denote the element h1 + h2. Here is an exercise that is a good exercise which is more or less a
check to make sure you are following the definitions:

Exercise 3.5. The element κ is central, i.e. [κ,X] = 0 for all X in our commutator of the Kac-Moody
algebra.

This fact is important enough that we will keep track of it in our notation and denote our commutator

of the Kac-Moody algebra ŝl
poly

2,κ . It’s a bit strange that this commutator of the Kac-Moody algebra has a
central element–note that the Lie algebra sl2 has no central elements because it is a semisimple Lie algebra.9

Since κ is central in ŝl
poly

2,κ , it determines a Lie subalgebra, and the Lie algebra quotient ŝl
poly

2,κ /kκ is defined.
We will first classify this Lie algebra:

Proposition 3.6. There is a canonical isomorphism of Lie algebras ŝl
poly

2,κ /Cκ ∼= sl2[t±1], where sl2[t±1]
denotes the loop algebra of sl2 sl2[t±1] := sl2⊗k[t±1] with Lie bracket given by the rule [X⊗p(t), Y ⊗q(t)] =
[X,Y ]⊗ p(t)q(t).

We will sketch the proof of this proposition here, but this is seriously worth doing to get a sense of what’s
going on! First, we’ll construct the map, which is one of the most crucial ideas. The map will be given by
sending e1 7→ e⊗ 1, h1 = −h2 7→ h⊗ 1, f1 7→ f ⊗ 1, e2 7→ f ⊗ t, and the following exercise:

Exercise 3.7. Where must f2 in the above isomorphism map to to be a Lie algebra map? (Hint: Any
element of the loop algebra can be written as a finite sum of terms of the form Xd ⊗ td where d ∈ Z).

We now compute some images of the span of the positive roots of ŝl
poly

2,κ , at least heuristically verifying
surjectivity. This paragraph will be largely informal. What elements in the loop algebra can we get just with
the (images) of e1 and e2? We know [ei, ei] = 0 for both i, so our first move must be [e1, e2] 7→ [e⊗1, f⊗ t] =
h⊗ t. Then we can either apply [e1,−] or [e2,−]. We have, for example,

[e1, [e1, e2]] 7→ [e⊗ 1, h⊗ t] = −2h⊗ t

[e2, [e1, e2]] 7→ [f ⊗ t, h⊗ t] = 2f ⊗ t2

So we have heuristically justified that the positive (Lie algebra) span of the two positive simple roots of

ŝl
poly

2,κ is the Lie algebra of objects of the form e⊗ 1 +
∑
dXd ⊗ td, for Xd ∈ a finite collection of d ∈ N>0.

8In general, given the usual data, if the generalized Cartan matrix has corank 1, we also say it is an affine Kac-Moody
algebra, which is clearly consistent with our definition for indecomposable GCM.

9Don’t confuse this with the Casimir element, an element which is central in the universal enveloping algebra U(sl2).
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Exercise 3.8. Justify this statement until you are satisfied. (Hint: You can enumerate all possible sequences
of e1, e2 which don’t vanish. For example, as above, the first two elements which must be paired by the
Lie bracket yields [e1, e2]. Then, we have a choice. If we choose e1, we end up with [e1, [e1, e2]], but
[e1, [e1, [e1, e2]]] = 0–why? This pattern will allow you to make a tree of possible sequences.

3.2 Motivation: Why Kac-Moody algebras?

The computation of Section 3.1 might seem to suggest that affine Kac-Moody algebras may be difficult to get
a grip on. This turns out to be not quite true, in part due to an alternate description of affine Kac-Moody
algebras as an extension of the loop algebra, see Section 3.3. However, they are certainly not as easy as
finite Kac-Moody algebras, and are in particular all non-finite Kac-Moody algebras are infinite dimensional
Lie algebras. Therefore, we take time to discuss some motivation of (affine) Kac-Moody algebras. This
subsection is a bit dense, and nothing will be used from these sections in what follows!

Motivation from String Theory

One of the original reasons people were interested in this subject is its connections to topics in physics, such
as conformal field theory. There is a certain two dimensional conformal field theory known as the Wess-
Zumino-Witten or WZW model whose associated symmetry algebra is an affine Lie algebra. This theory
‘lives at the boundary of Chern-Simons theory.’ Unfortunately, the connection to physics is outside the scope
of this course.

Motivation from (Quantum) Geometric Langlands

Another reason that one might care about Kac-Moody algebras is their manifestation in Geometric Lang-
lands. For example, one of the first steps in the Geometric Langlands program is known as the geometric
Satake theorem, which says that the abelian category of representations of a reductive algebraic group G can
be realized as a certain object known as perverse sheaves on an object known as the the affine Grassmannian
for Ǧ, the Langlands dual group for G. For example, if G = SO2n+1, which is type B, the Langlands dual
group is Sp2n, which is type C. This is an amazing theorem, and one of the key ideas understanding the
Grassmannian in the original full-generality proof of Mirkoviĉ Vilonen [MV07] uses the representation theory
of affine Kac-Moody algebras in their proof.

Furthermore, the parameter κ plays a role in one form of the local geometric Langlands program. The
local geometric Langlands program (in broad strokes!) conjectures an equivalence of (∞, 2)-categories

Dκ(L(G))-Mod(Cat) ' D 1
κ

(L(Ǧ))-Mod(Cat)

of (DG-)categories with an action of Dκ(G) and (DG-)categories with an action of D 1
κ

(L(Ǧ)). We won’t
discuss this any further, other than to discuss a Whittaker-Satake version of this theorem, which says
that certain representations of Kac-Moody algebras can also be realized as twisted sheaves on the affine
Grassmannian.

Theorem 3.9. ([CDR] Non-factorizable, Parabolic Fundamental Local Equivalence) There is an equivalence
of derived categories

Whitκ(GrG) ' (ˆ̌gκ̌-Mod)
G(O)

which induces an equivalence of underlying abelian categories.

Motivation from Representation Theory in Positive Characteristic

It is known that a certain category of representations of the Kac-Moody algebra (specifically, the category
of G(O)-integrable representations at nontrivial levels which are p-torsion) are ‘analogous’ to characteristic
p representation theory. For example, Lusztig’s conjecture, a conjecture for character formulas of simple
representations, was first proven for Kac-Moody algebras.
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Furthermore, characteristic p representation theory also motivates the general abstract notion of gen-
eralized Cartan matrices. While we won’t go into them here, generalized Cartan matrices have different
realizations. We won’t explicitly define them here, see 27.2 of [EMTW20], however, see:

Example 3.10. Consider the (generalized) Cartan matrix for sl3. The associated Weyl group is S3. It acts
both on the three dimensional Z-module(!) Ze1 ⊕ Ze2 ⊕ Ze3 (the GL3-realizaiton) and, as we have seen
before, its two dimensional quotient space tZ associated to sl3, i.e. tZ := {aL1 + bL2 + cL3 : a+ b+ c = 0}.

The advantage of working over Z is that we can base-change to fields which are not necessarily of different
fields of characteristic zero! For example, it is currently believed that the category of representations RepL(G)
of a (split) reductive algebraic group G over a field L of characteristic p > 0 is controlled by the affine Weyl
group, i.e. the Weyl group associated to the associated affine GCM; see 27.5 of [EMTW20] where this is
spelled out more explicitly in terms of the diagrammatic Hecke category, and see [RWa] for some recent
progress on this in terms of tilting characters.

3.3 Affine Kac-Moody Algebras as An Extension of the Loop Algebra

Polynomial Algebras vs. Taylor Series

We first take a bit of motivation from algebraic geometry. In algebraic geometry, when we are given a ring
like k[t] with choice of point (t = 0) (or Z with a choice of point (p) for a prime integer p), we can consider
what’s happening at the formal neighborhood of the point k[[t]] := {

∑∞
i=0 ait

i : ai ∈ k} (respectively,
Zp := {

∑∞
i=0 ait

i : ai ∈ {0, 1, ..., p − 1}}) or the formal punctured neighborhood k[[t]][t−1] (respectively,
Qp := Zp[ 1

p ]). One can heuristically justify this as follows. If we are working at a line whose functions are

k[t], then if we zoom in very very close to the point (t = 0), the polynomial 1 − t should be invertible.
Since 1

1−t = 1 + t+ t2 + ..., we have already admitted some power series into the discussion, and it becomes
technically convenient sometimes to allow all power series into the discussion.

One might worry that technical complications arise when transitioning from something like the localized

algebra k[t](t) := {p(t)q(t) : q(0) 6= 0} to the Taylor series. This is solved by putting a topology on our ring.

Specifically, we will put the inverse limit topology on our ring, defining open sets U ⊆ k[[t]] to be those U for
which p ∈ U implies p + tnk[[t]] ⊆ U for some n. While this topology is not easy to visualize (for example,
k[[t]] admits a norm which satisfies the inequality |f(t), g(t)| ≤ max(|f(t)|, |g(t)|), a much stronger version
of the triangle inequality that’s not satisfied by the usual norm on vector spaces), it’s the correct topology
for a lot of algebraic purposes.

Affine Lie Algebras

Given the discussion of Section 3.3, we would like to replace the loop algebra we saw in Section 3.1 with the
algebra of Laurent series K := k[[t]][t−1]. Therefore, we wish to work with a notion of affine Kac-Moody
algebras which quotient to a loop algebra g((t)) := g ⊗ K. However, it is also useful (for example, in the
geometric Langlands program), to keep track of our central element κ that we deserved. Therefore, for our
simple Lie algebra g, we want a Lie algebra ĝκ which has a one dimensional central Lie subalgebra, and
quotients to the loop algebra. In fancier language, we would like ĝκ to fit into a short exact sequence of Lie
algebras:

0→ kκ→ ĝκ → g((t))→ 0

and, in turn, these turn out to be classified by their second Lie algebra cohomology group H2
Lie(g((t)), k), see,

for example, 7.6 of [Wei94]. Since we don’t want to delve too much into homological algebra, we will simply
state the result:

Proposition 3.11. If g is a simple Lie algebra, then H2
Lie(g((t)), k) is a one dimensional vector space with

a canonical basis given by the Killing form.

In particular, there is a one parameter family of central extensions of the loop algebra g((t)), and, after
choosing one, we label this choice by κ and let ĝκ denote the affine Lie algebra.
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Remark 3.12. Note affine Lie algebras are technically not affine Kac-Moody algebras per our conventions,
but closer to their ‘completion’.

One can explicitly choose some scalar multiple of the Killing form which we denote κ̃ and see that the
Lie bracket on ĝκ is given by the Lie bracket on elements in the loop algebra (since κ is central):

[X ⊗ p(t), Y ⊗ q(t)] = [X,Y ]⊗ p(t)q(t)− κ̃(X,Y )Rest=0(fdg)κ (1)

Because of this clash of notation, some authors prefer to denote κ by c or 1. The second term is related to
the gauge transformations of local systems on the punctured disk, see [Ras].

4 Quantum Analogues

Today, we’ll discuss the category of representations of the quantum group. To avoid technical complications,
today, we will stick to simply-laced Lie groups/algebras, which means that all roots of the associated Lie
algebra are of the same length.This means that our semisimple Lie algebra (which is a product of simple Lie
algebras by a definition or theorem, depending on how you view the theory) only has simple factors of type
A (the type of sln), D (the type of SO2n), or E6, E7, or E8. Everything here is defined for all semisimple
Lie algebras and the associated theorems are true.

We will also let k = C, since the relationship between representations of quantum groups and represen-
tations of affine Lie algebras is given by an exponential map, it turns out.

The motivation for quantum groups is as follows. One idea that you might have in studying representa-
tions of a group is to deform a group. The idea is that we might view a group G as a family Gt (where t
is either a complex number or some formal parameter). Then we might gain information about the group
itself by studying the Gt where t 6= 0. Unfortunately, no such deformations of a semisimple group exist10.

This means that we will have to think differently if we want to use ideas in deformation theory to solve
representation theoretic problems. In particular, quantum group is not defined as a group! In fact, the only
thing that we will define in this course is representations of a quantum group. Although non-commutative
geometry can be used to define the notion of a quantum group (see, eg, [hjf]), we will stick to defining the
category of representations of a quantum group. This is analogous to studying categories of modules over
the universal enveloping algebra instead of the universal enveloping algebra in and of itself.

To achieve this deformation, we must actually define a quantum analogue of the nonzero integers. We
work in the field Q(v), where v is a formal parameter.

4.1 Quantum Analogues of Integers

Definition 4.1. If n ∈ Z, the ‘graded quantum analogue of n’ is [n] := vn−v−n
v−v−1 .

Remark 4.2. This term is nonstandard–we will denote any nonstandard term below in quotes and italicize
standard terms.

Remark 4.3. Set q = v2. Note that we have an equality:

[n] =
vn

v

1− v2n

1− v2
= vn−1 1− qn

1− q
=: vn−1[n]q

where [n]q is the q-analogue of n. Note that [n]q = 1 + q + ...+ qn−1. In particular, limq→1[n]q = n, which
jusifies the term for the q-analogue of n. The vn−1 term specifies the grading, as we can informally identify
v as in cohomological degree 1. Similarly, we can informally identify our q as a cohomological parameter
in degree 2. In fact, we can identify this element with an object called the Bott parameter, see 3.1 in [Sul]
for more information on q analogues and [RWb], 16.2 for how this identification is used in representation
theory and, in particular, why one may regard q as in cohomological degree 2, justifying the term ‘grading’
in Definition 4.1.

10Unfortunately, I don’t know of a reference for this fact and haven’t actually seen an explicit statement written down
anywhere. If you know of one, let me know because I would love to include it here!
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Definition 4.4. Define the quantum factorial of n ∈ N>0 as [n]! := [n][n− 1]...[2][1] and [0]! := 1. We also
set11 the ‘quantum binomial coefficient’ as:[

n
r

]
:=

[n]!

[r]![n− r]!
=

[n][n− 1]...[n− r + 1]

[r]!
.

4.2 Quantum Universal Enveloping Algebra

We will now define the quantum universal enveloping algebra of a simply-laced g. The reader may wish to
stick to the case of g = sl2.

Definition 4.5. Let g be a simply laced Lie algebra. The quantum universal enveloping algebra is the free
Q(v)-algebra generated by symbols K±1

i , ei, and fi for each simple root i, subject to the following relations:

1. K±1
i K∓1

i = 1 and all K’s commute.

2. (hi eigenvalues are given by graded quantum analogue of ith row of GCM) KiejK
−1
i = vaijej and the

‘obvious analogue’ for the negative part KifjK
−1
i = v−aijfj

3. (Analogue12 of [e, f ] = h, i.e. (ei, hi, fi) form a quantum sl2 triple) [ei, fi] =
Ki−K−1

i

v−v−1

4. (Analogue of Remark 2.4) For distinct i, j we have [ei, fj ] = 0.

5. (The positive quantum Serre relation, see Remark 2.18) If i 6= j,

1−aij∑
s=0

(−1)s
[
1− aij
s

]
e

1−s−aij
i eje

s
i = 0.

6. (The negative quantum Serre relation)

1−aij∑
s=0

(−1)s
[
1− aij
s

]
f

1−s−aij
i fjf

s
i = 0.

Exercise 4.6. Check that in the case of aij = −1 (which is always the case for type A if i 6= j), the positive
quantum Serre relation states

e2
i ej + eje

2
i = (v + v−1)eiejei.

Note that quantum groups are in fact not actually groups at all! One reason that this term has been
adopted is that the algebra Uq(g) shares many properties that a ring A has if G = Spec(A) is an algebraic
group, i.e. a group object of varieties. For example, G = SL2 can be viewed as an algebraic group via
SL2 := Spec(C[a, b, c, d]/(ad − bc)). Algebraic geometers will note that the C points of the variety SL2 (in
the sense of maps from Spec(C)) are the same thing as points of SL2(C). This algebraic structure is called
a Hopf algebra. We won’t go into the structure of a Hopf algebra today, except to remark that:

Proposition 4.7. If a ring A is a Hopf algebra, the representations of A (as a Hopf algebra) acquire a
canonical braided monoidal structure.

11as far as I know, this is a nonstandard term, but the notation is standard
12Unfortunately, this notion doesn’t seem to be as cleanly mapped to the usual universal enveloping algebra, partly due to

the exponentiated torus and partly due to the fact that these ideas first arose from solving the Yang-Baxeter equations. The
way you can get the usual relation [e, f ] = h is to view K := qh and view q := e~/2. Then if you take the power series of
K−K−1

v−v−1 , you will get the first term h, i.e. if you send ~→ 0 you will get h. I learned this from [Pan], which has extended sl2
examples.
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4.3 Repq(SL2) for Generic q

Today, we will work with the simplest non-abelian case. We’ll make the following definition:

Definition 4.8. A Kac-De Concini representation of quantum SL2 at a parameter q0 ∈ C \ {0,±1} is a

module over the ring C⊗C[v±1] C[v±1]〈e, f,K±1/(KeK−1 = v2e,KfK−1 = v−1f, ef − fe = K−K−1

v−v−1 ) where

the left hand module structure is given by C[v±1]→ C is given by setting v = q0.

Remark 4.9. Equivalently, this representation can be realized as a module over C[v±1]〈e, f,K±1/(KeK−1 =

v2e,KfK−1 = v−1f, ef − fe = K−K−1

v−v−1 ) where the parameter v acts by scaling by q0. The condition that
q0 6= ±1 is only included for simplicity, and one can define this in a more uniform way by incorporating the

symbol

[
K; 0

1

]
, which we think of as formally adding in K−K−1

v−v−1 , i.e. adding an extra generator

[
K; 0

1

]
and

modding out by the relations ef − fe =

[
K; 0

1

]
and

[
K; 0

1

]
(v − v−1) = K −K−1.

Remark 4.10. Similarly, working over C is not needed to make this definition. However, we will see below
that the theory is very, very different if we allow v to act by zero, and so this is more essential.

Today, we will see which Kac-De Concini representations of the quantum group we can obtain by mimick-
ing the usual proof of the usual classification of irreducible sl2 representations. We will do this by mimicking
the usual proof of the classifications of irreps of sl2(C) and throw out any q0 where problems arise. (We will
see that drastically different behavior happens when q0 is a root of unity, and these will be the q0 we throw
out and discuss tomorrow).

Finding a Highest Weight Vector Classically

Recall in the classical story that a highest weight vector is a vector killed by e and scaled by h. Let us fix
a finite dimensional sl2 representation Vcl. How do we know it is diagonalizable at all? One way is to note
that an sl2 module is in particular a C[h] ↪−→ U(sl2) module. Since our module is finite dimensional, by the
Jordan normal form of a matrix, there must exist some vector vcl with some complex h-eigenvalue λ. One
can check that the operator e sends object in the h-eigenspace λ to an object in the h-eigenspace λ + 2.
Therefore, we can keep applying e to vcl until we can’t anymore, and we obtain a highest weight vector.

Finding a Highest Weight Vector for Quantum Groups

We can proceed similarly for modules over Uq, because any Uq-module is in particular and C[K±1]-algebra,
and the same analysis above shows that there is some (nonzero!) K-eigenvalue λ (with nonzero eigenvalue).

Exercise 4.11. Assume we are given a finite dimensional Uq-module V , and vλ ∈ V has K-eigenvalue
λ ∈ C \ 0. Compute the K-eigenvalue of ev. (Do not look down if you do not want the answer.)

We can similarly repeatedly apply e to our nonzero eigenvector u until em+1u = 0 for some (minimal)
m. Then we obtain that the vector emu is nonzero and has K-eigenvalue q2m

0 λ.

Computing the Full Representation Given a Highest Weight Vector Classically

Now assume we are given a highest weight vector u of highest (real part, a priori) weight λ in a finite
dimensional irreducible sl2-representation. We can similarly compute that fnu is in the λ− 2n eigenspace.
One can also repeatedly show the following proposition by induction:

Proposition 4.12. If u is a highest h-weight λ vector in an sl2 representation, then efu = λu and more
generally

efnu = (λ+ (λ− 2) + ...+ (λ− 2n+ 2))fn−1u
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This in particular shows that e fixes the vector space spanned by the various fnu. Furthermore, by finite
dimensionality, we may choose some n mimimal such that fnu = 0. Therefore we in particular see that

(nλ− n(n− 1))fn−1u = (λ+ (λ− 2) + ...+ (λ− 2n+ 2))fn−1u = efnu = 0

so therefore by assumption on n we have that nλ − n(n − 1) = 0 and so λ = n − 1. Therefore our highest
weight must be an integer!

Computing the Full Representation Given a Highest Weight Vector for Kac-De Concini Quan-
tum Group Representations

Similarly to Exercise 4.11, we can compute that if u is some vector for a naive representation of a quantum
group with K-eigenvalue λ, then fu has K-eigenvalue q−2

0 λ. However, note that if q0 is a root of unity,
we may apply f many times and get back to the eigenspace we started! Therefore, from here on out, we
make our only assumption: We assume q0 is not a root of unity. Therefore, we will now call these the
representations of the quantum group of SL2, when q0 is not a root of unity.

Here on after, the proof is nearly identical to the sl2 case. For example, the analogue of Proposition 4.12
is straightforward but tedious induction argument:

Proposition 4.13. In Uv, if m ∈ N≥0, we have

[e, fm] = [m]fm−1 v
1−mK − vm−1K−1

v − v−1
= [m]

vm−1K − v1−mK−1

v − v−1
fm−1

We can use this proposition to apply the same trick we applied in the classical case. Namely, if n
is the minimal nonnegative integer such that fnu is zero, then we can use this expression to show that

[m] q
n−1K−q1−nK−1

q−q−1 = 0. Now (again, critically!) the quantum integer [m] is nonzero because q0 is not a root

of unity. Therefore, we see (q1−nλ)2 = 1 and so we in particular obtain that λ2 = q2n−2, so in particular,
λ = ±qn−1.

We have therefore shown uniqueness of the following theorem:

Theorem 4.14. Fix an irreducible representation of the quantum group of unity and some q0 ∈ C \ 0
which is not a root of unity. Then for each integer n, there are precisely 2 representations of dimension
n + 1–specifically, one with highest weight which has K-eigenvalue qn0 , and one with highest weight with
K-eigenvalue −qn.

As in the classical case, the existence can be shown by hand for generic q0 using these generators and
relations. Unfortunately, we obtain drastically different behavior when q0 is a root of unity.

5 Representations of ĝκ and Repq(G)

Today, we’ll finally discuss the representation theory of quantum groups and affine Lie algebras. We’ll first
pick up where we left off yesterday.

5.1 Introduction to Representation Theory of Quantum Groups

Problem: Characteristic p Lie Algebras Don’t See the Whole Group

In representation theory over C, one can use the exponential map to show that representations of a simply
connected Lie group are equivalently given by representations of the associated Lie algebra. The exponential
map for a given tangent vector X ∈ g can be informally described as X 7→

∑∞
m=0

Xm

m! . Since we need
multiplicative inverses to all integers, this suggests that such a simple trick will not work in characteristic p
representation theory.

Example 5.1. Consider the representation of SL2 over an algebraically closed (for safety) field of k of
positive characteristic p, ∇p, given by degree p homogeneous polynomials in two variables, say x, y. This
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has a simple subrepresentation given by the two dimensional vector space spanned by xp and yp, which we
write as the subrepresentation Lp. This representation has associated map to GL2 given by(

a b
c d

)
7→
(
ap bp

cp dp

)
and is equivalently the first Frobenius twist of the standard two dimensional SL2 representation. One can
check in a few ways that the restriction to the Lie algebra is trivial. Here is one: we identify the tangent

space at the identity with the set {
(

1 + aε bε
cε 1 + dε

)
: a, b, c, d ∈ k}, i.e. the Speck(ε)/(ε2) points of SL2

where the restriction at ε = 0 (i.e. the pullback by the map Spec(k)→ Speck(ε)/(ε2)) is the identity point.
We then compute: (

1 + aε bε
cε 1 + dε

)
7→
(

1 + paε 0
0 1 + pdε

)
(using the fact ε2 = 0) and therefore since p = 0 in k we see that this is also the trivial representation. The
fix here is divided powers.

Solution: Divided Powers in Characteristic p Representation Theory

Here is one trick which is used in many places in number theory, algebraic geometry, and beyond. We can
view any object in g (over a field of any characteristic) as giving rise to a global vector field on G (since
all vector fields on a Lie/algebraic group are trivializable, we can just ‘G-around’ the vector), we can view
the tangent vectors as differential operators. However, in characteristic p, not all differential operators come
from powers of degree 1 differential operators.

Example 5.2. Again let k be a field of characeristic p and consider the ring of polynomial differential
operators on A1. (These are defined recursively–the functions are the degree 0 differential operators and
then inductively any endomorphism D on functions for which [D,−] maps the degree n differential operators
into degree n − 1 differential operators is a differential operator). Then one can check that the differential

operator ( d
dx )(p) := (d/dx)p

p! is defined since if we take p-many derivatives of any polynomial, each term will

have a p we can inforamlly factor out (and (p− 1)! is invertible in k).

There is more to be said here (for example, search ‘restricted Lie algebra’) but for now we will take this
as motivation.

Representations of Quantum Groups

We have a similar tradeoff to make in the theory of quantum groups13 Repq(G). Given a semisimple Lie
type, we can take the associated quantized universal enveloping algebra as in Section 4.2. However, as we
saw in the SL2 case, it is inconvenient to expect ourselves to be able to work with the algebra C(v), this in
effect prevents us from setting v to be any number! Therefore we work with the associated integral forms of
the quantized universal enveloping algebra. Let A := Z[v±1].

Definition 5.3. The Kac-De Concini integral form for the quantum group is the A-subalgebra of the
quantized universal enveloping algebra generated by the various eα, fα, and K±1

α . The Lusztig integral form
for the quantum group is the A-subalgebra generated by the Kac-De Concini integral form and all v-divided

powers e
(n)
α :=

enα
[n]! and f

(n)
α :=

fnα
[n]! , where again [n] denotes the quantum factorial.

Definition 5.4. A De Concini-Kac representation (respectively a Lusztig representation) of the quantum
group over C with chosen parameter q ∈ C is a module over the Kac-De Concini (respectively, Lusztig)
integral form for the quantum group specialized so that q acts by c.

13So as to remain consistent with most of the literature, contrary to what we did in class I will denote the category of
representations at a fixed parameter q ∈ C \ 0.
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Remark 5.5. The above definitions work over a ring C with choice of nonzero q ∈ C. However, it is often
convenient to impose a finiteness condition in the Lusztig setting (for example, requiring that only finitely
many divided powers act nontrivially).

We have thus obtained one piece of the Kazhdan-Lusztig equivalence–the category Repq(G) of finite
dimensional representations of the (Lusztig form of the) quantum group!

5.2 Introduction to Representation Theory of Affine Lie Algebra

Recall that the affine Lie algebra for a fixed simple Lie algebra g is a central extension of g((t)) by a central
element kκ, with distinguished basis element κ. We impose the following ‘local constancy’ condition on our
representation.

Definition 5.6. A module V over the affine Lie algebra ĝκ is said to be smooth if for all v ∈ V , there exists
some n > 0 for which tng[[t]] acts by zero.

Remark 5.7. It turns out that the cocycle which determines the extension of an affine Lie algebra canonically
splits on the Lie algebra g[[t]], so in particular this condition is well defined (a priori, tng[[t]] is only a quotient).

We can now define our category of representations ĝκ-Mod:

Definition 5.8. Let ĝκ-Mod denote the category of smooth ĝκ representations for which the canonical basis
element κ acts by the identity.

Remark 5.9. Authors define this category in two equivalent ways–one is to always work with the canonical
central extension given by the Killing form and require that the canonical basis element κ act by some choice
of scalar, and one is to allow the scalar itself to vary. These are equivalent.

Highest Weight Categories

Now, we’ll discuss the affine Lie algebra analogue of the Kazhdan-Lusztig equivalence. This can seem a bit
out of nowhere, so we’ll start off with the analogue in the finite dimensional story.

Definition 5.10. The BGG category O for a given semisimple Lie algebra g with choice of h ⊆ b is the
abelian category of finitely generated g-modules V for which each n ∈ n acts locally nilpotently, that is, for
each v ∈ V the space U(n)v is finite dimensional and t acts semisimply.

The BGG category is one of the first examples of a highest weight category. The idea is this: there are
‘easy to define’ objects, called the standard objects, which admit maps to other objects of interest. In this
case, the easy to define objects will be the Verma modules for each λ ∈ h∗.

Definition 5.11. For each λ ∈ h∗, the Verma module is ∆λ := Ug⊗Ub C, where the Ub-module structure
on C is given by the ring map U(b)→ U(b/n) ' U(h) = Sym(h)→ C.

It’s a fact that every Verma module has a unique simple quotient. The interplay between these two
objects was one of the original motivating studies of the BGG category O.

Example 5.12. Fix some λ ∈ C. The Verma module ∆λ for sl2 (where we regard λ in h∗ as a functional
which sends h ∈ sl2 to the number λ) has a highest weight vector v of highest weight λ, a one dimensional
λ− 2 eigenspace (spanned by fv) and so on and so forth, to infinity!

In particular, if λ is a positive integer, ∆λ is a nontrivial extension of the trivial representation and the
representation ∆−λ−1. This suggests more complicated behavior for category O than the category of finite
dimensional representations.

Example 5.13. It turns out that representations of a reductive algebraic group over a field of characteristic
p also form a highest weight category, although it’s easier to see the dual picture with the costandard objects.
Specifically, for SL2, the costandard objects ∇m are labeled by the nonnegative integers m (identified as
the dominant weights of SL2) and have a unique simple subobject. (The standard objects here are called
Weyl modules and are given in general by identifying ∆m (and more generally ∆λ for any dominant integral
weight) with the top cohomology of a certain line bundle on the flag variety.
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Category Oκ
We now have some more motivation behind us, and can ask ourselves–what plays the role of the Borel here?
The answer turns out to be the group of positive loops G(O) := G(C[[t]])! (This is because the group G(O)
is generated by the usual simple roots in a Kac-Moody algebra.)

Definition 5.14. We define the affine category Oκ for a given ĝκ as those smooth ĝκ representations V such
that for each n, the space V (n) := {v ∈ V : tng[[t]]v = 0} is finite (this is an analogue of finite generation).

The analogue of the Verma modules, the ‘easy to define’ objects of Oκ, are called the Weyl modules. We
will do the example of sl2, but for a general semisimple Lie algebra, the same ideas apply, see section 8 of
[KL91]. Let us fix a κ.

Proposition 5.15. Choose some finite dimensional irreducible representation V of SL2, with highest weight
vector v. Set ∆V

κ , as a vector space, as the vector space V ⊕ t−1V ⊕ t−2V ⊕ .... There is a canonical affine
sl2 module structure on ∆V

κ (so that, in particular, our central element scales by κ) such that v killed by
the positive roots (i.e. e⊗ 1 + tsl2[[t]]) and scaled by h. We have ∆a

κ ∈ Oκ.

The idea of this proposition is not too hard–we take the (completed) universal enveloping algebra and
first use the tensor product to kill anything of the form e⊗ 1 + tsl2[[t]]. We can also arrange h and κ to act
by the appropriate scalars (in fact, the collection of h and e⊗ 1 + tsl2[[t]] span an Lie subalgebra known as
the Iwahori subalgebra). Therefore, this representation of the Kac-Moody algebra has a canonical highest
weight vector, and has a canonical simple quotient (since it is a direct sum of its h-eigenspaces, where we
regard the eigenvalues distinct if they have a distinct power of t on them, and therefore any submodule
is h-diagonalizable and since the eigenvalues are well ordered, the sum of two h-submodules which both
individually don’t have our highest weight vector also do not have a highest weight vector in the submodule
spanned by the two). Thus, we have a canonical simple quotient, as desired.

5.3 The Kazhdan-Lusztig Equivalence

We can finally state the Kazhdan-Lusztig equivalence!

Theorem 5.16. Fix some κ ∈ C which is not in the real ray [− 1
2 ,∞). There is an equivalence of highest

weight, braided monoidal categories

Repq(G) ' Oκ
where q := eπiκ.

The proof of this theorem is pretty involved. For example, we haven’t really touched on the braided
monoidal structure on either of these categories! Just to give you a taste of one of the interesting new ideas
of [KL91]. How can we get that the structure of Oκ is braided monoidal? The answer is this–given two
representations, smoothness and the analogue of finite generation allow us to view these representations
as actually living over certain points of P1 (explicitly, we are viewing the t as the uniformizer of different
points). Then, the braidedness of the monoidal structure comes from the fact that we can move the point
around in locally constant paths and not change the representation. This also heuristically explains why this
monoidal structure need not be symmetric–if we fix one point and move the other around, and then move
the other point around the first in the same direction, that’s the same as fixing one point and moving the
second all the way around. This is a nontrivial loop in the fundamental group!

Remark 5.17. The requirement that κ is not in the real ray is actually required! In fact, the level κ = 1
2 is

called the critical level, and is where a lot of Geometric Langlands occurs. In fact, often times in Langlands,
all levels are shifted so that κ = − 1

2 is regarded as the origin (we used this convention above in surveying
the non factorizable fundamental local equivalence above).
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A Cheat Sheet for sl3

This cheat sheet is largely copied from [Gan20]. All of this information can be found in a less condensed
form in [FH91] or [Hum78].

Term (Usual) Value for sl3 Determined By
sl3 {traceless 3× 3 matrices} No Choices
Borel Subalgebra b {upper triangular traceless matrices} Choice
Unipotent Radical n := [b, b] {strictly upper triangular matrices} b
h (or t) {diagonal traceless matrices} *
Opposite Borel b− {lower triangular traceless matrices} b
Opposite Unipotent Radical n− {strictly lower triangular matrices} b
h∗ = HomV ect(h, C) {(L1, L2, L3) : L1 + L2 + L3 = 0} h
Weight Lattice Λ Z-Span{L1, L2, L3} h
Roots R {Li − Lj} i, j ∈ {1, 2, 3}, i 6= j h
sl2,α sl2 Lie-subalgebra spanned by fα, hα, eα Root α
Root Lattice ΛR Z-span of roots h
Positive Roots R+ {Li − Lj} i, j ∈ {1, 2, 3}, i < j b, h
Simple Roots {L1 − L2, L2 − L3} b, h
Weyl Group S3 via σ(Li) = Lσ(i) b, h
Simple Reflections {(1, 2), (2, 3)} b, h
Dominant Weyl Chamber {aL1 + bL2 + cL3 : a ≥ b ≥ c} b, h
Parabolic Subalgebra** ps C-Span(b, fs) b, simple root s
Killing Form κ κ(M,N) = 6Tr(MN) No Choices
Coroot α∨ := 2α/κ(α, α) α∨ = hα ∈ h Root α
Fundamental Weights L1,−L3 b, h
ρ :=

∑
r∈R+ r/2 L1 − L3 b, h

*Canonically b/n for any choice of Borel b but a choice makes it a subset of g
**Caution: These are the nontrivial parabolic subalgebras (b and g are parabolic subalgebras) and in general
parabolic subalgebras correspond in an order preserving bijection with subsets of the simple roots.
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