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1. Symplectic Implosion

1.1. Introduction. In symplectic topology, it is often of interest to study a symplectic (real)
manifold (M,ωR) with an action of a compact Lie group K. Since K is not typically abelian, it
can be useful to ‘abelianize’ your space. Guillemen-Jeffery-Sjamaar [2] constructed a procedure to
do just this: using the symplectic geometry of M , they construct a space Mimpl with an action of

a maximal torus U(1)ℓ of K.
The relevant part for our talk is that this construction also admits an algebro-geometric inter-

pretation. Specifically, recall that the complexification of a compact Lie group G := KC admits a
real symplectic form. This algebro-geometric interpretation is modelled on the fact that there is a
certain (choice of) subgroup N ≤ G (the ‘unipotent radical of some Borel’) such that G/N admits
a right action of a maximal (complex) torus which commutes with the G-action:

Example 1.1. If K = SUn, then G ∼= SLn,C, and one possible choice of N is the group of strictly
upper triangular matrices, i.e. those upper triangular matrices whose diagonal entries are all 1.

The fact that symplectic implosion admits an algebro-geometric description is one of the main
theorems of [2]:

Theorem 1.2. The symplectic implosion of the ‘universal example’ T ∗(K) is the affine closure

G/N of G/N , i.e. the spectrum of the ring of functions on G/N . Moreover, for M as above, Mimpl

is the symplectic quotient of M ×G/N by the action of the diagonal copy of K.

1.2. Universal Symplectic Implosion. Here, the affine closure of G/N is the spectrum of its

global functions. Because all symplectic implosions are entirely determined by the variety G/N ,

the variety G/N is sometimes called the universal symplectic implosion. We’ll discuss this space
briefly.

The variety G/N is quasi-affine, and so it is an open subscheme of G/N . This is a nice space,
although usually singular:

Example 1.3. SL2/N = A2, SL3/N = Spec(C[a, b, c, x, y, z]/(ax+ by + cz)).

On the other hand, one can use the Peter-Weyl theorem to stratify G/N by G-invariant subsets
of the associated Dynkin diagram:

(1) G/N := Spec(A) =
⋃
θ

G/[Pθ, Pθ]

which, for example, gives SL2/N = A2 \ 0 ∪ 0 and SL3/N is the union of four strata, one being
SL3/N and the smallest being the ‘cone point.’

2. Hyperkähler Implosion

In this talk, we’ll be studying the holomorphic symplectic analogue of this story. The analogue of
the universal symplectic implosion in the following setting is the universal hyperkähler implosion:

Definition 2.1. The universal hyperkähler implosion is the space T ∗(G/N), the affine closure of
the cotangent bundle T ∗(G/N).
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Example 2.2. When G = SL2, T ∗(G/N) = A4. When G = SL3, it’s a theorem [3] that T ∗(G/N)
can be identified with the minimal (non-zero) nilpotent orbit of SO8.

The first work I know of on this subject was done in [1]:

Theorem 2.3. The variety T ∗(SLn/N) admits a description by a certain hyperkähler reduction
obtained from a quiver representation. In particular, it is stratified by hyperkähler manifolds.

However, the universal hyperkähler implosion for general reductive groups G (such as SOn),
much less is known. For example, up until this year, essentially the only known result on the
geometry of the universal hyperkähler implosion was the following result of Ginzburg-Riche, who
studied the space T ∗(G/N) from the point of view of geometric Langlands duality:

Theorem 2.4. The scheme T ∗(G/N) is a variety, i.e. the global functions on T ∗(G/N) is finitely
generated. Moreover, this space admits a generically transitive action of the Weyl group W of G.

The proof of this theorem is extremely interesting and highly nontrivial. It shows that the global
functions on T ∗(G/N) are not generated by anything obvious like ‘the functions on G/N plus the
global tangent vector fields.’ The proof that the ring of functions is Noetherian uses a highly
nontrivial action of the Weyl group on T ∗(G/N) known as the Gelfand-Graev action induced from
an analogous W -action on the differential operators on G/N .

Remark 2.5. We take a brief digression to illustrate how tricky the subject of finite generation is.
If N above is replaced with the unipotent radical of some parabolic subgroup NP , then if G = SLn

then the same quiver methods used to prove Theorem 2.3 shows that the ring of functions on
T ∗(G/UP ) is finitely generated. For general G, this question is still open.

Besides this W -action and this finite generation, though, not much else was known about the
geometry of T ∗(G/N). In particular, there was no known stratification of T ∗(G/N) by finitely
holomorphic symplectic varieties (compatible with the Poisson bracket on the ring of functions).
However, in trying to understand this Gelfand-Graev action, Ginzburg and Kazhdan proposed the
following conjecture:

Conjecture 2.6. (Ginzburg-Kazhdan ’18) The variety T ∗(G/N) has symplectic singularities for
every G.

The main theorem of this talk will be that this theorem is true. Before defining what it means
for a variety to have symplectic singularities, we first note that this theorem will give the following
consequence due to a theorem of Kaledin:

Corollary 2.7. The variety T ∗(G/N) is stratified by finitely many smooth locally closed symplectic
subvarieties called symlectic leaves.

3. Symplectic Singularities

3.1. Symplectic Singularities via Nilpotent Cone. The definition of symplectic singularities
does not give the best insight into why it is defined the way it is.1 Instead, we will motivate the
study of symplectic duality through one of the first basic examples: the set of nilpotent matrices,
referred to as the nilpotent cone N . (Experts will note that there is a similar definition for any

1We record the definition in a footnote: we say that a normal variety X has symplectic singularities if the smooth
locus admits a symlectic 2-form and such that for any resolution of singularities p : Y → X, the induced 2-form on
the pullback extends to a 2-form on Y .

More algebro-geometrically minded people may prefer the following characterization: a normal variety X has
symplectic singularities if and only if if the smooth locus admits a symlectic 2-form and X is Gorenstein and has
rational singularities, which in our case (for an affine variety X) means that some/any resolution of singularities has
no higher Cěch cohomology.
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semisimple Lie algebra g.) The Kostant-Kirillov form gives a symplectic form on N , and moreover

it is known that there is a resolution of singularities known as the Springer resolution Ñ for which
the pullback of this symplectic form extends to all of Ñ .

One of the reasons this variety is studied is its relevance to the BGG Category Og
0, a category

of representations of the Lie algebra of G. In the 80’s and 90’s, representation theorists proved a
bunch of ‘duality’ theorems involving this category. For example:

Theorem 3.1. (Soergel) There is an equivalence of categories Og
0
∼= O

Lg
0 , where Lg denotes the

Lie algebra of the group Langlands dual to G.

This theorem can be generalized to a ton of equivalences involving Langlands dual groups in
representation theory that fall under the general heading of Koszul duality.

Remark 3.2. This theorem isn’t as interesting for sln since Lsln = sln, and gives some motivation
for why studying these varieties is important for general G.

3.2. Symplectic Duality in General. An program due to Braden-Licata-Proudfoot-Webster
predicts that the entire story of Section 3.1 only depended on the fact that N is an affine variety
with symplectic singularities which has a conical action of Gm (= C×) which we will refer to as
varieties with conical symplectic singularities. A striking feature of this program is its breadth:
a Koszul duality equivalence (and more!) is predicted (and in many cases proved) for any of the
following pair of varieties:

X X !

NG NLG

Minimal nilpotent orbit for sln C2 � (Z/nZ)
Hypertoric variety (Gale) dual hypertoric variety

ADE quiver varieties Affine Grassmannian slices
X ! X

In fact, these pairs are predicted to come from physics as the mirror symmetry of Higgs/Coulomb
branches of a 3d N = 4 supersymmetric quantum field theory.

4. Main Theorem

Now having motivated the theory of symplectic duality, we now state our main result on the
geometry of T ∗(G/N). Rougly speaking, one can translate facts known from the quiver description

of T ∗(SLn /N) to predict what might be true about T ∗(G/N), and then prove these statements
using representation theory. Our main example of this principle is the following: Boming Jia [3]
used the quiver description of Theorem 2.3 to show the following:

Theorem 4.1. The variety T ∗(SLn /N) has symplectic singularities ‘because the codimension of
its singular locus is at least four.’

One can use this to prove the following main theorem of this talk, which confirms the Ginzburg-
Kazhdan conjecture:

Theorem 4.2. The variety T ∗(G/N) has symplectic singularities ‘because the codimension of its
singular locus is at least four.’

We also show that this variety is conical, so that T ∗(G/N) fits into the symplectic duality
program we discussed above!
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