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Abstract. We classify a ‘dense open’ subset of categories with an ac-
tion of a reductive group, which we call nondegenerate categories, en-
tirely in terms of the root datum of the group. As an application of our
methods, we also:
(1) Upgrade an equivalence of Ginzburg and Lonergan, which identi-

fies the category of bi-Whittaker D-modules on a reductive group
with the category of W̃ aff-equivariant sheaves on a dual Cartan
subalgebra t∗ which descend to the coarse quotient t∗ � W̃ aff, to a
monoidal equivalence (showing that the Whittaker-Hecke category
is symmetric monoidal and answering a question of Drinfeld) and

(2) Show the parabolic restriction of a very central sheaf acquires a
Weyl group equivariant structure such that the associated equi-
variant sheaf descends to the coarse quotient t∗ � W̃ aff, proving a
modified conjecture of Ben-Zvi–Gunningham.
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1. Introduction

1.1. Main Results. Much of modern geometric representation theory can
be interpreted as the study of groups acting on categories and the natural
symmetries that the various invariants obtain; we will see specific examples
of this in Section 1.2. Therefore it is of natural interest to study the class
of all categories with an action of a split reductive group G. Our main
theorem in this paper provides a ‘coherent’ description for a localized class
of G-categories known as nondegenerate categories.

Definition 1.1. AssumeG is simply connected. A nondegenerate G-category
is a G-category C such that for every rank one parabolic Pα, the invariants
C[Pα,Pα] vanish.

We study some of the basic properties of nondegenerate G-categories in
the companion paper [Gan23]. For example, we argue that any G-category
C admits a functor C → Cnondeg that, informally speaking, has the same

properties as the map j! : D(X) → D(U) for an open subset j : U ↪−→ X.
This is made precise in [Gan23, Section 2.4.5].

Our main result in this paper states that the 2-category of nondegener-
ate G-categories admits a coherent description as modules over sheaves on
an ind-scheme ΓW̃ aff defined only in terms of the action of the extended

affine Weyl group W̃ aff := X•(T ) ⋊ W on t∗. As ind-schemes, we have
ΓW̃ aff ≃ π1(G

∨) × ΓW aff , where G∨ denotes the Langlands dual group and

ΓW aff denotes the union of graphs in t∗ × t∗ given by the W aff-action on

t∗. One can identify ΓW̃ aff ≃ t∗ ×t∗�W̃ aff t∗ for a certain prestack t∗ � W̃ aff

known as the coarse quotient, a main object of study of [Gan22]. This im-
plies that one can use the convolution formalism of [GR17a, Section 5.5] to
equip IndCoh(ΓW̃ aff) with a monoidal structure. Our main result can be
summarized as follows:

Theorem 1.2. There is an equivalence of 2-categories

G-modnondeg ≃ IndCoh(ΓW̃ aff)-mod
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where the left hand side denotes the 2-category of all nondegenerate G-
categories.

As we will review in Section 1.5, this result can reinterpreted as an equiv-

alence of monoidal categories D(N\G/N)T×T,wnondeg ≃ IndCoh(ΓW̃ aff); see The-

orem 1.14 for the full statement.
A key difference in the theory of groups G acting on categories C from

the theory of groups acting on vector spaces is the existence of nontrivial
maps between invariants CH1 and CH2 , where each Hi is a closed subgroup
of G (and, in particular, we do not require H1 ⊆ H2 or vice versa). These
relations will prove a key technical tool in the proof of our theorem, and are
summarized in Section 1.4. In particular, we will see in Theorem 1.9 that,
for any G-category, the category CNnondeg admits a W -action, and that there

is a fully faithful functor CN−,ψ ↪−→ CN,Wnondeg.

When C itself is given by Whittaker D-modules on G, one can show
[Gan23, Corollary 3.4] that CN ≃ CNnondeg, and, using this special case of
Theorem 1.9, in Theorem 1.4 we derive a monoidal equivalence between the
category of bi-Whittaker D-modules on G and W̃ aff-equivariant sheaves on
t∗ which descend to the coarse quotient, providing a monoidal upgrade of
[Gin18] and [Lon18]. Using nondegeneracy, we also show that the parabolic
restriciton of a very central D-module acquires a W -equivariant structure
such that the sheaf (with its equivariance) descends to the coarse quotient

t∗ � W̃ aff, see Section 1.6.

1.2. Motivation and Survey of Known Results. Assume we are given
a finite dimensional vector space V over an algebraically closed field k,
equipped with an endomorphism T : V → V . A familiar paradigm in
representation theory and algebraic geometry is to regard V as a module
over the ring k[x], where x acts by the transformation T , and to write V
as a direct sum of its generalized eigenspaces Vα. Furthermore, the vector
space V can be recovered from the various Vα. We may equivalently view V
as a sheaf over the line, and then each Vα can be identified as the subsheaf
which lives over α. This particular example gives the well known Jordan
normal form of a matrix, but there are analogues of this process for any
k-algebra A and any module M ∈ QCoh(Spec(A)).

We can also apply this idea to other representation theoretic contexts. For
example, let g be a semisimple Lie algebra, and letM be a representation of
the Lie algebra. Then it is known (see eg [Hum08]) that Zg is a polynomial
algebra, and furthermore that we may identify Spec(Zg) ≃ t∗�W . Therefore
we may spectrally decompose a given g-representation by viewing it as a
sheaf on the space t∗ �W .

We will discuss analogues for these results one categorical level higher.
Specifically, our notion of vector space will be replaced with that of a cat-
egory. The analogue of an algebraic group acting on a vector space is a
group acting on a category. For example, if G acts on a variety X, then
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the category D(X), the category of D-modules on X, obtains a canonical
G-action. Similarly, we can obtain a G-action on the category g-mod.

Analogous to the case of a group acting on a vector space, we can define
the invariants of a group acting on a category. For example, one can under-
stand representations of the Lie algebra g of a semisimple algebraic group
G via the invariants Rep(G) ≃ g-modG, or the associated zero block of the
BGG category O, which can be viewed (via the Beilinson-Bernstein local-
ization theorem) as objects of D(G/B)N . Similarly, one can also study the
other blocks of category O via the twisted invariants D(G/λB)N for λ ∈ t∗.

Certain twisted invariants play a special role in geometric representation
theory. Specifically, for a reductive group G acting on a category C, one
can take the Whittaker invariants CN−,ψ. This category can be interpreted
as the generically twisted N− invariants of C–the specific definition is given
below. Often, Whittaker subcategories can be easier to understand than
the usual N -invariants. For example, we have seen above that one may
identify D(G/B)N contains all of the information of the BGG category O0,
whereas one can use the ideas of [BBM04] discussed below to show that

D(G/B)N
−,ψ ≃ Vect.

TheWhittaker invariants of a category have often been used to ‘bootstrap’
information about the original category, see, for example, [AB09] or [BY13].
In fact, our results below can be viewed as an attempt to generalize the
work done by [BY13] at generalized central character 0 to the setting of
varying central character. One can formally argue that the category of bi-
Whittaker invariants of D(G), denoted Hψ := D(N−

ψ \G/−ψN
−), acts on

the Whittaker invariants of any category with a G-action. It is therefore of
interest to determine an explicit description for Hψ. This was identified in
terms of sheaves on t∗ which are equivariant with respect to the extended
affine Weyl group W̃ aff := X•(T )⋊W for the Langlands dual group, where
X•(T ) is the character lattice HomAlgGp(T,Gm):

Theorem 1.3. ([Lon18], [Gin18]) There is an equivalence identifying the
abelian category of bi-Whittaker D-modules on G with the abelian category
of W̃ aff-equivariant quasicoherent sheaves on t∗ which descend to the coarse
quotient t∗ � W̃ aff.

Ginzburg [Gin18] and Ben-Zvi–Gunningham [BG17, Section 1.2] also
recorded the expectation that a derived, monoidal variant of Theorem 1.3
should hold (see Section 2.1 for our exact categorical conventions). To state
this precisely, we first recall the notion of the Mellin transform, a symmetric
monoidal, W -equivariant equivalence FMuk : IndCoh(t∗/X•(T ))

∼−→ D(T ),
where the notation follows [Lur18a]. Here, we use ind-coherent sheaves
rather than quasi-coherent sheaves since our D-modules are right D-modules
in the sense of [GR], although since T is smooth, there is also a similar

equivalence for left D-modules QCoh(t∗/X•(T ))
∼−→ Dℓ(T ). With this, we

can now state the derived, monoidal version of Theorem 1.3:



CLASSIFICATION OF NONDEGENERATE G-CATEGORIES 5

Theorem 1.4. There is a monoidal, t-exact, fully faithful functor Ãv∗ :
Hψ ↪−→ D(T )W . Under the Mellin transform, this functor induces monoidal
equivalence F ′ such that the following diagram commutes

IndCoh(t∗ � W̃ aff)

F ′

��

π!
// IndCoh(t∗/W̃ aff)

FMuk

��
Hψ

Ãv∗ // D(T )W

and such that F ′[dim(t∗)] is t-exact.

Remark 1.5. The heart of any t-exact functor of DG categories (or, more
generally, triangulated categories) equipped with t-structures is an exact
functor of abelian categories, see [BBD82, Proposition 1.3.17]. Therefore,
taking the heart of the equivalence in Theorem 1.4, our methods show that
there is an exact equivalence of the abelian categories in Theorem 1.3.

Remark 1.6. The t-exactness of Ãv∗ is essentially due to Ginzburg [Gin18,
Theorem 1.5.4]. Moreover, as we will see below, the composite functor

Hψ
Ãv∗−−→ D(T )W oblvW−−−−→ D(T )

can be identified, up to cohomological shift, with an averaging functor AvN∗ ,
where oblvW denotes the forgetful functor.

Of course, our proof of Theorem 1.4 is different than the proofs of [Gin18]
or [Lon18]. For example, the ideas in [Lon18] pass through the geometric
Satake equivalence, whereas we do not. We view our proof as closer in spirit
to the proof of [Gin18]; for example, both use versions of the Gelfand-Graev
action, see [Gan23, Section 3]. However, the idea to use the groupoid ΓW̃ aff

is taken from [Lon18] and [BG17].

1.3. Symmetric Monoidality of Whittaker-Hecke Category. Much
of our proof of Theorem 1.4 is phrased in the language of categorical rep-
resentation theory. This can provide another conceptual explanation for
Theorem 1.4 which makes certain aspects of this equivalence follow from
general, categorical principles. For example, in [Gin18], Ginzburg, following
Drinfeld, noted that a derived version of Theorem 1.3 would have the fol-
lowing consequence, proved by Ben-Zvi and Gunningham shortly after the
first edition of [Gin18] was published:

Corollary 1.7. [BG17, Corollary 6.15] The convolution monoidal stucture
on Hψ can be upgraded to a symmetric monoidal structure.

The proof of Corollary 1.7 in [BG17] is somewhat indirect. Specifically,
the authors prove that the cohomologically sheared (or asymptotic) version of
the Whittaker-Hecke category Hℏ

ψ is symmetric monoidal using the derived,
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loop rotation equivariant geometric Satake theorem of [BF08], and argue
that one can obtain a symmetric monoidal structure on Hψ by unshearing

(see [BG17, Section 5.3]) a graded lift of Hℏ
ψ provided by a mixed version of

the derived, loop rotation equivariant geometric Satake theorem of [BF08],
which is not currently available in the literature.1

The fully faithfulness of Theorem 1.4 provides an alternate proof of the
symmetric monoidality of Hψ which is more direct. Specifically, because

we will see that the functor Ãv∗ is monoidal in Proposition 3.4, the fully

faithfulness of Ãv∗ immediately implies Corollary 1.7, since we can identify
Hψ as a monoidal subcategory of a symmetric monoidal category.

1.4. Generalization to Nondegenerate G-categories. The principles
of categorical representation theory will also allow us to prove the follow-
ing generalization of Theorem 1.4 to all nondegenerate G-categories (dis-
cussed above in Section 1.1), see Theorem 1.9. Specifically, note that we
may interpret the symmetric monoidality of Theorem 1.4 as a statement
regarding spectrally decomposing categories with a G-action. For example,
Theorem 1.4 says that if C is a category with a G-action, then for each
[λ] ∈ t∗ � W̃ aff, we may consider the eigencategories of its Whittaker invari-

ants (CN−,ψ)[λ]. However, some categories do not admit Whittaker invari-

ants. For example, one can show that VectN
−,ψ ≃ 0, see [Gan23, Example

2.41].
On the other hand, work of [BGO20] (which we will summarize below in

Theorem 1.13) shows that if C is any G-category, the subcategory CN (with
its natural symmetries) determines C. It is therefore of interest to relate the
N -invariants of a category to the Whittaker invariants. To do this, we recall
the following well known result, which we provide a proof for the sake of
completeness in [Gan23]:

Proposition 1.8. The restriction functor provides a canonical right T -
equivariant equivalence of categories

D(G/N)N
−,ψ ∼−→ D(N−B/N)N

−,ψ ≃ D(T ).

Therefore, we may reinterpret the statement of Theorem 1.4 in the lan-
guage of groups acting on categories. Specifically, Theorem 1.4 in fact

says that for the left G-category C := D(G)N−,−ψ, the averaging functor

AvN∗ : CN−,ψ → CN , after applying cohomological shift, lifts to a fully faith-
ful, t-exact functor:

(1) CN−,ψ Ãv∗
↪−−→ CN,W .

Now let C be any G-category. Since CN determines C, one may ask
whether a similar technique can be applied. Unfortunately, for example,
in the universal case C = D(G), the category CN is not expected to admit

1For some progress in this direction, see the results announced in [HL22].
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a natural W -action. However, as we have shown in [Gan23, Corollary 3.37],
W does act on any nondegenerate G-category C, and moreover for such C
we will show that the analogue of Theorem 1.4 holds:

Theorem 1.9. For any nondegenerate G-category C, the category CN ac-
quires a canonical W -action and there is an induced, fully faithful functor

Ãv∗ : CN
−,ψ ↪−→ CN,W .

Example 1.10. Let C = D(G)N−,−ψ with its canonical left G-action. Then
C is nondegenerate, see [Gan23, Corollary 3.4]. Furthermore, by Proposi-
tion 1.8 we have CN ≃ D(T ) and a result of Ginzburg’s ([Gin18, Proposition
5.5.2]) states that this isomorphism is W -equivariant. Thus a special case
of Theorem 1.9 gives the fully faithfulness statement in Theorem 1.4.

1.5. A Universal Nondegenerate G-category. Recall that if H is any
algebraic group acting on a category C, we may also define its weak invari-
ants. This is defined by forgetting the action of the category D(H) down to
an action of IndCoh(H) and taking invariants of C as an IndCoh(H)-module
category. The notion of weak invaraints is specific to groups acting on cat-
egories (as opposed to vector spaces). Moreover, for any discrete group F
the data of a weak action is equivalent to a strong action since the forgetful
functor oblv : D(F ) −→ IndCoh(F ) is an equivalence.

Example 1.11. The category D(G)G,w ≃ g-mod, while D(G)G ≃ Vect.
We also note that the category D(G) obtains two commuting G-actions
(one from the left action of G on itself and one from the right). Therefore,
we may define the category D(G)G×G,w, and this category identifies with
the Harish-Chandra category HCG the category of Ug-bimodules with an
integrable diagonal action. Note we also see from this example a natural
way to interpret the G-action on g-mod.

Example 1.12. The category g-mod acquires a G-action, and so, in partic-
ular, the category g-modN acquires a T ∼= B/N action. We can identify the

category g-modN,(T,w) with the universal category O, see [KS]. We survey
and study the connections to the BGG category O in much more detail in
[Gan23]. In particular, we show there that the left adjoint to the functor

Ãv∗ at a fixed central character can be identified with an enhanced version
of Soergel’s functor V. Thus, as explained in more detail in [Gan23, Section

1], this gives one interpretation of the left adjoint of Ãv∗ in the universal
case–it is an analogue of Soergel’s V which does not require a fixed character.

The following theorem then states that a category C with a G-action can
be recovered from CN,(T,w) with its natural symmetries.

Theorem 1.13. [BGO20, Theorem 1.2] The monoidal categories D(G),
D(N\G/N), and D(N\G/N)T×T,w are all Morita equivalent.

Therefore, to understand results on G-categories, it suffices to understand
the monoidal category D(N\G/N)T×T,w. In particular, via application of
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Theorem 1.3 of [BGO20], we may similarly understand nondegenerate G-

categories via understanding the localized monoidal categoryD(N\G/N)T×T,wnondeg .

We are now in a position to recast Theorem 1.2 as an equivalence of
monoidal categories:

Theorem 1.14. There are monoidal equivalences of categories

D(N\G/N)T×T,wnondeg ≃ IndCoh(ΓW̃ aff) ≃ IndCoh(t∗ ×t∗�W̃ aff t∗)

D(N\G/N)nondeg ≃ IndCoh(t∗/X•(T )×t∗�W̃ aff t∗/X•(T ))

which are t-exact up to cohomological shift.

In particular, the formalism of [BG17, Theorem 1.1] applies2 and we ob-

tain an E2 functor IndCoh(t
∗�W̃ aff)→ Z(D(G)nondeg) ≃ D(G)Gnondeg, where

given a monoidal category A, Z(A) denotes its center Z(A) := EndA×A(A).
Using this, we may consider the eigencategories for any nondegenerate G-
category over the category IndCoh(t∗ � W̃ aff), see [BG17, Section 2.8.2].

Remark 1.15. The statement of Theorem 1.14 can be interpreted at the
level of abelian categories as follows, which we state for G adjoint type
for the ease of exposition. Let ΓW aff be the union of the graphs of the
affine Weyl group W aff. Then ΓW aff is an ind-scheme, and so, in particular,
every compact object in IndCoh(ΓW aff) can be realized as the pushforward
iIndCoh
S,∗ (FS) for iS : ΓS → ΓW aff the closed embedding of the union of some
finite collection graphs of the affine Weyl group, and FS an object of the
abelian category of coherent sheaves on ΓS [GR17d, Chapter 3, Section 1].
Therefore, every object of D(N\G/N)T×T,w,♡ admits a quotient which can
be viewed as a filtered colimit of such sheaves.

Remark 1.16. We can also interpret nondegeneracy as a localization of
2-categories

D(G)-mod→ D(G)-modnondeg.

This perspective may prove useful in the local geometric Langlands corre-
spondence, which studies twisted representations of the loop group. Our
localization can be interpreted as an upgraded version of the functor C 7→
Whit(C). The functor Whit is of importance to the local geometric Lang-
lands program, see [Ras18]. However, one does not need knowledge of this
program for the results below.

Remark 1.17. This result, along with Theorem 1.2, admits an interpreta-
tion in the theory of 2 ind-coherent sheaves, in upcoming work of Arinkin-
Gaitsgory and di Fiore-Stefanich [DS]. In this vein, an informal interpreta-
tion of Theorem 1.2 is that we can identify a generic part of G-categories as
free of rank one over IndCoh(t∗ � W̃ aff), and furthermore we have complete
understanding of the singular support behavior which can occur.

2For adjoint G, this particular example for the category IndCoh(ΓW̃aff) is, in fact, given
in [BG17, Section 2.7.3]. The new input is here is providing a description of IndCoh(ΓW̃aff)
in terms of D-modules on G, see Theorem 1.14.
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Remark 1.18. In [BG17], a E2-functor Ngôℏ from the cohomologically
sheared Whittaker-Hecke category Hℏ

ψ to the cohomologically sheared cat-

egory Dℏ(G/G) is constructed using the derived, loop rotation equivariant
geometric Satake of [BF08]. Using this, the authors also sketch an argument
that there is an E2-functor Ngô : Hψ → D(G/G). Assuming the existence
of such an E2-functor, we would obtain that all G-categories diagonalize
over t∗ � W̃ aff. The idea that such categories with a strong G-action should

diagonalize over t∗ � W̃ aff is implicitly used in the proofs below, and was
inspired by [BG17].

1.6. Equivariance on Very Central D-modules on G. Using the ideas
of categorical representation theory, we can also provide some evidence for
a recent conjecture of Ben-Zvi and Gunningham on the essential image of
enhanced parabolic restriction, which we state explicilty below after recalling
some preliminaries.

1.6.1. The Horocycle Functor and Parabolic Restriction. Consider the cat-
egory

Z(D(G)) := EndG×G(D(G)) ≃ D(G)G.
Here, as with all invariants in this subsection, G is acting via the adjoint
action. This category is canonically the center of all categories with a G-
action. Associated to it is a functor known as parabolic restriction Res :
D(G)G → D(T )T . For an excellent survey on parabolic restriction in many
of its guises in representation theory, see [KS]. We will define parabolic
restriction in terms of a related functor, known as the horocycle functor hc,
which is defined as the composite:

D(G)G
oblvGB−−−→ D(G)B AvN×N

∗−−−−−→ D(N\G/N)T.

Let i : N\B/N ↪−→ N\G/N denote the closed embedding.

Definition 1.19. The parabolic restriction functor is the composite

D(G)G hc−→ D(N\G/N)T
i!−→ D(T )T.

It was proved that parabolic restriction is t-exact in [BY]. In particular,
parabolic restriction induces an exact functor of abelian categories

Res : D(G)G,♡ → D(T )T,♡.

These abelian categories can often be easier to work with than their cor-
responding derived counterparts. For example, a standard argument (see,
for example [Ras20a, Section 10.3]) shows the forgetful functor identifies
D(G)G,♡ as a full abelian subcategory of D(G)♡ for G any connected alge-
braic group. On the other hand, D(G)G is not the derived category of its
heart for any nontrivial reductive G, see [Lur17, Proposition 1.3.3.7, Dual
Version] for the particular property which fails.
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Let Ind denote the left adjoint to parabolic restriction, known as parabolic
induction. At the level of abelian categories, it was shown in [Che20, Section
3.2] that if F ∈ D(T )W,♡ ≃ D(T )T⋊W,♡, then the sheaf

Ind(oblvW (F)) ∈ D(G)G,♡

acquires a canonical W -representation functorial in F . Using this, it is
standard to show that one can lift parabolic restriction to a functor

WRes : D(G)G,♡ → D(T )W,♡

which Ginzburg computed explicitly and showed identifies D(T )W,♡ with a
quotient category of D(G)G,♡ in [Gin22, Theorem 4.4].

1.6.2. Very Central D-Modules. While parabolic restriction in general has
many interesting properties, it is not monoidal in general. However, a stan-
dard argument (see (7) below) gives that the horocycle functor is monoidal.
This suggests that a distinguished role is played by those sheaves F ∈
D(G)G,♡ for which one can recover hc(F) from Res(F), which, following
[BG17], we call very central :

Definition 1.20. We say a sheaf F ∈ D(G)G,♡ is very central if oblvT ◦
hc(F) ∈ D(N\G/N) is supported on N\B/N .

We let V denote the category of very central D-modules, which is an
abelian category by the t-exactness of parabolic restriction. TheseD-modules
on G have recently appeared in the étale setting in works of Chen. Specif-
ically, in [Che22], the author argues that the acyclicity of ρ-Bessel sheaves
follows from the very centrality of certain sheaves obtained from enhanced
parabolic induction on the étale analogue of sheaves in D(T )W which de-
scend to the coarse quotient. This very centrality is proved in [Che20].

In [BG17], the authors conjecture that very central D-modules are pre-
cisely those given by the Ngô functor (discussed in Remark 1.18) at the level
of abelian categories.3 We state the following formulation of the conjecture
here:

Conjecture 1.21. [BG17, Conjecture 2.14(2)] The restricted functor of
abelian categories

WRes : V → D(T )W,♡

has essential image given by those sheaves descending to the coarse quotient
t∗ � W̃ aff.

In Section 5.1, we provide some evidence for Conjecture 1.21. Specifically,
we show:

3This also justifies the term ‘very central,’ since the abelian category of very central
D-modules is expected to be a symmetric monoidal subcategory of an abelian category
which is only braided monoidal.
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Theorem 1.22. If F ∈ D(G)G,♡ is very central, then there is aW -equivariant
structure on Res(F) such that

oblvT (Res(F)) ∈ D(T )W,♡

descends to the coarse quotient.

We note that, while nondegeneracy and Whittaker invariants are used
heavily in the proof of Theorem 1.22, the statement of Theorem 1.22 uses
neither.

1.7. Outline of Paper. In Section 2, we review some conventions and
prove a result on comonadicity which will be used later. In Section 3, using
the foundations on nondegenerate G-categories developed in the companion
paper [Gan23], we prove Theorem 1.4 and Theorem 1.9. We then prove
Theorem 1.14 in Section 4 by first proving a non-monoidal variant and then
equipping this equivalence with a monoidal structure. In Section 5, we then
prove Theorem 1.22. This paper also contains one appendix, Appendix A,
which is written jointly with Germán Stefanich and upgrades the classical
Mellin transform to symmetric monoidal equivalence of DG categories.
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2. Preliminaries

2.1. Conventions. We use the conventions of [GR17b] regarding DG cat-
egories, or k-linear stable ∞-categories. In particular, for any scheme or
more generally any prestack Y, categories such as QCoh(Y) are defined as
DG categories. We spell out other conventions we use in more detail in the
companion paper [Gan23, Section 2].

2.2. Comonadicity.
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2.2.1. Barr-Beck-Lurie. In the proof of Theorem 1.14, we will use the Barr-
Beck-Lurie theorem. We will recall the result here for the reader’s convenience–
this is summarized in much more depth and proved in [Lur17, Theorem
4.7.3.5]. Given a functor of infinity categories L : C → D which admits a
right adjoint R : D → C, we can obtain a comonad in D which we denote
LR. The functor L canonically lifts to a functor Lenh : C → LR-comod(D).
Remark 2.1. If L : C ⇆ D : R is any adjoint pair of functors, we will
always reserve the superscript ‘enh’ for the corresponding lift Lenh : C →
LR-comod(D). Furthermore, if D ≃ A-mod for some algebra A and L and
R are continuous functors of DG categories, then LR(A) is a coalgebra, and
LR-comod(D) ≃ LR(A)-comod. We will abuse notation and also denote
the composite functor C → LR(A)-comod by Lenh.

Definition 2.2. We say that L is comonadic if Lenh is an equivalence.

Theorem 2.3. (Barr-Beck-Lurie Theorem for Comonads) The following are
equivalent:

• The functor L is comonadic.
• The functor L is conservative, and moreover for any L-split cosimpli-
cial object C• of C, the totalization of C• exists4 in C and moreover
the canonical map L(Tot(C•))→ Tot(L(C•)) is an equivalence.

2.2.2. A Comonadicity Condition. In this section, we state and prove a con-
dition for the comonadicity of functors, see Corollary 2.6. The results of
this subsection are modifications of ideas contained in the proof of [Ras20b,
Proposition 3.7.1].

Proposition 2.4. If L : C → D is any functor of DG categories equipped
with t-structures such that:

(1) The t-structures on C and D are right-complete
(2) L is t-exact and
(3) L is conservative on C♡

then the induced functor L : C≥0 → D≥0 commutes with arbitrary totaliza-
tions.

We first begin with a standard lemma on cosimplicial sets, whose proof
can be found, for example, in the third paragraph of the proof of [Ras20b,
Proposition 3.7.1]:

Lemma 2.5. For any DG category C equipped with a right-complete t-
structure and any cosimplicial object F• of C such that F i ∈ C≥0 for all i,
the totalization Tot(F•) exists and we have the identity

τ≤n(Tot(F•)) ≃ τ≤n(Tot≤n+1(F•))

4Observe that if C and D are DG categories then these totalizations always exist. This
is because, by definition, any DG category is cocomplete and thus, by the conventions as
in [GR17b, Section 1.5.1.5], all DG categories are presentable; therefore DG categories are
closed under totalizations by [Lur09, Corollary 5.5.2.4].
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where Tot≤n+1(F•) denotes the partial totalization, i.e. the limit over
∆≤n+1.

Proof of Proposition 2.4. We have

L(Tot(F•))
∼←− L(colimn(τ

≤n(Tot(F•))))

≃ colimnL(τ
≤n(Tot(F•))) ≃ colimnL(τ

≤n(Tot≤n+1(F•)))

where the first step uses the right-completeness of the t-structure of D, the
second uses the fact that all functors of DG categories are continuous, and
the third uses Lemma 2.5. We may continue this chain of equivalences to
obtain

L(Tot(F•)) ≃ colimn(τ
≤n(Tot≤n+1(LF•))) ≃ colimn(τ

≤n(Tot(LF•)))

where the first step follows from the fact that L is t-exact and commutes
with finite limits and the second equivalence follows from Lemma 2.5. In
particular, by the right-completeness of the t-structure of D, we see that L
preserves these totalizations, as desired. □

Corollary 2.6. Let C,D be DG categories equipped t-structures for which
the t-structure on C and D are right-complete, and assume that L : C → D
is a t-exact functor which admits a right adjoint R. Then if L is conservative
on C♡, the restricted functors C≥0 → D≥0 and C+ → D+ are comonadic.

Proof. By induction on cohomological amplitude, the t-exactness of L im-
plies that L sends no nonzero object of finite cohomological amplitude to
zero. By right completeness of the t-structure on C and the fact that L
commutes with colimits therefore implies that L sends no nonzero object of
C+ to zero, and therefore both restrictions C≥0 → D≥0 and C+ → D+ of L
are conservative.

Next, notice that if C• is an L-split cosimplicial object of C≥0 then by
Lemma 2.5 its totalization exists in C and by Proposition 2.4 L commutes
with these totalizations. Thus by Theorem 2.3 we see that C≥0 → D≥0 is
comonadic, and an identical argument shows C≥−i → D≥−i is comonadic for
any integer i. This, in turn, implies that the functor C+ → LR-comod(D+)
is fully faithful and essentially surjective, and so it is an equivalence of
categories as desired. □

3. Proofs of Theorem 1.4 and Theorem 1.9

In this section, we prove Theorem 1.4 and Theorem 1.9.

3.1. Reminder on Descent to the Coarse Quotient. In this section,
we summarize the contents of [Gan22, Section 4]. Specifically, recall the

existence of the coarse quotient t∗�W̃ aff. This space admits a quotient map

s : t∗/W̃ aff → t∗ � W̃ aff for which the pullback s! is fully faithful, and if an

object of IndCoh(t∗)W̃
aff

lies in the essential image of this functor, we say it
descends to the coarse quotient. There are some equivalent conditions on a
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given sheaf descending to the coarse quotient. The ones that will be used
here are the following:

Proposition 3.1. A sheaf F ∈ IndCoh(t∗)W̃
aff

descends to the coarse quo-

tient t∗ � W̃ aff if and only if it satisfies one of the following equivalent con-
ditions:

(1) For every field-valued point x ∈ t∗(K), the canonicalW aff
x -representation

on x!(oblvW̃
aff

W aff
x
(F)) is trivial.

(2) The object oblvW̃
aff

⟨s⟩ (F) ∈ IndCoh(t∗/⟨s⟩) descends to the coarse

quotient t∗ � ⟨s⟩ for every simple reflection s ∈W .
(3) For every simple coroot γ with associated simple reflection s of the

(finite) Weyl groupW and associated closed subgroup scheme Gγ
m ↪−→

T , the functor

D(T )W oblv−−→ D(T )⟨s⟩ Av
Gγm
∗−−−−→ D(T/Gγ

m)
⟨s⟩ ≃ D(T/Gγ

m)⊗ Rep(⟨s⟩)
mapsM(F) into the subcategoryD(T/Gγ

m) ≃ D(T/Gγ
m)⊗Vecttriv ↪−→

D(T/Gγ
m) ⊗ Rep(⟨s⟩), where Gγ

m is the rank 1 subgroup scheme of
T associated to γ, and Vecttriv is the full subcategory generated by
the trivial representation of the order two group ⟨s⟩.

Proof. The equivalence of an F descending to the coarse quotient, (1), and
(2) are given in [Gan22]. We now show that the full subcategories given
by (2) and (3) of Proposition 3.1 are equivalent. To this end, fix a simple
reflection s, and note that if F denotes the composite functor

D(T )⟨s⟩ Av
Gγm
∗−−−−→ D(T/Gγ

m)
⟨s⟩ ≃ D(T/Gγ

m)⊗ Rep(⟨s⟩)
then for any F ∈ D(T )W , F (F) lies in the subcategoryD(T/Gγ

m) ≃ D(T/Gγ
m)⊗

Vecttriv if and only if the object Av
T/Gγm,w
∗ F (F) lies in the full subcategory

D(T/Gγ
m)T/G

γ
m,w ≃ D(T/Gγ

m)T/G
γ
m,w⊗Vecttriv, by the conservativity of weak

averaging, see [Gai15]. Furthermore, if we assume s has associated coroot γ
such that s reflects across the hyperplane t∗γ=0 := {γ = 0} ↪−→ t∗, the Mellin

transform allows us to identify the functor Av
T/Gγm,w
∗ F with the composite:

IndCoh(t∗/X•(T ))⟨s⟩ → IndCoh(t∗γ∈Z/X
′)⟨s⟩

≃ IndCoh(t∗γ∈Z/X
′)⊗ Rep(⟨s⟩) oblvX

′
⊗ id−−−−−−−→ IndCoh(t∗γ∈Z)⊗ Rep(⟨s⟩)

where X ′ is the lattice of weights generated by the fundamental weights
distinct from the fundamental weight associated to γ. Therefore, any sheaf
satisfying (2) immediately satisfies (3), and any sheaf satisfying (3) also
satisfies (2). □

As in [Gan22], we can define a t-structure on IndCoh(t∗�W̃ aff) by declar-

ing IndCoh(t∗ � W̃ aff)≤0 to be the full ordinary ∞-subcategory closed un-
der colimits and containing sIndCoh

∗ (Ot∗). We also can similarly define a
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t-structure on IndCoh(t∗/W̃ aff) (respectively, IndCoh(t∗/X•(T ))) by declar-

ing IndCoh(t∗/W̃ aff)≤0 to be the full ordinary ∞-subcategory closed under
colimits and containing the respective IndCoh pushforward given by the quo-
tient map of the structure sheaf Ot∗ . Let ΓW̃ aff denote the balanced product

W̃ aff
W aff

× ΓW aff , where ΓW aff denotes the union of graphs of the affine Weyl
group. We recall some results of [Gan22] which will be used below.

Theorem 3.2. The following diagram is Cartesian

ΓW̃ aff
s //

t

��

t∗

s

��
t∗

s // t∗ � W̃ aff

where s, respectively t, denote the source and target maps, and s denotes the
quotient map. The base change theorem holds for this Cartesian diagram,
and the functors sIndCoh

∗ , s!, tIndCoh
∗ , t!, sIndCoh

∗ , s! are all t-exact.

Proposition 3.3. Analogous results to Theorem 3.2 also hold if we replace
t∗ �W aff with t∗/W aff or t∗/X•(T ). For example,

W̃ aff act //

proj

��

t∗

q

��
t∗

q // t∗/W̃ aff

is Cartesian and base change holds. Moreover, the pullback and pushforward
functors given by this diagram are t-exact.

3.2. Monoidality of Averaging Functor. In this section, we prove the
following proposition:

Proposition 3.4. The composite functor Hψ
˜AvN∗−−−→ D(N\G/−ψN−)W ≃

D(T )W is monoidal.

Proof. The functoriality of AvN∗ gives that the following diagram canonically
commutes:

(2) EndG(D(G/−ψN−))
(−)N //

evδ
N−,ψ

��

EndT⋊W (D(N\G/−ψN−))

ev
AvN∗ (δ

N−,ψ)

��
Hψ

AvN∗ oblvN
−,ψ

// D(N\G/−ψN−)W
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where the vertical arrows are the evaluation maps and the top arrow is the
functor induced byW -equivariance, see [Gan23, Proposition 3.23]. Similarly,
note if I denotes the isomorphism of Proposition 1.8 (which we recall is W -
equivariant again by [Gan23, Proposition 3.23]) then we have a canonical
identification of the following diagram

(3) EndT⋊W (D(N\G/−ψN−))

ev
AvN∗ (δ

N−,ψ)

��

helloI◦−◦I−1
// EndT⋊W (D(T ))

evδ1

��
D(N\G/−ψN−)W

I // D(T )W

since I(AvN∗ (δN−,ψ)) ≃ δ1 ∈ D(T ). Now, note that the functors given by
the top horizontal arrows of (2) and (3) are monoidal, the left vertical arrow
of (2) is a monoidal equivalence, and the right vertical arrow of (3) is a
monoidal equivalence. Thus, since these diagrams commute, we see that
IAvN∗ is a composite of monoidal functors. □

3.3. Proof of Theorem 1.9. In this subsection, we prove Theorem 1.9.
Let C be a G-category. Then, using the fact that invariants and coinvariants
agree (see [Gai20, Corollary 3.1.5]) and that tensor products commute with
colimits, we may identify AvN∗ with the functor

CN−,ψ ≃ CN−,ψ ≃ D(G)N
−,ψ ⊗G C

AvN∗ ⊗GidC−−−−−−−→ D(G)N,Wnondeg ⊗G C

≃ D(G)N,W,nondeg ⊗G C ≃ CN,W,nondeg ≃ CN,Wnondeg

and similarly for the adjoint Avψ! . We therefore obtain that the fully faith-

fulness AvN∗ follows by proving the general universal case:

Theorem 3.5. The functor of G-categories AvN∗ : D(G)N−,ψ −→ D(G)N lifts

to a fully faithful functor of G-categories AvN∗ : D(G)N−,ψ ↪−→ D(G)N,Wnondeg.

Moreover, the functor AvN∗ [dim(N)] lifts to a fully faithful t-exact functor

of G-categories Ãv∗ : D(G)N
−,ψ ↪−→ D(G)N,Wnondeg.

Proof. Note that all functors of DG categories (or any stable ∞-categories)
are by definition exact, so they commute with cohomological shifts. There-
fore to construct the lift of AvN∗ [dim(N)] it suffices to construct the lift of

AvN∗ , where the t-exactness of Ãv∗ follows since the forgetful functor oblvW

reflects the t-structure.
To construct the lift of AvN∗ , note that the G-functor AvN∗ is given by an

integral kernel inD(N\G)N
−,−ψ

nondeg , and, under the equivalencesD(N\G)
N−,−ψ
nondeg ≃

D(N\G)N−,−ψ ≃ D(T ) given by [Gan23, Proposition 3.14] and Proposi-
tion 1.8 respectively, this kernel is given by δ1[−dim(N)] ∈ D(T ) by Propo-
sition 3.4. Furthermore, these equivalences are canonically W -equivaraint
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by [Gin18, Proposition 5.5.2] (see also [Gan23, Proposition 3.23]) and there-
fore the integral kernel can be canonically equipped with W -equivariant
structure since ∗ ↪−→ T is W -equivariant.

We wish to show this lift is fully faithful. By [Gan23, Theorem 1.5], it suf-

fices to show that the resulting functor on invariants Vect ≃ D(G/λB)N
−,ψ →

D(G/λB)N,Wnondeg is fully faithful. By base change ([Gan23, Proposition 2.7])

it suffices to assume that λ is a k-point. By continuity of AvN∗ , we may
show the counit of the adjunction is an isomorphism on the one dimen-
sional vector space k ∈ Vect. By [Gan23, Proposition 4.6](1), this ob-
ject is a cohomological shift of the direct sum of the indecomposable an-
tidominant injectives I, or, equivalently by self duality, the direct sum
of the antidominant projectives P . Soergel’s endomorphismensatz [Soe90]

gives W
W[λ]

× Cλ
∼−→ EndD(G/Bλ)

N
nondeg

(P ). Therefore, since T ⋊ W acts on

D(G/λB)Nnondeg we have that by [Gan23, Proposition 4.5] that this equiva-
lence of classical algebras is W -equivariant. Therefore we see

EndD(G/Bλ)
N,W
nondeg

(P λ) ≃ EndD(G/Bλ)
N
nondeg

(P λ)
W ≃ (W

W[λ]

× Cλ)
W ≃ k

where the second to last equivalence follows since P λ ≃ AvN∗ (k) lies in the
nondegenerate subcategory, and the last equivalence follows since CWλ can
be identified with the regular W -representation by Soergel’s endomorphis-
mensatz. Therefore, we see our functor is fully faithful. □

3.4. Proofs of Theorem 1.4 and Theorem 1.3 from Theorem 1.9.
In this subsection, we verify the essential image of our shifted and lifted

functor Ãv∗ and complete the proofs of Theorem 1.4 and Theorem 1.3. We
first make the following computation on the essential image:

Proposition 3.6. Fix some simple root α. The composite given by

D(G)N−,ψ AvN∗−−−→ D(G/N)
⟨sα⟩
nondeg

Av
Gαm
∗−−−−→ D(G/N)

Gαm⋊⟨sα⟩
nondeg ≃ D(G/N)

Gαm
nondeg⊗Rep(⟨sα⟩)

where the final equivalence is given by [Gan23, Corollary 3.45], factors
through the subcategory labelled by the trivial representation.

Proof. Let A denote the composite functor. By [BGO20], it suffices to show
that

A(δN−,ψ) ∈ D(G/N)
(N−,ψ),Gαm
nondeg ⊗ Rep(⟨sα⟩)

lies in the full (G-)subcategory labelled by the trivial representation. How-
ever, by direct computation or Proposition 3.4 below, we have that the sheaf
AvN∗ (δN−,ψ) can be identified with δ1 ∈ D(T ) by Proposition 1.8. Further-
more, by the W -equivariance of the equivalence of Proposition 1.8 ([Gin18,
Proposition 5.5.2]) we see that the given W -equivariance on AvN∗ (δN−,ψ)
can be identified with the W -equivariance on δ1 given by the W -equivariant
closed embedding ∗ ↪−→ T . However, for the equivariant sheaf δ1 ∈ D(T )W ,
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we see that Av
Gαm
∗ (δ1) acquires a trivial ⟨sα⟩-representation. Therefore, the

⟨sα⟩ action is trivial and so the same holds forA(δN−,ψ) ≃ Av
Gαm
∗ AvN∗ (δN−,ψ).

□

Corollary 3.7. The functor AvN∗ : Hψ → D(T )W factors through the full

subcategory of objects of D(T )W which descend to the coarse quotient under
the Mellin transform.

Proof. By the final point of Proposition 3.1, it suffices to show that if F ∈ Hψ
then the canonical ⟨sα⟩-representation on Av

Gαm
∗ AvN∗ (F) is trivial. However,

this directly follows from taking (N−, ψ)-invariants of the composite functor
of Proposition 3.6. □

Lemma 3.8. Fix some field-valued point λ. We have a canonical isomor-
phism of functors:

D(Bλ\G/N)T,wnondeg

Av−ψ! oblvN,(T,w)

// D(Bλ\G/−ψN−) ≃ Vect

D(N−
ψ \G/N)T,w

Av
Bλ
∗ oblvN

−,ψ

OO

Av−ψ! oblvN,(T,w)

// Hψ

Av
Bλ
∗ oblvN

−,−ψ

OO

Proof. In the above diagram, the horizontal arrows are averaging with re-
spect to the right action, and the vertical arrows are averaging with respect
to the left action. Therefore since all four functors are maps of G-categories,
the diagram canonically commutes. □

In the diagram of Lemma 3.8, we claim that the associated right adjoints
to the horizontal arrows are functors of W̃ aff-categories, where we take the
W̃ aff-action to be trivial on the categories of the right side of the diagram. To
see this, note that via the Mellin transform, we may identify the right adjoint
to the bottom functor as the composite of a W -equivariant functor and, via
the Mellin transform, the forgetful functor oblvX

•(T ). In particular, the fact
that W̃ aff is placid allows us to apply [Gai20, Lemma D.4.4] to show that the

adjoint is also W̃ aff-equivariant and induces a functor on coinvariants. Since
invariance is coinvariance for infinite discrete groups ([Gan23, Proposition
2.7]) we therefore see:
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Lemma 3.9. Fix some field-valued λ ∈ t∗. Then the following diagram
canonically commutes:

D(Bλ\G/N)Wnondeg
Av−ψ! // D(Bλ\G/−ψN−) ≃ Vect

D(N−
ψ \G/N)W

Av
Bλ
∗ oblvN

−,ψ

OO

Av−ψ! // Hψ

Av
Bλ
∗ oblvN

−,ψ

OO

Proof of Theorem 1.4. We have seen in Theorem 3.5 that the functor AvN∗ :

Hψ → D(G/N)N
−,ψ,W ∼−→ D(T )W is fully faithful, and is t-exact up to

cohomological shift by [Gin18, Theorem 1.5.4]. Furthermore, we have shown
that this functor factors through the full subcategory of sheaves descending
to the coarse quotient in Corollary 3.7. Therefore it remains to show that the

adjoint Avψ! is conservative on this the subcategory of sheaves descending to

the coarse quotient. Let F ∈ D(T )W be a sheaf which descends to the coarse
quotient. By considering the fully faithful embedding of the zero category

into the full G-subcategory D(G/N) generated by oblvN
−,ψ(F), by [Gan23,

Corollary 2.19] we see that there exists some field-valued point λ such that

AvBλ∗ oblvN
−,ψ(F) does not vanish. By applying the categorical extension

of scalars ([Gan23, Section 2.4.1]) it suffices to assume λ is a k-point.
Now note that the following diagram commtues

D(Bλ\G)N
−,−ψ ∼ // IndCoh(∗)

D(Bλ\G/N)Wnondeg
Ṽ //

Av−ψ! [−dim(N)]

OO

IndCoh(Spec(Cλ)
W aff
λ

× W )W

(αIndCoh
∗ (−))W

OO

since again we may identify the images the left adjoints via the image of
k ∈ Vect. Thus since by assumption F ∈ D(T )W descends to the coarse

quotient, by Proposition 3.1(1) that the sheaf Av−ψ! AvBλ∗ oblvN
−
ℓ ,ψ(F) does

not vanish. Thus by Lemma 3.9, we see that Avψ! (F) does not vanish. □

Finally, note that to derive the exact equivalence of abelian categories in
Theorem 1.3 from Theorem 1.4, as in Remark 1.5 it suffices to show that each
functor in Theorem 1.4 is t-exact. By [Gin18, Theorem 1.5.4], AvN∗ [dim(N)]

is t-exact, and Ãv∗ is t-exact since oblvW reflects the t-structure. Further-
more, the pullback map ϕ! is t-exact, see [Gan22, Proposition 4.18]. There-
fore it remains to show the following, completing the proof of an exact
equivalence of abelian categories as in Theorem 1.3:
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Proposition 3.10. The shifted Mellin transform FMuk[d] is t-exact, where
d := dim(t∗).

Proof. As we mention above, this follows directly from our definition of
the Mellin transform. The Mellin transform also admits a Fourier-Mukai
description and we include an alternate proof using this definition. It is
standard that the functors

IndCoh(TdR)
ϕ!−→ IndCoh(T )

ΓIndCoh

−−−−−→ Vect

correspond, under the associated Fourier-Mukai transformations, to the
functors

IndCoh(t∗/X•(T ))
ΓIndCoh[−d]/X•(T )−−−−−−−−−−−−→ IndCoh(∗/X•(T ))

c!−→ Vect

where c : ∗ → ∗/X•(T ) is the quotient map, see the proof of [Lau96,
Théorème 6.3.3(ii)], whose proof also applies to IndCoh in the DG cate-
gorical context.

Let F denote the composite ΓIndCohϕ! and let G denote the composite
ΓIndCoh[−d]/X•(T ) ◦ c!. Then by this observation we see that there is a
canonical identification exhibiting that the following diagram commutes:

IndCoh(t∗/X•(T ))
spaceG //

FMuk

��

Vect

id

��
D(T ) := IndCoh(TdR)

spaceF // Vect

since the Fourier-Mukai transform for the trivial group is the identity. Be-
cause the functors F , G[−d], and id are t-exact, we see that FMuk[d] is
t-exact as well. □

4. Proof of Theorem 1.14

In this section, we prove Theorem 1.14. We first identify the two cate-
gories as DG categories in Section 4.1. Then, in Section 4.2, after some pre-
liminary categoral recollections we prove this equivalence can be equipped
with a monoidal structure by relating both categories of Theorem 1.14 to
the category EndHψ

(IndCoh(t∗)).

4.1. Identification of Theorem 1.14 as DG Categories. Let sIndCoh
∗ :

IndCoh(t∗ ×t∗�W̃ aff t∗) → IndCoh(t∗) be the pushforward associated to the

projection map s : t∗ ×t∗�W̃ aff t∗ → t∗, and, as before, we denote the

canonical functor D(N\G/N)
(T×T , w)
nondeg → IndCoh(t∗) given by the composite

Avψ! oblv
N , Proposition 1.8, and the Mellin transform also by Avψ! . We first

state the eventually coconnective version of Theorem 1.14.

Theorem 4.1. We have the following:
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(1) The functor sIndCoh
∗ : IndCoh(t∗ ×t∗�W̃ aff t∗)+ → IndCoh(t∗)+ is

comonadic.
(2) The functor Avψ! : D(N\G/N)

(T×T , w), +
nondeg → IndCoh(t∗)+ is comonadic.

(3) The coalgebras given by sIndCoh
∗ and Avψ! are canonically isomorphic.

We will prove Theorem 4.1 in Section 4.1.2 and Section 4.1.4, and show
how it implies the non-monoidal version of Theorem 1.14 in Section 4.1.5.
To prove Theorem 4.1, we will use Corollary 2.6, which requires us to argue
that the t-structure on IndCoh(t∗ ×t∗�W̃ aff t∗)+ is right-complete. We will

argue more generally that the t-structure on IndCoh(X ) is right-complete
for any ind-scheme X in Section 4.1.1.

4.1.1. Right-Completeness of t-Structure of Ind-Coherent Sheaves on Ind-
Scheme. Let X denote any ind-scheme. Recall the standard t-structure
on IndCoh(X ) characterized by the property that IndCoh(X )≥0 contains
precisely those F ∈ IndCoh(X ) for which i!(F) ∈ IndCoh(X)≥0 for any

closed subscheme X
i
↪−→ X , and which is compatible with filtered colimits

[GR17a, Chapter 4, Section 1.2].

Proposition 4.2. The t-structure on IndCoh(X ) is right-complete.

Proof. Given some F ∈ IndCoh(X ), let ϕF : F → colimnτ
≤nF denote the

canonical map, and let K denote the fiber of ϕF . Since the t-structure on
IndCoh(X ) is compatible with filtered colimits, we see that τ≤n0(ϕF ) is an
equivalence for all n0 ∈ Z, and that, in particular, K ∈ IndCoh(X )≥0.

We first prove this in the case where X is itself a schemeX. In this case, we
have a t-exact equivalence ΨX : IndCoh(X)≥0 ∼−→ QCoh(X)≥0. Because ΨX

is exact, we see that ΨX(K) ≃ fib(ΨX(ϕ
F )). Because Ψ is continuous and

t-exact, we obtain a canonical identification ΨX(ϕ
F ) ≃ ϕΨX(F). However,

ϕΨX(F) is an equivalence since the t-structure on QCoh(X) is right-complete
[GR17a, Chapter 3, Corollary 1.5.7]. Thus ΨX(K) ≃ 0, and since ΨX is in
particular conservative on IndCoh(X)≥0, we see that K ≃ 0 in this case.

We now assume the result of Proposition 4.2 for schemes. For any closed
subscheme i : X ↪−→ X , we therefore obtain equivalences

i!(K) ϕi
!(F)

−−−→ colimnτ
≤ni!(K) ≃ colimnτ

≤ni!(τ≤nK) ≃ colimnτ
≤ni!(0)

where the first map is an equivalence t-structure on IndCoh(X) is right-
complete, the second step uses the fact that i! is right t-exact, and the third
equivalence is a direct consequence of the above fact that τ≤n(ϕF ) is an
equivalence for all n. □

4.1.2. Conservativity of IndCoh Side for Union of Graphs. By [Gan23, Corol-

lary 2.44] LD = Avψ! [−dim(N)] is t-exact, and LI = πIndCoh
∗ is t-exact

because it is ind-affine [GR17d, Chapter 3, Lemma 1.4.9]. Therefore, by
Corollary 2.6, to prove points (1) and (2) of Theorem 4.1 it suffices to verify
that both functors are conservative, since the t-structure on both categories
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are right-complete by Proposition 4.2 and [Gan23, Proposition 3.18]. The

functor Avψ! is conservative on the eventually coconnective subcategory by

construction, so we prove the analogous conservativity for πIndCoh
∗ in this

subsection.
We first prove a preliminary result regarding a locally almost finite type

ind-scheme5 X with colimit presentation clX = colimαXα and associated
closed embeddings iα : Xα ↪−→ X. This allows us to place a t-structure on
the category IndCoh(X ), see Chapter 3 of [GR17d].

Corollary 4.3. Let F ∈ IndCoh(X )♡. Then there exists some closed sub-

scheme X := Xα
i
↪−→ X such that H0(i!(F)) is nonzero.

Proof. Pick a nonzero F ∈ IndCoh(X )♡. By [GR17d, Chapter 3, Corol-

lary 1.2.7], there exists some closed subscheme Xα
i
↪−→ X and some G ∈

Coh(X)♡ such that the map iIndCoh
S,∗ (G) → F is nonzero, so that the space

HomIndCoh(X )(i
IndCoh
S,∗ (G),F) is a discrete space (as both objects lie in the

heart of a t-structure) with more than one point. Therefore, by adjunction,
the same holds for HomIndCoh(Xα)(G, i!F). However, since iIndCoh

∗ is t-exact,
its right adjoint is left t-exact, and so we see that this implies that there
exists a nonzero map G → τ≤0i!F ≃ H0(i!F) which obviously implies our
claim. □

Corollary 4.4. Assume q : X → Y is a map from an ind-affine scheme X
to a scheme Y . Then qIndCoh

∗ is conservative on IndCoh(X )♡.

Proof. Pick F ∈ IndCoh(X )♡. Note that, by Corollary 4.3, there exists
some closed subscheme i : X ↪−→ X for which H0(i!(F)) is nonzero, and, by
ind-affineness, we may assume X is affine. Let π denote the composite q ◦ i :
X → Y . Then we have that H0(πIndCoh

∗ i!(F)) ≃ H0(qIndCoh
∗ iIndCoh

∗ i!(F)) is
a subobject of H0(qIndCoh

∗ (F)), as qIndCoh
∗ is ind-affine and thus is t-exact by

[GR17d, Chapter 3, Lemma 1.4.9]. However, we see that πIndCoh
∗ is conser-

vative (it is the pushforward of an affine morphism) and so H0(πIndCoh
∗ i!(F))

is nonzero, and therefore so too is H0(qIndCoh
∗ (F)). □

Of course, as a special case of this, we obtain our desired conservativity:

Corollary 4.5. The functor IndCoh(t∗×t∗�W̃ aff t∗)→ IndCoh(t∗) is conser-

vative when restricted to the full subcategory IndCoh(t∗ ×t∗�W̃ aff t∗)♡.

We now record a consequence of Corollary 4.4 for later use.

Corollary 4.6. The functor sIndCoh
∗ is conservative.

Proof. It suffices to show that the functor s!sIndCoh
∗ is conservative. By base

change (Theorem 3.2), it suffices to show that tIndCoh
∗ s! is conservative on

IndCoh(t∗). For a nonzero F ∈ IndCoh(t∗), there exists some i for which

5In the notation of [GR17d], X ∈ indSchlaft.
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H i(F) is nonzero. Since, by Theorem 3.2, tIndCoh
∗ s! is t-exact, we see that

H i(tIndCoh
∗ s!F) ∼= tIndCoh

∗ s!H i(F) and so we may assume F ∈ IndCoh(t∗)♡.
For such an F , we have s!(F) ∈ IndCoh(t∗×t∗�W̃ aff t∗)♡ by Theorem 3.2 and

is nonzero, since for example ∆!s!(F) ≃ F for ∆ the diagonal map. Thus
by Corollary 4.4 we see that tIndCoh

∗ s!(F) is nonzero, as required. □

Remark 4.7. Using Theorem 1.4, one can derive the conservativity and
t-exactness of the pushforward map (t∗/X•(T )→ t∗ � W̃ aff)IndCoh

∗ .

4.1.3. Conservativity for Quotient Pushforward. Let

ϕ̊ : t∗/X•(T )×t∗�W̃ aff t∗/X•(T )

denote the projection map to the left factor. To use Corollary 2.6, we require
the following proposition:

Proposition 4.8. Let F ∈ IndCoh(t∗/X•(T ) ×t∗�W̃ aff t∗/X•(T ))+ denote

some nonzero object. Then ϕ̊IndCoh
∗ (F) does not vanish.

Proof. By the conservativity of the forgetful functor, we have that oblvX
•(T )×X•(T )(F) ∈

IndCoh(ΓW̃ aff) is also nonzero, and so since ΓW̃ aff is an ind-scheme we see

that there exists some K-point λ0 ∈ ΓW̃ aff(K) for which λ!0(F) is nonzero.
In particular, for some K-point λ of t∗/X•(T ),the pullback of F via the
morphism

Spec(K)×t∗�W̃ aff t∗/X•(T )→ t∗/X•(T )×t∗�W̃ aff t∗/X•(T )

does not vanish. Now, note that the following diagram is Cartesian:

Spec(K)×t∗�W̃ aff t∗/X•(T )
λ×id //

ϕ

��

t∗/X•(T )×t∗�W̃ aff t∗/X•(T )

ϕ̊

��
Spec(K)

x // t∗/X•(T )

where the vertical arrows are the projection maps onto the left factor.
In particular, we see that the pullback (λ × id)! is left t-exact as well,

since we may check this after pulling back to Spec(K) ×t∗�W̃ aff t∗ and, by

functoriality of !-pullback, we may identify this with the composite of the
functor which forgets the X•(T ) ×X•(T ) equivariance and then pullbacks
back by the map Spec(K)×t∗�W̃ aff t∗ → ΓW̃ aff , both of which are left t-exact.

Therefore, we have that

ϕIndCoh
∗ ((λ× id)!(F))

does not vanish since the pushforward map to a point from Spec(K)×t∗�W̃ aff

t∗/X•(T ) can be identified with the pushforward to a point of an Artinian
scheme, and this pushforward does not vanish on nonzero eventually cocon-
nective objects. By base change, we see that x!ϕ̊IndCoh

∗ (F) does not vanish,
and therefore in particular ϕ̊IndCoh

∗ (F) does not vanish. □
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4.1.4. Identification of Coalgebras. Now we carry out the explicit identifica-
tion of the coalgebras given by Barr-Beck and Theorem 4.1. Note that, in
the notation of Theorem 3.2, we have:
(4)

tIndCoh
∗ (t!(ωt∗)) ≃ s∗s!s!(ωt∗�W̃ aff) ≃ s!sIndCoh

∗ s!(ωt∗�W̃ aff) ≃ Av
Nr,(Tr,w)
∗ Av

N−
ℓ ,ψ

! Av
Nℓ,(Tℓ,w)
∗ (δψ)

where the subscripts ℓ and r refer to the left and right averaging, and the
last step follows from Theorem 1.4. Continuing this chain of equivalences,
and using the fact that left and right averaging canonically commute, we
obtain:
(5)

tIndCoh
∗ (t!(ωt∗)) ≃ Av

N−
ℓ ,ψ

! Av
Nℓ,(Tℓ,w)
∗ Av

Nr,(Tr,w)
∗ (δψ) ≃ Av

N−
ℓ ,ψ

! Av
Nℓ,(Tℓ,w)
∗ (δT,w1 )

where δT,w1 ∈ D(T )T,w refers to the skyscraper sheaf at the identity with the
trivial T -representation structure, i.e. the essential image of iIndCoh

∗ (ktriv)
under the functor Rep(T ) ≃ VectT,w → D(T )T,w. Similar analysis shows
that this is an isomorphism of coalgebras, where, since the composite func-
tors in (4) and (5) are all t-exact (using [Gan23, Corollary 2.44], [Gin18,
Theorem 1.5.4], and Theorem 3.2), this is a property of this identfication
and not additional structure. An identical argument gives the identification
of coalgebras for other equivalence in Theorem 1.14.

Remark 4.9. The structure of the comonad AvN∗ Avψ! was previously known

on the full subcategory of B-bimonodromic objects of D(N\G/N)♡nondeg, see

[Bez16, Section 5.1].

4.1.5. Identification of Compact Objects. In [Gan23, Corollary 3.42], we

showed that D(N\G/N)
(T×T , w)
nondeg has a canonical set of compact generators

labeled by W̃ aff given by the set {δDw : w ∈ W̃ aff}, where δD denotes the

monoidal unit of D(N\G/N)
(T×T , w)
nondeg . We obtain a similar description for

IndCoh(t∗×t∗�W̃ aff t∗) and use it to complete the proof of the non-monoidal

version of Theorem 1.14:

Proposition 4.10. The category IndCoh(t∗×t∗�W̃ aff t∗) has a canonical set

of compact generators given by {δw : w ∈ W̃ aff}, where δ := iIndCoh
∗ (ωt∗)

and i : t∗ ↪−→ t∗ ×t∗�W̃ aff t∗ the diagonal map, so that δ is the monoidal unit.

Proof. These objects are compact since the IndCoh pushforward by a closed
embedding is a left adjoint with a continuous right adjoint, and thus pre-
serves compact objects. We now show this set generates; fix a nonzero
F ∈ IndCoh(t∗ ×t∗�W̃ aff t∗). There exists some finite subset S ⊆ W̃ aff so

that i!S(F) is nonzero. Note also that that for each finite S ⊆ W̃ aff, the map∐
w∈S t

∗ → ΓS is surjective at the level of geometric points, and so in par-

ticular, by [GR17a, Proposition 6.2.2], there exists some w ∈ W̃ aff such that
i!w(F) is nonzero. Therefore Hom(ωt∗ , i

!
w(F)) ≃ Hom(iIndCoh

w,∗ (ωt∗),F) ≃
Hom(δw,F) is nonzero. □
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Proof of Non-Monoidal Version of Theorem 1.14. We have shown in Propo-
sition 4.10 and [Gan23, Corollary 3.42] that both categories IndCoh(t∗×t∗�W̃ aff

t∗) and D(N\G/N)T×T,w are generated by the objects δw, where δ is the

monoidal unit in the respective category and w ∈ W̃ aff. Each of the func-

tors tIndCoh,enh
∗ and Avψ,enh! sends the monoidal unit to equivalent comod-

ules, as we have seen in Section 4.1.4. Therefore, because the functors

tIndCoh,enh
∗ and Avψ,enh! are both W̃ aff-equivariant, we see that these func-
tors identify a collection of compact generators. Thus these functors iden-
tify the (not necessarily cocomplete) subcategories of the compact objects

of IndCoh(t∗ ×t∗�W̃ aff t∗) and the compact objects of D(N\G/N)
(T×T , w)
nondeg ,

since both categories may be identified as the objects Karoubi-generated
by the compact generators [DG, Corollary 1.4.6]. Both categories are com-
pactly generated and thus may be identified with the ind-completion of their
compact objects [DG, Corollary 1.3.4], and therefore are equivalent as DG
categories.

Similarly, we have seen in [Gan23, Corollary 3.41] that the category
D(N\G/N)nondeg has a set of compact generators labelled by W . An iden-
tical description holds for the category

IndCoh(t∗/X•(T )×t∗�W̃ aff t∗/X•(T ))

since, for example, the IndCoh pushforward from ΓW̃ aff (which admits a con-

tinuous right adjoint by ind-properness) sends the W̃ aff-compact generators
of IndCoh(ΓW̃ aff) to the W objects generating the category. Therefore, we
see that the non-monoidal variant of the other equivalence in Theorem 1.14
holds. □

4.2. Monoidality. Let E denote the category EndIndCoh(t∗�W̃ aff)(IndCoh(t
∗))

(or, equivalently by Theorem 1.4, EndHψ
(D(N−

ψ \G/N)T,w). Note that we

have a canonical, monoidal functor

FI : IndCoh(t
∗ ×t∗�W̃ aff t∗)→ E

given by the formalism of convolution [GR17a, Chapter 5.5]. We similarly
have a monoidal functor FD given by the composite

D(N\G/N)
(T×T , w)
nondeg ≃ EndG(D(G/N)T,wnondeg)→ EndHψ

(D(N−
ψ \G/N)T,w) ≃ E

where the left equivalence is given by the fact that invariance is coinvariance
([Gai20, Appendix B], [Gai20, Corollary 3.1.5]) the right arrow is given by
tensoring with the D(G),Hψ bimodule D(N−

ψ \G), and the right equivalence

is given again by Theorem 1.4.
We will give our equivalence of categories

IndCoh(t∗ ×t∗�W̃ aff t∗)
∼−→ D(N\G/N)

(T×T , w)
nondeg

a monoidal structure by relating both categories to the category E . We first
give some general results on computing limits, and then in Section 4.2.3 we



26 TOM GANNON

show that the evaluation functor E → IndCoh(t∗) is comonadic. Using this,
we show how to equip the equivalence of Theorem 1.14 with a monoidal
structure in Section 4.2.4.

4.2.1. Reminders on Lax Limits. We summarize the following useful propo-
sition on computing limits in a limit of categories in DGCat, see [AG18,
Section 4.1] for more information. Assume I → DGCat is a diagram of
categories for some index ∞-category I, which we denote i 7→ Ci, and let
lim Ci denote a limit category. We recall the notion of a lax-limit category
lax-lim Ci, which is defined using co-Cartesian fibrations and, in particular,
whose objects consist of objects Fi ∈ Ci for each i ∈ I and for every map

i1
α−→ i2 in I, the corresponding map Φα(Fi1)→ Fi2 .

Proposition 4.11. Assume I → DGCat, i 7→ Ci is defined as above.

• [AG18, Section 4.1.1] There is a natural, fully faithful functor lim Ci ↪−→
lax-lim Ci, and an object is in the essential image if and only if the
associated maps Φα(Fi1)→ Fi2 are equivalences for all α.
• [AG18, Section 4.1.8] For each i ∈ I, the natural evaluation func-
tor evi : lax-lim Ci → Ci admits a left adjoint, and in particular
commutes with limits.

Corollary 4.12. Assume we are given a diagram J → lim iCi, which we

write j 7→ Fj,i ∈ Ci, such that for each j and for each map i1
α−→ i2 in

I, the corresponding map Φα(Fj,i1) → Fj,i2 is an equivalence. Then the
corresponding limit is computed termwise.

Proof. The condition that each corresponding map Φα(Fj,i1) → Fj,i2 is an
equivalence implies that the limit over our J-shaped diagram, computed
in the category lax-lim Ci, lies in the category lim Ci. Since the evaluation
functor is a right adjoint, it commutes with limits, thus giving our claim. □

4.2.2. Nilpotent Towers and Effective Limits. In this section, we recall the
DG-analogue of ideas of Akhil Mathew (see, for example, [Mat18, Subsection
2.3]) which will be used later. For this subsection, fix two DG categories
C,D.

Definition 4.13. Assume we are given a tower in C, or, equivalently, a
sequence ...→ F2 → F1 → F 0 in C. We say this tower is weakly nilpotent if
for all n ∈ N≥0 there exists an N such that for all m ≥ N , the natural map
Fm+n → Fn is nullhomotopic.

Definition 4.14. Let C be some DG category or, more generally, any stable
∞-category, and fix some F ∈ C.

(1) Let F• := (... → F1 → F0) be a tower in C, and let F denote the
constant tower. We say the map of towers F → F• forms an effective
limit (or, more informally, the maps F → F• form an effective limit)
if the tower n 7→ cofib(F → Fn) is weakly nilpotent.
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(2) Let S• denote some cosimplicial object of a category C and tem-
porarily denote by F• the constant cosimplicial object. We say the
map of cosimplicial objects F• → S• (or, more informally, the maps
F → S•) form an effective limit if the maps F → Tot≤n(S•) form
an effective limit.

Remark 4.15. By definition, a tower in C is an object of the (∞, 1)-category
of functors Fun(Zop≥0, C). Since colimits in functor categories are computed
termwise, the cokernel of a map of towers is the tower of cokernels. Note
also that if the tower n 7→ cofib(F → Fn) is weakly nilpotent, then its limit
is zero.

We therefore see that, if the tower n 7→ cofib(F → Fn) is weakly nilpotent,
the canonical map F ≃ lim(F) → limnFn is an equivalence, so the term
‘effective limit’ is justified. By abuse of notation, we sometimes say that the
maps F → F i form an effective limit.

We now record a basic property of effective limits, see [Mat18, Proposition
2.20]:

Lemma 4.16. Let F : C → D is some exact functor of stable ∞-categories
(which is always satisfied if F is a map in DGCatkcont), and let F → F i be a
compatible family of maps as in Definition 4.14. Then if the maps F → F i
form an effective limit in C, then the maps F (F)→ F (F i) form an effective
limit in D.

Proof. By definition of effective limit, the tower of cofibers given by Ci :=
cofib(F → Fi) is weakly nilpotent. By the definition of exactness, F com-
mutes with finite colimits, so that F (Ci) ≃ cofib(F (F) → F (Fi)). There-
fore, since F preserves the class of maps which are equivalent to the 0 map,
our claim follows, since exact functors preserve the zero object. □

4.2.3. An Intermediate Comonadic Category. Observe we have a canonical
functor given by the composite

EndHψ
(IndCoh(t∗))

P
s!−−→ HomHψ

(Hψ, IndCoh(t∗)) ≃ IndCoh(t∗)

where Ps! is the functor which precomposes a functor with s!. Since this
functor is given on objects via the formula F 7→ F (ωt∗), we refer to it as the
evaluation functor and denote it by E. The functor Ps! has a continuous
right adjoint PsIndCoh

∗
, and therefore E has a right adjoint which we denote

by ER. The remainder of this subsection will be devoted to the proof of the
following Proposition:

Proposition 4.17. The functor

Eenh : EndHψ
(IndCoh(t∗))→ EER-comod(IndCoh(t∗))

is fully faithful.
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We prove Proposition 4.17 after showing the following lemma and deduc-
ing a corollary from it. Let ϕ̊ : t∗/X•(T ) → t∗ � W̃ aff denote the quotient
map.

Lemma 4.18. The maps idIndCoh(t∗) → (s!sIndCoh
∗ )•+1 and idD(T ) → (ϕ̊!ϕ̊IndCoh

∗ )•+1

form an effective limit.

Proof. Using the identification evωt∗ : End(IndCoh(t∗))
∼−→ IndCoh(t∗ × t∗)

this claim is equivalent to the claim that the maps ωt∗ → (s!sIndCoh
∗ )•+1(ωt∗)

form an effective limit. Let cn : ωt∗ → Tot≤n(s!sIndCoh
∗ )•+1(ωt∗) denote the

canonical map for each n. We claim that for each n, we have that τ≤n−1cn
is an equivalence. To see this, note that by the conservativity of sIndCoh

∗
(Corollary 4.6) it suffices to show that sIndCoh

∗ τ≤n−1cn is an equivalence.
The t-exactness of sIndCoh

∗ (Theorem 3.2) allows us to identify this map with
τ≤n−1sIndCoh

∗ cn. Since s
IndCoh
∗ is exact, it commutes with finite limits, so we

may furthermore identify τ≤n−1sIndCoh
∗ cn with the map

τ≤n−1sIndCoh
∗ ωt∗ → τ≤n−1Tot≤nsIndCoh

∗ (s!sIndCoh
∗ )•+1(ωt∗)

and by Lemma 2.5 we may further identify this map with the canonical map

τ≤n−1sIndCoh
∗ ωt∗ → τ≤n−1Tot(sIndCoh

∗ (s!sIndCoh
∗ )•+1(ωt∗))

using the fact that (s!sIndCoh
∗ )j+1(ωt∗) lies in the heart for every j ∈ Z≥0, see

Theorem 3.2. However, this map is an equivalence since the cosimplicial ob-
ject sIndCoh

∗ (s!sIndCoh
∗ )•+1 is split by sIndCoh

∗ . We therefore see that τ≤n−1cn
is an equivalence.

We also have that Tot≤n(s!sIndCoh
∗ )•+1(ωt∗) is a totalization of objects in

the heart of a category equivalent to A-mod for some classical ring A, again
using the exactness of Theorem 3.2. We thus see see Tot≤n(s!sIndCoh

∗ )•+1(ωt∗)
lies in cohomological degree [0, n]. Therefore, if Kn denotes the cofiber
of the map cn, this cofiber is concentrated in degree n since τ≤n−1cn is
an equivalence. In particular, we may choose N ≫ 0 so that the space
HomIndCoh(t∗×t∗)(K

N+n,Kn) is connected (by the finite cohomological di-
mension of the t-structure on IndCoh(t∗ × t∗)), so the maps from the iden-
tity to the tower of partial totalizations of our cosimplicial object form an
effective limit by definition. Since we have obtained the analogous conser-
vativity and t-exactness of the pushforward (t∗/X•(T ) → t∗ � W̃ aff)IndCoh

∗ ,
an identical argument holds for the latter functor as well, since D(T ) also
has finite cohomological dimension. □

Corollary 4.19. For any i ∈ Z≥1, the maps id → (idH⊗i−1
ψ
⊗ s!sIndCoh

∗ )•+1

and the maps id→ (idH⊗i−1
ψ
⊗ ϕ̊!ϕ̊IndCoh

∗ )•+1 form an effective limit.

Proof. We show the first claim, the second follows from an identical argu-
ment. First note that the functor

idH⊗i
ψ
⊗− : End(IndCoh(t∗))→ End(H⊗i−1

ψ ⊗ IndCoh(t∗))
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is exact since it is continuous [Lur17, Proposition 1.1.4.1]. Thus this functor
preserves effective limits by Lemma 4.16, so we see that the maps

id→ idHi−1
ψ
⊗ Tot≤n(s!sIndCoh

∗ )•+1

form an effective limit. Our claim then follows from the fact that the functor
idHi−1

ψ
⊗− is exact and thus commutes with finite limits. □

Proof of Proposition 4.17. It suffices to show that for any F ∈ EndHψ
(IndCoh(t∗))

that the canonical map F → lim∆(EE
R)•+1(F )) is an isomorphism as

this will show that the unit map associated to the left adjoint Eenh is an
isomorphism. Since the evaluation functor is conservative, it suffices to
show that the canonical map E(F ) −→ E(lim∆(EE

R)•+1(F ))) is an equiv-
alence. Since (EER)•+1(F ) is canonically an E-split totalization, the map
E(F ) → lim∆(E(EER)•+1(F )) is an equivalence. Therefore it suffices to
prove that the canonical map

E lim
∆

((EER)•+1(F ))→ lim
∆

(E(EER)•+1(F ))

is an equivalence.
We identify EndHψ

(IndCoh(t∗)) as the limit

lim∆(Hom(H•
ψ ⊗ IndCoh(t∗), IndCoh(t∗))).

Let I denote the inclusion of this category into the lax-limit category

lax-lim∆Hom(H•
ψ ⊗ IndCoh(t∗), IndCoh(t∗)).

We compute the limit lim∆I(F (s
!sIndCoh
∗ )•+1) and show it lies in the sub-

category lim∆Hom(H•
ψ ⊗ IndCoh(t∗), IndCoh(t∗)). Fix some map in ∆, say

i1
α−→ i2, and let

Φα : Hom(Hi1ψ⊗IndCoh(t
∗), IndCoh(t∗))→ Hom(Hi2ψ⊗IndCoh(t

∗), IndCoh(t∗))

denote the canonical map obtained by pullback. Since this map is exact and
the maps id→ (idHψ

⊗s!sIndCoh
∗ )•+1 form an effective limit (Corollary 4.19),

by Lemma 4.16 we obtain a canonical equivalence

Φαlim∆IF•,i1
∼−→ lim∆ΦαIF•,i1

where we denote IF•,i1 the object evi1(IF•,i1). We obtain an equivalence

lim∆ΦαIF•,i1
∼−→ lim∆IF•,i2

since F•,i1 lies in the limit category. Thus by Proposition 4.11 we see that
the canonical map

I(lim∆F (s
!sIndCoh
∗ )•+1)→ lim∆I(F (s

!sIndCoh
∗ )•+1)

is an equivalence. In particular, this limit is computed termwise by Propo-
sition 4.11(2), as desired. □

An analogous argument gives:
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Corollary 4.20. The functor Eenh
0 : EndHψ

(D(T ))→ E0E
R
0 -comod(D(T ))

is fully faithful.

4.2.4. Identification of Monoidal Categories. Since, tautologically, E ◦FI ≃
tIndCoh
∗ and E ◦ FD ≃ Avψ! , we obtain the following commutative diagram:

I(t∗ ×t∗�W̃ aff t∗)+
FI //

tIndCoh,enh
∗
��

EndHψ
(I(t∗))

Eenh

��

D(N\G/N)
(T×T , w), +
nondeg

FDoo

Avψ,enh!
��

t∗t
!-comod(I(t∗)+) // EER-comod(I(t∗)) Avψ! Av

N,(T,w)
∗ -comod(I(t∗)+)oo

where for notational shorthand we use the symbol I to denote IndCoh.
Moreover, by the computation Section 4.1.4, all of the comonads appearing
in the lower row of this diagram are naturally isomorphic, and so both of the
maps contained in the bottom row of this diagram are fully faithful. More-

over, the fully faithfulness of tIndCoh,enh
∗ and Avψ,enh! follow directly from

the comonadicity of the non-enhanced functors of Theorem 4.1. Finally, in
Proposition 4.17 we have seen that Eenh is fully faithful. We therefore see
that FI and FD are fully faithful when restricted to the respective even-
tually coconnective subcategories; a completely analogous argument using
Corollary 4.20 shows that the monoidal functors

IndCoh(t∗/X•(T )×t∗�W afft∗/X•(T ))+ → EndHψ
(D(T ))←− D(N\G/N)+nondeg

are fully faithful. Moreover, we claim that all of these eventually coconnec-
tive subcategories are monoidal, which we now prove:

Proposition 4.21. The convolution structure on the categories

IndCoh(t∗ ×t∗�W̃ aff t∗), IndCoh(t∗/X•(T )×t∗�W̃ aff t∗/X•(T ))

D(N\G/N)
(T×T , w)
nondeg , and D(N\G/N)nondeg

preserve the respective eventually coconnective subcategories.

Proof. Convolution is given by the pullback by a closed embedding and
the pushforward of (id, s, id) : t∗ ×t∗�W̃ aff t∗ ×t∗�W̃ aff t∗ → t∗ ×t∗�W̃ aff t∗ �
W̃ aff ×t∗�W̃ aff t∗. We have seen that the latter is exact by Theorem 3.2,

and the former is exact since the pullback by a closed embedding is a right
adjoint to a t-exact functor and therefore left t-exact. Thus convolution
preserves the eventually coconnective subcategory IndCoh(t∗ ×t∗�W̃ aff t∗)+.

Since forgetting X•(T ) reflects the t-structure, we see by base change that
the convolution monoidality on IndCoh(t∗/X•(T ) ×t∗�W̃ aff t∗/X•(T )) pre-

serves the eventually coconnective subcategories as well.

For D(N\G/N)
(T×T , w)
nondeg and D(N\G/N)nondeg, we note that the convo-

lution is given by the composite of a forgetful functor and an averaging
functor, which are t-exact and left t-exact (again as the right adjoint of a
right t-exact functor is left t-exact) respectively, so the claim follows. □
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We have therefore constructed a monoidal equivalence of the respective
eventually coconnective subcategories. Since the convolution structures
commute with colimits, all compact objects are eventually coconnective,
and the four categories of Theorem 1.14 are compactly generated, we in par-
ticular can equip our earlier ‘non-monoidal’ equivalences with a monoidal
structure, thus completing the proof of monoidality and thus the proof of
Theorem 1.14. □

Remark 4.22. We expect similar methods yield equivalences of categories

g-modNnondeg ≃ IndCoh(t∗ �W ×t∗�W aff t∗/X•(T ))

compatible with the T action and the IndCoh(t∗�W ) action, and a monoidal
equivalence

HCnondeg := EndG(D(G)
G,w
nondeg) ≃ IndCoh(t∗ �W ×t∗�W aff t∗ �W ).

5. The Nondegenerate Horocycle Functor

In this section, we construct a nondegenerate variant of the horocycle
functor and show in Section 5.2 that it can be used to equip Res(F) with

a W -equivariance which descends to the coarse quotient t∗ � W̃ aff for F ∈
D(G)G,♡ very central.

5.1. The Nondegenerate Horocycle Functor. We now construct a func-
tor on G×G categories C which for C = D(G) recovers the usual horocycle
functor. To define such a functor, it suffices to define it in the ‘universal
case’ C = D(G×G). We consider the category D(G×G) as a right G×G
category and let Ψ denote the composite functor

D(G×G)∆G
oblv

∆G
∆B−−−−→ D(G×G)∆B AvN×N

∗−−−−−→ D(G/N ×G/N)∆T

where the group ∆G denotes the diagonal copy of G and the rightmost
functor is induced by the averaging functor. Let J ! denote the quotient
functor D(G/N × G/N) → D(G/N × G/N)nondeg which projects onto the
nondegenerate subcategory, again taken with respect to the right action.
Since this nondegenerate category is closed under the action of T×T , we may

equivalently view J ! as a functorD(G/N×G/N)∆T → D(G/N×G/N)∆Tnondeg.

Theorem 5.1. The functor J !Ψ : D(G × G)∆G → D(G/N × G/N)∆Tnondeg

lifts to a functor of G×G categories:

Ψ̃ : D(G×G)∆G → D(G/N ×G/N)
∆T⋊W
nondeg.

Furthermore, fixing a simple coroot α, we have the following:

(1) The action of the Klein four group ⟨sα×sα⟩ on D(G/N×G/N)
∆TGαm
nondeg

is trivial.
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(2) The composite
(6)

D(G×G)∆G
Av

Gαm
∗ oblvW⟨sα⟩Ψ̃−−−−−−−−−−→ D(G/N×G/N)

∆TGαm,⟨sα⟩
nondeg ≃ D(G/N×G/N)

∆TGαm
nondeg⊗Rep⟨sα⟩

where the second equivalence is given by (2), lies entirely in the
summand indexed by the trivial representation.

(3) If F ∈ D(G)G ≃ D(G×G)∆ℓG×∆rG is very central, then the sheaf

Ψ̃(F) ∈ D(N\G/N)
∆T⋊W
nondeg ≃ D((G/N ×G/N)/T )∆G,∆Wnondeg

has the property that the canonical ⟨sα⟩-representation on Av
Gαm
∗ Ψ̃(F)

is trivial.

The final point of Theorem 5.1 should be compared to the condition of
descending to the coarse quotient given by the final point of Proposition 3.1.

Note that we may identify hc := Ψ∆ℓG .

Proof. Note that the functor Ψ itself is G-equivariant and so it suffices to
construct a lift of hc(δ∆G). However, hc is monoidal. This fact as well
known, and can be seen by identifying the monoidal functor

(7) D(G)G ≃ EndG×G(D(G))
AvN∗−−−→ EndG×T (D(G/N)) ≃ D(N\G/N)T

with hc. Therefore, we see that we may identify Ψ(δ∆G) (with its left ∆G-
equivariance) in the category D(N\G/N)T with the monoidal unit equipped
with its canonical T -equivariance. In particular, J !Ψ(δ∆G) may be identi-
fied with J !(δ1), where δ1 ∈ D(N\G/N)T is the monoidal unit. Under
the equivalence Theorem 1.14, the sheaf J !(δ1) corresponds to the push-
forward ∆IndCoh

∗ (ωt∗/X
•(T )). In particular, this sheaf is equivariant with

respect to the diagonal W -action. Thus we see that J !Ψ(δ∆G) ∈ D(G/N ×
G/N)T,∆Gnondeg ≃ D(N\G/N)Tnondeg may be equipped with a canonical W -

equivariant structure, showing (1). Point (2) follows directly from [Gan23,
Corollary 3.45]

To show (3), note that we have identifications

(8) oblvW⟨sα⟩J
!Ψ(δ∆G) ≃ oblvW⟨sα⟩J

!Av
Gαm
∗ Ψ(δ∆G)

since the quotient functor is T ×T -equivariant. Under the Mellin transform,

the sheaf Av
Gαm
∗ Ψ(δ∆G) ∈ D(T/Gα

m) corresponds to the monoidal unit. In
particular, (8) gives that the integral kernel of the G×G-equivariant func-
tor given by (6) lies in the full G × G-subcategory indexed by the trivial
representation, establishing (3). Finally, (4) is a special case of (3). □

Remark 5.2. Note that the integral kernel of the composite ch ◦ hc on the
level of nondegenerate categories canonically acquires a W -representation
structure, and the sheaf ch ◦ hc(δ) is known to be the Springer sheaf. This
sheaf has endomorphisms which may be identified with the group ring of
W–for a recent survey of this, see [Ben+21]. Therefore we expect that, at
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least on the level of nondegenerate categories, the functor h̃c : D(G)Gnondeg →
D(N\G/N)T⋊Wnondeg is fully faithful.

Of course, one did not need to pass to nondegenerate categories to obtain
that the composite ch ◦ hc is given by convolution with the Springer sheaf.
Therefore, one might hope that the functor hc factors through some subcat-
egory D ↪−→ D(N\G/N)T which acquires a W -action, giving rise to a fully

faithful functor h̃c : D(G)G ↪−→ DW . We do not yet know what to make of
this.

5.2. Construction of W -Equivariance for Parabolic Restriction of
Very Central Sheaves. We now use the computations on the nondegen-
erate horocycle functor above to prove Theorem 1.22.

Proof of Theorem 1.22. Because T is connected, the forgetful functor in-
duces an exact equivalence of abelian categories

oblvT : D(T )T⋊W,♡ ∼−→ D(T )W,♡

and so, in particular, to prove Theorem 1.22, it suffices to exhibit the re-
quired W -equivariant structure on oblvTRes(F). Since F is very central,
the canonical map i∗,dRRes(F) −→ hc(F) is an isomorphism by definition.
In particular, the canonical map

(9) J !i∗,dRoblv
TRes(F) −→ J !oblvThc(F)

is also an isomorphism. Then, by taking the left diagonal G invariants of
the functor Ψ̃ of Theorem 5.1, we see that we may equip J !oblvThc(F) with
a W -equivariant structure, and thus we may also equip J !i∗,dRoblv

TRes(F)
with a W -equivariant structure. Furthermore, the functor

D(N\G/N)nondeg
Avψ!−−→ D(N−

ψ \G/N)

given by left Whittaker averaging is W -equivariant, where W acts on the
domain diagonally and the codomain via the usual W -action.6 We lightly

abuse notation and denote the composite of Avψ! with the W -equivariant

equivalence of Proposition 1.8 by Avψ! . Since this functor is a map of W -
categories, we obtain a W -equivariant structure on

(10) Avψ! (J
!i∗,dRoblv

TRes(F)) ≃ Avψ! (i∗,dRoblv
TRes(F)) ≃ oblvTRes(F)

where the first equivalence is given by the definition of nondegeneracy and
the second is given by direct computation.

We now show that the sheaf R := oblvT (Res(F)) descends to the coarse
quotient when equipped with the W -equivariance above. To see this, by
Proposition 3.1(3) it suffices to show that, for every simple coroot γ, the

6Under Theorem 1.14, this corresponds to the fact that the projection map
t∗/X•(T ) ×t∗�W̃aff t

∗/X•(T ) → t∗/X•(T ) is W -equivariant, where W acts diagonally

on the product and acts by the standard way on t∗/X•(T ).
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⟨sγ⟩-representation on AvG
γ
m

∗ (R) is trivial, where Gγ
m acts on D(N−

ψ \G/N)

the right. However, we see that we have W -equivariant equivalences

AvG
γ
m

∗ (R) ≃ AvG
γ
m

∗ Avψ! (J
!i∗,dR(R)) ≃ Avψ! Av

Gγm
∗ (J !i∗,dR(R)) ≃ Avψ! Av

Gγm
∗ (oblvTJ !hc(F))

where the first equivalence follows from (10), the second equivalence follows

from the fact that Avψ! is right T -equivariant, and the third equivalence

follows from (9) and the fact that J ! is T × T -equivariant. We therefore see
that we have a W -equivariant equivalence

(11) AvG
γ
m

∗ (R) ≃ Avψ! oblv
TAvG

γ
m

∗ (J !hc(F))
by base changing along the Cartesian diagram of quotient maps

X

��

// X/Gγ
m

��
X/∆T

// X/∆TGγ
m

where X := G/N × G/N Now, by Theorem 5.1(3) we see that the ⟨sγ⟩-
representation on Avψ! oblv

TAvG
γ
m

∗ (J !hc(F)) is trivial. Thus by (11) we ob-

tain the ⟨sγ⟩-representation on AvG
γ
m

∗ (R) is trivial, as desired. □

Appendix A. Mellin Transform (With Germán Stefanich)

In this appendix, written jointly with Germán Stefanich, we discuss the
foundations of the Mellin transform in the higher categorical setting we use
above. In Appendix A.1, we give the construction of the Mellin transform
in the higher categorical setting, and we exhibit a functoriality of the Mellin
transform we use above in Appendix A.2. Finally, in Appendix A.3, we
upgrade this Mellin transform to an equivalence of symmetric monoidal DG
categories.

A.1. Derivation of Mellin Transform. Notice that the following diagram
is Cartesian

(12) X•(T )× t∗
act //

proj

��

t∗

q

��
t∗

q // t∗/X•(T )

which shows that the map q is ind-proper. Therefore, the functor qIndCoh
∗ (de-

fined via an identical procedure below [Gan22, Corollary 4.14]) is left adjoint
to q!. Moreover, since the functor q! is conservative, the sheaf qIndCoh

∗ (t∗) is a
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compact generator of IndCoh(t∗/X•(T )) and therefore gives an equivalence
of categories

(13) IndCoh(t∗/X•(T )) ≃ EndIndCoh(t∗/X•(T ))(q
IndCoh
∗ (t∗))-mod.

Notice that, as a graded vector space, by base changing along (12), we may
identify

EndIndCoh(t∗/X•(T ))(q
IndCoh
∗ (t∗)) ≃ HomIndCoh(t∗)(ωt∗ , proj

IndCoh
∗ (ωX•(T )×t∗))

≃ ⊕X•(T )EndIndCoh(t∗)(ωt∗) ≃ ⊕X•(T )Sym(t)

which is in particular a discrete vector space concentrated in a single coho-
mological degree. One may therefore check that this equivalence of graded
vector spaces upgrades to an equivalence of k-algebras

EndIndCoh(t∗/X•(T ))(q
IndCoh
∗ (t∗)) ≃ Γ(DT )

and so the equivalence given by (13) yields equivalences

(14) IndCoh(t∗/X•(T )) ≃ Γ(DT )-mod ≃ D(T )
whose composite we denote by FMukT and refer to as the Mellin transform.
When the associated torus T is clear from context, we may also denote this
transformation by FMuk. Equipping IndCoh(t∗/X•(T )) with a t-structure
as in [Gan22], we have that qIndCoh

∗ (ωt∗) is concentrated in cohomological
degree −dim(T ) and so the Mellin transform is t-exact up to cohomological
shift.

A.2. Functoriality of Mellin Transform. We will use the following fact:

Proposition A.1. Assume 1 → S → T
ϕ−→ T/S → 1 is a short exact

sequence of split algebraic tori. Then we have a canonical isomorphism of
functors

(15) D(T )
ϕ∗,dR //

FMukT

��

D(T/S)

FMukT/S

��
IndCoh(t∗/X•(T ))

ι! // IndCoh((t/s)∗/X•(T/S))

where ι : (t/s)∗/X•(T/S) → t∗/X•(T ) is the induced map given by inclu-
sion.

Proof. The above short exact sequence splits, and therefore by induction we
may assume that S = Gm. In this case, ϕ∗,dR(DT ) is equivalently given by
the complex

0→ Γ(DT )
∂S−→ Γ(DT )→ 0

so that we may identify ϕ∗,dR(DT ) as a direct sum of Z-many copies of

Γ(DT/S). We claim also that (FMuk−1
T/S ◦ ι

! ◦ FMukT )(DT ) maps to an

isomorphic Γ(DT )-module; this can be checked explicitly since ϕ∗,dR(DT )
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lies in the heart of a t-structure. To see this, notice that the following
diagram is Cartesian

(16) t∗ ×s∗ X
•(S)

q //

��

(t∗ ×s∗ X
•(S))/X•(T )

��
t∗

q // t∗/X•(T )

where the unlabelled vertical arrows are induced by inclusion. Notice also
that we have a canonical isomorphism t∗×s∗ X

•(S) ≃ (t/s)∗×X•(S) which
is equivariant with respect to the action of X•(T ) ≃ X•(S) × X•(T/S).
This in particular shows that we have a Cartesian diagram

(17) (t/s)∗ ×X•(S) //

��

(t/s)∗/X•(T/S)

��
t∗

q // t∗/X•(T )

and by base changing along this Cartesian diagram we obtain our desired
claim. □

A.3. Symmetric Monoidality. The Mellin transform of (14) provides an
equivalence of categories D(T ) ≃ IndCoh(t∗/X•(T )) which is t-exact up to
a shift. This induces an equivalence of abelian categories, which moreover is
well known to be symmetric monoidal–in the abelian categorical setting, this
can be checked explicitly. However, in the higher categorical context, equip-
ping a functor between symmetric monoidal∞-categories with a symmetric
monoidal structure requires an infinite amount of additional structure. The
entirety of Appendix A.3 is devoted to the following theorem, which provides
this upgraded structure:

Theorem A.2. The Mellin transform FMukT can be upgraded to an equiv-
alence of symmetric monoidal categories with a W -action.

We will obtain Theorem A.2 as a consequence of a general uniqueness
principle for symmetric monoidal structures on derived ∞-categories. To
formulate it we first need to introduce some notation.

Notation A.3. Denote by Groth the category of Grothendieck abelian cat-
egories and colimit preserving functors, and by Grothproj the subcategory
of Groth on those Grothendieck abelian categories with enough projectives
and functors which preserve projective objects. We denote by DGrothproj
the category defined informally as follows:

• Objects of DGrothproj are derived categories of Grothendieck abelian
categories with enough projectives.
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• A morphism f : C → D in DGrothproj is a colimit preserving functor

that sends projective objects of C♡ to projective objects of D♡.

In addition to having morphisms, Grothproj has operations of arity n for
any nonnegative integer n. Namely, for each finite family of source objects
C1, . . . , Cn and target object C an operation {C1, . . . , Cn} → C is a functor

f : C1 × C2 × . . .× Cn → C
with the following properties:

• f is colimit preserving on each variable.
• For each sequence of projective objectsXi in Ci the object f(X1, . . . , Xn)
is projective.

We may summarize the situation by saying that Grothproj has the structure
of an operad.

Similarly, DGrothproj has the structure of an operad, where an operation
{C1, . . . , Cn} → C is a functor

f : C1 × C2 × . . .× Cn → C
with the following properties:

• f is colimit preserving on each variable.
• For each sequence of projective objectsXi in C♡i the object f(X1, . . . , Xn)

belongs to C♡ and is projective.

We note that given an operation f in DGrothproj as above there is a

corresponding operation f♡ in Grothproj given by the following composition:

C♡1 × . . .× C
♡
n ↪→ C≤0

1 × . . .× C
≤0
n

f−→ C≤0 H0

−−→ C♡

This forms part of a morphism of operads DGrothproj → Grothproj. We are
now ready to state the basic assertion that allows us to lift structures from
the abelian setting to the derived setting:

Theorem A.4.

(1) Grothproj and DGrothproj are symmetric monoidal categories.

(2) The assignment C 7→ C♡ provides a symmetric monoidal equivalence
DGrothproj = Grothproj.

Before giving the proof of Theorem A.4, we indicate how it can be used
to deduce Theorem A.2. In what follows it will be convenient to shift the
t-structure on IndCoh(t∗/X•(T )) so that FMukT becomes t-exact.

Lemma A.5. For for any pair of projective objects F ,G ∈ D(T )♡ the
convolution F ⋆ G is a projective object of D(T )♡. Similarly, for any pair of

projective objects M,N ∈ IndCoh(t∗/X•(T ))♡, the tensor product M
!
⊗N

is a projective object of IndCoh(t∗/X•(T ))♡.



38 TOM GANNON

Proof. Because the following diagram commutes

(18) T × T //

��

T

��
TdR × TdR // TdR

where the horizontal maps induced by multiplication and the vertical maps
are the canonical maps, we see that in the category D(T ), if G is the is the
compact generator (T → TdR)

IndCoh
∗ (ωT ), then G ⋆G is an infinite direct sum

of copies of G. The projection formula ([GR17c, Section 2.1.8]) similarly

implies that if G′ := qIndCoh
∗ (ωt∗) then we have an isomorphism of G′

!
⊗G′

with

qIndCoh
∗ (ωt∗)

!
⊗ qIndCoh

∗ (ωt∗) ≃ qIndCoh
∗ (ωt∗

!
⊗ q!qIndCoh

∗ (ωt∗)) ≃ qIndCoh
∗ q!qIndCoh

∗ (ωt∗)

and so G′
!
⊗G′ is also an infinite direct sum of copies of G′, by base change

along the diagram (12). Now the claims follow since both G and G′ are
projective generators of the associated abelian categories (which we can see
by and [GR] and the fact that q! is conservative by base change respectively)
so any projective object is a direct summand of a direct sum of G or G′
respectively. □

Proof of Theorem A.2. It follows from Lemma A.5 that D(T ) is a nonunital
commutative Vect-algebra in DGrothproj. Note that it has an action of W
induced from the action of W on T . Similarly, IndCoh(t∗/X•(T )) is also
a nonunital commutative Vect-algebra in DGrothproj with an action of W .
By Theorem A.4 the usual W -equivariant symmetric monoidal structure on
FMuk♡T may be upgraded to aW -equivariant nonunital symmetric monoidal
structure on FMukT . This equivalence admits a unique unital symmetric
monoidal extension by virtue of [Lur17, Theorem 5.4.3.5]. □

We now turn to the proof of Theorem A.4.

Notation A.6. For each object C of Grothproj we denote by Cproj the full
subcategory of C on the projective objects.

Lemma A.7. Let C be an object of DGrothproj. Then:

(1) For every category with small colimits D, restriction to C♡proj provides an
equivalence between the category FunctL(C≤0,D) of colimit preserving

functors C≤0 → D and the category Funct⊕(C♡proj,D) of small coproduct

preserving functors C♡proj → D.
(2) For every stable category with small colimits D, restriction to C♡proj pro-

vides an equivalence FunctL(C,D) = Funct⊕(C♡proj,D).
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Proof. Part (2) follows from part (1) since C is the stabilization of C≤0. To
prove part (1) we apply the results from [Lur11] section 4.2. The category

C♡proj is a socle in the sense of definition 4.2.9. The lemma follows from a
combination of corollary 4.2.14 and proposition 4.2.15. □

Lemma A.8. Let C be an object of Grothproj. Then for every (1, 1)-
category with small colimits D, restriction to Cproj provides an equivalence

FunctL(C,D) = Funct⊕(Cproj,D).

Proof. Follows by applying part (1) of Lemma A.7 to the derived category
of C. □

Proof of Theorem A.4. We first show that the assignment C 7→ C♡ is an
equivalence of operads. Since it is surjective, it is enough to show that
for every sequence C1, . . . , Cn, C of objects of DGrothproj passage to hearts
induces an equivalence

HomDGrothproj({C1, . . . , Cn}, C) = HomGrothproj({C
♡
1 , . . . , C

♡
n }, C♡).

The case n = 0 is clear: in both cases a 0-ary operation consists of a pro-
jective object of C♡. Assume now that n > 0. Then applying Lemma A.8
to the case when D is the category of functors C♡2 × . . . × C♡n → C♡ which
preserve colimits in each variable we see that restriction along the inclusion
(C♡1 )proj → C

♡
1 provides an equivalence between HomGrothproj({C

♡
1 , . . . , C♡n }, C♡)

and the space of functors

f : (C♡1 )proj × C
♡
2 × C

♡
3 × . . .× C

♡
n → C♡

with the following properties:

• f preserves coproducts in the first variable.
• f preserves colimits in the variables 2, . . . , n.
• For every sequence of projective objectsXi in C♡i the object f(X1, . . . , Xn)
is projective.

Applying this reasoning inductively we conclude that

HomGrothproj({C
♡
1 , . . . , C

♡
n }, C♡)

is equivalent to the space of functors

(C♡1 )proj × (C♡2 )proj × . . .× (C♡n )proj → C
♡
proj

which preserve coproducts in each variable.
Similarly, an inductive application of part (2) of Lemma A.7 shows that

HomDGrothproj({C1, . . . , Cn}, C) is also equivalent to the above space. This
concludes the proof that the map DGrothproj → Grothproj is an equivalence
of operads. It remains to show that these are symmetric monoidal categories.

Equip Groth with the structure of operad where an operation {C1, . . . , Cn} →
C is a functor

f : C1 × . . .× Cn → C
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which preserves colimits in each variable. This is in fact a symmetric
monoidal category, and the inclusion Groth → PrL preserves tensor prod-
ucts [Lur18b, Corollary C.5.4.19]. We may regard Grothproj as a suboperad
of Groth. The unit of Groth is the category of abelian groups, which belongs
to Grothproj. To finish the proof it will suffice to show that if C and D are
objects of Grothproj then the tensor product C ⊗ D (computed in Groth) is
still a tensor product in Grothproj. It is enough for this to prove that if X
and Y are projective objects of C and D then X ⊗ Y is a projective object
of C ⊗ D.

The Yoneda embedding provides an equivalence between C ⊗ D and the
category of limit preserving functors from (C ⊗ D)op into the category of
sets. This is equivalent to the category of functors Cop × Dop → Set which
preserve limits in each variable. Applying once again Lemma A.8 we obtain
an equivalence between C ⊗ D and the category Funct

∏
({Copproj,D

op
proj},Set)

of functors Copproj × D
op
proj → Set which preserve products in each variable.

The functor C ⊗ D → Set corepresented by X ⊗ Y corresponds under this
dictionary to the functor

ev(X,Y ) : Funct
∏
({Copproj,D

op
proj},Set)→ Set

of evaluation at (X,Y ). Our goal is to show that ev(X,Y ) preserves geometric

realizations. To do so it suffices to prove that Funct
∏
({Copproj,D

op
proj}, Set) is

closed under geometric realizations in the category Funct({Copproj,D
op
proj}, Set)

of functors Copproj ×D
op
proj → Set.

Let Ab be the category of abelian groups. We have a commutative square
of categories

Funct
∏
({Copproj,D

op
proj},Ab) Funct

∏
({Copproj,D

op
proj}, Set)

Funct({Copproj,D
op
proj},Ab) Funct({Copproj,D

op
proj},Set)

where the horizontal arrows are induced by the forgetful functor Ab→ Set
and the vertical arrows are the inclusions. The top horizontal arrow is an
equivalence since Copproj and D

op
proj are additive. The bottom horizontal arrow

preserves geometric realizations since these are preserved by the forgetful
functor Ab → Set. We may therefore reduce to showing that left verti-
cal arrow preserves geometric realizations. This follows from the fact that
products in Ab are exact. □
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