MATH 7410 (TOTAL POSITIVITY): HOMEWORK #2

- The homework is due at 3pm on Tuesday, November 25th, 2025 on Gradescope: https://www.gradescope.com/courses/1133762. No late homework is accepted.
- Feel free to collaborate and use any sources. For each problem, all sources and collaborators must be clearly listed.
- Please use LaTeX. Pictures can be drawn by hand and scanned.
- Solve each of the below problems.

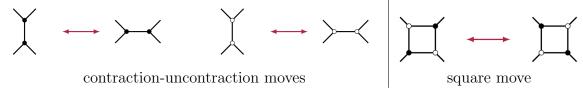
Because $\mathbb{R} \subset \mathbb{C}$, we naturally have $\operatorname{Gr}_{\mathbb{R}}(k,n) \subset \operatorname{Gr}_{\mathbb{C}}(k,n)$ consisting of those subspaces $V \subset \mathbb{C}^n$ contained inside $\mathbb{R}^n \subset \mathbb{C}^n$. Also, recall that the cyclic shift map $\sigma : \operatorname{Gr}(k,n) \to \operatorname{Gr}(k,n)$ takes a matrix with columns (u_1,\ldots,u_n) to a matrix with columns $((-1)^{k-1}u_n,u_1,\ldots,u_{n-1})$.

Problem 1.

- (i) Suppose that $V \in \operatorname{Gr}_{\mathbb{C}}(k,n)$ is the row span of a complex $k \times n$ matrix M. Find a necessary and sufficient condition for V to belong to $\operatorname{Gr}_{\mathbb{R}}(k,n)$ in terms of the maximal minors of M.
- (ii) Find all cyclically symmetric points inside $Gr_{\mathbb{C}}(k, n)$, i.e., points $V \in Gr_{\mathbb{C}}(k, n)$ such that $\sigma(V) = V$.
- (iii) Which of these points belong to $Gr_{\mathbb{R}}(k,n)$? [Mandatory: experiment on a computer and make an educated guess. Optional: If you can, give a proof.]

Problem 2. Find the number of d-dimensional cells in $Gr_{>0}(2,n)$ for all n and d.

Problem 3. Recall that for a given bounded affine permutation f, all reduced plabic graphs for f are related by contraction-uncontraction and square moves, shown below. Call two plabic graphs CU-equivalent if they are related by a sequence of only contraction-uncontraction moves. For each $n \geq 4$, find the number C_n of CU-equivalence classes of reduced plabic graphs for the top cell $f = f_{2,n}$ in $Gr_{\geq 0}(2,n)$. For example, $C_2 = 2$, with the two possible graphs shown on the right-hand side of the below figure.



For an element $M \in Gr(k, n)$ represented by a matrix with columns u_1, \ldots, u_n , we have defined u_i for $i \in \mathbb{Z}$ by the condition that $u_{i+n} = u_i$. Recall that $f_V : \mathbb{Z} \to \mathbb{Z}$ is given by

$$f_M(i) = \min\{j \ge i \mid u_i \in \operatorname{Span}(u_{i+1}, \dots, u_j)\}.$$

Problem 4. Prove that f_M is a bounded affine permutation.

For a linear subspace $M \subset \mathbb{R}^n$, we denote by M^{\perp} its orthogonal complement with respect to the standard scalar product on \mathbb{R}^n .

Problem 5.

- (i) Express the Plücker coordinates of $M^{\perp} \in \operatorname{Gr}(n-k,n)$ in terms of that of $M \in \operatorname{Gr}(k,n)$.
- (ii) Express $f_{M^{\perp}}$ in terms of f_M .